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Summary. The objective of this work is to introduce and numerically solve a 3D-
mathematical model for steady thermoelectrical behavior of electrodes in a metal-
lurgical electric furnace. The mathematical model couples the time-harmonic eddy
current mode] with the heat transfer equations in a bounded 3D-domain. An impor-
tant part of the paper deals with the analysis and numerical solution of the eddy
current model in a bounded domain.

1 Introduction

Silicon is produced industrially by reduction of silicon dioxide with carbon by
a reaction which can be written in a simple way as follows:

Si Oz +2C = Si+ 2CO.

This reaction takes place in submerged arc furnaces which use three-phase
alternating current. A simple sketch of the furnace can be seen in Figure 1. It
consists of a cylindrical pot containing charge materials and three electrodes
disposed conforming an equilateral triangle.

Electrodes are the main components of reduction furnaces and their pur-
pose is to conduct the electric current which enters the electrode through the
“contact clamps” (see Figure 1). The electric current goes down crossing the
column length comprised between the contact clamps and the lower end of the
column generating heat by Joule effect. At the tip of the electrode an electric
arc is produced, reaching temperatures of about 2500 °C which are needed for
the reduction chemical reactions to take place. ~

Classical electrodes extensively used in industry include pure graphite, pre-
baked and Sgderberg electrodes. The latter are the most used in ferro-silicon
industry and they are composed by paste consisting of a carbon aggregate
and a tar binding which are fed into a steel casing; the casing have steel
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Fig. 1. A reduction furnace

fins attached to its inner part, which are placed radially in the cylinder. The
great amount of heat generated by Joule effect is partially employed to bake
the paste; this is a crucial process during which the initially soft/liquid non-
conductive paste at the top of the electrode becomes a solid conductor. The
advantages of Sgderberg electrodes with respect to pure graphite or prebaked
electrodes are that they are built in larger sizes and cost less. However, as the
electrode is consumed, it has to be slipped and the steel casing moves with the
carbon body so it melts and pollutes silicon. This is why they cannot be used
to obtain silicon metal or silicon with metallurgical quality, which is used as
alloying of other metals as aluminum. Thus prebaked electrodes have been for
many years the only alternative for commercial silicon metal production.

In the early nineties, the Spanish company Ferroatlantica S.L. built a new
compound electrode named ELSA ([14]) which serves for the production of
silicon metal. It seems to be the solution for all silicon furnaces because its
cost can be up to one third the price of a prebaked electrode.

ELSA electrode consists of a central column of baked carbonaceous mate-
rial, graphite or similar, surrounded by a Sgderberg-like paste (see Figure 2).
There is a steel casing without fins that contains the paste until it is baked
at the contact clamps zone. Two different slipping systems exist, one for the
casing and another one for the central column; the combination of both sys-
tems is necessary so as to slip the casing as little as possible and also to carry
out the correct extrusion of the carbon electrode. Then, unlike in the case of
Sgderberg electrodes, the casing is not consumed and it is possible to produce
silicon with metallurgical quality. The result is that the furnace operation is
similar to that of prebaked electrodes, but the compound electrode is less ex-
pensive. The disadvantage is that slipping velocity is not free as in prebaked
electrodes, because the paste has to be baked before leaving the casing, so it is
necessary a minimum period of time between slippages. Thus, baking of paste
is a crucial point in the working of this type of electrodes.
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Fig. 2. Sketch of ELSA electrode

In general, the design and control parameters of electrodes are very complex
and numerical simulation plays an important role at this point. Modeling the
involved phenomena in a computer allows us to analyze the influence of chang-
ing a parameter without the need of expensive and difficult tests. Thus, during
the last 20 years, an important number of mathematical models and computer
programs have been developed in order to simulate the thermoelectrical be-
havior of classical electrodes (see for instance [15, 17, 18]). In particular, the
mathematical models based on cylindrical symmetry have been the most ex-
tensively used. However, ELSA electrode works in a different manner from the
classical electrodes. While classical electrode has only a constitutive material,
compound electrode combines a good electric current conductor as graphite
with a paste which becomes a good conductor only at high temperatures. Not
only the core of graphite is important in the movement of the column but also
in the distribution of current inside the electrode. Moreover, unlike Sgderbeg
electrodes, the non existence of fins gives a geometrical axisymmetry (see Fig-
ure 3).

This is why we first developed a finite element method based on cylindrical
symmetry to compute the electric current and temperature distribution in
a radial section of the electrode [5]. While the axisymmetric model has given
valuable information on important electrode parameters, the assumption of
cylindrical symmetry makes necessary to neglect the following facts:

— The electromagnetic effect caused on one electrode by the two others, that
is the so called “proximity effect”. This arises because the magnetic field
generated by each electrode induces eddy currents in the two others.

— Thermal boundary conditions are not axisymmetric. Indeed, the tempera-
ture of the air around the electrode is greater on the surfaces oriented toward
the furnace center.
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Fig. 3. Cross section of ELSA and Sgderberg electrode

— The current entrance in the electrode through the contact clamps is not ax-
isymmetric. The current is transferred to the contact clamps through copper
bus tubes which in its turn are connected to three transformers with differ-
ent phases. Then, in each electrode, half of the clamps receive current from
one transformer while the other ones are connected to a second transformer.

These points can only be considered by using a pure three-dimensional model.
Moreover, 3D-models are always needed to simulate Sgderberg electrodes be-
cause the presence of fins breaks cylindrical symmetry (see Figure 3). Thus, we
have developed a three dimensional thermoelectrical model which is enough
general to model any kind of electrodes and even the complete furnace. In this
paper, we describe two different mathematical models and analyze them from
mathematical and numerical points of view.

The electromagnetic problem is obtained from the time-harmonic Maxwell
equations assuming the frequency is low enough as to neglect the term in-
volving the displacement current in Ampere’s law. This is the so-called eddy
current model. Because of many interesting applications in electrical engineer-
ing, numerical simulation of eddy current problems have led to a great number
of publications in recent years (see for instance [1, 2, 3, 10, 11, 12, 13]). We
notice that Maxwell equations concern the whole space, but we are interested
in solving the problem in a bounded domain, so we have to define suitable
boundary conditions and this need represents the main difficulty to study the
problem in a bounded domain. Thus, we start introducing the eddy current
problem in the whole furnace, including the electrodes and the air around, and
defining natural and essential boundary conditions. In a second step we change
this model, by introducing realistic boundary conditions, to compute the elec-
tromagnetic fields in only one electrode. Finally, we couple the electromagnetic
model with a thermal one. Coupling between Maxwell and heat transfer equa-
tions is due to Joule effect which is the source term in the heat equation, and
to the fact that thermoelectrical parameters depend on temperature.

The outline of the paper is as follows: In Section 2 we deal with the math-
ematical and numerical analysis of the electromagnetic problem in a bounded
3D domain which includes conductors and dielectrics. We introduce a weak
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formulation which involves the magnetic field in the conductor domain and
a scalar magnetic potential in the dielectric one. This hybrid formulation is
discretized by using Nédélec edge finite elements for the magnetic field and
standard piecewise linear continuous elements for the magnetic potential. The
resulting discrete problems are studied and error estimates are obtained under
mild smoothness assumptions on the solution. Section 3 is devoted to propose
and analyze a finite element method to solve the electromagnetic problem only
in one electrode. We introduce a weak formulation of the problem in terms of
the magnetic field and deal with boundary conditions directly related with
the intensities which enter the domain. Lagrange multipliers are introduced
to impose these “non standard” boundary conditions and the resulting mixed
formulations are studied following classical techniques. In Section 4, we couple
the electromagnetic problem with the thermal one and give a result concern-
ing existence of solution. We end the paper by reporting, in Section 5, some
numerical results obtained for ELSA and Sgderberg electrodes.

2 The electromagnetic problem in the whole furnace

In order to consider all the facts which are neglected in the axisymmetric
models, we start proposing a model to solve the eddy current problem in
a bounded domain like the one presented in Figure 4, which includes not
only conductors (the electrodes and wires supplying the electric current), but
dielectrics as well (the air).

2.1 The eddy current problem

Eddy currents are usually modeled by the low-frequency harmonic Maxwell
equations. Assuming alternating electric current of angular frequency w, they
are

curlH = J, (1)
iwpH + curlE = 0, (2)
divB =0, (3)
divD = p, (4)
with
B=uH, D=cE, J=cE, (5)

where H, J, B, E, and D are the complex amplitudes associated with the
magnetic field, the current density, the magnetic induction, the electric field
and the electric displacement, respectively; p is the electric charge density, u
is the magnetic permeability, € is the electric permittivity and o is the electric
conductivity.
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Fig. 4. Sketch of the furnace Fig. 5. Sketch of a general domain

We will solve these equations in a bounded domain 2, which consists of
two parts, {2, and {2, occupied by conductors and dielectrics, respectively
(see Figure 5). The boundary of the domain (2 also splits into two parts:
I}, := 002,N02 and I}, := 0£2,N012. Finally, we denote by I} := 82,N0{2,, the
interface between dielectric and conductors. The boundary conditions added
to the eddy current model are

Exn=g onl], (6)
Hxn=f onlI], (7)



Methods for Eddy Current Problems 9

with g and f being given tangential vector fields (i.e., satisfying g - n = 0 on
I and f-n=0on I) and n an outward unit normal vector to 812.

We remark that (6) is the natural condition for the conducting part of the
boundary, while (7) is imposed on the dielectric part and allows taking into
account all of the electromagnetic effects outside the domain.

We will introduce and analyze a finite element method to solve this problem
in domains of general topology. To attain this goal, we will consider a formula-
tion introduced by Bossavit and Vérité [13], which involves the magnetic field
in the conductor domain and a scalar magnetic potential in the dielectric one.
Then, as a first step, we start analyzing a weak formulation of the problem in
terms of the magnetic field.

2.2 A magnetic field formulation of the eddy current problem

Let us assume that (2 is simply connected, with a Lipschitz-continuous con-
nected boundary. The subdomains (2, and (2, are also assumed to have
Lipschitz-continuous boundaries, although not necessarily connected. Finally,
the boundaries of I, I}, and I are also assumed to have Lipschitz-continuous
boundaries.

Let us consider the following closed subspaces of H(curl, 2),

V ={G eH(curl,2): curlG=0in 2.},
V={cev: Gxn=0in Hoo/*(1)°},

where Hy,/?(I)® denotes the dual space of H/?(I3)® which, in its turn, is
the space of functions defined on I that extended by 0 on 82\ I}, belong to
HY/2(002)%. We assume that u,e,0 € L®(£2), and that there exist constants,
i, € and g, such that

w(x) > p >0, €(x)>€>0, ae in 2,
o(x) >c >0, ae. in {2, o(x)=0 in (2.

We suppose that the boundary data g satisfies g x n € HééQ(I:.,)s. On the
other hand, concerning the boundary data f, we suppose there exists a field
H: € V such that

He x n = f in Hy/2(I)3.

Then, multiplying the equation (2) by a test function of the space V°,

integrating in {2, and using Green'’s formula, (1), (6), and (7), we obtain the

following weak formulation in terms of the magnetic field H.
Problem MP.- To find H €V such that

H x n = f in Hog ()%, (8)

iw/,uH-G+/ lcurlH-curlé:(gxn,Gxn)F VG € V°.(9)
o) 2,9 ©
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Theorem 1. If there exists He € V such that He x n =f in H501/2(1;)3,-thén
problem MP has a unique solution.

Once the magnetic field H is known, the current density J and the electric

field E can be computed in conductors, namely, J = curlH and E = (1J)| 0.
C

These are the magnitudes actually needed in most applications and satisfy the
Maxwell equations (1)~(5) and boundary conditions (6)-(7) (see Theorem 3.2
in [7]).

2.3 Introducing a magnetic potential

In this section we show how problem MP can be transformed by replacing the
magnetic field in the dielectric domain {2, by a (scalar) magnetic potential.

Let 2. = jzb] 23, with 29 being the union of all the connected compo-
nents of 2, such that 2\ £22 is simply connected, and 29, j = 1,...,J, the
remaining connected components of (2. (see Figure 5).

We assume that for each Qé', j = 1,...,J, there exists an open “cut”
surface X; C (2, such that 8%; C 82, and 2 := 2, \ Uj:g 3 is pseudo-
Lipschitz and simply connected (see Figure 5). We also assume that each of
these surfaces X; is connected, and X; N X = @ for j # k (see, for instance,

[4])- N N
For any function ¥ € H!(§2,), we denote by [?] 5, the jump of ¥ through

%;. The gradient of ¥ in D'(f2,) can be extended to L2(2,)® and will be

denoted by grad 7. B
Let © be the linear space of H!((2,,) defined by

e= {@eHl(ﬁD): [[U:/]]Ej = constant, j = 1,...,]}.

Then, for & € H!(§2,), we have that grad ¥ € H(curl, £2,) if and only if
¥ € ©, in which case curl(grad¥) = 0 (see Lemma 3.11 in [4]). Then, for
all G € V there exist ¥ € © such that GI‘QD = grad V.

We introduce the following notation: for G, € L2(£2,)® and G, € L?(12,)3,
we denote by (G/|G,) the field G € L%(£2)® defined a.e. by

 [Gx) ifx €2,
G(x) := {GD(X) ifx €,

Let us denote by W the linear space given by
W= {(G, 7 € H(curl, 2,) x (9/C) : (G|gfad¥) € H(curl, 9)} .
Similarly, we define the closed subspace of W

WO .— {(G,ﬁ) ceW: grad¥ xn=0in H501/2(1;)3}.
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By using this notation we can define the following problem:
Problem HP.- To find (H,®) € W such that
grad @ x n = f in Hyt/2(I1)3,

iw/ /.LH'G+/ lcurlH-curl(_S‘r—Hr.u/ pgrad @ - grad ¥ =
I7) 2 2

= (gx1n,G x n)p Y(G,T) e WO,

C C D

This is the well known magnetic field/magnetic potential hybrid formu-
lation of the eddy current problem introduced by Bossavit and Vérité [13].
The main advantage with respect to formulation (8)—(9) lies in the fact that
a vector field is replaced by a scalar one in the dielectric domain.

Theorem 2. Under the assumptions of Theorem 1, problem HP has a unique
solution (H, ), with (H|grad @) being the unique solution of problem MP.

2.4 Numerical solution

In this section we first introduce a discretization of problem MP and then we
obtain a discrete version of problem HP equivalent to the previous one.

Let us assume §2, 2., and (2, are Lipschitz polyhedra, and consider a family
of regular tetrahedral meshes {7} of {2 such that, for every mesh 7}, each
element K € 7y, is contained either in 2, or in 2 (h stands as usual for the
corresponding mesh-size).

The magnetic field is discretized by using Nédélec edge finite elements (see
[19]). In particular, H is approximated in each tetrahedron K by a polynomial
vector field in the space

N(K):={GrePi(K)’: Gpn(x)=axx+b, a,becC? xecK}.

Then, fields in H(curl, 2) will be approximated in the following finite di-
mensional space:

Ni(2) :={Gp € H(curl, 2) : Gplx e N(K) VK € Tp,}.

In order to use these elements to discretize problem MP, we have to use an
approximation f; of the boundary data f such that a discrete version of equation
(8) can hold true. To attain this goal, we will use the two-dimensional Nédélec
interpolant of n x f on the triangular mesh induced by 7; on the polyhedral
surface I]. This interpolant and several of its properties are described in detail
in [7].

Then, in order to discretize problem MP, we introduce the following finite-
dimensional spaces,
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Vi :={Gr e NK(2): curlG, =0 in 2.},
V) :={Gr€Vr: Goxn=0 onl},

and obtain the following discrete magnetic problem:
Problem DMP.- Find H,, € V}, such that

Hyxn=1 onlI,

- 1 ‘ — —
iw/ uHh-Gh+/ —curth-curlGh:/ gxn-Gpxn
] 2,0 I

C C

VYGLEVY.

Theorem 3. Let us assume that the solution H of problem MP satisfies
H|, € H(curl, ;) and Hi, € H"(02,)%, with v € (3,1]. Then, £, is well
defined by the 2D Nédélec interpolant of n x f, problem DMP has a unique
solution Hy, and the following error estimate holds:

1~ Halgcurty < OB [ Bl et + 1Bl yo] -

However, problem DMP is actually just a “theoretical” method in that its
solution requires to impose somehow the curl-free condition in the definition
of V}, to trial and test functions. Then, we will handle this curl-free condition
by introducing a discrete multiple-valued magnetic potential in the dielectric
domain.

We assume that the cut surfaces X; are polyhedral and that the meshes are
compatible with them, in the sense that each ; is union of faces of tetrahedra
K € 7Ty, for each mesh 7j,. Therefore, '];LQD :={K €7T,: K C .} can also
be seen as a mesh of (2,

In order to introduce an approximation of the space ©, let us denote

= ~ ~ ~ 0
Ln(2,) = {wh e HY(2,) : Bn|y € P1(K) VK € T, D}.
Then, we consider the family of finite dimensional subspaces of © given by
Op :={W, € Ln(2) : ﬂﬁhﬂz’j = constant, j=1,...,J}.

The following lemma shows that each curl-free vector field in N, (£2,) ad-
mits a multiple-valued potential in 6}, (see [7]).

Lemma 1. Let G, € L2(£2,)3. Then Gj, € Np({2,) with curl G, = 0 in 2,
if and only if there exists ¥y, € O, such that Gy, = grad ¥y, in (2. Such ¥y, is
unique up to an additive constant.

Let us introduce the following families of finite-dimensional approximations
of W and W, respectively:
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Wi, = {(Gh, By) € Nn(02) x (On/C) : (Gn|gfad T) € H(curl, 9)} .
WY = {(Gh,@h) €Wy : grfad¥®, xn=0on Z},}

Thus, we define the following discrete problem which is equivalent to problem
DMP: _
Problem DHP.- To find (Hy,®r) €W, such that

grad®, x n = f, onlI,

— 1 _ ~ =
iw/ pHy - Gy, —{—/ —curlHy, - curl Gy, -{—iw/ perad @, - grad ¥,
¢ £2¢ g 2y
=/ an-C-'thn V(Gh,fh)ewg.
FC

Theorem 4. Let us assume that the solution (H,®) of problem HP satisfies
H € H(curl, ;) and grad® € H"(2,)?, with r € (3,1]. Then, problem
DHP is well posed, it has a unique solution (Hp,®y), and

”H - Hh”H(curl,.QC) + “ gi:éd% - gfad 5h“L2(.QD)3
<Ch" I:HH“H"(curl,Qc) + || grad ¢|lHT(QD)3] .

Effective procedures to solve numerically the problem DMP are described in
[7]- In particular, numerical techniques to impose the following constraints are
studied:

1. (Gn|grad @) € H(curl, £2), which arise in the definition of Wj,.
2. @] », = constant, which arise in the definition of ©y,.

3. The boundary condition grad pxn= f, on I,

The first constraint is imposed by eliminating the degrees of freedom of G
associated with the edges £ € I't in terms of those of @, corresponding to the
vertices of the mesh on this interface.

The second constraint is handled by distinguishing the degrees of freedom
of ¥}, on one side of the surface X; from those on the other side, and by
eliminating ones of them in terms of the others and the current intensities
through each conductor §27.

The third constraint is imposed by means of a Lagrange multiplier, in-
creasing in this way the number of unknowns but with the advantage that the
computer implementation is quite straightforward.

We have developed a MATLAB code which implements the method de-
scribed above. To validate the computer code and to test the performance and
convergence properties of the method, we have solved a problem with known
analytical solution (see [7] for further details).
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3 The electromagnetic problem in one electrode

3.1 Statement of the problem

The model described in the previous section presents some drawbacks. First, it
is highly complex and its numerical solution takes a lot of time. On the other
hand, it is difficult to obtain the boundary data f from realistic data such as
intensities or potentials, which usually are the only data we know. Then, we are
going to propose an alternative approach which consists in solving the eddy
current problem in one electrode which is a particular bounded conducting
domain. We are going to analyze a weak formulation of this problem in terms
of the magnetic field, considering realistic boundary conditions from the point
of view of applications. In particular, following Bossavit [12], we will consider
boundary conditions directly related with the input current intensities which
enter the electrode. We will impose these boundary conditions by means of
Lagrange multipliers and study the resulting mixed formulations.

Since we only consider the conducting domain, we will get an important
saving in computer time when compared with the model of the whole furnace,
and we will still be able to consider some important effects which are not taken
into account by the axisymmetric models, although not the proximity effect.

We consider a bounded conducting domain 2 having a Lipschitz-conti-
nuous and connected boundary. However, it is not necessary that 2 be simply
connected. Let 82 be the boundary of the domain 2 which splits into two
parts: 82 = I, U I,. The surface I}, corresponds to the tip of the electrode
where the electric arc arises. In its turn, the rest of the electrode boundary
splits as follows:

I_“J:I_“JOUI?U---UZ_';N,
where I'", n=1,..., N, are the parts of the boundary connected to the wires
supplying electric current to the electrode, and I'’ = I}\ (I7' U- - ‘U f’JN_ ) is the
remaining part (see Figure 6). We also assume [* NI, =0 and I*NI™ = §,
mn=1....,N, m#n.

Our goal is to solve the eddy current equations (1)—(5) subject to the
following boundary conditions:

Exn=0 onl}, (10)
/ curlH-n=1,, n=1,...,N, (11)
1"1L
J
Exn=0 onl", n=1,...,N, (12)
curlH-n=0 onI), (13)
pH-n=0 on 8, (14)
where the only data I,, n = 1,..., N, are the current intensities through each

wire.
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I; (electric arc)

Fig. 6. Example of domain

Condition (10) is the natural one to model the free current exit on the
electrode tip. Conditions (11) and (13) take into account the input intensities
and the fact that there is no current flow through FJO, respectively. Conditions
(12) and (14) have been proposed by Bossavit [12] in a more general setting.
They will appear as natural boundary conditions of the weak formulation of our
problem. The former implies the assumption that the electric current is normal
to the surface on the current entrance, whereas the latter means that the
magnetic field is tangential to the conductor surface. Of course, condition (14)
is not always fulfilled, but it is a good approximation in our model problem.

Next, we analyze a weak formulation of this problem in terms of the mag-
netic field and propose a finite element method for its numerical solution.

3.2 Analysis of the weak formulation of the problem

To obtain a weak formulation of the eddy current problem (1)—(5) with bound-
ary conditions (10)—(14) in terms of the magnetic field, we notice that the
boundary condition (14) implies that the tangential component of E on the
boundary of {2 is a gradient. In particular, we obtain that E x n = —V¢ X n
on 02 for some scalar function ¢ with ¢ = 0 on I, because of (10).
Moreover, because of (12), ¢| rr must be constant. Then, multiplying the
equation (2) by a test function G such that curlG-n = 0 on I’ and
Jrn curlG -n = 0, n = 1,..., N, using Green’s formula, and taking into
J

account that E = %curlH, we obtain

iw/ uH-(_S‘r-I—/ —1—cur1H- curl G = 0.
n no

Let X :=H(curl, 2) and a: X x X — C be the sesquilinear continuous
and elliptic form defined by
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a(H,G) :ziw/ ,uH-(_Z‘r—l—/ lcurlH- curl G.
n nao

Let £ be the following closed subspace of Hééz([;):

L= {V c H(l)é2([}) : ulpjn = constant, n = 1,...,N}.

Given I = (I1,...,In) € CV, let us cénsider the closed linear manifold of
X,
N
w() := {GEX: ('curlG-n,u)Fzz I, VVE[,},
! n=1 I—:]n

and its associated subspace
Ww(0) = {G €X: (curlG -n,v)p, =0 Wve C}.

We introduce the following problem:
Problem PI.- For any I € CV, find H € W(I) such that

a(H,G)=10 VG € W(0).
Theorem 5. Given I € CV, problem PI has a unique solution H.

To avoid dealing with functions that satisfy the constraints involved in
W(I) and W(0), we consider a mixed formulation of the problem. It consists in
handling the boundary conditions (11) and (13) in a weak sense by introducing
a Lagrange multiplier defined on I}

Let b be the sesquilinear form defined in X x £ by

b(G,v) := (curl G - n, 1/)1-3.

The mixed problem associated with problem PI is the following:
Problem MPL.-Given I € CV, find H € X and X € L such that

a(H,G) +b(G,)\) =0 VG e X,
N
bH,v)=> [ L,v WeL
n=1 I?]n
Theorem 6. Given I € CV, let H € X be the solution of problem PI. Then,

there ezists a unique A € L such that (H, ) is the only solution of problem
MPI. Furthermore, the following estimate holds:

¥ + [Allygery < C -

2
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The proof is based on the classical Babuska-Brezzi theory. In particular we
prove the inf-sup condition for the bilinear form b by using results concerning
vector potentials in R* (see [9)).

Theorem 3.5 in [9] shows that the solution of problem MPI, together with
E = lcurlH and J = curlH, satisfy the Maxwell equations (1)-(5) and
the boundary conditions (10)—(14) in a suitable weak sense. Moreover, from
that theorem, we also have that the Lagrange multiplier is an electric surface
potential on I, namely,

nx (Exn)=-nx (VX xn)=:—grad rA* on I,

A* being a lifting of A to (2 such that A* € H'(£2) and A*|r, = 0.

3.3 Finite element discretization

In this section we introduce a discretization of the mixed problem MPI and
study its convergence properties. To this goal, we assume that {2 is a Lipschitz
polyhedron and that IT* are polyhedral surfaces for all n = 0,..., N. Conse-
quently, I is also a polyhedral surface. We also assume that o is piecewise
smooth (e.g., C2) on a polyhedral partition of £2.

We consider a family of shape-regular tetrahedral meshes {7} of 2. We
assume that the meshes are compatible with the splitting of the boundary of
the domain in the sense that, VK € 7, with a face T lying on 842,

— either T C I or T C I'™ for some n =0, ..., N;
— o|r is smooth.

The magnetic field, which is a function of X = H{curl, (2), is discretized by
the lowest-order Nédélec edge finite elements described in Section 2, i.e. we
define X}, = N (£2) as an approximation of X.

Let 7355 be the triangular mesh induced by 75, on the polyhedral surface I
and consider the following finite-dimensional space:

QM) = {an € HY(L) : aulr € Po(T) ¥T € TS5}
The Lagrange multiplier will be approximated in the finite dimensional space
Ly = {z/h € Q,ll(f",) : l/h|_["‘]n = constant, n = 1,...,N}.

We define the following discrete problem
Problem DMPI.-Given I € CV, find Hy, € X1, and M\ € Ly, such that

a(Hh,Gh) -+ b(éh,)\h) =0 VG € Xy,

N
b(Hh, l/h) = Z/ I, oy, Y, € Ly,
n=1 I:]n
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Theorem 7. GivenI € CV, problem DMPI attains a unique solution (Hh, /\h)
Furthermore, if the solution (H, \) of problem MPI satisfies H € H" (curl, 2)
with 1/2 < r <1, then the following error estimate holds true:

|H—-H|y < ChTHH“H'”(curI,Q)‘
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