
Preface

This book grew out of courses given at the University of Wales Swansea to
second- and third-year undergraduates. It is designed to provide enough mate-
rial for a one-year course and splits naturally into a preliminary topology course
(Chapters 1–6) and a follow-on course in algebraic topology (Chapters 7–11).

It is often said that topology is a subject which is poorly served for text-
books, and when preparing the lecture courses I found no book that was both
accessible to our undergraduates and relevant to current research in the field.
This book is an attempt to fill that gap. It is generally accepted that a one-
year course on topology is not long enough to take a student to a level where
she or he can begin to do research, but I have tried to achieve that as nearly
as possible. By omitting some of the more traditional material such as met-
ric spaces, this book takes a student from a discussion of continuity, through
a study of some topological properties and constructions, to homotopy and
homotopy groups, to simplicial and singular homology and finally to an in-
troduction to fibre bundles with a view towards K-theory. These are subjects
which are essential for research in algebraic topology, and desirable for students
pursuing research in any branch of mathematics. In fact, if I may be so bold as
to say so, the subjects covered by this book are those areas of topology which
all mathematics undergraduates should ideally see. In that sense, the material
is essential topology.

With this range of topics, and the low starting level, the coverage of each
subject is, inevitably, not exhaustive. For example, there are many results about
connectivity whose proofs could be understood by undergraduates at this level,
but which do not appear in this book. Instead, a representative sample of such
results is included, together with enough examples that the reader should fully
understand the results presented. In an undergraduate course it seems better



vi Preface

to present a brief account of several topics and give a feel for the overall shape
of a subject, rather than an in-depth study of a small number of topics.

Some of the deeper results included are presented without proof, so that
the student may meet an important theorem in the area even though the proof
would lengthen the book unacceptably. In every such case references are given
to books which do contain a complete proof.

Given the target audience, the book is designed to require as little prior
knowledge as possible. Anyone who has some basic familiarity with functions,
such as from a beginning course on calculus, should be able to follow the first
four chapters. From Chapter 5 onwards, a little knowledge of algebra is required,
in particular equivalence relations for Chapters 5 and 6, some familiarity with
groups for Chapters 8 to 11, and with linear algebra and quotient groups for
Chapters 9 and 10.

There is a short bibliography included, listing books where students can
find details of the proofs which have been omitted. I have not included a list
of further reading, as there are many books in topology and algebraic topology
that should be intelligible to someone who has read through this book. The
choice of which follow-on text to use is a matter of personal taste or, for students
embarking on postgraduate study, is something that their supervisor will advise
them about.
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6
Homotopy

We said at the beginning of this book that topology is about the study of
continuous functions and so the ultimate goal of topology should be to describe
all the continuous maps between any given pair of topological spaces. Of course,
with almost any pair of spaces, there are lots of continuous functions between
them – far more than we can ever hope to list or understand. For example, it
is not remotely feasible to list even the continuous functions from the interval
[0, 1] to itself.

However, if we allow some leeway, then this difficulty can be avoided. The
idea is that we should consider two functions to be equivalent, or “homotopic”,
if one can be deformed into the other.

6.1 Homotopy

For example, let f : [0, 2] → R be the function f(x) = 1 + x2(x− 2)2, depicted
below.

� x

�
f(x)

0 2

1

This is almost a constant function to 1, but with a small deviation around
x = 1. If we take the function f1(x) = 1 + 1

2x2(x − 2)2, then this has a similar
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shape, but with a smaller deviation. Similarly, f2(x) = 1 + 1
3x2(x− 2)2 has the

same shape but with an even smaller deviation.

� x

�
f(x)

f2(x)

f1(x)
�
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1

Carrying on, for each n ≥ 1, we can define fn(x) = 1 + 1
(n+1)x

2(x − 2)2, and
thus obtain a family of functions interpolating between f and the constant
function.

However, we need these interpolating functions to provide a continuous
deformation of the one function into the other. To achieve this, we should not
parametrize the interpolating functions f1, f2, etc. by integers, but, instead,
we should index them by real numbers in some fixed range, say between 0 and
1. So we would then want a family of functions {ft}t∈[0,1], such that f0 = f ,
and f1 is the constant function to 1.

In the above example, we can set ft(x) = 1 + (1 − t)x2(x − 2)2 for each
t ∈ [0, 1]. Then f0(x) = 1 + x2(x − 2)2 = f(x) and f1(x) = 1 is the constant
function.

Such a deformation then assigns a function to each point in [0, 1], so the
deformation is a function from [0, 1] to the set of continuous maps [0, 2] → R,
which takes t ∈ [0, 1] to the function ft. For the deformation to be continuous,
we should obviously ask that this function be continuous. However, this would
require us to put a topology on the set of continuous maps [0, 2] → R and,
more generally, on the set of maps S → T for any topological spaces S and T .
This can be done, and we will see how in Chapter 11, but for now we will use
a simpler route to specify that the deformation be continuous.

Note that the family {ft}t∈[0,1] assigns, to each point t ∈ [0, 1], a function
ft : [0, 2] → R. This, in turn, assigns, to each point x ∈ [0, 2], a value ft(x) ∈ R.
Thus we can think of this family as assigning to each pair (x, t) ∈ [0, 2]× [0, 1]
the value ft(x) ∈ R. In other words, we have a function [0, 2] × [0, 1] → R.
Since we have a topology on [0, 2], and we know a topology on [0, 1], we can use
the product topology to topologize [0, 2]× [0, 1], and therefore our interpolating
family corresponds to a function between two topological spaces. Thus, we can
define the family to be continuous if the corresponding function is continuous.
Hence we arrive (finally!) at the following definition.

Definition: Two maps f, g : S → T are homotopic if there is a continuous
function

F : S × [0, 1] −→ T

such that F (s, 0) = f(s) for all s ∈ S and F (s, 1) = g(s) for all s ∈ S. In this
case, F is a homotopy between f and g, and we write f � g.
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Example 6.1

In the preceding example, where f : [0, 2] → R is given by f(x) = 1+x2(x−2)2,
the function F : [0, 2] × [0, 1] → R given by F (x, t) = 1 + (1 − t)x2(x − 2)2 is
continuous, being a polynomial, and satisfies F (x, 0) = 1 + x2(x − 1)2 = f(x)
and F (x, 1) = 1. Thus F is a homotopy from f to the constant function to 1.

Example 6.2

Let f : S1 → R2 be the natural inclusion map f(x, y) = (x, y), and let g :
S1 → R2 be the constant map g(x, y) = (0, 0) for all (x, y) ∈ S1. These two
maps are homotopic, for the function F : S1 × I → R2 defined by

F ((x, y), t) = (1 − t)f(x, y)

is continuous, and has the property that F ((x, y), 0) = (1− 0)f(x, y) = f(x, y)
and F ((x, y), 1) = (1 − 1)f(x, y) = (0, 0) = g(x, y).

Example 6.3

Let f : [0, 1] → [0, 1] be the identity map and let g : [0, 1] → [0, 1] be the
constant map g(x) = 0 for all x. Then there is a homotopy F : [0, 1]×I → [0, 1]
between these maps given by

F (x, t) = (1 − t)x.

Example 6.4

Let f, g : R → R be any two continuous functions. Define

F : R × [0, 1] → R

by F (x, t) = (1 − t)f(x) + tg(x). Then F is continuous, being a composite of
continuous functions, F (x, 0) = (1−0)f(x)+0 = f(x) and F (x, 1) = 0+1g(x) =
g(x), so F is a homotopy between f and g. In other words, any two continuous
functions on R are homotopic.

This idea can be used with any “convex” range space. A subspace T of Rn

is said to be convex if, given any two points x, y in T , the straight line from
x to y is contained in T . In other words, for any number t ∈ [0, 1], the point
tx + (1 − t)y is in T .
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Proposition 6.5

If T is convex, and S is any topological space, then any two maps f, g : S → T

are homotopic.

Proof

Define the homotopy F : S × [0, 1] → T by

F (x, t) = tf(x) + (1 − t)g(x).

On the other hand, we cannot use this argument for maps to S1, for example,
since if f(x) and g(x) are two distinct points in S1, then tf(x) + (1 − t)g(x)
will not usually be a point in S1, as depicted below:

•

•

f(x)

g(x)

•2
3f(x) + (1 − 2

3 )g(x)

Now, we want to consider homotopic functions to be “the same”. In other
words, we want to form equivalence classes of homotopic functions, for which
we need the following three lemmas.

Lemma 6.6

Let f : S → T be any continuous map. Then f � f .

Proof

We can define a homotopy
F : S × I → T

by F (x, t) = f(x) for all t. Then F (x, 0) = f(x) and F (x, 1) = f(x).

Lemma 6.7

Let f, g : S → T be two continuous maps. If F is a homotopy between f and
g, then there is also a homotopy between g and f .
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Proof

If F (x, 0) = f(x) and F (x, 1) = g(x), then define

G : S × I → T

by G(x, t) = F (x, 1 − t). Then G(x, 0) = g(x) and G(x, 1) = f(x).

Lemma 6.8

Let f, g, h : S → T be three continuous maps. If f and g are homotopic and g

and h are homotopic, then f and h are homotopic.

Proof

Let F : S×I → T be a continuous map such that F (x, 0) = f(x) and F (x, 1) =
g(x), and let G : S × I → T be a continuous map such that G(x, 0) = g(x) and
G(x, 1) = h(x). Define a function H : S × I → T by

H(x, t) =
{

F (x, 2t) if 0 ≤ t ≤ 1
2 ,

G(x, 2t − 1) if 1
2 ≤ t ≤ 1.

This is continuous by a suitable version of the gluing lemma, and has the
property that H(x, 0) = F (x, 0) = f(x), while H(x, 1) = G(x, 1) = h(x).

These results say that we can form a set of equivalence classes of homotopic
functions between two given topological spaces. We write [S, T ] for the set of
homotopy classes of maps S → T . This is much more manageable than the
complete set of continuous maps from S to T . For example, if S = T = R,
then, by Example 6.4, all functions S → T are homotopic, so [R,R] consists
of a single element. This is an extreme case. A more interesting example is
that, as we shall see later, [S1, S1] contains one element for each integer. This
gives some reason to believe that homotopy classes of maps still contain some
information about the topology of the spaces involved.

Of course, for homotopy classes to be a useful tool in studying continuous
functions, they must respect the most basic operation on functions, namely
composition. Fortunately, they do:

Proposition 6.9

If f � g : S → T and h � j : T → U , then (h ◦ f) � (j ◦ g) : S → U .
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Proof

Let F : S × [0, 1] → T be a homotopy from f to g, and let H : T × [0, 1] → U

be a homotopy from h to j. Define a homotopy G : S × [0, 1] → U by

G(s, t) = H(F (s, t), t).

It is straightforward to check that G(s, 0) = h(f(s)) and G(s, 1) = j(g(s)), and
the map G is continuous since it is a composite of continuous maps.

6.2 Homotopy Equivalence

If we are going to consider two functions to be equivalent when they are ho-
motopic, then we should modify the definition of homeomorphism, replacing
the = signs by homotopies. This leads to the following notion of “homotopy
equivalence”:

Definition: Two topological spaces S, T are homotopy equivalent if there
are continuous maps f : S → T and g : T → S such that g ◦ f is homotopic
to the identity on S and f ◦ g is homotopic to the identity on T . If S and T

are homotopy equivalent, then we write S � T .

Lemma 6.10

If S � T and Q is any topological space, then [S, Q] = [T, Q] and [Q, S] =
[Q, T ].

Proof

If S � T , then there are maps f : S → T , g : T → S whose composites are
homotopic to the respective identity maps. Now if h : S → Q, then we can
compose with g to obtain a map (h ◦ g) : T → Q, and if j : T → Q, then we
can compose with f to obtain a map (j ◦ f) : S → Q. And, up to homotopy,
these two operations are mutually inverse: (h ◦ g) ◦ f = h ◦ (g ◦ f) � h ◦ 1S = h,
while (j ◦ f) ◦ g = j ◦ (f ◦ g) � j ◦ 1T = j.

In a similar way, by composing with f or with g we can get correspondences
between [Q, S] and [Q, T ].

At the time of writing, it is becoming increasingly common to say that two
spaces are homotopic rather than “homotopy equivalent”.
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Lemma 6.11

If S and T are homeomorphic, then they are also homotopy equivalent.

Proof

If we have homeomorphisms f : S → T and g : T → S, then f ◦ g and g ◦ f

are the respective identity maps, so these composites are homotopic to the
respective identity maps by Lemma 6.6.

Of course, there are many pairs of spaces which are homotopy equivalent
but not homeomorphic.

Example 6.12

If S is a space containing a single point, then S and R are homotopy equivalent.
To see this, define f : R → S to be the constant function (there is no choice as
to how to define f), and let g : S → R be the function which takes the single
point in S to 0 in R. The composite f ◦ g : S → S is the identity map, while
the composite g ◦ f : R → R is the constant function to 0. Since all functions
R → R are homotopic, by Example 6.4, so g ◦ f is homotopic to the identity.

By Lemma 6.10, this tells us that [R,R] = [{0}, {0}]. Since there is only
one continuous function {0} → {0}, there can be only one homotopy class of
maps {0} → {0}. Thus [{0}, {0}] contains only one element and, consequently,
so does [R,R], confirming Example 6.4.

A space which, like R, is homotopy equivalent to a one-point space is said
to be contractible.

Example 6.13

The interval [0, 1] is homotopy equivalent to a one-point space {0}: Define
f : [0, 1] → {0} by f(x) = 0, and define g : {0} → [0, 1] by g(0) = 0. Then
(f ◦ g) : {0} → {0} is the identity map, and so this is certainly homotopic to
the identity map.

Conversely, (g ◦ f)(x) = 0 for all x. This is homotopic to the identity map
by Example 6.3.
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Example 6.14

In the same way we can show that the open interval (0, 1) is homotopy to
{0}. Of course, we need to define g : {0} → (0, 1) differently, for example by
g(0) = 1/2. With this choice of g, a homotopy from (g ◦ f) to the identity map
of (0, 1) is given by H : (0, 1)× [0, 1] → (0, 1) defined by

H(x, t) =
1 − t + tx

2
.

The image H(x, t) is certainly contained in (0, 1) if x, t ∈ (0, 1) × [0, 1], and H

is continuous, being a composite of multiplications and additions.

Example 6.15

Consequently, any open interval (a, b) is homotopy equivalent to {0}, since (a, b)
is homeomorphic with (0, 1). This applies even to infinite intervals (a,∞) and
(−∞, b).

Proposition 6.16

If S is contractible and T is any topological space, then any two continuous
functions f, g : T → S are homotopic. In particular, any continuous function
to a contractible space is homotopic to a constant map.

Proof

Let f, g : T → S be two continuous maps. If S is contractible, then there are
continuous maps h : S → {0} and j : {0} → S such that h◦ j � 1 and j ◦h � 1.
In particular,

f = (1 ◦ f) � (j ◦ h ◦ f) and g = (1 ◦ g) � (j ◦ h ◦ g).

Since h ◦ f : T → {0}, so j ◦ h ◦ f : T → S must be the constant map t �→ j(0)
for all t ∈ T . Similarly, j ◦ h ◦ g is this same constant map, and so f � g.

Of course, there are many pairs of spaces which are homotopy equivalent
without being contractible.

Example 6.17

Let A be the annulus

A = {(x, y) ∈ R2 : 1 ≤
√

x2 + y2 ≤ 2}.
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Then A � S1 as follows. Define f : S1 → A to be the natural inclusion
f(x, y) = (x, y), and g : A → S1 to be the radial projection inwards

�

�

� �

��

��

��

��

which can be described algebraically as

g(x, y) =
1√

x2 + y2
(x, y).

Now, g ◦f is the identity on S1 because, if (x, y) ∈ S1, then g(x, y) = (x, y).
This is certainly homotopic to the identity, by Lemma 6.6.

And (f ◦g)(x, y) =
(
1/
√

(x2 + y2)
)

(x, y). This is homotopic to the identity
on A by the homotopy F : A × [0, 1] → A defined by

F ((x, y), t) =
t
√

x2 + y2 + (1 − t)√
x2 + y2

(x, y).

Check: This is continuous, being a composite of continuous maps; F ((x, y), 0) =
(f ◦ g)(x, y) and F ((x, y), 1) = (x, y).

Hence f and g form a homotopy equivalence between A and S1. We will
see in the next section that these spaces are not contractible.

Example 6.18

Similarly, the space C× = R2 − {(0, 0)} is homotopy equivalent to S1.

Proving that two spaces are not homotopy equivalent is hard, just as it was
hard to prove directly that two spaces are not homeomorphic. One case where
we can do this is when we are dealing with finite discrete spaces, such as S0.

Proposition 6.19

The 2-point space S0 is not contractible.

Proof

Suppose that S0 is contractible, with homotopy equivalences f : S0 → {0} and
g : {0} → S0. Then f ◦g : {0} → {0} has to be the identity, and g◦f : S0 → S0
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is homotopic to the identity. So there is a homotopy

F : S0 × I → S0

with F (x, 0) = x and F (x, 1) = g(f(x)) = g(0).
Now define a map h : I → S0 by

h(t) = F (−g(0), t).

This will be a continuous map, with h(0) = F (−g(0), 0) = −g(0) and h(1) =
F (−g(0), 1) = g(0). Since S0 only has two points, h must be surjective. But
Lemma 4.3 and Example 4.5 show that this cannot happen. Hence there cannot
have been a homotopy equivalence between S0 and {0}.

This idea can be developed to show that a space consisting of m points is
homotopy equivalent to a space consisting of n points only if m = n. It can also
be developed to show that a connected space cannot be homotopy equivalent
to a disconnected space.

Proposition 6.20

If S is connected and T is disconnected, then S and T are not homotopy
equivalent.

Proof

Suppose that S and T are homotopy equivalent, with maps f : S → T and
g : T → S whose composites are homotopic to the identity. In particular, there
is a homotopy F : T × [0, 1] → T such that F (t, 0) = f(g(0)) and F (t, 1) = t

for all t ∈ T .
If T is disconnected, then it can be expressed as a disjoint union T = U �V

where both U and V are open and non-empty, and so there is a continuous
surjection p : T → S0 with p(t) = 1 if t ∈ U , p(t) = −1 if t ∈ V .

Since S is connected, the map f has image contained in one of these com-
ponents, say Im f ⊂ U . Since V is not empty, there is at least one point v ∈ V ,
and we can define a map h : [0, 1] → S0 by

h(x) = p(F (v, x)).

Since F (v, 0) = f(g(0)) ∈ U and F (v, 1) = v ∈ V , so h(0) = 1 and h(1) = −1.
Thus h is a surjection [0, 1] → S0, and h is continuous as it is a composite of
continuous maps. As in the preceding proposition, this is not possible, so S and
T cannot be homotopy equivalent.
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Thus we can use connectivity to distinguish homotopy inequivalent spaces.

Example 6.21

The circle S1 is not homotopy equivalent to the 0-sphere S0.

Unfortunately, compactness cannot be used in this way since Examples 6.13
and 6.14 exhibit two spaces which are both contractible and, hence, homotopy
equivalent, but one is compact and the other is not. Similarly, there are Haus-
dorff spaces which are homotopy equivalent to non-Hausdorff spaces.

Example 6.22

Let S = {1, 2} with the indiscrete topology, as in Example 4.36. Let T be a
one-point space, say T = {0}. We can define f : T → S by f(0) = 1 and
this is continuous since every function to an indiscrete space is continuous
(Proposition 3.9). We can define g : S → T by g(s) = 0, this being continuous
as T is also indiscrete. Then g◦f : T → T is the identity map, and f ◦g : S → S

is the constant map to 1. This is not the identity, but is homotopic to it, as we
will now show. Such a homotopy will be a function F : S × [0, 1] → S. Since S

is indiscrete, any such function is continuous, i.e., we can define F any way we
choose and it will be continuous. In particular, we can define F by

F (s, t) =
{

s if t ≤ 1
2 ,

1 if t > 1
2 .

Hence F (s, 0) = s is the identity on S, and F (s, 1) = 1 = (f ◦ g)(s). Thus we
have a homotopy from f ◦ g to the identity, so S is homotopy equivalent to T .
Example 4.36 showed that S is not Hausdorff, whereas T is Hausdorff, being a
subspace of R.

So the properties developed in Chapter 4 are of limited use in a homotopy
context. In particular, there are many interesting spaces which share all of these
properties, while being quite distinct. For example the circle, S1, is connected,
compact, and Hausdorff, i.e., it looks just like a point as far as Chapter 4 is
concerned. Instinctively, we can see that S1 is not homotopy equivalent to a
point, but our instinct can sometimes be wrong (our instinct would tell us that
{1, 2} could not be homotopy equivalent to a one-point space, in contrast to
Example 6.22) so we need a rigorous proof before we can be entirely confident.
The next section contains such a proof.
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6.3 The Circle

We wish to prove that the circle is not contractible. However, for only a little
extra effort, we can perform a more impressive calculation which will enable us
to list all homotopy classes of maps S1 → S1. This section is devoted to that
calculation.

The trick is to open the circle out, and consider maps [0, 1] → S1 instead of
S1 → S1. Since S1 can be obtained as a quotient of [0, 1] by gluing the endpoints
together (see Example 5.51), there is a continuous surjection π : [0, 1] → S1, and
we will study maps f : S1 → S1 by looking at the composites f ◦π : [0, 1] → S1.

Having opened the circle out in this way, it turns out that we can “lift”
any map [0, 1] → S1 to a map [0, 1] → R which, when we compose with the
exponential map e : R → S1 of Example 3.47, gives back the original map
[0, 1] → S1. More precisely:

Proposition 6.23 (Path Lifting)

If g : [0, 1] → S1 is a continuous function and x ∈ R is any point such that
e(x) = g(0), then there is a unique continuous function g̃ : [0, 1] → R such that
eg̃(t) = g(t) for all t ∈ [0, 1] and g̃(0) = x. So the following triangle commutes:

[0, 1] �
S1

g

�
�
���

R

�
e

g̃

One way to think of this statement is to consider the parameter t ∈ [0, 1]
as specifying a moment in time. As t runs from 0 to 1, so g traces out a path
in S1. The condition eg̃(t) = g(t) specifies that g̃(t) must always be above g(t)
in the spiral picture of Example 3.47. It is as if one person is walking around
a circle, and someone else is on a spiral staircase and determined always to be
directly above the first person. Clearly they can always do that if they move
fast enough (this is the existence part of the proposition), but there is no choice
about where they move (this is the uniqueness part).
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Proof

We will construct g̃ bit by bit. The key to this is that if we take any proper
subset U of S1 (i.e., any subset other than the whole of S1), then its preimage
under e is a disjoint union of infinitely many spaces, each homeomorphic to
U . Now suppose we have a small interval [δ1, δ2] ⊂ [0, 1] whose image, under
g, is contained in U . And suppose that g̃(δ1) is already defined in such a way
that eg̃(δ1) = g(δ1). Then g̃(δ1) lies in one of these spaces homeomorphic to U .
We can then compose that homeomorphism with g to define g̃ on the interval
[δ1, δ2] so as to agree with the value on δ1.

g(δ2)

g̃(δ2)

g(δ1)

g̃(δ1)

}
U


e−1(U)

If we can split the interval [0, 1] into a number of sections [δi, δi+1], with 1 ≤
i ≤ n, such that each section is mapped into some proper subset of S1, then
we can define g̃ inductively over the whole of [0, 1], working with one of these
sections at a time.

It is enough just to use two subsets of S1, and we will use U = S1−{(1, 0)}
and V = S1 − {(−1, 0)}. So both U and V are proper subsets and, between
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them, they contain every point of S1. Note also that U and V are open, so the
preimages g−1(U), g−1(V ) will be open sets whose union is [0, 1]. We can write
g−1(U) and g−1(V ) as a union of basic open sets, i.e., intervals (a, b), [0, b) or
(a, 1]. This gives an open cover of [0, 1] where each set in the cover is a basic
open set, and maps into either U or V . Since [0, 1] is compact, we can take a
finite refinement of this cover, to get a list I1, . . . , In.

Let us agree to order these open sets in the following way. First, 0 is con-
tained in one of these sets; let that set be I1. Then I1 = [0, b1) for some
0 < b1 ≤ 1, and b1 must be contained in another of these sets; let that set be
I2. Then I2 = (a2, b2) where a2 < b1 < b2, or I2 = (a2, 1]. In the first case, b2

must be contained in another set; let that set be I3. In the second case, I1 and
I2 cover [0, 1], so we can take n = 2. And so forth.

In other words, we put the sets I1, . . . , In in the order in which we meet
them as we travel from 0 to 1.

Let δ0 = 0, δn = 1 and, for 1 ≤ i ≤ n − 1, δi = (ai+1 + bi)/2. Then
δi ∈ Ii ∩ Ii+1 for 1 ≤ i ≤ n − 1 and so [δi, δi+1] ⊂ Ii+1 for 0 ≤ i ≤ n − 1.

δ0

0
[

I1 b1
)

a2
(

I2 b2
)

δ1

a3
(

I3 b3
)

δ2

a4
(

δ3

We must have g̃(0) = x, so g̃(δ0) = x. Now [δ0, δ1] ⊂ I1, and g(I1) is either
contained in U or contained in V . In either case, there is a unique open interval
of R, containing x, and homeomorphic with U or V , whichever contains g(I1).
We compose such a homeomorphism with g to get a continuous map g̃ : I1 → R
which sends δ0 to x and is such that e ◦ g̃ = g|I1.

In particular, we have defined g̃(δ1). We can use the same argument again
to define g̃ on the interval [δ1, δ2], agreeing with the definition of g̃(δ1). By the
gluing lemma, 5.73, the extension of g̃ over [0, δ2] is continuous.

Carrying on in the same way, we can define g̃ on the whole of [0, 1] and we
have a continuous map g̃ : [0, 1] → R such that g̃(0) = x and e ◦ g̃ = g.

Finally, we must prove that the lifting g̃ is unique. So suppose that ḡ :
[0, 1] → R is another lift of g with ḡ(0) = x = g̃(0). Since e ◦ ḡ = e ◦ g we see
that ḡ(y)− g̃(y) ∈ Z for all y. Thus we get a continuous map ḡ− g̃ : [0, 1] → Z.
By Lemma 4.18, this map must be constant. Since ḡ(0) = g̃(0) = x, we conclude
that ḡ(y) − g̃(y) = 0 for all y, i.e., ḡ = g̃. Hence the lift g̃ is unique.

If we take a continuous map f : S1 → S1 and form the composite g =
f ◦ π : [0, 1] → S1, then g(0) = g(1). So if we apply this proposition to g, the
resulting lift g̃ satisfies eg̃(0) = eg̃(1). Now e(t) = e(s) if, and only if, t − s is
an integer. So g̃(1) − g̃(0) ∈ Z. Thus, for each map f : S1 → S1, we obtain
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an integer g̃(1) − g̃(0), which we call the degree, or winding number. of f ,
written deg(f). Of course, we need to verify that this only depends on f and
not on the choice of lifting g̃. But by the uniqueness condition, we know that g̃

is determined by its start point g̃(0). And this must be such that eg̃(0) = g(0).
Hence, if g̃, ḡ are two lifts such that eg̃ = eḡ, then eg̃(0) = eḡ(0) and, so,
g̃(0) = ḡ(0) + c for some integer c. Then x �→ ḡ(x) + c gives another lift of g

which agrees with g̃ at 0. Hence, by the uniqueness, g̃ = ḡ + c. In particular,
g̃(1) − g̃(0) = ḡ(1) + c − (ḡ(0) + c) = ḡ(1) − ḡ(0). In other words, g̃ and ḡ give
the same answer for the degree of g. Hence this degree does not depend on the
choice of lifting.

Example 6.24

Any constant function S1 → S1 has degree 0, for the composite g = f ◦ π will
be constant, and the lift g̃ can be taken to be constant: If x ∈ R is such that
e(x) = g(0), and we define g̃ by g̃(t) = x for all t, then eg̃(t) = e(x) = g(0).
Hence deg(f) = 0.

Example 6.25

The identity map S1 → S1 has degree 1. For g : [0, 1] → S1 is the map
g(t) = (cos(2πt), sin(2πt)), and a lift is given by g̃(t) = t.

Example 6.26

If f is the map
f(cos(θ), sin(θ)) = (cos(2θ), sin(2θ)),

so that g : [0, 1] → S1 is the map t �→ (cos(4πt), sin(4πt)), then a lift g̃ is given
by g̃(t) = 2t, so deg(f) = 2.

Example 6.27

If n is an integer and f is the map

f(cos(θ), sin(θ)) = (cos(nθ), sin(nθ)),

so that g : [0, 1] → S1 is the map t �→ (cos(2nπt), sin(2nπt)), then a lift g̃ is
given by f̃(t) = nt, so deg(f) = n.

So, we have constructed an integer, the degree, for any map S1 → S1.
This has not yet told us anything about homotopy classes of maps S1 → S1.
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However, it turns out that homotopic maps have equal degrees. This is proved
using the following variant of Proposition 6.23, which shows that just as we
can lift paths, so we can lift homotopies.

Proposition 6.28 (Homotopy Lifting)

If F : [0, 1] × [0, 1] → S1 is a continuous function, and x ∈ R is any point
such that e(x) = F (0, 0), then there is a unique continuous function F̃ : [0, 1]×
[0, 1] → R such that eF̃ (s, t) = F (s, t) for all s, t ∈ [0, 1] and F̃ (0, 0) = x. So
the following triangle commutes:

[0, 1] × [0, 1] �
S1

F

�
�
���

R

�
e

F̃

The basic idea of the proof is, as you would expect, the same as for Propo-
sition 6.23. But splitting the square [0, 1] × [0, 1] into smaller chunks requires
more care than splitting the interval [0, 1]. Since the ideas we need to split the
square will be used a few more times in the book, we present them in a slightly
more general form here.

To simplify the statement of the next result, we say that a subset of Rn

has diameter less than d if the distance between any pair x,y of points in the
subset is less than d.

Proposition 6.29 (Domain Splitting)

Suppose we have a map f : X → Y , where X is a compact subset of Rn, and
an open cover U of Y . Then there is some number δ > 0 such that whenever
V is a subset of X of diameter less than δ, its image f(V ) is contained in one
of the sets in U .

Proof

As the map f is continuous, the preimages of the open sets in U will be open
sets in X and these will give an open cover W of X . Any subset V of X which
is contained in one of the sets in W will, then, have the property that its image,
f(V ), is contained in one of the sets in U .

The number δ then comes from the Lebesgue lemma, stated next.
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Lemma 6.30 (Lebesgue Lemma)

Given a compact subspace X of Rn and an open cover U of X , there is some
δ > 0 such that any subset U of X of diameter less than δ is contained in one
of the sets in U .

Proof

Since X is compact, we can refine U to a finite list U1, . . . , Un of open subsets
of X . Then, for 1 ≤ i ≤ n, define fi : X → R by setting fi(x) to be the largest
radius r such that Br(x) is contained in Ui. We take fi(x) to be 0 if x �∈ Ui.
This is continuous, as is more easily seen by considering fi as the distance from
x to the point in X − Ui nearest to x. Thus the function f : X → R defined
by f(x) = max{fi(x) : 1 ≤ i ≤ n} is also continuous. This function gives the
largest radius r such that Br(x) is contained in one of the open sets Ui.

If there is some δ > 0 such that f(x) ≥ δ for all x, then every open ball of
radius less than δ is contained in some open set Ui. Every set of diameter less
than δ is contained in an open ball of radius δ, and so the lemma follows.

To see that there is such a δ, note that f(x) > 0 for all x, so 0 is not in the
image of f . Since X is compact, Proposition 4.27 shows that the image of f

will be a compact subset of R. By the Heine–Borel Theorem 4.29, it is thus a
closed subset of R, so its complement is open. As this complement contains 0,
it also contains some interval (−δ, δ) around 0. Hence f(x) ≥ δ for all x.

Proof (of Proposition 6.28)

Suppose, then, that we have a homotopy F : [0, 1] × [0, 1] → S1. By covering
S1 with the open sets U = S1 −{(1, 0)}, V = S1 −{(−1, 0)} as before, we can
obtain a number δ > 0 such that any subset of [0, 1] × [0, 1] of diameter less
than δ is mapped into either U or V by F .

We split [0, 1]×[0, 1] into an n×n grid, where n is chosen so that 1/n < δ/
√

2,
i.e., each square has diameter less than δ. Hence each square is mapped by F

into either U or V .
If F̃ (0, 0) = x, then that determines a component of e−1(U) or e−1(V )

and, hence, a homeomorphism between that component and U or V . By this
homeomorphism, we define F̃ on the square [0, 1

n ] × [0, 1
n ]. In particular, this

defines F̃ (0, 1
n ) and, by the same process, we can define F̃ on the square [0, 1

n ]×
[ 1
n , 2

n ]. However, this means defining F̃ on the path [0, 1
n ]× 1

n , based on its value
at (0, 1

n ). The problem is that we have already defined F̃ on [0, 1
n ] × 1

n when
we defined it on the square [0, 1

n ] × [0, 1
n ], so we have two definitions which

may contradict each other. Fortunately, the uniqueness of path lifting ensures
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that this cannot happen – if these two paths agree on (0, 1
n ) then they agree

everywhere. Hence we can F̃ define on [0, 1
n ]×[0, 2

n ] without problem. Similarly,
we can define F̃ on [0, 1

n ] × [0, 3
n ], and so on, until we have F̃ defined on the

entire strip [0, 1
n ] × [0, 1]. Then we use the definition of F̃ ( 1

n , 0) to define F̃ on
the square [ 1

n , 2
n ]× [0, 1

n ]. This entails redefining F̃ on the edge 1
n × [0, 1

n ] but,
again, the uniqueness of path lifting ensures that this definition agrees with the
previous one. Next we define F̃ on the square [ 1

n , 2
n ]× [ 1

n , 2
n ] based on its value

at ( 1
n , 1

n ). This entails redefining F̃ on two edges 1
n × [ 1

n , 2
n ] and [ 1

n , 2
n ] × 1

n .
However, the uniquess of path lifting can be used in both cases to show that
the new definition agrees with the old. Then, in a similar way, we can define F̃

on the rest of the strip [ 1
n , 2

n ]× [0, 1] and, continuing similarly, on the whole of
the square [0, 1]× [0, 1].

As before, this lift is unique as, if F̄ is a different lift, then F̄ (x) − F̃ (x) is
an integer for all x ∈ [0, 1]× [0, 1]. As both F̄ and F̃ are continuous, this integer
must be constant, i.e., independent of x. If F̄ (0, 0) = F̃ (0, 0), then this integer
must be 0, i.e., F̄ = F̃ .

Having now established that homotopies can be lifted, we can deduce that
homotopic maps have the same degree.

Corollary 6.31

If f, g : S1 → S1 are homotopic, then deg(f) = deg(g).

Proof

Let H : S1× [0, 1] → S1 be a homotopy between f and g. Considered as a map
defined on [0, 1] × [0, 1], we can lift this to a map H̃ : [0, 1] × [0, 1] → R. Then
H̃ restricted to [0, 1]× {0} will give a lift for f , so deg(f) = H̃(1, 0)− H̃(0, 0).
And H̃ restricted to [0, 1]×{1} will give a lift for g, so that deg(g) = H̃(1, 1)−
H̃(0, 1). In fact, we can use H̃ to define a continuous map D : [0, 1] → Z by
D(t) = H̃(1, t) − H̃(0, t). Then deg(f) = D(0) and deg(g) = D(1). However,
by Lemma 4.18, such a function D must be constant, since [0, 1] is connected.
Hence deg(f) = deg(g).

Corollary 6.32

The circle is not contractible.
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Proof

Suppose that f : S1 → {0} and g : {0} → S1 were homotopy equivalences. So
g ◦ f � 1S1 . Now, (g ◦ f)(x, y) = g(0) for all (x, y) ∈ S1, i.e., this composite is
a constant function, and hence has degree 0. Conversely, the identity map has
degree 1. As these are different, g ◦f cannot be homotopic to the identity map,
so S1 is not contractible.

To compute [S1, S1], we also need the following converse to Corollary 6.31:

Theorem 6.33

If f, g : S1 → S1 are such that deg(f) = deg(g), then f and g are homotopic.

Proof

The idea is to define a homotopy “upstairs”. For simplicity we will assume that
(f ◦ π)(0) = (g ◦ π)(0), so that we can lift f and g to maps f̃ , g̃ : [0, 1] → R
which satisfy f̃(0) = g̃(0). Hence

f̃(1) = deg(f) + f̃(0) = deg(g) + g̃(0) = g̃(1).

Thus if we define H̃ : [0, 1]× [0, 1] → R by

H̃(s, t) = tf̃(s) + (1 − t)g̃(s),

then H̃(0, t) = f̃(0) = g̃(0) does not depend on t, and H̃(1, t) = f̃(1) = g̃(1)
is, similarly, independent of t. In particular, H̃(1, t) − H̃(0, t) = deg(f) is an
integer. Hence when we compose with the exponential map e : R → S1, we
find that (e ◦ H̃)(0, t) = (e ◦ H̃)(1, t), so we can consider this as a map H :
S1 × [0, 1] → S1, which is a homotopy between f and g.

If (f ◦ π)(0) �= (g ◦ π)(0), then we use the following lemma to replace g by
a function which does agree with f on π(0).

Lemma 6.34

If g : S1 → S1 and (x, y) ∈ S1, then there is a map h : S1 → S1 which is
homotopic to g and such that h(π(0)) = (x, y).

Proof

Let θ be the angle from g(π(0)) to (x, y). Define H : S1 × [0, 1] → S1

so that H((x′, y′), t) is the rotation of (x′, y′) through the angle tθ. Hence
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H((x′, y′), 0) = (x′, y′), and H((x′, y′), 1) is (x′, y′) rotated by θ. In par-
ticular, H(g(π(0)), 1) = (x, y), while H(g(x, y), 0) = g(x, y). As H is con-
tinuous, it gives a homotopy from g to the map h : S1 → S1 defined by
h(x′, y′) = H(g(x′, y′), 1) which satisfies h(π(0)) = H(g(π(0)), 1) = (x, y).

Having completed the proof of Theorem 6.33, we can now give the promised
calculation of the set of homotopy classes of self-maps of S1.

Corollary 6.35

The set of homotopy classes of maps S1 → S1 is in one-to-one correspondence
with the set of integers, i.e., [S1, S1] = Z.

Proof

Every continuous map S1 → S1 has a degree, which is an integer. Homotopic
maps have the same degree, and non-homotopic maps have different degrees.
Hence [S1, S1] ⊂ Z. To complete the proof, we note that all integers occur as
the degree of a map, since, for any n ∈ Z, the map z �→ zn (z ∈ C, |z| = 1) has
degree n.

6.4 Brouwer’s Fixed-Point Theorem

We have already seen a theorem saying that any continuous map from [0, 1] to
itself must have a fixed point. Our study of continuous maps from S1 to S1 can
be used to prove a two-dimensional version of this theorem, due to Brouwer.

Theorem 6.36 (Brouwer’s Fixed-Point Theorem)

Let f : D2 → D2 be a continuous map, where D2 is the closed disc

D2 = {(x, y) ∈ R2 : x2 + y2 ≤ 1}.

Then f has a fixed point, i.e., there is some point (x, y) ∈ D2 with the property
that f(x, y) = (x, y).

Proof

Suppose that f : D2 → D2 does not have a fixed point, so that f(x, y) �= (x, y)
for all (x, y) ∈ D2. So, for each point (x, y) ∈ D2 we get two points (x, y) and
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f(x, y), and we can draw a line through them both. Extend this line beyond
(x, y) until it meets the boundary of D2 (i.e., S1), and let g(x, y) be the point
where this happens. So we get a function g : D2 → S1 as in the picture.

f(x,y)
•��

��
�

•(x,y) •g(x,y)

This map g is continuous, essentially because if (x′, y′) is sufficiently close
to (x, y), then f(x′, y′) will be close to f(x, y) (since f is continuous) and,
hence, g(x′, y′) will be reasonably close to g(x, y). More rigorously, if A is an
open arc around g(x, y), then there is some radius r such that whenever (x′, y′)
is in the open ball Br(x, y) and f(x′, y′) is in the open ball Br(f(x, y)), then
g(x′, y′) is in A, as depicted below, where A is indicated by a bold line, and
the balls around (x, y) and f(x, y) are indicated by the dotted circles of their
perimeters. Any straight line which passes through both balls will hit the circle
in the region A.

•��
��

�
•

•

Since f is continuous, there is some radius δ such that f(x′, y′) ∈ Br(f(x, y))
whenever (x′, y′) ∈ Bδ(x, y). Hence the preimage g−1(A) contains Bδ(x, y). The
same argument can be applied to any point in the preimage, so g−1(A) is open,
i.e., g is continuous.

If (x, y) is on the boundary of D2, then g(x, y) = (x, y) no matter what
f(x, y) is.

Now define a map
F : S1 × [0, 1] → S1

by F ((x, y), t) = g(tx, ty).
This map F is continuous, so we can think of it as a homotopy between the

map h : S1 → S1 defined by h(x, y) = F ((x, y), 0) and j : S1 → S1 defined by
j(x, y) = F ((x, y), 1). Now h(x, y) = g(0, 0) for all (x, y), so h is the constant
map and thus deg(h) = 0. On the other hand, however, j(x, y) = g(x, y) =
(x, y) for all (x, y), so j is the identity map and deg(j) = 1. If F is a homotopy
between h and j, then these degrees must be equal. Since they are not, the
map F cannot exist. Hence nor can g, showing in turn that the map f must
have had a fixed point in the first place.
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6.5 Vector Fields

One of the most celebrated theorems of topology is the “Hairy ball theorem”.
In simple language this says that you cannot comb a hairy ball. To make this
more precise, we need the notion of a “vector field”.

When combing a surface, such as the sphere, we move the comb in a certain
direction, tangential to the surface. This gives a function which assigns, to each
point on the surface, a direction, i.e., a vector which is tangential to the surface.
For example, if we comb the sphere S2, we will get a function v : S2 → R3

with the property that v(s) is tangential to the surface of S2 at s.
In general, combing a surface S ⊂ Rn will give rise to a function v : S → Rn.

Of course, this function v should be continuous, as the comb is presumed to
move in a continuous way. A continuous tangential vector-valued function such
as this is called a vector field.

Example 6.37

At any given moment in time there is a vector field which assigns to each point
on the surface of the earth, a vector representing the wind felt at that point.

Example 6.38

Another example of a vector field is given by combing a hairy cylinder.

If we constantly comb round the cylinder, then we get a nowhere-zero vector
field, i.e., v(s) �= 0 for all s in the cylinder.

We can use our knowledge about homotopy classes of maps from S1 to S1

to tell us about vector fields, as illustrated by the next two theorems.

Theorem 6.39

If you stir a cup of coffee, then, at any given moment in time, some particle on
the surface is stationary.
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Proof

Let v : D2 → R2 be the vector field indicating how the surface of the coffee is
moving, so that v(x, y) is the velocity of a particle of coffee at the point (x, y).
If v is nowhere zero, then we can define a continuous map g : S1 → S1 by

g(x, y) =
−v(x, y)
|v(x, y)| ,

thinking of (x, y) ∈ S1 as a point on the boundary of D2. Then there is a
homotopy G : g � id defined by

G((x, y), t) =
t(x, y) − (1 − t)v(x, y)
|t(x, y) − (1 − t)v(x, y)| .

It takes some thought to see that this is continuous, as we must verify that
the denominator |t(x, y) − (1 − t)v(x, y)| cannot be zero. If it were zero, then
this would say that t(x, y) = (1 − t)v(x, y). If t = 0, then that would mean
v(x, y) = 0, which cannot happen by assumption. If t = 1, then that would
mean that (x, y) = 0, which cannot happen as (x, y) ∈ S1. If 0 < t < 1,
then t(x, y) − (1 − t)v(x, y) = 0 implies that v(x, y) = t

1−t (x, y), i.e., v(x, y) is
a positive multiple of (x, y). Since (x, y) is on the perimeter of the cup, this
would be saying that the coffee is moving out of the cup, which cannot happen.
Hence |t(x, y) − (1 − t)v(x, y)| is never zero, so G is a continuous map.

On the other hand, if v is nowhere zero, then we can also define a homotopy
F : S1 × [0, 1] → S1 by

F ((x, y), t) =
−v(tx, ty)
|v(tx, ty)| .

If t = 1, then F ((x, y), 1) = g(x, y) and if t = 0, F ((x, y), 0) = −v(0, 0)/|v(0, 0)|
is constant. So F is a homotopy between g and a constant map. Putting these
homotopies together, we get

id � g � constant.

A constant map has degree 0, and the identity has degree 1, hence these two
cannot be homotopic. So v must be zero somewhere, i.e., some point is station-
ary.

Theorem 6.40 (Hairy Ball Theorem)

Let v : S2 → R3 be a vector field on the sphere. Then there is some point
x ∈ S2 such that v(x) = 0.



114 6. Homotopy

Proof

To prove this, we will split the sphere up into three sections, by latitude:

A

B

We will first consider the region A, i.e., everything below (and including) the
upper line. This region is homeomorphic to the closed disc D2, by stereographic
projection. More importantly, if we think of v as placing an arrow at each point
on S2 tangential to S2, then under this stereographic projection, v corresponds
to a continuous map ṽ from D2 to R2, placing an arrow at every point of D2

tangential to D2. (This correspondence sounds plausible for points near the
South Pole. To prove that it works for the whole region A requires methods
from multivariate calculus whose details we omit. See Section 7c of [4] for more
information, or Section 2.2 of [5] for a different approach.)

Now we modify ṽ as follows. Let h : D2 → D2 be the continuous map which
shrinks the disc of radius 1/2 within D2 down to a point and stretches out the
remainder of D2 accordingly.

�

�

�� •

So, using polar coordinates, h can be written as

h(r cos(θ), r sin(θ)) =
{

((2r − 1) cos(θ), (2r − 1) sin(θ)) if r ≥ 1
2 ,

(0, 0) if r ≤ 1
2 .

We define a new function w̃ : D2 → R2 by w̃ = ṽ ◦ h : D2 → R2, and
we can think of this as a vector field on D2. Note that w̃(x, y) = ṽ(0, 0) if
|(x, y)| ≤ 1/2, i.e., w̃ is constant throughout the disc of radius 1/2 inside D2.
But when |(x, y)| = 1, w̃(x, y) = ṽ(x, y), so ṽ and w̃ agree with each other on
the perimeter of D2.

The fact that ṽ and w̃ agree on the perimeter of D2 means that we can patch
w̃ in, in place of ṽ, in our original vector field on S2, to get a new continuous
tangential vector field w. Because w̃ is constant in the middle of D2, so w is
“constant” south of the lower tropic.

Now we look at the region B, north of, and including this lower tropic.
Again, by stereographic projection, this region is homeomorphic to D2, but
look what happens to the perimeter of this region under this homeomorphism.
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On the sphere, this perimeter corresponds to the lower tropic, on which w is
constant, depicted in the left of the following picture.
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However, when we apply stereographic projection, it has the effect of turn-
ing this circle inside out. The arrows on the perimeter then point in different
directions. In fact, as you can see from the right-hand picture above, the arrows
rotate through 720◦ as you pass around the perimeter circle.

We can use this to define a continuous map f : S1 → S1 by

f(x, y) =
w′(x, y)
|w′(x, y)| ,

where w′ : D2 → R2 is the function corresponding to w under stereographic
projection. Since the arrows rotate through 720◦ as we go around the circle,
so deg(f) = 2. However, if v has no zeros, then w will have no zeros and
so, in particular, w′ will be nowhere zero. We could then define a homotopy
H : S1 × [0, 1] → S1 by

H((x, y), t) =
w′(t(x, y))
|w′(t(x, y))| .

If w′ is nowhere zero, then this is continuous. When t = 0, H((x, y), 0) =
w′(0, 0)/|w′(0, 0)| is constant. So H would be a homotopy from a degree 2 map
to a constant map. Since this cannot happen, w′ must have a zero somewhere.
Consequently, so must w and, in turn, v.

Since, as we have seen, wind can be considered as a vector field on the surface
of the earth, which is homeomorphic to S2, we get the following meteorological
consequence.

Corollary 6.41

At any moment in time, there is some point on the earth where there is no
wind.

Remark: Notice how we have applied our knowledge of [S1, S1] to problems
about vector fields, which don’t directly involve S1 or homotopy. A little knowl-
edge can, indeed, go a long way, and this shows how useful the “homotopy”
concept is that it can solve problems that have no apparent connection to it.
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EXERCISES

6.1. Write down a homotopy equivalence between (0, 1) and [0, 1].

6.2. List all homotopy classes of maps (0, 1) → (0, 1).

6.3. Prove that a discrete space consisting of m points is homotopy equiv-
alent to a discrete space consisting of n points if, and only if, m = n.

6.4. Let X be any space and f : X → Sn a continuous map. Using
Proposition 6.5, show that if f is not surjective, then f is homotopic
to a constant map.

6.5. Show that the map f : S1 → S1 given by f(x, y) = (x,−y) is
homotopic to the identity map.

6.6. If f, g : S1 → S1 are two continuous maps, express deg(f ◦ g) in
terms of deg(f) and deg(g). Use this to show that f ◦g is homotopic
to g ◦ f .

6.7. Which of the following surfaces do you think can be combed (i.e.,
which admit a nowhere-zero tangential vector field): (1) a Möbius
band, (2) a surface of genus two, (3) a torus, and (4) a Klein bottle?


