
Preface

In the Leibniz–Newton calculus, one learns the differentiation and integration
of deterministic functions. A basic theorem in differentiation is the chain rule,
which gives the derivative of a composite of two differentiable functions. The
chain rule, when written in an indefinite integral form, yields the method of
substitution. In advanced calculus, the Riemann–Stieltjes integral is defined
through the same procedure of “partition-evaluation-summation-limit” as in
the Riemann integral.

In dealing with random functions such as functions of a Brownian motion,
the chain rule for the Leibniz–Newton calculus breaks down. A Brownian
motion moves so rapidly and irregularly that almost all of its sample paths are
nowhere differentiable. Thus we cannot differentiate functions of a Brownian
motion in the same way as in the Leibniz–Newton calculus.

In 1944 Kiyosi Itô published the celebrated paper “Stochastic Integral” in
the Proceedings of the Imperial Academy (Tokyo). It was the beginning of
the Itô calculus, the counterpart of the Leibniz–Newton calculus for random
functions. In this six-page paper, Itô introduced the stochastic integral and a
formula, known since then as Itô’s formula.

The Itô formula is the chain rule for the Itô calculus. But it cannot be
expressed as in the Leibniz–Newton calculus in terms of derivatives, since
a Brownian motion path is nowhere differentiable. The Itô formula can be
interpreted only in the integral form. Moreover, there is an additional term
in the formula, called the Itô correction term, resulting from the nonzero
quadratic variation of a Brownian motion.

Before Itô introduced the stochastic integral in 1944, informal integrals
involving white noise (the nonexistent derivative of a Brownian motion) had
already been used by applied scientists. It was an innovative idea of Itô to
consider the product of white noise and the time differential as a Brownian
motion differential, a quantity that can serve as an integrator. The method
Itô used to define a stochastic integral is a combination of the techniques in
the Riemann–Stieltjes integral (referring to the integrator) and the Lebesgue
integral (referring to the integrand).
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The Itô calculus was originally motivated by the construction of Markov
diffusion processes from infinitesimal generators. The previous construction
of such processes had to go through three steps via the Hille–Yosida theory,
the Riesz representation theorem, and the Kolmogorov extension theorem.
However, Itô constructed these diffusion processes directly in a single step as
the solutions of stochastic integral equations associated with the infinitesimal
generators. Moreover, the properties of these diffusion processes can be derived
from the stochastic integral equations and the Itô formula.

During the last six decades the Itô theory of stochastic integration has been
extensively studied and applied in a wide range of scientific fields. Perhaps
the most notable application is to the Black–Scholes theory in finance, for
which Robert C. Merton and Myron S. Scholes won the 1997 Nobel Prize in
Economics. Since the Itô theory is the essential tool for the Black–Scholes
theory, many people feel that Itô should have shared the Nobel Prize with
Merton and Scholes.

The Itô calculus has a large spectrum of applications in virtually every
scientific area involving random functions. But it seems to be a very difficult
subject for people without much mathematical background. I have written this
introductory book on stochastic integration for anyone who needs or wants
to learn the Itô calculus in a short period of time. I assume that the reader
has the background of advanced calculus and elementary probability theory.
Basic knowledge of measure theory and Hilbert spaces will be helpful. On the
other hand, I have written several sections (for example, §2.4 on conditional
expectation and §3.2 on the Borel–Cantelli lemma and Chebyshev inequality)
to provide background for the sections that follow. I hope the reader will find
them helpful. In addition, I have also provided many exercises at the end of
each chapter for the reader to further understand the material.

This book is based on the lecture notes of a course I taught at Cheng Kung
University in 1998 arranged by Y. J. Lee under an NSC Chair Professorship.
I have revised and implemented this set of lecture notes through the courses
I have taught at Meijo University arranged by K. Saitô, University of Rome
“Tor Vergata” arranged by L. Accardi under a Fulbright Lecturing grant, and
Louisiana State University over the past years. The preparation of this book
has also benefited greatly from my visits to Hiroshima University, Academic
Frontier in Science of Meijo University, University of Madeira, Vito Volterra
Center at the University of Rome “Tor Vergata,” and the University of Tunis
El Manar since 1999.

I am very grateful for financial support to the above-mentioned universities
and the following offices: the National Science Council (Taiwan), the Ministry
of Education and Science (Japan), the Luso-American Foundation (Portugal),
and the Italian Fulbright Commission (Italy). I would like to give my best
thanks to Dr. R. W. Pettit, Senior Program Officer of the CIES Fulbright
Scholar Program, and Ms. L. Miele, Executive Director of the Italian Fulbright
Commission, and the personnel in her office for giving me assistance for my
visit to the University of Rome “Tor Vergata.”
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H. Ouerdiane, K. Saitô, A. N. Sengupta, H. H. Shih, A. Stan, P. Sundar, H.
F. Yang, T. H. Yang, and H. Yin. I would like to give my best thanks to
my colleague C. N. Delzell, an amazing TEXpert, for helping me to resolve
many tedious and difficult TEXnical problems. I am in debt to M. Regoli for
drawing the flow chart to outline the chapters on the next page. I thank W.
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of Springer for his assistance in bringing out this book.

I would like to give my deepest appreciation to L. Accardi, L. Gross, T.
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preparation of the manuscript. Especially, my Ph. D. advisor, Professor Gross,
has been giving me continuous support and encouragement since the first day
I met him at Cornell in 1966. I owe him a great deal in my career.

The writing style of this book is very much influenced by Professor K. Itô. I
have learned from him that an important mathematical concept always starts
with a simple example, followed by the abstract formulation as a definition,
then properties as theorems with elaborated examples, and finally extension
and concrete applications. He has given me countless lectures in his houses in
Ithaca and Kyoto while his wife prepared the most delicious dinners for us.
One time, while we were enjoying extremely tasty shrimp-asparagus rolls, he
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me a lecture. His wife came upstairs to urge him to sleep and then said to me,
“Kuo san (Japanese for Mr.), don’t listen to him.” Around 1976, Professor
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2

Brownian Motion

2.1 Definition of Brownian Motion

Let (Ω,F , P ) be a probability space. A stochastic process is a measurable
function X(t, ω) defined on the product space [0,∞)×Ω. In particular,

(a) for each t, X(t, ·) is a random variable,
(b) for each ω, X(·, ω) is a measurable function (called a sample path).

For convenience, the random variable X(t, ·) will be written as X(t) or Xt.
Thus a stochastic process X(t, ω) can also be expressed as X(t)(ω) or simply
as X(t) or Xt.

Definition 2.1.1. A stochastic process B(t, ω) is called a Brownian motion
if it satisfies the following conditions:

(1) P{ω ; B(0, ω) = 0} = 1.
(2) For any 0 ≤ s < t, the random variable B(t)−B(s) is normally distributed

with mean 0 and variance t− s, i.e., for any a < b,

P
{
a ≤ B(t)−B(s) ≤ b

}
=

1√
2π(t− s)

∫ b

a

e−x2/2(t−s) dx.

(3)B(t, ω) has independent increments, i.e., for any 0 ≤ t1 < t2 < · · · < tn,
the random variables

B(t1), B(t2)−B(t1), . . . , B(tn)−B(tn−1),

are independent.
(4) Almost all sample paths of B(t, ω) are continuous functions, i.e.,

P
{
ω ; B(·, ω) is continuous

}
= 1.
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In Remark 1.2.3 we mentioned that the limit

B(t) = lim
δ→0

Yδ,
√

δ(t)

is a Brownian motion. However, this fact comes only as a consequence of an
intuitive observation. In the next chapter we will give several constructions of
Brownian motion. But before these constructions we shall give some simple
properties of a Brownian motion and define the Wiener integral.

A Brownian motion is sometimes defined as a stochastic process B(t, ω)
satisfying conditions (1), (2), (3) in Definition 2.1.1. Such a stochastic process
always has a continuous realization, i.e., there exists Ω0 such that P (Ω0) = 1
and for any ω ∈ Ω0, B(t, ω) is a continuous function of t. This fact can be
easily checked by applying the Kolmogorov continuity theorem in Section 3.3.
Thus condition (4) is automatically satisfied.

The Brownian motion B(t) in the above definition starts at 0. Sometimes
we will need a Brownian motion starting at x. Such a process is given by
x+B(t). If the starting point is not 0, we will explicitly mention the starting
point x.

2.2 Simple Properties of Brownian Motion

Let B(t) be a fixed Brownian motion. We give below some simple properties
that follow directly from the definition of Brownian motion.

Proposition 2.2.1. For any t > 0, B(t) is normally distributed with mean 0
and variance t. For any s, t ≥ 0, we have E[B(s)B(t)] = min{s, t}.
Remark 2.2.2. Regarding Definition 2.1.1, it can be proved that condition (2)
and E[B(s)B(t)] = min{s, t} imply condition (3).

Proof. By condition (1), we have B(t) = B(t)−B(0) and so the first assertion
follows from condition (2). To show that EB(s)B(t) = min{s, t} we may
assume that s < t. Then by conditions (2) and (3),

E
[
B(s)B(t)

]
= E
[
B(s)
(
B(t)−B(s)

)
+B(s)2

]
= 0 + s = s,

which is equal to min{s, t}. �

Proposition 2.2.3. (Translation invariance) For fixed t0 ≥ 0, the stochastic
process B̃(t) = B(t+ t0)−B(t0) is also a Brownian motion.

Proof. The stochastic process B̃(t) obviously satisfies conditions (1) and (4)
of a Brownian motion. For any s < t,

B̃(t)− B̃(s) = B(t+ t0)−B(s+ t0). (2.2.1)
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By condition (2) of B(t), we see that B̃(t)− B̃(s) is normally distributed with
mean 0 and variance (t+ t0)− (s+ t0) = t− s. Thus B̃(t) satisfies condition
(2). To check condition (3) for B̃(t), we may assume that t0 > 0. Then for
any 0 ≤ t1 < t2 < · · · < tn, we have 0 < t0 ≤ t1 + t0 < · · · < tn + t0.
Hence by condition (3) of B(t), B(tk + t0) − B(tk−1 + t0), k = 1, 2, . . . , n,
are independent random variables. Thus by Equation (2.2.1), the random
variables B̃(tk)−B̃(tk−1), k = 1, 2, . . . , n, are independent and so B̃(t) satisfies
condition (3) of a Brownian motion. �


The above translation invariance property says that a Brownian motion
starts afresh at any moment as a new Brownian motion.

Proposition 2.2.4. (Scaling invariance) For any real number λ > 0, the
stochastic process B̃(t) = B(λt)/

√
λ is also a Brownian motion.

Proof. Conditions (1), (3), and (4) of a Brownian motion can be readily
checked for the stochastic process B̃(t). To check condition (2), note that
for any s < t,

B̃(t)− B̃(s) =
1√
λ

(
B(λt)−B(λs)

)
,

which shows that B̃(t)−B̃(s) is normally distributed with mean 0 and variance
1
λ (λt− λs) = t− s. Hence B̃(t) satisfies condition (2). �


It follows from the scaling invariance property that for any λ > 0 and
0 ≤ t1 < t2 < · · · < tn the random vectors(

B(λt1), B(λt2), . . . , B(λtn)
)
,
(√
λB(t1),

√
λB(t2), . . . ,

√
λB(tn)

)
have the same distribution.

2.3 Wiener Integral

In Section 1.1 we raised the question of defining the integral
∫ b

a
f(t) dg(t). We

see from Example 1.1.3 that in general this integral cannot be defined as a
Riemann–Stieltjes integral.

Now let us consider the following integral:∫ b

a

f(t) dB(t, ω),

where f is a deterministic function (i.e., it does not depend on ω) and B(t, ω)
is a Brownian motion. Suppose for each ω ∈ Ω we want to use Equation
(1.1.2) to define this integral in the Riemann–Stieltjes sense by

(RS)
∫ b

a

f(t) dB(t, ω) = f(t)B(t, ω)
]b

a
− (RS)

∫ b

a

B(t, ω) df(t). (2.3.1)
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Then the class of functions f(t) for which the integral (RS)
∫ b

a
f(t) dB(t, ω)

is defined for each ω ∈ Ω is rather limited, i.e., f(t) needs to be a continuous
function of bounded variation. Hence for a continuous function of unbounded
variation such as f(t) = t sin 1

t , 0 < t ≤ 1, and f(0) = 0, we cannot use
Equation (2.3.1) to define the integral

∫ 1
0 f(t) dB(t, ω) for each ω ∈ Ω.

We need a different idea in order to define the integral
∫ b

a
f(t) dB(t, ω) for

a wider class of functions f(t). This new integral, called the Wiener integral
of f , is defined for all functions f ∈ L2[a, b]. Here L2[a, b] denotes the Hilbert
space of all real-valued square integrable functions on [a, b]. For example,∫ 1
0 t sin

1
t dB(t) is a Wiener integral.

Now we define the Wiener integral in two steps:

Step 1. Suppose f is a step function given by f =
∑n

i=1 ai 1[ti−1,ti), where
t0 = a and tn = b. In this case, define

I(f) =
n∑

i=1

ai

(
B(ti)−B(ti−1)

)
. (2.3.2)

Obviously, I(af + bg) = aI(f) + bI(g) for any a, b ∈ R and step functions
f and g. Moreover, we have the following lemma.

Lemma 2.3.1. For a step function f , the random variable I(f) is Gaussian
with mean 0 and variance

E
(
I(f)2

)
=
∫ b

a

f(t)2 dt. (2.3.3)

Proof. It is well known that a linear combination of independent Gaussian
random variables is also a Gaussian random variable. Hence by conditions (2)
and (3) of Brownian motion, the random variable I(f) defined by Equation
(2.3.2) is Gaussian with mean 0. To check Equation (2.3.3), note that

E
(
I(f)2

)
= E

n∑
i,j=1

ai aj

(
B(ti)−B(ti−1)

)(
B(tj)−B(tj−1)

)
.

By conditions (2) and (3) of Brownian motion,

E
(
B(ti)−B(ti−1)

)2 = ti − ti−1,

and for i �= j,

E
(
B(ti)−B(ti−1)

)(
B(tj)−B(tj−1)

)
= 0.

Therefore,

E
(
I(f)2

)
=

n∑
i=1

a2
i (ti − ti−1) =

∫ b

a

f(t)2 dt. �
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Step 2. We will use L2(Ω) to denote the Hilbert space of square integrable
real-valued random variables on Ω with inner product 〈X,Y 〉 = E(XY ). Let
f ∈ L2[a, b]. Choose a sequence {fn}∞

n=1 of step functions such that fn → f in
L2[a, b]. By Lemma 2.3.1 the sequence {I(fn)}∞

n=1 is Cauchy in L2(Ω). Hence
it converges in L2(Ω). Define

I(f) = lim
n→∞ I(fn), in L2(Ω). (2.3.4)

Question 2.3.2. Is I(f) well-defined?

In order for I(f) to be well-defined, we need to show that the limit in
Equation (2.3.4) is independent of the choice of the sequence {fn}. Suppose
{gm} is another such sequence, i.e., the gm’s are step functions and gm → f
in L2[a, b]. Then by the linearity of the mapping I and Equation (2.3.3),

E
(|I(fn)− I(gm)|2) = E

(|I(fn − gm)|2) =
∫ b

a

(
fn(t)− gm(t)

)2
dt.

Write fn(t)−gm(t) =
[
fn(t)−f(t)

]−[gm(t)−f(t)
]
and then use the inequality

(x− y)2 ≤ 2(x2 + y2) to get

∫ b

a

(
fn(t)− gm(t)

)2
dt ≤ 2

∫ b

a

([
fn(t)− f(t)

]2 +
[
gm(t)− f(t)

]2)
dt

→ 0, as n,m→∞.
It follows that limn→∞ I(fn) = limm→∞ I(gm) in L2(Ω). This shows that
I(f) is well-defined.

Definition 2.3.3. Let f ∈ L2[a, b]. The limit I(f) defined in Equation (2.3.4)
is called the Wiener integral of f .

The Wiener integral I(f) of f will be denoted by

I(f)(ω) =
(∫ b

a

f(t) dB(t)
)
(ω), ω ∈ Ω, almost surely.

For simplicity, it will be denoted by
∫ b

a
f(t) dB(t) or

∫ b

a
f(t) dB(t, ω). Note

that the mapping I is linear on L2[a, b].

Theorem 2.3.4. For each f ∈ L2[a, b], the Wiener integral
∫ b

a
f(t) dB(t) is

a Gaussian random variable with mean 0 and variance ‖f‖2 =
∫ b

a
f(t)2 dt.

Proof. By Lemma 2.3.1, the assertion is true when f is a step function. For
a general f ∈ L2[a, b], the assertion follows from the following well-known
fact: If Xn is Gaussian with mean μn and variance σ2

n and Xn converges to
X in L2(Ω), then X is Gaussian with mean μ = limn→∞ μn and variance
σ2 = limn→∞ σ2

n. �
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Thus the Wiener integral I : L2[a, b] → L2(Ω) is an isometry. In fact, it
preserves the inner product, as shown by the next corollary.

Corollary 2.3.5. If f, g ∈ L2[a, b], then

E
(
I(f) I(g)

)
=
∫ b

a

f(t)g(t) dt. (2.3.5)

In particular, if f and g are orthogonal, then the Gaussian random variables
I(f) and I(g) are independent.

Proof. By the linearity of I and Theorem 2.3.4 we have

E
[
(I(f) + I(g))2

]
= E
[
(I(f + g))2

]
=
∫ b

a

(
f(t) + g(t)

)2
dt

=
∫ b

a

f(t)2 dt+ 2
∫ b

a

f(t)g(t) dt+
∫ b

a

g(t)2 dt. (2.3.6)

On the other hand, we can also use Theorem 2.3.4 to obtain

E
[
(I(f) + I(g))2

]
= E
[
I(f)2 + 2I(f)I(g) + I(g)2

]
=
∫ b

a

f(t)2 dt+ 2E
[
I(f)I(g)

]
+
∫ b

a

g(t)2 dt. (2.3.7)

Obviously, Equation (2.3.5) follows from Equations (2.3.6) and (2.3.7). �

Example 2.3.6. The Wiener integral

∫ 1
0 s dB(s) is a Gaussian random variable

with mean 0 and variance
∫ 1
0 s

2 ds = 1
3 .

Theorem 2.3.7. Let f be a continuous function of bounded variation. Then
for almost all ω ∈ Ω,(∫ b

a

f(t) dB(t)
)

(ω) = (RS)
∫ b

a

f(t) dB(t, ω),

where the left-hand side is the Wiener integral of f and the right-hand side is
the Riemann–Stieltjes integral of f defined by Equation (2.3.1).

Proof. For each partition Δn = {t0, t1, . . . , tn−1, tn} of [a, b], we define a step
function fn by

fn =
n∑

i=1

f(ti−1)1[ti−1,ti).

Note that fn converges to f in L2[a, b] as n → ∞, i.e., as ‖Δn‖ → 0. Hence
by the definition of the Wiener integral in Equation (2.3.4),
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a

f(t) dB(t) = lim
n→∞

n∑
i=1

f(ti−1)
(
B(ti)−B(ti−1)

)
, in L2(Ω). (2.3.8)

On the other hand, by Equation (2.3.1), the following limit holds for each
ω ∈ Ω0 for some Ω0 with P (Ω0) = 1,

(RS)
∫ b

a

f(t) dB(t, ω)

= f(b)B(b, ω)− f(a)B(a, ω)− lim
n→∞

n∑
i=1

B(ti, ω)
(
f(ti)− f(ti−1)

)
= lim

n→∞

(
f(b)B(b, ω)− f(a)B(a, ω)−

n∑
i=1

B(ti, ω)
(
f(ti)− f(ti−1)

))
,

which, after regrouping the terms, yields the following equality for each ω in
Ω0:

(RS)
∫ b

a

f(t) dB(t, ω) = lim
n→∞

n∑
i=1

f(ti−1)
(
B(ti)−B(ti−1)

)
. (2.3.9)

Since L2(Ω)-convergence implies the existence of a subsequence converging
almost surely, we can pick such a subsequence of {fn} to get the conclusion
of the theorem from Equations (2.3.8) and (2.3.9). �


Example 2.3.8. Consider the Riemann integral
∫ 1
0 B(t, ω) dt defined for each

ω ∈ Ω0 for some Ω0 with P (Ω0) = 1. Let us find the distribution of this
random variable. Use the integration by parts formula to get∫ 1

0
B(t, ω) dt = B(t, ω)(t− 1)

]1
0
−
∫ 1

0
(t− 1) dB(t, ω)

= (RS)
∫ 1

0
(1− t) dB(t, ω).

Hence by Theorem 2.3.7 we see that for almost all ω ∈ Ω,∫ 1

0
B(t, ω) dt =

(∫ 1

0
(1− t) dB(t)

)
(ω),

where the right-hand side is a Wiener integral. Thus
∫ 1
0 B(t) dt and the Wiener

integral
∫ 1
0 (1− t) dB(t) have the same distribution, which is easily seen to be

Gaussian with mean 0 and variance

E

(∫ 1

0
(1− t) dB(t)

)2

=
∫ 1

0
(1− t)2 dt =

1
3
.
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2.4 Conditional Expectation

In this section we explain the concept of conditional expectation, which will
be needed in the next section and other places. Let (Ω,F , P ) be a fixed
probability space. For 1 ≤ p < ∞, we will use Lp(Ω) to denote the space of
all random variables X with E(|X|p) <∞. It is a Banach space with norm

‖X‖p =
(
E
(|X|p))1/p

.

In particular, L2(Ω) is the Hilbert space used in Section 2.3. In this section
we use the space L1(Ω) with norm given by ‖X‖1 = E|X|. Sometimes we will
write L1(Ω,F) when we want to emphasize the σ-field F .

Suppose we have another σ-field G ⊂ F . Let X be a random variable with
E|X| <∞, i.e., X ∈ L1(Ω). Define a real-valued function μ on G by

μ(A) =
∫

A

X(ω) dP (ω), A ∈ G. (2.4.1)

Note that |μ(A)| ≤ ∫
A
|X| dP ≤ ∫

Ω
|X| dP = E|X| for all A ∈ G. Moreover,

the function μ satisfies the following conditions:

(a) μ(∅) = 0;
(b) μ

( ∪n≥1 An

)
=
∑

n≥1 μ(An) for any disjoint sets An ∈ G, n = 1, 2, . . .;

(c) If P (A) = 0 and A ∈ G, then μ(A) = 0.

A function μ : G → R satisfying conditions (a) and (b) is called a signed
measure on (Ω,G). A signed measure μ is said to be absolutely continuous with
respect to P if it satisfies condition (c). Therefore, the function μ defined in
Equation (2.4.1) is a signed measure on (Ω,G) and is absolutely continuous
with respect to P .

Apply the Radon–Nikodym theorem (see, e.g., the book by Royden [73])
to the signed measure μ defined in Equation (2.4.1) to get a G-measurable
random variable Y with E|Y | <∞ such that

μ(A) =
∫

A

Y (ω) dP (ω), ∀A ∈ G. (2.4.2)

Suppose Ỹ is another such random variable, namely, it is G-measurable
with E|Ỹ | <∞ and satisfies

μ(A) =
∫

A

Ỹ (ω) dP (ω), ∀A ∈ G. (2.4.3)

Then by Equations (2.4.2) and (2.4.3), we have
∫

A
(Y − Ỹ ) dP = 0 for all

A ∈ G. This implies that Y = Ỹ almost surely.
The above discussion shows the existence and uniqueness of the conditional

expectation in the next definition.
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Definition 2.4.1. Let X ∈ L1(Ω,F). Suppose G is a σ-field and G ⊂ F .
The conditional expectation of X given G is defined to be the unique random
variable Y (up to P -measure 1) satisfying the following conditions:

(1) Y is G-measurable;
(2)
∫

A
X dP =

∫
A
Y dP for all A ∈ G.

We will freely use E[X|G], E(X|G), or E{X|G} to denote the conditional
expectation of X given G. Notice that the G-measurability in condition (1) is
a crucial requirement. Otherwise, we could take Y = X to satisfy condition
(2), and the above definition would not be so meaningful. The conditional
expectation E[X|G] can be interpreted as the best guess of the value of X
based on the information provided by G.

Example 2.4.2. Suppose G = {∅, Ω}. Let X be a random variable in L1(Ω)
and let Y = E[X|G]. Since Y is G-measurable, it must be a constant, say
Y = c. Then use condition (2) in Definition 2.4.1 with A = Ω to get∫

Ω

X dP =
∫

Ω

Y dP = c.

Hence c = EX and we have E[X|G] = EX. This conclusion is intuitively
obvious. Since the σ-field G = {∅, Ω} provides no information, the best guess
of the value of X is its expectation.

Example 2.4.3. Suppose Ω = ∪nAn is a disjoint union (finite or countable)
with P (An) > 0 for each n. Let G = σ{A1, A2, . . .}, the σ-field generated by
the An’s. Let X ∈ L1(Ω) and Y = E[X|G]. Since Y is G-measurable, it must
be constant, say cn, on An for each n. Use condition (2) in Definition 2.4.1
with A = An to show that cn = P (An)−1

∫
An

X dP . Therefore, E[X|G] is
given by

E[X|G] =
∑

n

(
1

P (An)

∫
An

X dP

)
1An ,

where 1An denotes the characteristic function of An.

Example 2.4.4. Let Z be a discrete random variable taking values a1, a2, . . .
(finite or countable). Let σ{Z} be the σ-field generated by Z. Then

σ{Z} = σ{A1, A2, . . .},
where An = {Z = an}. Let X ∈ L1(Ω). We can use Example 2.4.3 to obtain

E
[
X|σ{Z}] =

∑
n

(
1

P (An)

∫
An

X dP

)
1An ,

which can be rewritten as E
[
X|σ{Z}] = θ(Z) with the function θ defined by

θ(x) =

⎧⎨⎩
1

P (Z = an)

∫
Z=an

X dP, if x = an, n ≥ 1;

0, if x /∈ {a1, a2, . . .}.
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Note that the conditional expectation E[X|G] is a random variable, while
the expectation EX is a real number. Below we list several properties of
conditional expectation and leave most of the proofs as exercises at the end
of this chapter.

Recall that (Ω,F , P ) is a fixed probability space. The random variable X
below is assumed to be in L1(Ω,F) and G is a sub-σ-field of F , namely, G is
a σ-field and G ⊂ F . All equalities and inequalities below hold almost surely.

1. E
(
E[X|G]

)
= EX.

Remark: Hence the conditional expectation E[X|G] and X have the same
expectation. When written in the form EX = E

(
E[X|G]

)
, the equality is

often referred to as computing expectation by conditioning. To prove this
equality, simply put A = Ω in condition (2) of Definition 2.4.1.

2. If X is G-measurable, then E[X|G] = X.

3. If X and G are independent, then E[X|G] = EX.

Remark: Here X and G being independent means that {X ∈ U} and
A are independent events for any Borel subset U of R and A ∈ G, or
equivalently, the events {X ≤ x} and A are independent for any x ∈ R

and A ∈ G.

4. If Y is G-measurable and E|XY | <∞, then E[XY |G] = Y E[X|G].

5. If H is a sub-σ-field of G, then E[X|H] = E
[
E[X|G] |H].

Remark: This property is useful whenX is a product of random variables.
In that case, in order to find E[X|H], we can use some factors in X to
choose a suitable σ-field G between H and F and then apply this property.

6. If X,Y ∈ L1(Ω) and X ≤ Y , then E[X|G] ≤ E[Y |G].

7.
∣∣E[X|G]

∣∣ ≤ E[|X| | G].

Remark: For the proof, let X+ = max{X, 0} and X− = −min{X, 0} be
the positive and negative parts of X, respectively. Then apply Property 6
to X+ and X−.

8. E[aX + bY |G] = aE[X|G] + bE[Y |G], ∀a, b ∈ R and X,Y ∈ L1(Ω).

Remark: By Properties 7 and 8, the conditional expectation E[ · |G] is a
bounded linear operator from L1(Ω,F) into L1(Ω,G)

9. (Conditional Fatou’s lemma) Let Xn ≥ 0, Xn ∈ L1(Ω), n = 1, 2, . . . , and
assume that lim infn→∞Xn ∈ L1(Ω). Then

E
[
lim inf
n→∞ Xn

∣∣∣G] ≤ lim inf
n→∞ E[Xn|G].

10. (Conditional monotone convergence theorem) Let 0 ≤ X1 ≤ X2 ≤ · · · ≤
Xn ≤ · · · and assume that X = limn→∞Xn ∈ L1(Ω). Then

E[X|G] = lim
n→∞E[Xn|G].
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11. (Conditional Lebesgue dominated convergence theorem) Assume that
|Xn| ≤ Y, Y ∈ L1(Ω), and X = limn→∞Xn exists almost surely. Then

E[X|G] = lim
n→∞E[Xn|G].

12. (Conditional Jensen’s inequality) Let X ∈ L1(Ω). Suppose φ is a convex
function on R and φ(X) ∈ L1(Ω). Then

φ
(
E[X|G]

) ≤ E[φ(X)|G].

2.5 Martingales

Let f ∈ L2[a, b] and consider the stochastic process defined by

Mt =
∫ t

a

f(s) dB(s), a ≤ t ≤ b. (2.5.1)

We will show that Mt is a martingale. But first we review the concept of the
martingale. Let T be either an interval in R or the set of positive integers.

Definition 2.5.1. A filtration on T is an increasing family {Ft| t ∈ T} of
σ-fields. A stochastic process Xt, t ∈ T , is said to be adapted to {Ft| t ∈ T}
if for each t, the random variable Xt is Ft-measurable.

Remark 2.5.2. A σ-field F is called complete if A ∈ F and P (A) = 0 imply
that B ∈ F for any subset B of A. We will always assume that all σ-fields Ft

are complete.

Definition 2.5.3. Let Xt be a stochastic process adapted to a filtration {Ft}
and E|Xt| < ∞ for all t ∈ T . Then Xt is called a martingale with respect to
{Ft} if for any s ≤ t in T ,

E{Xt| Fs} = Xs, a.s. (almost surely). (2.5.2)

In case the filtration is not explicitly specified, then the filtration {Ft} is
understood to be the one given by Ft = σ{Xs ; s ≤ t}.

The concept of the martingale is a generalization of the sequence of partial
sums arising from a sequence {Xn} of independent and identically distributed
random variables with mean 0. Let Sn = X1 + · · · +Xn. Then the sequence
{Sn} is a martingale.

Submartingale and supermartingale are defined by replacing the equality
in Equation (2.5.2) with ≥ and ≤, respectively, i.e., for any s ≤ t in T ,

E{Xt| Fs} ≥ Xs, a.s. (submartingale),

E{Xt| Fs} ≤ Xs, a.s. (supermartingale).
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Let {Xn} be a sequence of independent and identically distributed random
variables with finite expectation and let Sn = X1 + · · ·+Xn. Then {Sn} is a
submartingale if EX1 ≥ 0 and a supermartingale if EX1 ≤ 0.

A Brownian motion B(t) is a martingale. To see this fact, let

Ft = σ{B(s) ; s ≤ t}.

Then for any s ≤ t,

E{B(t)| Fs} = E{B(t)−B(s)| Fs}+ E{B(s)| Fs}.

Since B(t) − B(s) is independent of Fs, we have E{B(t) − B(s)| Fs} =
E{B(t)−B(s)}. But EB(t) = 0 for any t. Hence E{B(t)−B(s)| Fs} = 0. On
the other hand, E{B(s)| Fs} = B(s) because B(s) is Fs-measurable. Thus
E{B(t)| Fs} = B(s) for any s ≤ t and this shows that B(t) is a martingale. In
fact, it is the most basic martingale stochastic process with time parameter
in an interval.

Now we return to the stochastic process Mt defined in Equation (2.5.1)
and show that it is a martingale in the next theorem.

Theorem 2.5.4. Let f ∈ L2[a, b]. Then the stochastic process

Mt =
∫ t

a

f(s) dB(s), a ≤ t ≤ b,

is a martingale with respect to Ft = σ{B(s) ; s ≤ t}.
Proof. First we need to show that E|Mt| <∞ for all t ∈ [a, b] in order to take
the conditional expectation of Mt. Apply Theorem 2.3.4 to get

E
(|Mt|2

)
=
∫ t

a

|f(s)|2 ds ≤
∫ b

a

|f(s)|2 ds.

Hence E|Mt| ≤
{
E
(|Mt|2

)}1/2
<∞. Next we need to prove that E{Mt| Fs} =

Ms a.s. for any s ≤ t. But

Mt = Ms +
∫ t

s

f(u) dB(u)

and Ms is Fs-measurable. Hence

E{Mt| Fs} = Ms + E

{∫ t

s

f(u) dB(u)
∣∣∣Fs

}
.

Thus it suffices to show that for any s ≤ t,

E

{∫ t

s

f(u) dB(u)
∣∣∣Fs

}
= 0. (2.5.3)
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First suppose f is a step function f =
∑n

i=1 ai 1[ti−1,ti), where t0 = s and
tn = t. In this case, we have∫ t

s

f(u) dB(u) =
n∑

i=1

ai

(
B(ti)−B(ti−1)

)
.

But B(ti)−B(ti−1), i = 1, . . . , n, are all independent of the σ-field Fs. Hence
E{B(ti)−B(ti−1)| Fs} = 0 for all i and so Equation (2.5.3) holds.

Next suppose f ∈ L2[a, b]. Choose a sequence {fn}∞
n=1 of step functions

converging to f in L2[a, b]. Then by the conditional Jensen’s inequality with
φ(x) = x2 in Section 2.4 we have the inequality

|E{X| F}|2 ≤ E{X2| F},
which implies that∣∣∣∣E{∫ t

s

(
fn(u)− f(u)

)
dB(u)

∣∣∣Fs

}∣∣∣∣2
≤ E

{(∫ t

s

(
fn(u)− f(u)

)
dB(u)

)2∣∣∣Fs

}
.

Next we use the property E
(
E{X| F}) = EX of conditional expectation and

then apply Theorem 2.3.4 to get

E

∣∣∣∣E{∫ t

s

(
fn(u)− f(u)

)
dB(u)

∣∣∣Fs

}∣∣∣∣2 ≤ ∫ t

s

(
fn(u)− f(u)

)2
du

≤
∫ b

a

(
fn(u)− f(u)

)2
du

→ 0,

as n → ∞. Hence the sequence E{∫ t

s
fn(u) dB(u)| Fs} of random variables

converges to E{∫ t

s
f(u) dB(u)| Fs} in L2(Ω). Note that the convergence of

a sequence in L2(Ω) implies convergence in probability, which implies the
existence of a subsequence converging almost surely. Hence by choosing a
subsequence if necessary, we can conclude that with probability 1,

lim
n→∞E

{∫ t

s

fn(u) dB(u)
∣∣∣Fs

}
= E

{∫ t

s

f(u) dB(u)
∣∣∣Fs

}
. (2.5.4)

Now E
{ ∫ t

s
fn(u) dB(u)

∣∣Fs

}
= 0 since we have already shown that Equation

(2.5.3) holds for step functions. Hence by Equation (2.5.4),

E

{∫ t

s

f(u) dB(u)
∣∣∣Fs

}
= 0,

and so Equation (2.5.3) holds for any f ∈ L2[a, b]. �
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2.6 Series Expansion of Wiener Integrals

Let {φn}∞
n=1 be an orthonormal basis for the Hilbert space L2[a, b]. Each

f ∈ L2[a, b] has the following expansion:

f =
∞∑

n=1

〈f, φn〉φn, (2.6.1)

where 〈·, ·〉 is the inner product on L2[a, b] given by 〈f, g〉 =
∫ b

a
f(t)g(t) dt.

Moreover, we have the Parseval identity

‖f‖2 =
∞∑

n=1

〈f, φn〉2. (2.6.2)

Take the Wiener integral in both sides of Equation (2.6.1) and informally
interchange the order of integration and summation to get∫ b

a

f(t) dB(t) =
∞∑

n=1

〈f, φn〉
∫ b

a

φn(t) dB(t). (2.6.3)

Question 2.6.1. Does the random series in the right-hand side converge to the
left-hand side and in what sense?

First observe that by Theorem 2.3.4 and the remark following Equation
(2.3.5), the random variables

∫ b

a
φn(t) dB(t), n ≥ 1, are independent and have

the Gaussian distribution with mean 0 and variance 1. Thus the right-hand
side of Equation (2.6.3) is a random series of independent and identically
distributed random variables. By the Lévy equivalence theorem [10] [37] this
random series converges almost surely if and only if it converges in probability
and, in turn, if and only if it converges in distribution. On the other hand,
we can easily check the L2(Ω) convergence of this random series as follows.
Apply Equations (2.3.5) and (2.6.2) to show that

E

(∫ b

a

f(t) dB(t)−
N∑

n=1

〈f, φn〉
∫ b

a

φn(t) dB(t)
)2

=
∫ b

a

f(t)2 dt− 2
N∑

n=1

〈f, φn〉2 +
N∑

n=1

〈f, φn〉2

=
∫ b

a

f(t)2 dt−
N∑

n=1

〈f, φn〉2

→ 0,

as N →∞. Hence the random series in Equation (2.6.3) converges in L2(Ω) to
the random variable in the left-hand side of Equation (2.6.3). But the L2(Ω)
convergence implies convergence in probability. Therefore we have proved the
next theorem for the series expansion of the Wiener integral.
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Theorem 2.6.2. Let {φn}∞
n=1 be an orthonormal basis for L2[a, b]. Then for

each f ∈ L2[a, b], the Wiener integral of f has the series expansion∫ b

a

f(t) dB(t) =
∞∑

n=1

〈f, φn〉
∫ b

a

φn(t) dB(t),

with probability 1, where the random series converges almost surely.

In particular, apply the theorem to a = 0, b = 1, and f = 1[0,t), 0 ≤ t ≤ 1.
Then

∫ 1
0 f(s) dB(s) = B(t) and we have the random series expansion,

B(t, ω) =
∞∑

n=1

(∫ t

0
φn(s) ds

)(∫ 1

0
φn(s) dB(s, ω)

)
.

Note that the variables t and ω are separated in the right-hand side. In view
of this expansion, we expect that B(t) can be represented by

B(t, ω) =
∞∑

n=1

ξn(ω)
∫ t

0
φn(s) ds,

where {ξn}∞
n=1 is a sequence of independent random variables having the same

Gaussian distribution with mean 0 and variance 1. This method of defining a
Brownian motion has been studied in [29] [41] [67].

Exercises

1. Let B(t) be a Brownian motion. Show that E|B(s)−B(t)|4 = 3|s− t|2.
2. Show that the marginal distribution of a Brownian motion B(t) at times

0 < t1 < t2 < · · · tn is given by

P{B(t1) ≤ a1, B(t2) ≤ a2, . . . , B(tn) ≤ an}

=
1√

(2π)nt1(t2 − t1) · · · (tn − tn−1)

∫ an

−∞
· · ·
∫ a1

−∞

exp
[
− 1

2

(x2
1

t1
+

(x2 − x1)2

t2 − t1 + · · ·+ (xn − xn−1)2

tn − tn−1

)]
dx1dx2 · · · dxn.

3. Let B(t) be a Brownian motion. For fixed t and s, find the distribution
function of the random variable X = B(t) +B(s).

4. Let B(t) be a Brownian motion and let 0 < s ≤ t ≤ u ≤ v. Show that the
random variables 1

tB(t)− 1
sB(s) and aB(u) + bB(v) are independent for

any a, b ∈ R.
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5. Let B(t) be a Brownian motion and let 0 < s ≤ t ≤ u ≤ v. Show that the
random variables aB(s) + bB(t) and 1

vB(v)− 1
uB(u) are independent for

any a, b ∈ R satisfying the condition as+ bt = 0.
6. Let B(t) be a Brownian motion. Show that limt→0+ tB(1/t) = 0 almost

surely. Define W (0) = 0 and W (t) = tB(1/t) for t > 0. Prove that W (t)
is a Brownian motion.

7. Let B(t) be a Brownian motion. Find all constants a and b such that
X(t) =

∫ t

0

(
a+ bu

t

)
dB(u) is also a Brownian motion.

8. Let B(t) be a Brownian motion. Find all constants a, b, and c such that
X(t) =

∫ t

0

(
a+ bu

t + cu2

t2

)
dB(u) is also a Brownian motion.

9. Let B(t) be a Brownian motion. Show that for any integer n ≥ 1, there
exist nonzero constants a0, a1, . . . , an such that X(t) =

∫ t

0

(
a0 + a1

u
t +

a2
u2

t2 + · · ·+ an
un

tn

)
dB(u) is also a Brownian motion.

10. Let B(t) be a Brownian motion. Show that both X(t) =
∫ t

0 (2t−u) dB(u)
and Y (t) =

∫ t

0 (3t− 4u) dB(u) are Gaussian processes with mean function
0 and the same covariance function 3s2t− 2

3s
3 for s ≤ t.

11. Let B(t) = (B1(t), . . . , Bn(t)) be an R
n-valued Brownian motion. Find

the density functions of R(t) = |B(t)| and S(t) = |B(t)|2.
12. For each n ≥ 1, let Xn be a Gaussian random variable with mean μn and

variance σ2
n. Suppose the sequence Xn converges to X in L2(Ω). Show

that the limits μ = limn→∞ μn and σ2 = limn→∞ σ2
n exist and that X is

a Gaussian random variable with mean μ and variance σ2.
13. Let f(x, y) be the joint density function of random variablesX and Y . The

marginal density function of Y is given by fY (y) =
∫∞

−∞ f(x, y) dx. The
conditional density function of X given Y = y is defined by fX|Y (x|y) =
f(x, y)/fY (y). The conditional expectation of X given Y = y is defined by
E[X|Y = y] =

∫∞
−∞ xfX|Y (x|y) dx. Let σ(Y ) be the σ-field generated by

Y . Prove that
E[X|σ(Y )] = θ(Y ),

where θ is the function θ(y) = E[X|Y = y].
14. Prove the properties of conditional expectation listed in Section 2.4.
15. Let B(t) be a Brownian motion. Find the distribution of

∫ t

0 e
t−s dB(s).

Check whether Xt =
∫ t

0 e
t−s dB(s) is a martingale.

16. Let B(t) be a Brownian motion. Find the distribution of
∫ t

0 B(s) ds. Check
whether Yt =

∫ t

0 B(s) ds is a martingale.
17. Let B(t) be a Brownian motion. Find the distribution of the integral∫ t

0 B(s) cos(t− s) ds.
18. Let B(t) be a Brownian motion. Show that Xt = 1

3B(t)3− ∫ t

0 B(s) ds is a
martingale.


