Preface

Before the beginning of years
There came to the making of man
Time with a gift of tears,
—Algernon Charles Swinburne

If we offend, it is with our good will.
That you should think, we come not to offend,
But with good will. To show our simple skill,
That is the true beginning of our end.
— William Shakespeare

Longitudinal data occurs when we repeatedly take the same type of mea-
surement across time on the subjects in a study. My purpose in writing this
textbook is to teach you how to think about and analyze longitudinal data.

As a graduate student, I joined the American Statistical Association
and began to subscribe to professional journals. I was aware that most
people did not read their journals, and in the natural exuberance of early
graduate-student-hood I vowed to be different. I opened my first journal
with the express intent to read it cover to cover; and quickly discovered not
every article was interesting. However, I did read one article thoroughly.
Ware (1985) had published an article titled “Linear Models for the Analysis
of Longitudinal Studies.” I spent a lot of time trying to understand that
article, and in a real sense I am still working on it today. This book is the
outcome of my interest in longitudinal data, that began with that article.
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Why This Book?

This is a textbook, not a monograph. Included material must be directly
helpful when analyzing longitudinal data. Mathematical presentation is
kept to a minimum although not eliminated, and statistical computing is
not covered.

This book has several key features that other books on longitudinal data
do not have. First of all, this book has chapter-length treatments of graph-
ical methods, covariance modeling, and modeling the effects of covariates.
These chapters are often only a small section in most other texts currently
on the market. The effects of covariates requires at least one full chapter
on top of what students have learned about covariates from their linear
regression courses.

Many current texts are unbalanced in their coverage of this material.
Many texts spend a lot of space on discrete data analysis—an entertaining
and important topic. However, like courses on linear regression and gen-
eralized linear regression, students should cover linear regression in depth
before moving on to logistic and Poisson regression. One book spends more
than 25% of its space on missing data modeling. Understanding missing
data and bias is an important part of statistical data analysis of longitudinal
data. I do provide an introduction to missing data here, but first students
need to know how to model regular longitudinal data before spending time
learning about missing data.

Texts on longitudinal data from the 1980s and even 1990s are already
out of date, usually concentrating on generalizations of analysis of vari-
ance rather than on generalizations of regression. The techniques they
cover are often archaic. There are also several doctoral-level monographs
on longitudinal data that cover multivariate analysis at a more advanced
mathematical level, usually including substantial effort on computation and
inference, but this is at the expense of not covering the nuts and bolts of
data analysis, and those books cannot be read by master’s-level students.

A number of texts treat longitudinal data as a special case of repeated
measures or hierarchical or multi-level data. Those books emphasize the
random effects approach to modeling to the detriment of other covari-
ance models. Random effects models are powerful and flexible, and several
sections of this text are devoted to random effects models. However, polyno-
mial random effects models often do not provide the best fit to longitudinal
data. Consequently, I treat random effects models as one of several co-
variance models to be considered when modeling the covariance matrix of
longitudinal data.

Computation

I assume that computation will be handled by a software package. Sta-
tistical textbooks at the master’s level typically do not cover statistical
computation, and this book is no exception. My discussion of computation
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tries to aid the data analyst in understanding what the software does, why
it may or may not work, and what implications this has for their own data
analysis. I do not discuss code for particular packages because software
changes too rapidly over time. It is altered, often improved, and eventually
replaced. I am thankful to the vendors that supply programs for analyzing
longitudinal data, and I wish them a long and successful run. Extensive soft-
ware examples will be available on the book’s Web site. A link to the book
Web site will be located at http://www.biostat.ucla.edu/books/mld.
You will find data sets, example code, example homework problem sets,
computer labs, and useful longitudinal links.

Initially, example code for fitting these models in SAS® Proc Mixed®
and Proc Nlmixed™ will be available on the course Web site. Sets of com-

puter labs will also be available for teaching longitudinal data analysis using
SAS.

Mathematical Background

I have kept the mathematical level of the text as low as I could. Students
really should be comfortable with the vector form of linear regression ¥ =
Xa+4§ where X is a matrix of known covariates with n rows and K columns,
« is a K-vector of coefficients, and Y and 0 are n-vectors of observations
and residual errors, respectively. I use a rather than the more common (3
for the regression coefficients. Linear algebra beyond X « is rarely required,
and those spots can be readily skipped. In chapters 5 and 6, I write down
some likelihoods and the weighted least squares estimator for the regression
coefficients in longitudinal data. This requires a few matrix inverses. This
material is partly included to assuage my guilt had it been omitted and to
provide hooks into future mathematical material should the reader cover
more advanced material elsewhere. But this material is not central to the
main theme. If the students do not swallow that material whole, it should
not impede understanding elsewhere. I do review linear regression briefly,
to remind the reader of what they learned before; one can’t learn regression
fresh from the review, but hopefully it will serve to exercise any neurons
that need strengthening.

Multivariate Data and Multivariate Data Courses

Because longitudinal data is multivariate, you will learn something about
multivariate data when you read this book. Longitudinal data is not the
only type of multivariate data, although it is perhaps the most common
type of multivariate data. One of the (dirty little?) secrets of statistical
research in classical multivariate data methods is that many methods, while
purporting to be multivariate, are actually illustrated on, and mainly useful
for, longitudinal data.

Many statistics and biostatistics departments have courses in multi-
variate data analysis aimed at master’s-level students and quantitative
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graduate students from other departments. These courses cover multivari-
ate analysis of variance (MANOVA) and multivariate regression, among
other things. I strongly recommend replacing such a course with a course
in longitudinal data analysis using this book. The value of longitudinal data
analysis to the student will be much greater than the value of MANOVA
or multivariate regression. I often think of this course as a “money course.”
Take this course, earn a living. I hire many students to analyze data on
different projects; it used to be that I required familiarity with regression
analysis. Now familiarity with longitudinal data analysis is the most usual
prerequisite.

Target Audience

Graduating master’s students in statistics and biostatistics are very likely
to be analyzing longitudinal data at least some of the time, particularly if
they go into academia, the biotech/pharmaceutical industry, or other re-
search environment. Doctoral students and researchers in many disciplines
routinely collect longitudinal data. All of these people need to know about
analyzing longitudinal data.

This book is aimed at master’s and doctoral students in statistics and
biostatistics and quantitative doctoral students from disciplines such as
psychology, education, economics, sociology, business, epidemiology, sociol-
ogy and engineering among many other disciplines. These are two different
audiences. The common background must be a good course in linear re-
gression. A course at the level of Kutner, Nachtsheim, and Neter (2004),
Fox (1997), Weisberg (2004) or Cook and Weisberg (1999) is a necessary
prerequisite to reading this book. The seasoning provided by an additional
statistics or biostatistics course at this level will be exceedingly helpful. I
have taught this material to students from other disciplines whose math-
ematical background was not up to this level. They found this course
rewarding but challenging.

The statistics and biostatistics students bring a deeper knowledge of
mathematics and statistics to the course, but often little knowledge of
longitudinal data other than perhaps knowledge that longitudinal data is
likely to be in their future or on their comprehensive exam. Students from
outside stat/biostat tend to have much less mathematical and statistical
background. Instead, they bring with them the motivation that comes from
having data in hand and needing to analyze it, often for their dissertation.
The two different backgrounds can both lead to success in learning this
material.

Applied researchers with a good regression course under their belt and
some added statistical sophistication should be able to read this book as
well. For anyone reading this book, the single best supplemental activity
when reading the text would be to have your own data set and to draw all
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the relevant plots and fit all the relevant models you read about to your
own data.

An Querview

This overview is for anyone; but I'm writing it as if I were talking to another
teacher.

Chapter 1, Introduction, introduces longitudinal data, gives examples,
talks about time, discusses how longitudinal data is different from lin-
ear regression data, why analyzing longitudinal data is more difficult than
analyzing linear regression data and defines notation.

Chapter 2, Plots, discusses the plotting of longitudinal data. Intertwined
with the plots are ways of thinking about longitudinal data, issues that
are naturally part of longitudinal data analysis. Even if you do not wish to
cover every last piece of this material in a course, I recommend that the
students read the whole chapter.

Chapter 3, Simple Analyses, discusses things like paired t-tests and two-
sample t-tests and the two-sample t-test on paired differences, called the
difference of differences, (DoD) design. These simple analyses are done on
various subsets of the data or on summaries of the data. The ideas are
re-used in the chapter on specifying covariates. Chapter 4, Critiques of
Simple Analyses, complains about these analyses and explains some of the
problems. Perhaps the real cost of simple analyses is the loss of the richness
of multivariate data.

Chapter 5, the Multivariate Normal Linear Model, starts with the iid
multivariate normal model for data, then introduces parameterized covari-
ance matrices and covariates and the basic aspects of and techniques for
drawing conclusions.

Chapter 6, Tools and Concepts, contains a grab-bag of useful tools (like-
lihood ratio tests, model selection, maximum likelihood and restricted
maximum likelihood, back-transforming a transformed response, an in-
troduction to design) and discussions about issues with longitudinal data
analysis (assuming normality, computation). These tools may be skipped
at first reading. However, my suspicion is that those readers who only read
a section or two out of the entire book are most likely to dip into this
chapter or into one of the topics chapters at the end. Many readers will
come back to the various sections of chapter 6 when needed or interested.
Most readers will continue on to chapters 7 and 8, coming back to pick up
material on model selection, computation, inference as needed.

Chapters 7 and 8, Specifying Covariates and Modeling the Covariance
Matriz, respectively, are the chapters that allow the flavor and beauty of
longitudinal data analysis to come to full bloom. As best as possible, I
have tried to write these chapters so they could be read in either order. I
have tried both orders; my preference is to study covariates first. Covari-
ate specification in longitudinal data analysis requires additional modeling
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skills beyond what is taught in linear regression and is where the science
usually comes in when analyzing longitudinal data. I prefer to have that as
early as possible so students can start thinking about their own longitudinal
data problems and how to specify the scientific questions. Another reason is
that otherwise we are well past the mid-quarter mark before having talked
about covariates and that is too long in the quarter to put off talking about
covariates. Because there are many short references to covariance matrix
specification in chapters 5 and 7, it allows for a softer introduction to the
material on covariance models. The downside of this order is that students
tend to ask a lot of questions about covariance models before you are ready
to discuss them.

Chapter 9, Random Effects Models, discusses the random effects model
as a hierarchical model, with discussions of random effects estimation and
shrinkage. Longitudinal data sets frequently have subjects nested inside
larger groups, for example students in classrooms or children in families.
We explain how to model this data as well.

Chapter 10, Residuals and Case Diagnostics, presents current knowledge
about residuals and case diagnostics with emphasis on residuals in random
effects models as more is known (by me at any rate) about residuals there
than in the general multivariate linear regression model.

Chapter 11, Discrete Longitudinal Data introduces discrete longitudinal
data models. I discuss the random intercept model for binary data and for
count data.

Chapter 12, Missing Data, is an introduction to issues surrounding miss-
ing data in longitudinal data. We talk about intermittently observed data
and dropout and missing at random and variants.

Finally, chapter 13, Analyzing Two Longitudinal Variables, introduces
bivariate longitudinal data, when you measure two variables repeatedly
over time on subjects and wish to understand the interrelationship of the
two variables over time.

Teaching from This Book

I teach this book as a quarter course, covering essentially the entire text.
Lectures are supplemented with a computer lab that covers the use of a
computer program for analyzing longitudinal data.

I have also taught precursors of this material as a subset of a quarter
course on multivariate analysis for biostatistics doctoral students. In this
course, I cover material from chapters 1, 2, 7, 8, and 9 in three to four
weeks, concentrating on the mathematical presentation. I replace chapter
5 with a substantially higher level of mathematical rigor. Chapters 1 and 2
are shortened and the material tightly compacted. Next time I teach that
course, I plan to require that students read the entire book and may add
parts from chapter 11 and 13 to lectures as well.
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A number of homework problems are included. That is how you can tell
this is a textbook and not a monograph. The most important homework
problems should lead students through a complete analysis of a simple data
set. I use the Dental data for this first set of homework problems, which is
why it does not appear in the text. Students should first plot and summa-
rize the data, then explore the fixed effects, model the covariance matrix,
look at the residuals and finally put their results all together in a report.
This can be over a set of three homework assignments. The next assign-
ment(s) can either be a report on the complete analysis of a somewhat
more complicated longitudinal data set or another three homework assign-
ments analyzing a data set with unbalanced or random times and more
covariates. The last project should be the analysis of a still more complex
data set supplied by the teacher or a data set supplied by the student. I
do not give exams when I teach this material as a stand-alone course. Re-
port writing supplies a useful form of training that was often historically
lacking in statistical training. Ironically, the initial motivation for chapter
7 came from observing the difficulty that many very smart biostatistics
doctoral students had in setting up even simple covariate matrices for lon-
gitudinal data during comprehensive exams. The Web site has homework
assignments that I have used.

Feedback

Comments are actively solicited; especially comments that will help me
make the reading and learning experience more helpful for future readers.
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Plots

“Do you see the big picture, [Meehan]?”
“Never have, Your Honor,” Meehan told her. “I'm lucky if I
make sense of the inset.”

— From Donald E. Westlake’s Put a Lid on It.

There I shall see mine own figure.

Which I take to be either a fool or a cipher.
— William Shakespeare

Overview

In this chapter, we cover the following

e Plotting longitudinal data

— What we want from our graphics
— Defining profile plots

— Interpreting profile plots

— Variations on profile plots

e Empirical residuals

e Correlation

— Correlation matrix
— Scatterplot matrices
— Correlograms
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e Empirical summary plots

e How much data do we have?

This chapter presents exploratory data graphics for longitudinal data. Most
graphics in research reports are used to present inferences. Long before we
draw conclusions, we must understand our data and determine the models
we will use. In drawing exploratory graphics, we plot the data in ways that
shed light on modeling decisions. Longitudinal data are more complicated
than cross-sectional data, and our plots will be more complex as well.

Our discussions will assume balanced or balanced with missing data.
Most ideas apply equally well to random time data. The problem with
explicitly including random time data in the discussion is that there is a
significant increase in notational complexity without much corresponding
benefit.

2.1 Graphics and Longitudinal Data,

General multivariate data are difficult to plot in a way that provides insight
into the data. Much ingenuity has been expended on creating such plots. In
contrast, a number of useful plots for longitudinal data exist. The reason
for the difference is that the units of measurement for longitudinal obser-
vations Yj1, Yo, ..., are all identical. Within-subject comparisons make no
immediate sense for general multivariate data. It is hard to compare heart
rate and blood pressure as part of a multivariate observation; the units are
not directly comparable. Only between-subject comparisons of correspond-
ing measurements such as Y;; — Y or Y;s — Yo make sense. In contrast,
with longitudinal data we can take differences between observations within
subjects. The difference Y;o — Y;1 is the increase in the response from the
first to the second observation, and we want plots to show that change. We
may take differences of similarly timed measures between subjects. Suppose
that ¢;; = t;; for subjects ¢ and [, then Y;; —Y}; is the amount that subject
i is higher than subject [ at time j. Even if times ¢;; and ¢;;, are different,
the difference Y;; — Yy is still interpretable.

What are the quantities we want our graphics to show? Some basic quan-
tities we are interested in are the value of a particular observation Y;; and
the average response from subject ¢

.
1 k2
i=— Y
n; <

Jj=1

We want to compare observations within a subject. For example, we want to
evaluate the difference Y;; — Yj(;_1), and we need to compare observations
across subjects at a particular time as in Y;; — Y;;. We want to answer
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questions such as which observations Y;; are highest or lowest and which
subjects are highest or lowest on average. We would like to assess the
average response across subjects at a single time j

_ 1 &
Y;= ;ZYU
=1

and the sample standard deviations
Lo 1/2
8jj = > oYy —Yy)°

n—1
i=1

of the Y;; at a specific time j. We want to know if these means and standard
deviations are increasing, constant, or decreasing over time. The ratio

Yy~ Yigou

2.1
tij — tigj-1) 21

Yij =
is the slope of the line segment between observation j — 1 and j for subject
1. We will want to compare these slopes for different j within subject and
also across different subjects at similar or different times. Are the slopes
increasing over time or decreasing? Is the typical subject’s slope increasing
or decreasing at time ¢? What is the average of v;; over subjects i? We
would like to see which subjects have similar profiles on average Y; = Y,
or have profiles with similar patterns over time such as Y;j; — Y, = Y — Y,
even though their averages may not be the same.

So far we have mentioned basic features of our data; observation level
Y;;, subject average level Y;, across subject within time average level Yj;
differences Y;; — Yix, Yi; — Y};, standard deviations s;;, and slopes (Y;; —
Yij—1))/(tij — ti(j—1)). Thinking now not about features of the data, but
features of the models we will be creating, what are the basic components
of our models? We want our plots to help us with specification of these
components. The basic features of our models will be

e the population mean response at a particular time,

e the population variance or standard deviation of the responses at a
particular time,

e the correlations between observations within subjects, and
e the effects of covariates on these quantities.

We want our plots to show us information so we can specify our models
appropriately. Mainly we want to make qualitative judgments from our
plots; quantitative judgments are reserved for the output of our models.
We do not need to learn that the mean of the observations at day 2 is 200
and that at day 20 it is 950. Rather, we need to learn from our plots if
the mean response is increasing over time or not. If the mean response is
increasing, is the increase linear or something more complicated?
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2.2 Responses Over Time

Time permeates all longitudinal data analyses. The first graphic we make
plots the longitudinal response against time. The obvious first plot we might
consider plots all responses Y;; against time ¢;;. Figure 2.1 shows this plot
for the Big Mice data. The response is the weight in milligrams for n = 35
mice with each mouse contributing observations from various days starting
at birth, day 0, through day 20. Thirty-three of the mice were weighed every
three days for a total of seven observations each. Eleven mice in group 1
were weighed beginning on day 0, ending on day 18; group 2 has 10 mice
weighed beginning on day 1 ending on day 19; and group 3 has 12 mice
weighed beginning on day 2 ending on day 20. The last two mice are in
group 4 and were weighed daily from day 0 to day 20. A subset of the Big
Mice data forms the Small Mice consisting of the group three mice plus the
group four observations on the same days. The Small Mice form a balanced
subset of the data, whereas the Big Mice data are balanced with lots of
data missing. Each mouse comes from a separate litter, so it is reasonable
to treat mice as independent. All weighings were performed by a single
person using a single scale.

See the data set appendix for details about any given data set. We will
discuss data sets in the text as we need the information. To make it easy
to find this information at a later time, data set descriptions are kept in
the data set appendix. The mice data set description is in section A.2.

2.2.1 Scatterplots

Figure 2.1 is a scatterplot of weight against time with all 33 x7+2x21 = 273
observations plotted. The weights start out low and grow rapidly. On days
0 and 1, the weights are all less than 200 milligrams (mg), by day 5 the
average weight has more than doubled, and the weights more than double
again by the end of the study at day 20. Somewhere around day 10 the
daily increase in weight appears to slow down although the exact pattern
of increase is unclear.

2.2.2 Box Plots

There is a fair amount of over-plotting of circles in figure 2.1, and with
smaller page size, poorer quality graphics or larger data sets, over-plotting
can be even worse. One solution that people have used is to plot repeated
box plots over time. Rather than attempting to plot all of the observations,
the box plot summarizes the observations at each time point and does a
careful job of presenting the summary.

Figure 2.2 shows 21 repeated box plots of the mice data. Each box plot
summarizes the observations taken on one particular day. The central di-
vided rectangular box plots the lower quartile (lowest line), the median
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Figure 2.1. Scatterplot of Big Mice weights in milligrams against time in days.
Thirty-three of the mice contribute 7 observations each and 2 mice contribute 21
observations each. The boxes are explained in section 2.3.1.

(middle line), and the upper quartile (upper line) of the observations mea-
sured on that day. The lower (upper) quartile is the observation with at
least 25% (75%) of the observations at or below it and at least 75% (25%)
of the observations at or above it. The whiskers are dashed lines extending
from the lower and upper quartiles to the minimum and maximum values
indicated by the short horizontal lines. The box plot shows the interquartile
range, the upper quartile minus the lower quartile, and it shows the range,
the maximum minus the minimum. The box plot is less crowded than 2.1.
Figure 2.1 tries to show every data point, while the box plot displays five
summary statistics of the data at each time point.

We again see the sharp rise in the weights over time. The increase accel-
erates around days 2-6. The medians, for example, increase rapidly each
day until around day 11, when they grow less quickly. Around days 12-14
the rise in the medians continues, but perhaps at not such a sharp rate.
Thereafter the increases are uneven. At days 14-16 the median weight is
nearly constant and again for days 17-19.
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Figure 2.2. Repeated box plots of the Big Mice weights over time. Each box plot
summarizes the distribution (minimum, lower quartile, median, upper quartile,
maximum) of weights observed on that day.

The variability of observations on a given day increases as the mice get
older. As the mice age, we see in figures 2.1 and 2.2 that the variability in
weights increases up till perhaps around day 9, then at some point, possibly
day 14, it increases again. In figure 2.2, the range and the interquartile range
appear to increase over time as well. As the mice grow, the range increases
and then appears to stabilize around day 9 or so.

2.2.3 Flaws in Scatterplots and Box Plots for Longitudinal
Data

The data points and data summaries in figures 2.1 and 2.2 are not inde-
pendent. One may have experience looking at a scatterplot of a response y
versus a predictor x and deciding whether there is a significant or important
differences in the response as functions of time. Because our observations
come from the same mice at different time points, our intuition based on
independent observations may not apply. For neighboring days, the obser-
vations are almost independent except for the two mice in group 4 who
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contribute data to all days. If we wish to compare the data from two days
that are multiples of three days apart, we have correlated data. If we were
to compare the means between days 4 and 7 for example, we would do it
with a paired t-test, not a two-sample t-test. Figures 2.1 and 2.2 do not
show the connection between observations from the same mouse.

It is a flaw of these figures that we cannot tell which observations come
from the same mouse. Three of the four largest weights are the largest
weights at days 14, 17 and 20. Because most mice are weighed every three
days, we suspect, but cannot tell, that these observations belong to the
same mouse. The largest observations on days 14, 17, and 20 weigh much
more than the largest observations at days 15, 16, 18. Day 14’s maximum
is even slightly higher than the maximum at day 19. Similarly, days 2 and
5 have measurements distinctly lower than the other observations, and we
suspect, but cannot tell, that we are looking at two measurements of one
mouse. There is a similar low pair of observations at days 3 and 6.

Additional features of our data that we cannot identify include the dif-
ferences Y;; — Yj(;_1) or the slope between consecutive observations within
a mouse, nor can we identify whether a particular mouse is high or low
compared to the remaining mice. Longitudinal data have a natural hierar-
chical structure that should be reflected in our plots. Observations within
subject are correlated and the nesting or clustering of observations within
subject should be encoded in our plots.

2.2.4 Profile Plots

A profile is the set of points (¢;;,Y:;), 7 =1,...,n,. A profile plot improves
on the basic scatterplot 2.1 by using line segments to connect consecutive
observations (t;;,Y;;) and (t;(j4+1, Yi(j+1)) within a subject. No lines are
drawn between observations from different subjects. Profile plots are useful
because the clustering of observations within subject is directly visible. In
a profile plot, the basic plotting unit is not the observation (¢;;, Y;;), rather
it is the entire profile (¢;,Y;). The profile plot in figure 2.3 displays the mice
data. We can see that a single mouse is heaviest at days 14, 17, and 20.
It was not the heaviest mouse at time 11 or earlier. The second heaviest
mouse at days 14 and 17 is outweighed by yet another mouse at day 20.
We see that the mouse that was heaviest at days 3-6 was one of the two
mice that were measured daily. It ends up among the heaviest mice but is
not the heaviest.

Generally we see that the mice all grow in parallel; if mouse A is heavier
than mouse B at an earlier time, it has a tendency to be heavier at a later
time. This is particularly clear after day 9 or 10; the plot is cluttered before
day 9 and it is not so easy to see if this is true for observations from before
day 9. Mice that are close in weight may change rank from day to day, but
if mouse A is more than 100 milligrams greater than mouse B after day 9,
it is unlikely to ever be lighter than mouse B.
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Figure 2.3. Profile plot of mice weights against time. Consecutive observations
within a mouse are connected by line segments.

In figure 2.3, we also notice that on a few occasions, mice actually de-
crease in weight from one observation to the next, something we could only
infer from the previous two plots and only for a few special circumstances.
Examples include the heaviest mouse at day 9, which lost weight at day
10, and the second lightest mouse at day 15, which is the lightest mouse
on days 16 and 17.

2.2.5 The Need to Connect-the-Dots in Profiles

The need for line segments in profile plots is illustrated in figure 2.4. Five
fictional subjects contribute six observations each to figure 2.4(a). From
this plot we do not know which observations belong to which subjects. We
can only learn about the marginal distribution of the data at any given
time point. Pick any point ¢ on the time axis, and look at the collection
of observations above ¢, and perhaps within a window slightly to either
side, say observations with times in the range t — A, t+ A for some modest
value of A. Average the responses in the window, and look at a number
of windows centered at different times ¢. We learn that the average value
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appears to be fairly constant across time. To the right of the middle of
the time axis, there appears to be possibly less variability in the response
values or possibly there are merely fewer observations at that time. We
do not know the reason for this lower variability. From this plot we do not
learn about the joint distribution of observations within a subject. In 2.4(a)
we do not know, for example, if the largest half a dozen observations across
all time points belong to the same or different subjects.

Figure 2.4(b) presents a possible profile plot for the data in 2.4(a) with
observations within subjects connected by consecutive line segments. Pro-
files are labeled by subject id from 1 to 5 at the left of each profile. Subject
1 has the highest response values at all times, and subject 5 has the lowest
responses. Generally, observations within subject at different times have
similar responses Y;; across time. If subject A begins higher than subject
B at the left side of the plot (early times), then A’s observations are higher
in the middle (middle times) and again at the right side at the latest times.

In contrast, figure 2.4(c) represents a different assignment of observations
to subjects. At the earliest times, the subject profiles are the same as in
figure 2.4(b). However, somewhere in the middle of time, subjects who start
low tend to rise, while subjects who start high tend to fall, and at the late
times, subject 5 who started lowest is highest, while subject 2 for example,
who started second highest ends as second lowest. Subject 3 has a flat
profile throughout: subject 3 had an average response in the beginning is
still average at the end.

Figures 2.4(b) and 2.4(c) suggest different explanations for the reduced
variance of the responses in the late middle time region. In figure 2.4(b),
it appears that the reason for the gap is that there were few observations
on subjects 4 and 5 around that time, whereas there were plenty of ob-
servations for subjects 1, 2, and 3. If we had observations on subjects 4
and 5 to the right of the middle time we would expect them to be low;
we expect the variability of the responses across subjects to be roughly
constant across time. Figure 2.4(c) is different; we see that each subject’s
responses appear to be following their own line as a function of time. Each
subject has a different slope and intercept. Subjects 1 and 2 have negative
slopes, 3 is flat, and subjects 4 and 5 have positive slopes. In figure 2.4(c),
it appears that no matter how many observations we collected from these
5 subjects, we would see the same decrease in variance to the right of the
middle; observations around the point where the lines cross will always be
tightly clustered, and thus the variability of the responses will be lower to
the right of the middle time.
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Figure 2.4. Plotting longitudinal data. (a) Scatterplot of responses Y;; against ¢;;
for 5 fictional subjects of 6 observations each. (b) Possible profile plot based on
the observations in plot (a). (¢) Alternative profile plot based on the observations
in plot (a). Subjects are labeled 1-5 to the left of their earliest observation in (b)
and (c).
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2.3 Interpreting Profile Plots

We can read basic information about subjects’ response patterns from a
profile plot. Figure 2.5 illustrates four different situations. Each subfigure
displays data from eight hypothetical subjects. Subjects are measured at
random times, usually with 5 observations per subject. Individual obser-
vations are plotted using a circle and, as before, line segments connect
consecutive observations within a person. Later on we will drop the circles
and only use the connected line segments. Figure 2.5(a) shows a very com-
mon situation not unlike that in 2.4(b). We see that each profile is roughly
flat, with observations near a subject-specific mean. Individual profiles gen-
erally do not cross other profiles, that is, they are roughly parallel. There
are but a few exceptions in the middle of the data where one profile crosses
another.

If we extrapolate each subject’s profile back in time to the time ¢ = 0
axis, each profile would intersect the axis at a subject-specific intercept.
If subjects are a random sample from the population of interest, then any
subject-specific characteristic is also a sample from the population of pos-
sible values of that characteristic. In particular, the intercepts are a sample
from the population of intercepts. We say that the data in 2.5(a) has a
random intercept. The term random is used in the same way as when we
said that the subjects in our study are a random sample from the popula-
tion under study. Another way to say random intercept is to say that each
subject has their own subject-specific mean response and that observations
vary around the mean response.

In figure 2.5(b), the profiles are again parallel, but this time each has a
linear time trend with a positive slope. If we extrapolate by eye back to
the origin, the profiles all appear to have different intercepts, and again we
conclude that the data has a random intercept. When we look at the slopes
of the profiles, all of the slopes appear to be about the same. Here, we have
a fized slope, a slope that does not vary by subject. We conclude that the
population also has a fixed slope; each subject’s responses increase at the
same rate over time.

The data in figure 2.5(c) illustrate a different pattern of responses. Most
of the profiles start low at time ¢ = 1, and grow larger as time progresses.
There is one unusual profile that starts high and does not grow over time.
We identify that subject as an outlier, and would strongly consider remov-
ing it from the data set before fitting models to this data. The remaining
profiles are linear with similar initial values at the earliest measurement
but they increase over time at different rates. We conclude that we have
a random slope and a fixed intercept in the population. The unusual sub-
ject’s earliest observation is a univariate outlier; we can identify univariate
outliers on a profile plot when a single observation (t¢;;,Y;;) is the most
extreme Y-value, either highest or lowest at time ¢;;, or, for random times,
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Figure 2.5. Example profile plots. (a) Random intercept, constant population
mean; (b) random intercept, positive fixed population time trend; (c¢) random
slope, fixed intercept, with one outlying profile; (d) fixed quadratic.

if Yj; is the most extreme Y-value for all observations within a narrow
window of time centered on t;;.

Bivariate outliers (¢;;,Y;;), (tij+1, Yij+1) can be identified if the line seg-
ment connecting them is unlike all the other line segments in the same
region of time. The unusual subject in figure 2.5(c) also begins with a bi-
variate outlier, as no other subject has a high followed by a high first two
observations. Bivariate outliers not necessarily need be univariate outliers.
Imagine in figure 2.5(a) a subject with points at (¢,y) equal to (2,—1)
followed by (3,41). Neither y-value of —1 or +1 is unusual, but the line
segment connecting them would have the largest slope of any other line
segment in the plot, by a substantial margin, indicating that this was an
unusual pair of observations.
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The final figure 2.5(d) shows subjects following a quadratic trend in time.
The shape of the quadratic appears to be the same for each subject, and we
conclude that the data follows a fixed quadratic path. At first glance there
appears to be a single outlying subject. Closer inspection reveals that that
subject has but two observations, one early at ¢ ~ 1.5 and one late at t ~ 6.
The = is read approzimately equal to. The impression of an outlier is given
because we use a line segment to interpolate between the two observations,
while the bulk of the observations follow a distinct non-linear trend between
those times.

Many other possible patterns of profiles exist. We can imagine a plot
where every profile is approximately linear, each with a different slope
and intercept. The data would have random intercepts and slopes. We can
imagine many forms of curvature over time too innumerable to even begin
to discuss. Problem 9 presents a few possibilities.

2.3.1 Sample Means and Standard Deviations

Key features we can estimate informally from profile plots are population
quantities such as the population mean or population standard deviation
of the data as a function of time. Suppose we have a balanced data set with
no missing data, and subjects are a random sample from our population.
We might take a mean of all observations at each time point where we have
data. These means estimate the population mean as a function of time. If we
hypothetically had observed all subjects, then the mean of all observations
at a given time is the population mean at that time! Depending on need, we
may plot these sample means over time, or we might roughly eyeball them
merely by viewing the profile plot. Inspection of the means will indicate to
us whether the population mean is constant over time or if it is increasing
or decreasing and whether the population trend is linear or not. If the
linear trend is modest, we may need to resort to a formal statistical test to
determine significance, and when presenting our conclusions to others we
almost always supplement our informal judgments with statistical tests.

The population standard deviation at a given time is the standard de-
viation of a set of observations, one per subject, if we had observed all
subjects at a single time. Given a sample of subjects, we have an estimate
of the population standard deviation. The population standard deviation
measures the within-time across-subject variability.

When we have random times or balanced with many missing data, or just
sparse data, we may not have enough data to calculate a mean or standard
deviation at a given time or there may be too few observations to get a
reliable estimate. Instead, we may pool responses taken from observations
with similar times to calculate our mean or standard deviation (sd). In
particular, we might take all observations Y (¢) within a window along the
time axis. The window has a midpoint at time ¢,;, a width w, a left endpoint
tr, =ty — w/2, and a right endpoint tg = ¢ty + w/2. We collect all the
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Y;; values from observations whose ¢;; are in the window, t; < t;; < tg;
and we perform some statistical operation, for example, mean, sd, min,
max, or median on those observations. We plot the resultant mean, sd,
or other quantity against the midpoint t);. Next we move the window
along the t axis, moving tj; from one end of the data set to the other. For
each window, we calculate the same statistical operation, and we plot the
result against the window midpoint, connecting the resulting points by line
segments. When our operation is the mean or a quantile, we may plot the
summary on the same plot as the data. For a range or standard deviation,
we would plot the ranges or sd’s against the window midpoint on another
plot because these values lie on a scale different from the original data.
We typically pick the window width just large enough to give us enough
data to make a decent estimate but not so wide that the estimate becomes
meaningless.

Figure 2.1 illustrates two windows of width 3 days, one from 1.5 to 4.5
and one from 14.5 to 17.5. The two boxes in the plot enclose all of the
observations in the two windows. The mean of the observations in the left
window is 260 mg while the mean of the observations in the right window is
810 mg. The standard deviations are left window 61 mg and right window
120 mg. We reasonably conclude that both the population mean and sd
are larger around time ¢ = 16 than around ¢ = 3. An issue is how big the
window should be. Around time ¢ = 3, the means are increasing rapidly, and
taking a wide window may cause us to overestimate the standard deviation.
With the Big Mice data, we have enough data to keep the window width
down to a width less than 1. We would then take the mean and sd at
each time point, and plot them against that time point. These two plots
are illustrated in figure 2.6. We see in figure 2.6(b) that the sd at time
t = 3 is between 40 and 50, and because our earlier window was wider than
necessary, it did indeed overestimate the standard deviation.

Inspecting the two plots, we conclude that the mice means increase
smoothly over time. The increase is not quite linear, with a slight accel-
eration in the beginning, and then a slight deceleration after day 10. The
sd’s also increase in a smooth but somewhat curvilinear pattern. The sd’s
bounce around more from day to day than do the means. In general, stan-
dard deviations are harder to estimate than means, and this is reflected in
the greater variability of the standard deviations over time.

Often we do not formally draw figures such as 2.6 or decide on a specific
window width. For example, in figure 2.5(a) we see that the minimum
response, the maximum response, the average observed response, and the
range of the responses seem to be nearly constant over time. We identify
these statistics as a function of time by, for example, looking at the subset
of observations in the window between the times ¢ = 1 and t = 2 and
comparing that set of observations to the set of observations between for
example ¢ = 5 and t = 6. The maximum value in these two time intervals
is nearly identical and come from the same subject. The minimum values
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Figure 2.6. Big mice data. (a) Sample means by day. (b) Sample standard
deviations by day.

are slightly different and come from different subjects. But this difference is
small and is attributable to sampling variability and the fact that the lowest
valued subject did not provide any observations before ¢ ~ 2.5. Because
the time trend within subjects seems flat, and the overall impression of the
sample average time trend seems flat, we reasonably hypothesize that the
trend of the population mean over time is flat.

Both the minimum and the maximum in figure 2.5(b) appear to be in-
creasing linearly over time. However, the range = max — min is roughly
constant over time. The distribution of observations between the max and
min is fairly uniform and we conclude that the population variance of the
responses is constant over time.

The population sd over time of the responses increases in figure 2.5(c).
Ignoring the outlier, the range of the 5 responses taken at around ¢ = 1
is less than 1/2 of a unit, from just above zero to less than .5. At time
t = 6, the observations range from a minimum of around .5 to a maximum
near 4. We conclude that the population mean, sd, and range are increasing
over time. A rough estimate of the standard deviation is range/4; the range
appears to be linearly increasing with time, and we conclude that the range
and the sd are increasing in an approximately linear fashion.

We do these sample mean and sd calculations as steps to a further end:
the development of a model for the responses as a function of time. For the
Big Mice data, we have learned that any model must allow for a population
mean and sd that are increasing smoothly with time.

2.8.2 Skewness and the Pediatric Pain Data

Pain is a difficult subject to study because it is hard to design formal
experiments if one does not wish to inflict pain on humans; rats cannot tell
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Figure 2.7. Profile plot of the Pediatric Pain data. (a) Original scale. (b) Log
scale.

us where it hurts. Most human pain studies are observational. The Pediatric
Pain data are unusual in being the result of a designed experiment. The
data consist of up to four observations on 64 children aged 8 to 10. The
response is the length of time in seconds that the child can tolerate keeping
his or her arm in very cold water, a proxy measure of pain tolerance. After
the cold becomes intolerable, the child removes his or her arm. The arm is
toweled off and no harm is caused. The procedure was considered enjoyable
by the children. No one declined to participate in the experiment initially,
and no one dropped out for reasons related to the experiment although
there is some missing data due to absences and broken arms, common
occurrences in children and unrelated to the experiment. Two measures
were taken during a first visit followed by two more measures during a
second visit after a two-week gap.

During the first visit, the children were classified into one of two groups,
attenders (A) or distracters (D) according to their style of coping (CS) with
the pain. The children were asked what they were thinking about during
the trials. Those who were thinking about the experiment, the experimental
apparatus, the feelings from their arms and so on were classified as atten-
ders. Those who thought about other things, such as the wall, homework
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from school, going to the amusement park, all unrelated to the experiment,
were classified as distracters.

A treatment (TMT) was administered prior to the fourth trial. The treat-
ment consisted of a ten-minute counseling intervention to either attend (A),
distract (D), or no advice (N). The N treatment consisted of a discussion
without advice regarding any coping strategy. Interest lies in the main ef-
fects of TMT and CS and interactions between TMT and CS. Interactions
between TMT and CS were anticipated.

The data are plotted in figure 2.7(a), circles for individual observations
are omitted. Time is the trial number, ranging from 1 to 4. We see a
large mass of observations at times under 50 seconds and relatively sparse
data at larger times. This suggests that the data are skewed and that we
should consider a transformation. Figure 2.7(b) is the same data on the log
scale, labeled with a logarithmic scale on the y axis. The profiles are evenly
distributed throughout the range of the data. The data are perhaps slightly
more sparse near the top than the bottom, and while we could consider a
slightly stronger transformation, the amount of skewness seems minor.

In linear regression, we often use a histogram of our responses to de-
termine if we should transform the data. For longitudinal data, it is not
correct to pool all observations into a single histogram. One could draw
histograms of the data at a single time point. If we have random times,
then we could plot a data set consisting of but one observation per subject,
all taken from a narrow window of time. Would it make sense to plot all
of the Big Mice data in a single histogram? Two mice would contribute 21
observations and the rest would contribute 7. Consider data like in 2.5(c),
with fixed intercept and with the random slopes ranging from 0 up to some
positive value. If we had no outlier, and if the study had continued on
longer, a histogram of the entire data set would look skewed, yet it would
not be correct to transform the data. Histograms of the data in a reason-
ably narrow window about any time would correctly indicate no need to
transform the data.

In figure 2.7(a), there seemed to be a lot of univariate outliers; all the
observations above approximately 75 seconds or so. In figure 2.7(b), these
high observations seem much less troublesome. Still, a few outliers are vis-
ible. The subject with the lowest times at trials 3 and 4 has an unusually
high pain tolerance at trial 2. This high trial 2 value causes the line segment
between trials 1 and 2 and also between trials 2 and 3 to travel in direc-
tions very different from the other line segments between these times. This
indicates that the (Y;1, Yi2) pair and the (Y;2, Y;3) pairs for this subject are
bivariate outliers. We identify this subject as an overall outlier.

In figure 2.7(a) and also (b), we also see that there appears to be a fixed
maximum above which no child scores. Inspection of the data shows that
these values are 240.00 seconds, or 4 minutes exactly. Sometimes the inves-
tigator may not mention this to the statistician; graphics help us discover
these features of the data. The investigators felt that if immersion lasted
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Figure 2.8. Example illustrating different within subject variability. Observations
from a single subject have a random intercept and no time trend. Bottom three
subjects have observations with the least amount of within-subject variability.
Middle three subjects have a middle amount of variability within subject, and
the top three subjects have the most within-subject variability.

past 4 minutes, there was no extra information to be gained from allowing
the child to keep their arms in longer. This happened in 11 observations out
of the 245 total number of observations. The investigators recorded 240.00
seconds as the response in these trials. This censoring should be taken
account of in the modeling although we do not do this in the analyses
presented here.

Figure 2.7(a), is not a beautiful plot; one would never publish it in a
medical journal as part of reporting an analysis of this data. Still, this
is potentially the single most important step in the analysis of this datal
We learned (1) that we should transform the response, (2) that there was
possible non-constant variance, (3) that there were some outliers, and (4)
that there was a maximum value imposed on the data by the investigators.

2.3.8  Within-Subject Variability

In the Big Mice data, we saw different marginal variances at different times.
This was summarized in figure 2.6(b), which plotted standard deviations
across-subjects within-time. We also can think about within-subject, across-
time variability. Figure 2.8 illustrates. The nine subjects each have their
own (random) intercept and profiles that have no trend over time. The three
subjects with the smallest responses have observations that vary around
their means in a tight pattern without much variance. The three subjects
in the middle have greater variability around their means, and the three
subjects with the highest means have observations with the highest vari-
ability around their individual means. The range of the observations within
person is low for the subjects with the lowest values; it is middling for the
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Figure 2.9. Pain data. Plot of standard deviations (y) against means (z) for
subjects with 4 observations and no values of 240 seconds. (a) original data, (b)
log base 2 data.

subjects with the middle means, and it is highest for the subjects with the
highest means.

The Pediatric Pain data in figure 2.7(a) appear to have higher within-
subject variability for subjects with higher means, and subjects with
lower means appear to have smaller variability. It is somewhat hard to
be absolutely certain. Inspection of figure 2.7(b) suggests that the log
transformation was useful in eliminating the non-constant within-subject
variance along with the skewness. Skewness of the response and non-
constant variance are often associated, and it is not surprising that the
one transformation does a good job of reducing both.

When profiles are flat or linear, that is, they exhibit a random intercept
and do not have a time trend, there is a plot that can help clarify whether
within-subject variability increases with the subject-specific mean. For each
subject, we can calculate the mean of the n; observations and the standard
deviation of the n; observations. Then we plot the n standard deviations
against the means. Figure 2.9(a) plots, for the Pediatric Pain raw data, the
within-subject standard deviations of the four observations on the vertical
axis versus the means of the four observations on the horizontal axis. The
line is a least squares line drawn through the points without particular
regard to assumptions. We see that the standard deviations do definitely
increase with the mean. Figure 2.9(b) shows the same plot for the log base 2
data. It shows little if any correlation between the within-subject standard
deviation and the subject-specific mean. For both plots, subjects with less
than four observations or with a measurement of 240 are not included.

For our Pediatric Pain analyses, we take a log base two transformation of
the responses before analyzing the data. The base two log transformation
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Figure 2.10. Profile plots of the Pediatric Pain data on the log scale separately
by coping style: (a) attenders; (b) distracters.

is no different from a base 10 or base e transformation in terms of getting
rid of skewness. However, powers of two are much easier to do in our head
than powers of e to invert the log transformation and allow us to interpret
what a particular log measurement signifies on the original seconds scale.
Powers of 10 are also easy to do, but are only useful for data with a wide
dynamic range covering several powers of 10.

2.4 Elaborations of Profile Plots

The profile plot is a useful all-purpose tool for understanding longitudinal
data. Any truly useful tool develops many variations that are helpful in
different circumstances. In this section, we discuss some modifications to
the basic profile plot for (i) data sets with covariates, (i) data sets where
the range of the response across subjects obscures the trend of the profiles
within subject, and (iii) two kinds of empirical residuals that can be helpful
for understanding our data.

2.4.1 Covariates

So far we have plotted entire data sets in our profile plots. It is not required
that we include the entire data set in a single plot, and we may use our
creativity to determine when it might be helpful to look at a subset of the
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data in a single plot, or to look at all of the data but spread across several
different profile plots.

When we have a discrete covariate, we may plot subjects with different
values of the covariate in separate plots. Figure 2.10 illustrates this for the
Pain data and the coping style covariate. The left-hand plot shows subjects
who are attenders and the right-hand plot shows distracters. Compared
with figure 2.7(b), there are fewer subjects plotted on the same plot, and
we can more easily distinguish individual profiles of subjects.

Figure 2.10 reveals several interesting features of the data. In figure
2.10(a), most of the subjects range uniformly on the log scale from approxi-
mately 7.5 seconds up to slightly below 60 seconds. There is one exceptional
subject that we identify as a high outlier. In figure 2.10(b), the distracters
range uniformly from around 7.5 seconds up to 240 seconds. A number of
distracters have observations over 60 seconds. The average of the attenders
appears to be approximately half way between 15 and 30 seconds. Because
this is a logarithmic scale, that point is at \KQ) X 15 ~ 14 x 15 = 24
seconds. The average of the distracters appears to be around one quarter
of the way between 30 and 60, which puts it at around 2%/4 x 30 ~ 36
seconds. We conclude that distracters have greater average pain tolerance
than attenders.

We could have used different line types for the two groups and plotted all
subjects on the same plot. This works reasonably well when the groups are
well separated in their responses or if there are very few subjects. The Pain
data have a bit too many subjects for separate line types to be helpful.

With a continuous covariate, we might slice the covariate into a small
number of intervals and create separate profile plots for subjects with
covariate values that fall into each interval. A common way of slicing con-
tinuous variables is called a median split. Subjects with covariate values
above the median form one group, and those with values below the median
form a second group. All subjects who fall at the median, if they exist,
may go all together into either group. We do a median split when there is
no particular scientific rationale for splitting the covariate at some other
value.

2.4.2 Ozone Data

Ozone is an invisible pollutant that irritates the lungs and throat and
causes or exacerbates health problems in humans. Crops may grow less if
exposed to excess ozone, and chemical products such as paint may degrade
when exposed to ozone. The Ozone data set records ozone over a three-
day period during late July 1987 at 20 sites in and around Los Angeles,
California, USA. Twelve recordings were taken hourly from 0700 hours to
1800 hours giving us 20 x 12 x 3 ozone readings. Measurement units are in
parts per hundred million. Table 2.1 gives the four-letter abbreviation for
the sites, the full names of the sites, and the longitude, latitude, and altitude
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Site Site

abbr name Long Lat Altitude Valley
SNBO  San_Bernadino 117.273 34.107 317 SG
RIVR Riverside 117.417 34 214 SG
FONT  Fontana 117.505 34.099 381 SG
UPLA  Upland 117.628 34.104 369 SG
CLAR Claremont 117.704 34.102 364 SG
POMA Pomona 117.751  34.067 270 SG
AZUS  Azusa 117.923 34.136 189 SG
PASA Pasadena 118.127 34.134 250 SG
BURK Burbank 118.308 34.183 168 SF
RESE  Reseda 118.533  34.199 226 SF
SIMI Simi_Valley 118.685 34.278 310 SF
ANAH Anaheim 117.919 33.821 41 No
LAHB La_Habra 117.951 33.926 82 No
WHIT  Whittier 118.025 33.924 58 No
PICO Pico_Rivera 118.058 34.015 69 No
LGBH N_Long Beach 118.189 33.824 7 No
LYNN  Lynwood 118.21 33.929 27 No
CELA  Central LA 118.225 34.067 87 No
HAWT Hawthorne 118.369 33.923 21 No
WSLA  West_LA 118.455 34.051 91 No

Table 2.1. The Ozone data: general information about sites. The first five columns
are the site abbreviation, full name, longitude, latitude, and altitude. Valley is
whether the site is in either the San Fernando or Simi Valleys (SF) or San Gabriel
(SG) valley. Other sites are adjacent to the ocean without intervening mountain
ranges. Abbreviations in names: N North; LA usually means Los Angeles; except
La Habra is La Habra.

of each site. Also given is a valley indicator to indicate whether the site
is in the Simi or San Fernando Valleys (SF) or San Gabriel Valleys (SG).
The remaining sites are adjacent to the ocean or otherwise do not have
mountain ranges between them and the ocean. The data was originally
collected to compare to output of computer simulations of atmospheric
chemistry in Los Angeles. Figure 2.11 shows a map of the site locations.
The San Gabriel Valley is on the right or east on the plot. Simi Valley is the
left most or western most site and is adjacent to the San Fernando Valley
sites of Reseda and Burbank. Each night ozone returns to a baseline value,
and we treat the data as having 60 = 20 x 3 subjects with 12 longitudinal
measures each.

Figure 2.12 plots ozone profiles for the sites separately by day. We see
that on day 1 ozone generally increases monotonically up to a peak between
2pm and 4pm before beginning to decrease slightly. There are a range of
ozone levels. The ozone peaks appear to be increasing from day 1 to day 2
to day 3. It may be that the peaks are slightly later on day 3 than on day
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Figure 2.11. Map of Ozone data sites. CLAR overlaps UPLA, which overlaps
FONT, and WHIT overlaps LAHB. To place west on the left, longitude increases
right to left.

1. The lowest ozone levels appear to be similar across the three days. From
this plot we do not know if the same sites are lowest on each of the three
days.

Figure 2.13 plots the profiles by site. Sites are ordered by the maximum
ozone value over the three days. The individual plots are arranged starting
at the bottom left and moving left to right and then from bottom to top.
We notice that the sites with the largest ozone concentrations are all in
the San Gabriel Valley. The next two sites with high ozone are in the San
Fernando Valley. One site not in a valley has higher ozone than Simi Valley,
the last valley site. We lumped Simi Valley with the San Fernando Valley to
avoid having only one site in that category, but technically it is a different
valley from the San Fernando Valley. The sites with the lowest ozone values
appear to be rather similar over the three days, while the middle and higher
ozone sites have different peak ozone levels over the three days.

We can even plot profiles a single profile per plot and look at as many
subjects as we have patience for. In olden times, statisticians would print
out a single subject’s profile on separate pages, then shuffle the pieces of
paper around on a table top like a jigsaw looking for similar patterns among
different subjects. In figure 2.14, we print 18 of the 60 cases, with the other
42 on additional pages that are not shown. We now can inspect the patterns
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Figure 2.12. Profile plots of the Ozone data separately by days. Days are ordered
1, 2, and 3 from left to right.

of ozone over day as well as over time within a site. In these six sites, we
see that the ozone peak is generally increasing from each day to the next,
and we again suspect that the peak is moving later within the day from
day 1 to day 2 to day 3.

2.4.8 Weight Loss Data and Viewing Slopes

The Weight Loss data consist of weekly weights in pounds from women
enrolled in a weight loss trial. Patients were interviewed and weighed the
first week and enrolled in the study at the second week. The data from 38
women are plotted in figure 2.15. There are from 4 to 8 measurements per
subject. Weights range from roughly 140 pounds to 260 pounds.

Study protocol called for the subjects to visit the clinic at weeks 1, 2, 3,
and 6 and weigh themselves on the clinic scale. At weeks 4, 5, 7, and 8, study
personnel called subjects at home and asked them to weigh themselves on
their home scales and report the measurement. Week 1 was a screening
visit; participation in the actual weight-loss regimen did not start until
week 2.

Figure 2.15 presents a profile plot of the Weight Loss data. Unfortu-
nately little structure is visible, except for the numerous parallel profiles.
This indicates the not surprising result that each woman has her own av-
erage weight and her weight varies around that weight over time; this data
illustrates a random intercept. We see one slightly heavy subject and one
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Figure 2.13. Profile plots of the Ozone data separately by site. Sites have been
ordered from left to right and bottom to top by their maximum ozone reading
over all hours and days.

slightly light subject. It is not obvious whether women are losing weight or
not based on this figure.

The problem with figure 2.15 is that we cannot see slopes of individual
profiles. Suppose someone lost 5 or even 10 pounds over the 8 weeks; that
slope would barely be visible in the plot; a slope of —1/2 to —1 pound
per week is scientifically quite high yet it would be nearly indistinguishable
from a flat profile with slope 0. We want to see slopes of magnitude —1/2
to —1, and the question is how to draw the plot so that we can actually
see slopes of reasonable magnitude. If we made the figure taller, then a 5
or 10 pound difference would become physically larger on the printed page,
and we will be more likely to be able to see it in the plot. The second
thing we can do is to make the figure narrower! By narrowing the z axis,
we increase the angle of the slopes, so that a slope of —1 pound per week
appears steeper on the plot.

Figure 2.15 is square, this is the default shape produced by most statis-
tical software. Instead, if we give instructions to the software to make the
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Figure 2.14. Profile plots of Ozone data by day and site. Each row shows profiles
from the same site with day increasing left to right. The 6 sites with the highest
ozone levels are shown. This is slightly less than 1/3 of a larger display (not
presented).
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Figure 2.15. Profile plot of the Weight Loss data.

plot taller and narrower, something like either half of figure 2.16 results. In
fact, because the taller, narrower figure is larger than the printed page, I
broke the y axis in half and plotted the lower half of the data from below
140 pounds up to over 200 pounds in one plot on the left and the upper
half of the data from approximately 200 pounds to the maximum on the
right. Some data has been plotted in both figures, roughly in the range
from 198 to 210 pounds. The shape of the plot has been modified so that
we can see the trends in the weights. Now we can see that people are losing
weight; the observation at week 8 generally appears to be lower than that
subject’s corresponding observation at week 1 or 2. Another feature of the
data is also slightly visible. A number of profiles take a steep drop around
weeks 4 and 5 then return to a higher level at week 6, and this seems more
pronounced for heavier subjects.

Changing the shape of the plot is often necessary when plotting longi-
tudinal data. When the range of the response across all of the subjects is
large, but the range within subjects is small in comparison, then we often
have difficulty seeing the time trends of individual subjects on a plot like
2.15. In contrast to the Weight Loss data, the Big Mice data have a large
response range within subjects that is almost the same as the response
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Figure 2.16. Weight Loss data with appropriate shape parameter.
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range across subjects. Unfortunately for the Weight Loss data, we would
like to make the plot impractically taller. The next subsection provides
another solution to the problem of viewing the slopes of individual profiles.

2.4.4  Empirical Within-Subject Residuals

We always begin data analysis with a figure like 2.15. However, this plot
was not particularly successful in terms of viewing slopes over time because
of the large range in the responses. Reflection suggests that we are not very
interested in the absolute weights of the subjects. Rather, we are interested
in changes in weight over time. What could we do to focus on the weight
changes while not worrying about absolute weight levels?

Ignoring figure 2.16 for now, and just looking at figure 2.15, we see that
each subject appears to have her own average weight, and weekly obser-
vations vary around these averages. If we estimate the average weight, we
can calculate the individual deviations around the average and then con-
sider plotting those in a profile plot. A simple estimator of the intercept for
each subject might be the subject’s average response. In chapter 9, we will
learn about models that produce better estimates of the intercept for each
subject. Until then, we consider the subject average Y; as an estimator of
the subject’s average weight. The difference between the jth observation
and the subject mean

Rij=Yi; -V

is an empirical within-subject residual.

Figure 2.17 plots the R;; in a profile plot. At weeks 1 and 2, we see
that most residuals R;; are greater than zero and some are as large as 10
pounds, that is, most subject’s weights are above their average weight. At
weeks 7 and 8, most subject’s weights are below their average. Thus we see
that yes, subjects do lose weight over the course of the study.

From week 1 to week 2, no weight is lost, if anything a little weight is
gained. From week 2 to week 3, the first week of the weight loss treatment,
the subjects lose quite a lot of weight. At weeks 4 and 5 they continue to
lose weight with a few losing a substantial amount between weeks 3 and
4. At week 6, suddenly, weight is gained, presumably because patients are
weighed under supervision with a properly calibrated scale. At weeks 7
and 8, they continue to lose weight. The overall weight loss indicates that a
fixed time effect is needed in the model. It is not clear whether the weight
loss is strictly linear, an issue we leave for later.

We could consider subtracting off other subject relevant weights such as
subject baseline rather than subject average weight from each observation
and plot the resulting changes from baseline in a profile plot. Exercise 18
explores what the Weight Loss profile plot looks like if we subtract off the
baseline weight measurement instead of the subject average. Exercise 20
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Figure 2.17. Profile plot of empirical within-subject residuals for the Weight Loss
data.

explores what happens to the Weight Loss profile plot if we plot differences
from one time to the next Y;; — Yj;_1).

2.4.5 Empirical Population Residuals

Sometimes we wish to see the variation across subjects within a particular
time. If there is a large change in the average response over time, then it
may be hard to view the individual subject profiles, for example to see if
profiles are parallel, or to see if the marginal variance is increasing. In figures
2.1, 2.2, and 2.3, the marginal variance grows quickly initially then appears
to stop growing. We can get a better look at the profiles by subtracting off
an estimate of the mean at each time point to look at the deviations from
the mean. For the Big Mice data, define the sample mean Yj at time 5 as
the mean of all observations at day j and define the empirical population
residuals

Uyj =Yi; =Y.

In figure 2.18, we can now see the bulk of the data better, and we can
better see individual profiles. The range of the y axis is approximately 500
mg rather than 1200 mg of figure 2.3. It is easier to tell relative high or
low and by how much within a time and to follow the paths of individual
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Figure 2.18. Profile plot of empirical population residuals for the Big Mice data.

mice. We lose the population time trend in this plot, the y axis represents
differences from the population mean. Positive residuals with a decreasing
trend means that the mouse is getting closer to the population mean, not
that the weight is decreasing.

2.4.6 Too Many Subjects

Profile plots go by several other names including spaghetti plots, parallel
plots, and connect-the-dots plots. The spaghetti plot name describes what
profile plots look like when too many profiles are plotted in a single plot.
The ink density destroys many features of the data. This can be overcome
in several ways. Using a higher quality graphing package and printer can
do wonders. Alternatively, a subset of subjects may be plotted. The subset
may be a randomly selected subset or, as we did in section 2.4.1, subsets
may be specified according to the values of some covariate or, as with the
ozone data, we might plot all subjects separately.

2.5 Inspecting Correlations

Longitudinal data are different from linear regression because observations
are correlated within subjects. The correlations among observations needs
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Trial
Trial 1 2 3 4
1 1 .73 84 .60

2 .73 1 .72 .66
3 .84 .72 1 .76
4 .60 .66 .76 1

Table 2.2. Correlation matrix for the Pediatric Pain data.

to be modeled, and it helps to have summary measures and graphics that
help us decide on the covariance model.

The correlations p;,r and variances s? form many patterns in different
data sets; there is not one pattern that describes all data sets. We want
to inspect the correlations among our observations to help determine the
type of model for the correlations that we will use. A simple and useful
summary of the correlations among our longitudinal observations is a table
of those correlations.

Table 2.2 gives the correlations among the Pediatric Pain observations.
Correlations of observations with themselves are 1, so 1’s go down the long
diagonal. The correlation between observations at trial 1 and trial 2 is
P12 = P21 = .73. The pain correlations vary from .60 to .84, with the lowest
correlations p14 = .60 and poy = .66 being trial 4’s correlations with the
trial 1 and trial 2 observations. Correlations between trial j and k were
calculated by using all subjects that had both observations at times j and
k.

Although somewhat different, these 6 correlations are not wildly differ-
ent, and we might initially consider a model where all correlations among
observations are the same. Seeing no other pattern, as an alternative model
we might consider a model where all the correlations are different.

An estimate of the uncertainty in a correlation can help with judging
the differences in the correlation values. The estimated standard error of a
simple correlation is

1—p2
(n—3)1/2

where n is the number of subjects contributing pairs of observation to
the computation. For the Pain data, the number of pairs of observations
contributing to each correlation ranges from 58 for all correlations involving
trial 3 to 62 for p12. The range of standard errors is .04 to .08 for the
correlations in table 2.2. We do not have a simple test for the equality of
two correlations, but it seems reasonable that differences in correlation less
than .1 are not very important. Still, the largest difference in correlations
is .24 and that may be significant, suggesting that the six correlations in
table 2.2 may be different.

For the Big Mice data, we can calculate sample correlations for any
pair of days provided that either group 1, group 2 or group 3 mice were

SE(p) =
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2 5 § 11 14 17 20
2 1 92 57 36 .23 .23 .38
5| .92 1 .77 54 45 41 b5
8
1

b7 TT 1 86 .80 .76 .81
1 36 .54 .86 1 .93 92 .87
14 | .23 .45 .80 .93 1 .96 .89
171 .23 41 .76 .92 .96 1 .92
20| .38 .55 .81 .87 .89 .92 1

Table 2.3. Correlation matrix for the Small Mice data.

measured on both of the days. The group 4 mice do not give us enough
observations to calculate correlations for other days. Table 2.3 gives the
sample correlations for the Small Mice data based on 14 observations. In
inspecting correlation tables like this, we look at the rows beginning at the
long diagonal and at the columns also beginning with the long diagonal.
We look along diagonals parallel to the long diagonal, looking for simple
patterns in the correlations.

Each diagonal away from the long diagonal corresponds to a given lag
between observations. The first off-the-main diagonal gives the lag 1 cor-
relations; observations being correlated are consecutive observations. The
correlation between day 2 and day 5 observations is p12 = .92, indicating
a strong relationship between weights at those two early days. The second
long diagonal, beginning with correlations .57, then .54 and ending with
.89 are the lag 2 correlations; .54 is the correlation between day 5 and day
11 observations. And it continues, until the correlation .38 is the sole lag 6
correlation, the correlation between observations at day 2 and day 20.

To begin more detailed analysis of table 2.3, we inspect the longest and
first off diagonal, the lag one diagonal, with correlations of .92, .77, .86, .93,
.96, and .92. Although these are not all exactly equal, they are all quite
similar, possibly excepting the .77, which is a tad lower than the others.
The standard error (se) of .92 is .04 while the SE of .77 is .12. We possibly
hypothesize that the lag 1 correlations are all equal, or, approximately
equal. Next we go to the diagonal two away from the long diagonal, hoping
that this pattern of near equality continues. Here the values start out lower,
.57 and .54, then abruptly increase, ranging from .86 to .96, so that either
we have increasing correlations along the lag 2 diagonal, or we have two
low then three high correlations. The third off diagonal starts low at .37,
then steadily increases. The first two values are low, the last two are high,
at .76 and .87.

Continued inspection suggests perhaps two groups of observations, the
early observations and the late observations. The first four observations
at times 2, 5, 8, and 11 have a pattern that has high lag 1 correlations,
middling values of lag 2 correlations, and a low lag 3 correlation. The
last four observations from day 11 to day 20 have all high correlations,
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7 8 9 10 11 12 1 2 3 4 5 6
7 . 31 30 -.26 -.24
8 20 13 -.07 .03
9 29 38 .39 47
10 33 37 .37 47
11 51 .49 .51 .54
12 68 .64 .59 51
1 81 73 .62 .50
2 94 .86 g .63
3 - 30.3 84 .75
4 -1.11 -.54 3.18 4.01 7.03 12.3 17.5 26.7 .81
5 -.82 -.25 2.81 3.54 6.28 9.75 12.8 20.7 25.7
6 -.59 .08 2.68 3.48 5.15 6.61 8.07 13.2 17.9

Table 2.4. Correlation/covariance matrix for the Ozone data. Above the long
diagonal are the sample correlations, below the diagonal are sample covariances,
and along the diagonal (boxes) are the sample standard deviations.

ranging from .87 to .96. The cross-correlations between the early and late
observations generally follow the pattern that the closer in time, the higher
the correlation, but that all the later observations have, roughly speaking,
similar correlations with any given early time. Day 8 has high correlations
with the later observations, but has that mildly lower correlation with
day 5, so day 8 may be the dividing day between the early and the late
observations.

The lower and upper half of the correlation matrix are the same, and
sometimes we omit the lower or the upper half of the matrix. Instead of
the format of table 2.2 or 2.3, we can pack information into the table by
placing the sample standard deviations down the long diagonal, covariances
below (or above) the long diagonal, and correlations in the other half of
the table. This is illustrated in table 2.4 for the Ozone data.

The Ozone data standard deviations, correlations and covariances are
more complex than the Pain data. The sample standard deviations begin
at a very low level in the morning and steadily increase until 4pm in the
afternoon, then decrease slightly by 5pm or 6pm. The lag one correlations
start low at .27 then increase rapidly to .53, .75, and so on to over .9, and
stay high and roughly constant through the end of the data. The lag two
correlations start even lower at —.02, then increase to correlations in the
.8’s, not quite as high as the lag one correlations. The higher lag correlations
exhibit a similar pattern, except that the correlation between the first and
second observations with the remaining observations remain modest and
negative. Along rows, from the row for noon and rows for later times, we
see strictly decreasing correlations as the lag increases. For morning rows,
at 1lam we see a high lag one correlation, then decreasing to a constant
correlation. For 9am and 10am, the correlation starts high, decreases to a
lower constant correlation and then creeps up slightly at the end, for 7am
and 8am, the correlation decreases to negative(!) correlations for most of
the day, before starting to creep back up at the end. To summarize, for
constant lag, the correlation starts low, then increases to some maximum.

We illustrate two common types of correlation matrices in tables 2.5 and
2.6. In table 2.5, the correlations with constant lag are the same. The lag one
correlations are .90, the lag two correlations are all .81, and the lag three



2.5. Inspecting Correlations 61

Trial
Trial 1 2 3 4
1 1 9 81 .73
2 9 1 9 81
3 .81 9 1 .9

4 73 .81 9 1

Table 2.5. Example correlation matrix illustrating banded correlations.

Trial
Trial 1 2 3 4
1 1 .8 84 .86

2 .85 1 .87 .87
3 .84 .87 1 .84
4 .86 .87 .84 1

Table 2.6. Example correlation matrix illustrating approximately equal
correlations at all lags.

correlation is .73. Constant correlation for a given lag is called a banded
correlation matrix; many important correlation structures are banded. As
the lag increases, the correlations decrease, and in this particular example,
they decrease in a nearly geometric fashion, with .81 = .92, and approxi-
mately .73 ~ .91*~11 = 93, We see a decrease in correlation with increasing
lags in the mice data and in the Ozone data, but neither example appears
to illustrate banding.

Table 2.6 illustrates a correlation matrix with approximately equal corre-
lations for all pairs of observations. This would, at least approximately, be
called an equicorrelation correlation matrix. An equicorrelation correlation
matrix says that the lag does not matter in calculating the correlations;
no matter how distant in time two observations are, they have the same
constant correlation. Equicorrelation is of course a special case of banding,
but usually we intend the term banded to mean correlations that are not
constant for different lags.

2.5.1 Scatterplot Matrices

A scatterplot of two variables is a graphical illustration of the correlation
between the two variables. Additionally it shows whether the relationship
between the variables is linear, and whether there are outliers, clusters
or other deviations from normality in the data. When we have multiple
variables to plot, there are many scatterplots to look at; for J variables, we
have J(J — 1)/2 pairs of variables and in each pair either variable may be
on the vertical or horizontal axis. A scatterplot matriz organizes all of the
pairwise scatterplots into a compact arrangement. For longitudinal data,
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Figure 2.19. Scatterplot matrix for the Pediatric Pain data.

we require balanced or balanced with missing data to conveniently produce
a scatterplot matrix.

Figure 2.19 is a scatterplot matrix of the Pain data with responses on
the log base two scale. There are 12 scatterplots in the figure. Each plot in
row j counting from the top has the response from trial j on the vertical
axis. The three plots in a row share the same axis tick marks and tick
labels, given either on the left- or right-hand side of the figure. Similarly
each plot in a column shares the same variable on the horizontal axis and
the same tick marks and labels given either above or below the column.
The (j, k)th plot and the (k,j)th plot plot the same data, but with the
vertical and horizontal axes reversed. The figures are arranged with the
long diagonal going from the upper left to lower right, the same as our
correlation matrix in table 2.2. Sometimes the long diagonal goes from
lower left to upper right. All ¢ subjects contribute one point to each plot
unless they are missing either the jth or kth trial.



2.5. Inspecting Correlations 63

The tick mark of 3 log, seconds corresponds to 23 = 8 seconds, and the
tick marks of 4, 5, 6, 7, and 8 on the log scale correspond to 16, 32, 64,
128, and 256 seconds, respectively. Different rows do not share exactly the
same scales or ranges on the axis, although they will be similar because the
range of the data at each trial are nearly the same.

A key feature of the scatterplots in figure 2.19 is that the relationship
among the pairs of responses is linear. This is important, as it is a ma-
jor part of the normality assumption that we will use in our analyses.
We also see that the observations are generally elliptically distributed, but
that there is a halo of points scattered mostly at the higher values; there
are some outliers in this data. The correlations in figure 2.19 look approxi-
mately equal to us; with experience one can develop the ability to accurately
estimate correlations from bivariate normal data to within a few percent.
Under closer inspection, it appears perhaps that the lag one correlations
are definitely all similar, and that the lag three correlation is lower than
the lag 1 correlations. The lag two correlations are difficult to determine,
but perhaps, matching table 2.2, the plot of trial 4 against trial 2 is also
of lower correlation, whereas trial 3 against trial 1 is of equal or slightly
higher correlation to the lag 1 plots.

Figure 2.20 gives the scatterplot matrix for the Small Mice data corre-
sponding to the correlation matrix in table 2.3. The data set is quite small
and we often have trouble with identifying both absolute and relative cor-
relations with small sample sizes. Still we see that the lag 1 correlations
are all quite high except the plot of days 5 against 8, which seems lower
than the other lag 1 plots. Among later days, 820, the higher lag plots
still have fairly strong positive correlation although the correlation does de-
crease with increasing lag. Observations from the early days 2 and 5 have
low correlations with the observations at later days. We cannot tell the ex-
act values of these correlations, and a correlation less than .4 can be hard
to distinguish from independence without actually formally calculating it.

We can also create a scatterplot matrix from randomly spaced data by
binning the times into convenient intervals and identifying all observations
in the same bin as coming from a single nominal time. For observations
nominally scheduled for every three months, the actual times may vary
around the nominal date. We might still use nominal times for plotting in
a scatterplot matrix, with the understanding that the variability in times
may affect the figure somewhat.

2.5.2  Correlation in Profile Plots

We can identify correlations from profile plots as well. It is easiest to identify
the correlation between neighboring observations.

The set of line segments ¢ = 1,...,n between consecutive observations
Yij—1) and Y;; show the correlation between observations at consecutive
times. Figure 2.21(a) illustrates a range of positive correlations between
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Figure 2.20. Scatterplot matrix for the Small Mice data.

consecutive observations ranging from p = .99 at the left to p = 0 at the
right, and 2.21(b) shows a range of negative correlations from p = —.99
at the left to p = 0 at the right. Both figures 2.21(a) and 2.21(b) show
profiles of a sample of 20 subjects observed at times ¢t = 1,2,...,8. The
population mean is zero and the population standard deviation is 1 at all
times. The population correlation between time t and ¢ + 1 is given at the
bottom of the plot. In figure 2.21a, the correlation between observations at
t=1and ¢t =2 is .99. The line segments between ¢ = 1 and ¢t = 2 rarely
cross, and this is indicative of a high positive correlation. The correlation
between t = 2 and t = 3 is lower at p = .95 than the correlation between
the first two times, and there is more crossing of the profiles. As t increases,
the correlation between the observations at ¢ and t 4+ 1 decreases, and the
amount of crossing of the profiles increases from left to right. The last pair
of observations are uncorrelated with p = 0 between observations at t =7
and ¢t = 8, and the profiles are at their most haphazard.
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In figure 2.21(b), the correlation decreases in absolute value from left
to right, but this time the correlations are negative. The crossing of the
line segments between observations increase from the right-hand side to
the left-hand side. The difference from right to left is that the crossing is
less and less haphazard and becomes more and more focused in a smaller
and smaller region as the negative correlation increases. Between t = 1
and t = 2, the correlation is highest, and the line segments all intersect
in a very narrow region near a point (1.5,0). Exactly where this point is
in general depends on the mean and variances of the two observations but
the intersection point is between the two times when the observations are
negatively correlated and is outside the two times when the correlation
is positive. If the points were perfectly negatively correlated, then all line
segments would intersect exactly at a single point.

When the correlation between consecutive points is positive, the line
segments between observations tend not to intersect. The stronger the cor-
relation the fewer the intersections. The line segments will not be parallel
unless the variances at the two times are equal. Generally for positively
correlated data, the line segments would intersect if we were to extend the
lines out toward the direction of the time with the smaller variance. The
closer the variances, the farther we must extend the lines to see the in-
tersections. And if the variances are equal, the lines are parallel and the
intersection points go out to infinity.

2.5.8  The Correlogram

For equally spaced data, an empirical correlogram is a plot of the empirical
correlations pji on the vertical axis against the lag |j — k| on the horizontal
axis. If our observations are balanced but not equally spaced, we might
instead plot pj;, against |[t; — t;|. As when we wish to draw a scatterplot
matrix, we must bin the data for randomly spaced data to create a correl-
ogram. Various enhancements to the basic correlogram plot are possible.
Figure 2.22 shows a correlogram for the Ozone data. Correlations p;, whose
j are equal are connected by line segments. This correlogram tells us the
same information as the correlation matrix in table 2.4, in a different form.
It is easy to see that correlations decrease with increasing lag, and that
they tend to level out once the lag reaches 3 or 4, and that the correlations
may even begin to increase for still greater lags.

2.6  Empirical Summary Plots

An empirical summary plot presents information about the average re-
sponse over time. On_e simple way to estimate the mean at a given time is
to take the average Y; of all observations at a given time ¢;. We can plot



66 2. Plots

N p—

H p—
@
)
5
o O —
0
@
o

- ]

|

N

|

N A\

Q A A )

e A A A A_
o N =5 - WY N Ny
% o - E ~ W N “'3\‘/ ‘i\\,
x -

— ]

|

CI\J ]

Time

(b)

Figure 2.21. Example profile plots for 20 subjects illustrating decreasing correla-
tions between consecutive observations. Part (a) shows positive correlations .99,
.95, .8, .6, .4, .2, 0 between consecutive times. Part (b) shows negative correlations
—-.99, —.95, —.8, —.6, —.4, —.2, and 0.
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Figure 2.22. Correlogram for the Ozone data.

the Yj against t;; usually we connect the dots between consecutive time
points, as with the profile plots. When we plot the means f’w we often want
to show a measure of uncertainty. When we average n independent obser-
vations with sample standard variance s3; = (n —1)7" Y21 (Vij — Y,;)?,
then the standard error of the mean is SE(Y ;) = n_1/2sjj. We may plot the
means along with error bars that illustrate plus and minus 1 standard error
to show the size of the standard error. More often we plot plus and minus 2
standard errors to show approximate 95% confidence intervals around Yj,
which we call an empirical summary plot. A third possibility is to show an
interval that covers most of the data. We might show error bars that are
plus and minus 2 sample standard deviations, 2s;;. This is an approxi-
mate 95% prediction interval and we call this plot an empirical prediction
plot.

Figure 2.23(a) gives an empirical summary plot, and 2.23(b) gives an
empirical prediction plot for the Big Mice data. The prediction intervals are
much wider than the inference intervals; predictions address the prediction
of a new observation with all the variability an individual observation has.
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Figure 2.23. (a) Empirical summary plot and
the Big Mice data.

(b) empirical prediction plot for

The empirical summary interval is making an inference about the average
response at a given time.

We often wish to distinguish between subjects with different covariate
values when we plot empirical summary plots. We may plot the mean pro-
files from different covariate values either in different plots, or on the same
plot, slightly offset from each other so that neither set of intervals obscures
the other. Figure 2.24(a) illustrates inference profiles for the attenders and
distracters on a single plot. The error bars for attenders and distracters are
slightly offset from each other to avoid overplotting. The units are log base
two seconds. The means and standard deviations at each time are calculated
using either attender or distracter observations at the given time.

Figure 2.24(b) is a back-transformed version of the Pain data empirical
summary plot. The means and the interval endpoints have been trans-
formed back to the original seconds scale prior to plotting. The log and
back-transformed plots look similar visually. The advantage of the original
seconds scale is that we can read off numbers in convenient units for the
centers and endpoints of intervals.

For a continuous covariate, we might do a median split before creating
our empirical summary plots. Then we create two of the desired plots, one
for subjects above the median and one for subjects below the median.

When we have substantial missing data, we must be careful in draw-
ing conclusions from empirical summary plots; we need to try to confirm
that observations are not missing differentially in one group or another,
or that high or low observations are not differentially missing. Chapter 12
discusses this at length. Fitting a statistical model to the data and then
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Figure 2.24. Empirical summary plots on the (a) log base two seconds scale and
(b) back-transformed seconds scale for the Pain data, separately by coping styles.
The upper intervals are for distracters.

plotting an inference plot based on the fitted model can sometimes, but
not always, overcome the problems caused by missing data. Thus the em-
pirical summary plot is something we draw early in a data analysis to help
us understand the general population time trend and what the effects of
covariates might be on the mean. It is not necessarily a good source of
conclusions.

2.7 How Much Data?

With longitudinal data, we need to understand how much data we have.
How many observations do typical subjects have? For otherwise balanced
data except for some missing observations, we tabulate the number of miss-
ing (or observed) observations at each time point. An observed observation
sounds redundant. Here, observation refers to data we intended to collect
by design, and observed means that we actually collected that data from
the subject. Similarly, a missing observation is an observation we intended
but failed to collect. For randomly observed data there are no missing or
observed observations, rather, there are just the observations that we man-
aged to collect. For data with actual times that can be different from the
nominal times, we compare the two sets of times to see how they differ.
A histogram of actual times can be helpful to give an idea of the times of
observations.



70 2. Plots

Round # obs
1 543
2 510
3 509
4 497
5 474

Table 2.7. At each round of the Cognitive data, the number of subjects with a
Raven’s score.

i # obs

7
8
21
16
40
5 455

S

=W N = O

Table 2.8. Number of Kenya subjects with from 0 to 5 Raven’s observations.

2.7.1 Cognitive Data: Raven’s

The Cognitive data is from a school lunch intervention in rural Kenya. The
school lunch intervention began at time ¢ = 0 in 9 out of 12 schools in the
study. Students at the other three schools formed a control group. A number
of different measurements were taken. Here we study a particular Cognitive
measure called Raven’s colored matrices\™, a measure of cognitive ability.
Up to 5 rounds of data were collected on children in the first form (first
grade) in the schools. Round 1 data is baseline data collected in the term
before the onset of intervention. Round 2 was taken during the term after
the intervention started, rounds 3, 4, and 5 were during the second, fourth,
and sixth terms after intervention started. We explore here how much data
was collected and when it was collected.

Table 2.7 gives the number of observations taken at each round. We see
a steadily decreasing number of observations. This is a common pattern
in longitudinal data as subjects drop out of the study or get tired and
decline to answer questions or supply information. There are 547 subject
identification numbers (ids) in the data set, but only 540 have data in the
Raven’s data set. How did we get 543 observations at baseline? Further
inspection of the data shows that only 530 subjects had baseline data.
There are 13 subjects with a second observation before t = 0. Other than
those 13 subjects, no subject had two Raven’s observations during a single
round.

Table 2.8 gives the numbers of subjects with from 0 up to 5 observations.
Most subjects (83%) have a full 5 observations. The average number of
observations per subject is 4.6 = (7x0+8x 14+21 x 24+ 16 x3+40 x 4+
455 x 5)/547.
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Figure 2.25. Histogram of the actual times of observations for the Kenya Cognitive
data.

Inspection of the times of the actual observations can be useful. Figure
2.25 is a histogram of all actual times of observations. We see round 1
observations with times less than zero continuing smoothly into the second
round of observations from zero to three months. The third round is clearly
separated in time from the second round with observations taken between
t = 4 up to t = 8 months. The fourth and fifth rounds are also clearly
separated from each other and from round three.

Figure 2.26 plots the actual times of observations for a selection of sub-
jects. Plotting all subjects requires several figures to create an adequate
display, and so figure 2.26 shows 80 subjects. Vertical lines are drawn at
months 0 and 3 to show breaks between different rounds of data collec-
tion. In inspecting these plots, I redrew them several times adding various
vertical lines to aid in drawing conclusions about the times. We see that
observations appear to have been taken in clusters. Most of the round 1
observations were taken between —3 and —2 months, with fewer observa-
tions taken between —2 and —1 months, and about 11 observations taken
between —1 and 0 months. Most of the round 2 observations in this set
of subjects were taken right at 1 month. The remainder were taken a bit
after month 2. Round 3 has two observations taken right at month 4 but
most observations were taken after month 5, with the remainder taken after
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Figure 2.26. Plot of times of observations against ID number for Cognitive data.
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month 6. Round 4 has observations taken between month 12 and 13, but
there are several straggler observations taken almost to month 15. These
comments apply only to the 80 subjects we see here. Figure 2.26 is an event
chart.

2.8 Discussion

Our plots so far are exploratory; they are designed for investigating the
basic distribution and characteristics of the data. Profile plots and scat-
terplots plot the raw data, empirical correlograms and empirical summary
plots plot simple summaries of the data.

Our primary inferences from longitudinal data are about the average re-
sponse over time and how it varies as a function of covariates. Our models
for longitudinal data require us to specify how profiles vary over time and
as functions of covariates; profile plots and empirical summary plots can
help us with the initial model specification. We also need to specify models
to describe the variances of the observations and the correlations among
observations. Based on the fitted values from our model, we may plot in-
ferred correlations in a correlogram of the model fit, and we may plot fitted
means as functions of time and covariates in inference and prediction plots.
These plots may be compared informally to the empirical correlogram and
empirical summary plots that we drew in this chapter for model checking.
Our model based inferences will usually be more accurate than the empir-
ical summary inferences, but if our model assumptions are incorrect, then
the empirical plots can show us how to fix them.

2.9 Problems

1. Consider finding the number of times where a mouse’s weight
decreases between consecutive measurements.

(a) In figures 2.1 and 2.2, for how many observations can one be
absolutely certain that there was a decrease in weights between
one observation and the next for any mouse?

(b) How about in figure 2.3?

(c) Inspect the raw data and identify the mouse and the times at
which a mouse weight decreases from one observation to the
next. How many of these observations can be found in the first
three plots of this chapter?

(d) How difficult is it to identify all circumstances of consecutive
measurements with decreasing mouse weight by hand? How long
does it take? Is it easier if the Big Mice data were in long or wide
format?
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(e) Write a program to find the observations where weight decreases
from one measurement to the next and present the results.

(f) Compare the difficulty of doing the task by hand as compared
to finding all decreases by looking at a figure like 2.3.

. For the Ozone data,

(a) How often does ozone decrease from one hour to the next during
the morning? What locations and what times?

(b) Construct a scatterplot of ozone versus time. Compare it to the
profile plot. Which shows more information? What can we figure
out about the data using the profile plot that we can’t from the
scatterplot?

. Assume balanced data and exactly two time points. Show that the

average of the individual slopes is the slope of the line segment
connecting the sample means.

. Does the within-subject average of +;; from equation 2.1 estimate

anything of interest? What is it? To answer these questions:

(a) First assume equally spaced observations and answer the
questions.

(b) Second consider unequally spaced and answer the questions.

(¢) For unequally spaced observations, is there a weighted average
that estimates something similar to what we get for equally
spaced observations? Are the weights interpretable?

. Is the mean over all observations Y;; equal to the mean of the indi-

vidual averages Y;? Explain under what conditions it is and when it
is not.

. Two profiles are said to have similar patterns over time when Y;; —

Y; =Y, — Y}, assuming the two subjects’ times are the same tij = ti;.
Assuming same times, show that this is equivalent to v;; = 75, where
7ij is the slope between times t;; and t;;_1) for subject 4, defined in
equation 2.1.

. For each of the following statements, state whether it is true or

false, and come up with a rationalization (or proof) if true or a
counterexample if false.

(a) Suppose that all the individual profiles are flat. Then the sample
average will be flat over time.

(b) Suppose that all the individual profiles have the same non-zero
slope. Then the empirical summary plot slope will be equal to
the slope of the individual profiles.

(c) Suppose the data are balanced and the individual profiles are
flat. Then the sample average is flat.
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(d) Suppose the data are balanced and the individual profiles have
the same pattern over time. Then the empirical summary plot
pattern over time will be equal to the individual patterns over
time.

For the data sets in figures 2.5(a) and (c), calculate the mean, sd,
min, and max of the observations in each window of width 1 begin-
ning at t;, = 1 and increasing ¢y, in steps of .5 up to t = 5. Plot each
summary statistic against the midpoints of the window, connecting
the dots. For (c), do the calculations both with and without the out-
lier. In 2.4(a) the means vary quite a lot, even though from looking at
the plot we think that they should be approximately constant across
time. Explain why the means vary so much in this plot. Explain why
dropping the outlier makes the plots for (c¢) smoother.

Create data sets that illustrate the following points. Use 8 subjects
with 5 observations per subject unless otherwise specified. Data sets
may be sketched with paper and pencil or generated using a statistics
package with a random number generator.

(a) Illustrate a data set where each subject has its own intercept
and slope.

(b) Continuing from the previous example, have the subjects with
higher intercepts have the higher slopes also.

(¢) Continuing, have the overall population slope be negative.

(d) Hlustrate subjects who all start low, grow high with separate
growth rates, then level off at different heights. You may wish
to have more than 5 observations per subject.

(e) Tllustrate subjects who start low, go up to a subject-specific high,
then come down low again.

(f) Invent two more patterns. Plot sample data, and describe the
patterns in a sentence.

Dropout. Consider three hypothetical weight-loss studies. The first
study has only one group of subjects, all treated the same with some
intervention that begins immediately after the baseline measurement.
The second study is a double-blinded randomized chemical weight loss
intervention study. The treatment group gets a diet pill, whereas the
control group gets a placebo pill. The third study is also randomized.
It is a study of a behavioral weight-loss intervention. The treatment
group gets regular meetings with an attitude control specialist, group
therapy, and weekly phone calls from a nurse practitioner. The control
group gets a pamphlet on weight loss.

(a) For the three studies, if the treatment is successful, what results
would we expect to see? Sketch empirical summary plots for the
groups in the study. Describe the plots in one sentence. Do not
include error bars, just the mean is fine for these problems.



76

11.

12.

13.

14.

2. Plots

(b) In general, in a weight loss study, who would be more likely to
drop out, those who lose a lot of weight or those who do not lose
weight? What effect will this have on a profile plot of weights
we drew?

(¢) Study 2. Suppose that the pill does not work. What will the
profile plots for subjects in the two groups look like?

(d) Study 2, cont. Suppose the pill works. Consider drawing con-
clusions from the empirical summary plot. Would the apparent
conclusions be stronger if there was dropout as compared to if
there was no dropout?

(e) Study 3. Which group is likely to stay with the trial longer,
which is likely to drop out sooner?

(f) Study 3, cont. Assume both groups lose weight equally, and as-
sume that subjects who don’t lose weight drop out differentially
in the two groups. Which group, will appear from the empirical
summary plot to have better results?

(g) Study 3, cont. Suppose that the treatment group loses weight,
whereas the control group does not. Suppose dropout is solely
related to the treatment group but not to the amount of weight
loss. Will the empirical summary plots make it look as if one
group is doing better than it really is?

Plot histograms of the Pain data for each trial.

(a) Does the original scale appear to be skewed? Try various trans-
formations to improve the normality of the data. What is your
preferred transformation?

(b) Does the time point you choose to plot affect the choice of
transformation?

(c) Without plotting histograms of the mice data (or you may if
you want to!), describe the differences between two plots, one of
which has the data from a specific time as opposed to another
that includes data from all trials.

Draw profile plots of the Pain data using different line types for the at-
tenders and distracters. Can you tell that the distracters have greater
pain tolerance on average? Try using different colors for the lines
instead and answer the question.

Plot the Pain data with one subject per plot. Make sure that the y
axis has the same log base 2 scale for all subjects. Do you observe
that low average subjects seem to have less within-subject variability
than high average subjects?

Take averages of all the observed log base 2 Pain data responses
for (a) the attenders, (b) distracters, and (c) attenders omitting the
high outlier subject. Transform the averages back to the mean scale.
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How well do our eyeball judgments compare with the estimates from
subsection 2.4.17 Explain any discrepancies.

On a logarithmic scale, suppose that two tick marks are labeled ¢ and
d with ¢ < d, and you estimate that an observation is 2:(100)% of the
way from ¢ to d. Show that the observation value is at ¢(d/c)®. If the
proof isn’t easy, try plugging in some values for ¢ and d and z. For
the Pain data, we already have d/c = 2, which is why we used 2 as
the power in those calculations.

Draw pictures of the Weight Loss data, one profile to a plot.

(a) There are several choices to be made.
i. One may construct the y axis of each plot so that they all
cover the entire range of the data.
ii. One may draw each profile’s plot so the y axis covers just
the range of the given profile.
iii. One may draw each profile’s plot so that the range of the y
axis is the same for each profile but is as small as possible.
For each choice of y axis, is the plot most akin to (i) figure 2.15
or (ii) figure 2.16 or (iii) neither? Use each of the three answers
exactly once!
(b) One can also plot our empirical within-subject residuals Y;; —Y;
instead of Yj;. Is there any advantage to the residual profiles one
to a plot instead of the original Y;7

In subsection 2.4.4, we plotted profiles of the empirical within-subject
residuals Y;; — Y;. Would this be of much value for the (i) Big Mice
data? (ii) How about the Ozone data? (iii) The Pediatric Pain data?
Calculate the empirical within-subject residuals and draw the plots.
What do you learn, if anything?

In subsection 2.4.4, instead of plotting the empirical within-subject

residuals Y;; — Y;, suppose that we instead subtract off the baseline
measurement and define W;; = Y;; — Y.

(a) Plot all of the W;; in a profile plot.
(b) From this plot, what characteristics of the plot tell you
i. that subjects are losing weight over the duration of the trial?
ii. that subjects lose weight at different rates?
iii. that there is something odd going on from trial 5 to 67

(c) Is it easier or harder to detect these three items in this plot
as compared to the plot of empirical within-subject residuals?
Which plot is better?

How could you produce an estimate of a single subject’s intercept
that is better than the mean Y;?7? By better, I mean closer to the
true value on average.
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For the Weight Loss data, suppose that we took each observation Y;;
for t; > 1 and subtracted off the previous observation Y;(;_1) giving
consecutive differences.

Wij =Yij = Y1)

(a) For a fully observed Y;, what is the length of W; = (W,;) the
vector of all W;; for subject 7
) Plot the W;; in a profile plot.
) What features do you see in the profile plot?
) What do these features imply about the original data Y;;?
) If the Y;; have a random intercept, i.e., Y;; = u; +¢€;;, what will
the W;; profiles look like?
(f) If the Y;; fall on a subject-specific line Y; = a; + b;j + €;5, then
what will the W;; profiles look like?
(g) If the Y;; follow a subject-specific quadratic Y;; = a; + b;j +
cij? + €;5, what will the differences look like?
(h) What is the problem with this differences plot if (a) There
is missing data in the middle of the times? (b) The data are
observed at random times?

The empirical population residuals were of some use for the mice
data, allowing us to look at the individual observation to observation
variation. In contrast, it seems implausible that the empirical within-
subject residuals would be useful for the mice data.

(a) For the Pain data, without calculating the two types of residuals
and without drawing the plots, one of the residual plots is very
unlikely to show us interesting structure, and one might or might
not show us interesting structure. Which is which, and briefly,
why?

(b) Answer the same question for the Ozone data.

(¢) Draw both residual plots (empirical within-subject, and empiri-
cal population) for the Pain data and illustrate your conclusion
from problem part 21(a).

(d) Draw both plots for the Ozone data and illustrate your
conclusion from problem 21b(b).

Occasionally, the profile plot plan of connecting the dots may obscure
the actual trends in the data. This tends to happen when there is a
combination of rapid changes in responses over time and missing data.
Table 2.9 presents the Vagal Tone data. Vagal tone is supposed to
be high and in response to stress it gets lower. The subjects in this
study were a group of 21 very ill babies who were undergoing car-
diac catheterization, an invasive, painful procedure. The columns in
the table give the subject id number, gender, age in months, the
duration of the catheterization in minutes, up to 5 vagal tone mea-
sures, and a measure of illness severity (higher is worse). The first
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Id Gender Age Dur Prel Pre2 Postl Post2 Post3 Med

(m)  (min) sev

1 F 24 150 1.96 3.04 3.18 3.27 4
2 M 8 180 13
3 M 3 245 0.97 20
4 M 14 300 18
5 F 10 240 393 3.86 3.59  3.27 12
6 M 23 240 2.24 2.55 2.27 20
7T M 5) 240 2,57 252 3.92 3.22 1.28 12
8§ M 4 210 4.44 3.07 1.7 3.43 3.43 3
9 M 15 180 1.15 1.03 19
10 F 6.5 330 1.74 1.23 1.49 0.92 5
11 M 15.5 180 2.14 4.92 22
13 F 11 300 3.06 1.94 2.6 1.18 7
14 F 5.9 210 11
15 M 10 300 2.97 5.23 4
16 M 19 330 44 392 0 29
17 M 6.5 540 1.96 1.95 2.51 1.25 23
18 F 9 210 3.51 1.88 2.14 2.42 13
19 M 15 120 3.63 3.11 1.87 4.46 3.7 15
20 F 3 80 291 291 0.61 5
21 F 23 65 5.03 5

Table 2.9. Vagal Tone data. Columns are subject number, gender, age in months,
length of time in minutes of cardiac catheterization procedure, five vagal tone
measures, and a medical severity measure. Blank indicates missing measurement.
Subject number 12 has no data.

23.

two measures are before the catheterization, the last three are after.
The first measure was taken the night before, the second measure
the morning before, then the catheterization; the third measure was
taken right after the catheterization, the fourth was taken the evening
after, and the last measure was taken the next day. There is a sub-
stantial amount of missing data; blanks in the table indicate missing
data; subject 12 is missing all variables.

Figure 2.27 shows the Vagal Tone profile plot drawn in two ways.
In 2.27(a) we draw the usual plot and connect the dots between all
observations within a subject, even if they are not consecutive obser-
vations; in 2.27(b), points are connected only if they are consecutive
observations from the same subject.

(a) Describe the impressions one gets from the two plots. How are
the impressions different?
(b) Which plot do you prefer?

Plot the Weight Loss data one profile to a plot. What fraction of
subjects appear to be losing weight?
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Vagal tone

Vagal tone

Figure 2.27. Vagal Tone data, plots of vagal tone by measurement. (a) Profile
plot. (b) Profile plot, but non-consecutive observations within subject are not

connected.

24. Inspect the profile plot of the Weight Loss data.

Make a rough guess of the correlation between any two obser-
vations. Does your guess depend on the specific times that you
choose?

Calculate the correlation matrix for the Weight Loss data.

Plot the scatterplot matrix of the data.

Describe your conclusions about the correlations.

Will the Weight Loss residuals have a greater, lesser, or equal
variety of the correlations as compared to the raw Weight Loss
data?
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(f) Look at figure 2.17. Between what sets of observations do you
expect to find

i. a strong positive correlation,
ii. a strong negative correlation, and
iii. a low or zero correlation?

Briefly explain your reasoning.
(g) Calculate the correlation matrix and draw the scatterplot matrix
for the Weight Loss residuals. Describe your findings.

In the Pain data, draw separate scatterplot matrices for the attenders
and distracters. How do the scatterplots differ? What conclusion do
you draw?

Dental data. The Dental data set is a classic data set for longitudinal
data analysis. The response is the length in millimeters from the
center of the pituitary gland to the pteryomaxillary fissure for 11
girls and 16 boys. The measurements were taken every two years at
ages 8, 10, 12, and 14. There is a single covariate, gender. The purpose
of this analysis is to correctly describe the important characteristics
of the data.

(a) Create a profile plot of the data. Use separate line types (or
colors or plots) for the boys and the girls.

(b) Briefly report your findings. What is the overall pattern? Are
boys and girls different? In what ways?

(c) Calculate the correlations among the observations, and draw a
scatterplot matrix. Use separate plotting characters for boys and
girls.

(d) Report any additional findings.

(e) Draw an empirical summary plot, and repeat separately for boys
and girls. Is there a difference in level between boys and girls?

(f) Is there a difference in average slope between boys and girls?

(g) Inspect the profile plot of empirical within-subject residuals.
What do you learn about the data? There are four important
items to identify about this data set. What are they? You may
or may not have seen all of them in the original profile plot.

Draw a correlogram for the Small Mice data. Interpret the results.

Calculate the correlation matrix and draw a correlogram for the
Dental data. What are your conclusions about the correlations?

Draw a correlogram for the Pain data. Draw it separately for the
attenders and distracters. Describe your conclusions.

The standard deviation of an estimated correlation when the true
correlation is zero is SE = (n — 3)~'/2. Often we add horizontal lines
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Subject Age at measurement
no. Gender 8 10 12 14

1 Girl 21 20 215 23
2 Girl 21 215 24 25.5
3 Girl 205 24 24.5 26
4 Girl 23.5 245 25 26.5
5 Girl 21.5 23 225 235
6 Girl 20 21 21 22.5
7 Girl 215 225 23 25
8 Girl 23 23 235 24
9 Girl 20 21 22 21.5

10 Girl 165 19 19 195
11 Girl 245 25 28 28
12 Boy 26 25 29 31
13 Boy 215 225 23 265
14  Boy 23 225 24 275
15 Boy 255 275 265 27
16 Boy 20 235 225 26
17 Boy 245 255 27 285
18 Boy 22 22 245 265
19 Boy 24 215 245 255
20 Boy 23 205 31 26
21  Boy 275 28 31 315
22 Boy 23 23 235 25
23  Boy 215 235 24 28
24  Boy 17 245 26 295
25  Boy 225 255 255 26
26  Boy 23 245 26 30
27 Boy 22 215 235 25

Table 2.10. The Dental data. Columns are subject number, gender, and then
the four repeated measurements. Responses are the length in millimeters from
the center of the pituitary gland to the pteryomaxillary fissure on each subject.
Measurements were taken at ages 8, 10, 12, 14.

at +2(n — 3)~/2 to a correlogram to identify correlations that are
not significantly different from zero.

(a) Suppose you were to add these lines to a correlogram of the Pain
data. Would it change any conclusions? Explain why you can
answer this question without actually drawing the correlogram.

(b) Add these lines to the Ozone data correlogram. What does it
suggest on an individual correlation basis? Still there are many
correlations all of similar size, so perhaps all of those correlations
are not equal to zero.
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Draw an empirical summary plot for the Ozone data. Then draw one
separately for valley and non-valley sites. Finally, draw a third for
each of the three days and briefly summarize your conclusions.

Suppose that some subjects drop out of your study early. Could this
cause the empirical summary plot to be misleading? Consider the fol-
lowing examples. For each, (a) sketch and describe how the empirical
summary plot will look as compared to how it would look if you had
full data, (b) whether the empirical summary plot is misleading, and
(c) if it is misleading, how it would be misleading.

(a) Subject profiles follow a random intercept pattern. All subjects
have a 25% chance of not appearing for any given observation.

(b) Subject profiles follow a random intercept pattern. Subjects who
are below average are much more likely to drop out than those
above average.

(¢) You have two groups. Subject profiles all start from similar start-
ing points and have different, random, slopes. Subjects who score
too high are cured and then tend to drop out permanently. As-
sume the average slope is the same in both groups. You are
interested in either the trend over time or the differences in
trend between the two groups; how are these inferences affected
by the dropout?

(d) The same situation as the previous part, but now, subjects in
group 1 have a higher slope than subjects in group 2.

In the construction of the empirical summary plot, we plotted plus
and minus two standard errors of the mean, or plus and minus two
sample standard deviations to make an empirical prediction plot. As-
suming normally distributed data, how might you improve on these
two plots to show (a) an exact 95% confidence interval for the mean,
and (b) an exact 95% prediction interval for future data? (Hint: we
used the number 2 in constructing our plots. What number should
you use instead?) Draw your improved plots for the mice data, can
you tell the difference between your plots and figure 2.237

Sketch by hand how your empirical summary plots would look like
in figures 12.1(a)—(d). From data that looked like those in (b) and
(d), how might you figure out that subjects with low responses were
dropping out more than subjects with high responses?

The data in figures 12.1(b) and (d) seem troubling. However, approx-
imately, what can happen when we fit a model is that the model first
estimates intercepts and slopes for each subject, then averages sub-
jects’ intercepts or slopes to get a estimate of the population intercept
and slope. Explain why this might be sufficient to get your inference
plot from the fitted model in these two figures to look more like the
desired empirical summary plot from 12.1(a) and (c).
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For each of the following data sets, produce a table of the number of
observations at each nominal time of observation.

(a) Small Mice
) Big Mice
) Pediatric Pain
) Weight Loss
) BSI total
) Cognitive
) Anthropometry weights

(b
(c
(d
(e
(f
(g

Describe each data set observed pattern in a few words.

For each of the following data sets, produce a table of the number of
subjects with each possible number (i.e., 0 up to J) of observations.

(a) Small Mice
Big Mice
Pediatric Pain

)
c)
) Weight Loss
)
)
)

(b
(
(d
(e) BSI total
(f) Cognitive
(g) Anthropometry weights

For each of the following data sets, produce a histogram of the ac-
tual times ¢;; that observations were taken. On your plot, mark the
nominal times that observations were taken.

(a) Weight Loss

(b) BSI total

(c) Cognitive

(d) Anthropometry weights



