Chapter 2

Equations. Functions of one variable. Complex numbers

$2.1 a x^{2}+b x+c=0 \Longleftrightarrow x_{1,2}=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
The roots of the general quadratic equation. They are real provided $b^{2} \geq 4 a c$ (assuming that a, b, and c are real).

Viète's rule.

The general cubic equation.
(2.3) reduces to the form
(2.4) if x in (2.3) is replaced by $x-b / 3 a$.
$x^{3}+p x+q=0$ with $\Delta=4 p^{3}+27 q^{2}$ has

- three different real roots if $\Delta<0$;
2.5 - three real roots, at least two of which are equal, if $\Delta=0$;
- one real and two complex roots if $\Delta>0$.

The solutions of $x^{3}+p x+q=0$ are
$x_{1}=u+v, x_{2}=\omega u+\omega^{2} v$, and $x_{3}=\omega^{2} u+\omega v$, where $\omega=-\frac{1}{2}+\frac{i}{2} \sqrt{3}$, and
2.6
$u=\sqrt[3]{-\frac{q}{2}+\frac{1}{2} \sqrt{\frac{4 p^{3}+27 q^{2}}{27}}}$
$v=\sqrt[3]{-\frac{q}{2}-\frac{1}{2} \sqrt{\frac{4 p^{3}+27 q^{2}}{27}}}$

Cardano's formulas for the roots of a cubic equation. i is the imaginary unit (see (2.75)) and ω is a complex third root of 1 (see (2.88)). (If complex numbers become involved, the cube roots must be chosen so that $3 u v=-p$. Don't try to use these formulas unless you have to!)

If x_{1}, x_{2}, and x_{3} are the roots of the equation $x^{3}+p x^{2}+q x+r=0$, then
2.7

$$
\begin{aligned}
& x_{1}+x_{2}+x_{3}=-p \\
& x_{1} x_{2}+x_{1} x_{3}+x_{2} x_{3}=q \\
& x_{1} x_{2} x_{3}=-r
\end{aligned}
$$

2.8 $\quad P(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}$

For the polynomial $P(x)$ in (2.8) there exist constants $x_{1}, x_{2}, \ldots, x_{n}$ (real or complex) such that

$$
P(x)=a_{n}\left(x-x_{1}\right) \cdots\left(x-x_{n}\right)
$$

$x_{1}+x_{2}+\cdots+x_{n}=-\frac{a_{n-1}}{a_{n}}$
2.10
$x_{1} x_{2}+x_{1} x_{3}+\cdots+x_{n-1} x_{n}=\sum_{i<j} x_{i} x_{j}=\frac{a_{n-2}}{a_{n}}$
$x_{1} x_{2} \cdots x_{n}=(-1)^{n} \frac{a_{0}}{a_{n}}$
If $a_{n-1}, \ldots, a_{1}, a_{0}$ are all integers, then any integer root of the equation
2.11

$$
x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}=0
$$

must divide a_{0}.
Let k be the number of changes of sign in the sequence of coefficients $a_{n}, a_{n-1}, \ldots, a_{1}, a_{0}$ in (2.8). The number of positive real roots of
2.12 $P(x)=0$, counting the multiplicities of the roots, is k or k minus a positive even number. If $k=1$, the equation has exactly one positive real root.

The graph of the equation

$$
A x^{2}+B x y+C y^{2}+D x+E y+F=0
$$

is

- an ellipse, a point or empty if $4 A C>B^{2}$;
- a parabola, a line, two parallel lines, or empty if $4 A C=B^{2}$;
- a hyperbola or two intersecting lines if $4 A C<B^{2}$.

Useful relations.

A polynomial of degree n. $\left(a_{n} \neq 0.\right)$

The fundamental theorem of algebra. x_{1}, \ldots, x_{n} are called zeros of $P(x)$ and roots of $P(x)=0$.

Relations between the roots and the coefficients of $P(x)=0$, where $P(x)$ is defined in (2.8). (Generalizes (2.2) and (2.7).)

Any integer solutions of $x^{3}+6 x^{2}-x-6=0$ must divide -6 . (In this case the roots are ± 1 and -6 .)

Descartes's rule of signs.

Classification of conics.
A, B, C not all 0 .
$x=x^{\prime} \cos \theta-y^{\prime} \sin \theta, \quad y=x^{\prime} \sin \theta+y^{\prime} \cos \theta$
with $\cot 2 \theta=(A-C) / B$
$2.15 d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
$\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}=r^{2}$
2.17

$$
\frac{\left(x-x_{0}\right)^{2}}{a^{2}}+\frac{\left(y-y_{0}\right)^{2}}{b^{2}}=1
$$

2.18

$\frac{\left(x-x_{0}\right)^{2}}{a^{2}}-\frac{\left(y-y_{0}\right)^{2}}{b^{2}}= \pm 1$

Asymptotes for (2.19):
2.20
$y-y_{0}= \pm \frac{b}{a}\left(x-x_{0}\right)$
2.21

2.22

$$
y-y_{0}=a\left(x-x_{0}\right)^{2}, \quad a \neq 0
$$

Transforms the equation in (2.13) into a quadratic equation in x^{\prime} and y^{\prime}, where the coefficient of $x^{\prime} y^{\prime}$ is 0 .

The (Euclidean) distance between the points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$.

Circle with center at $\left(x_{0}, y_{0}\right)$ and radius r.

Ellipse with center at $\left(x_{0}, y_{0}\right)$ and axes parallel to the coordinate axes.

Graphs of (2.16) and (2.17).

Hyperbola with center at $\left(x_{0}, y_{0}\right)$ and axes parallel to the coordinate axes.

Formulas for asymptotes of the hyperbolas in (2.19).

Hyperbolas with asymptotes, illustrating (2.19) and (2.20), corresponding to + and - in (2.19), respectively. The two hyperbolas have the same asymptotes.

Parabola with vertex (x_{0}, y_{0}) and axis parallel to the y-axis.

Parabola with vertex (x_{0}, y_{0}) and axis parallel to the x-axis.

A function f is

- increasing if

$$
x_{1}<x_{2} \Rightarrow f\left(x_{1}\right) \leq f\left(x_{2}\right)
$$

- strictly increasing if

$$
x_{1}<x_{2} \Rightarrow f\left(x_{1}\right)<f\left(x_{2}\right)
$$

- decreasing if

$$
x_{1}<x_{2} \Rightarrow f\left(x_{1}\right) \geq f\left(x_{2}\right)
$$

- strictly decreasing if

$$
x_{1}<x_{2} \Rightarrow f\left(x_{1}\right)>f\left(x_{2}\right)
$$

- even if $f(x)=f(-x)$ for all x
- odd if $f(x)=-f(-x)$ for all x
- symmetric about the line $x=a$ if

$$
f(a+x)=f(a-x) \text { for all } x
$$

- symmetric about the point $(a, 0)$ if

$$
f(a-x)=-f(a+x) \text { for all } x
$$

- periodic (with period k) if there exists a number $k>0$ such that

$$
f(x+k)=f(x) \text { for all } x
$$

- If $y=f(x)$ is replaced by $y=f(x)+c$, the graph is moved upwards by c units if $c>0$ (downwards if c is negative).
- If $y=f(x)$ is replaced by $y=f(x+c)$, the graph is moved c units to the left if $c>0$ (to the right if c is negative).
- If $y=f(x)$ is replaced by $y=c f(x)$, the graph is stretched vertically if $c>0$ (stretched vertically and reflected about the x-axis if c is negative).
- If $y=f(x)$ is replaced by $y=f(-x)$, the graph is reflected about the y-axis.

Parabolas illustrating (2.22) and (2.23) with $a>0$.

Properties of functions.

Shifting the graph of $y=f(x)$.
2.27

Graphs of increasing and strictly increasing functions.

Graphs of decreasing and strictly decreasing functions.

Graphs of even and odd functions, and of a function symmetric about $x=a$.

Graphs of a function symmetric about the point $(a, 0)$ and of a function periodic with period k.

Definition of a nonvertical asymptote.
$y=a x+b$ is an asymptote for the curve $y=f(x)$.

How to find a nonvertical asymptote for the curve $y=f(x)$ as $x \rightarrow \infty$:

- Examine $\lim _{x \rightarrow \infty}(f(x) / x)$. If the limit does not exist, there is no asymptote as $x \rightarrow \infty$.
- If $\lim _{x \rightarrow \infty}(f(x) / x)=a$, examine the limit $\lim _{x \rightarrow \infty}(f(x)-a x)$. If this limit does not exist, the curve has no asymptote as $x \rightarrow \infty$.
- If $\lim _{x \rightarrow \infty}(f(x)-a x)=b$, then $y=a x+b$ is an asymptote for the curve $y=f(x)$ as $x \rightarrow \infty$.

To find an approximate root of $f(x)=0$, define x_{n} for $n=1,2, \ldots$, by

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}
$$

If x_{0} is close to an actual root x^{*}, the sequence $\left\{x_{n}\right\}$ will usually converge rapidly to that root.

Suppose in (2.34) that $f\left(x^{*}\right)=0, f^{\prime}\left(x^{*}\right) \neq 0$, and that $f^{\prime \prime}\left(x^{*}\right)$ exists and is continuous in a neighbourhood of x^{*}. Then there exists a $\delta>0$ such that the sequence $\left\{x_{n}\right\}$ in (2.34) converges to x^{*} when $x_{0} \in\left(x^{*}-\delta, x^{*}+\delta\right)$.

Suppose in (2.34) that f is twice differentiable with $f\left(x^{*}\right)=0$ and $f^{\prime}\left(x^{*}\right) \neq 0$. Suppose further that there exist a $K>0$ and a $\delta>0$ such that for all x in $\left(x^{*}-\delta, x^{*}+\delta\right)$,

$$
\frac{\left|f(x) f^{\prime \prime}(x)\right|}{f^{\prime}(x)^{2}} \leq K\left|x-x^{*}\right|<1
$$

Then if $x_{0} \in\left(x^{*}-\delta, x^{*}+\delta\right)$, the sequence $\left\{x_{n}\right\}$ in (2.34) converges to x^{*} and

$$
\left|x_{n}-x^{*}\right| \leq(\delta K)^{2^{n}} / K
$$

Method for finding nonvertical asymptotes for a curve $y=f(x)$ as $x \rightarrow \infty$. Replacing $x \rightarrow \infty$ by $x \rightarrow-\infty$ gives a method for finding nonvertical asymptotes as $x \rightarrow-\infty$.

Newton's approximation method. (A rule of thumb says that, to obtain an approximation that is correct to n decimal places, use Newton's method until it gives the same n decimal places twice in a row.)

Illustration of Newton's approximation method. The tangent to the graph of f at $\left(x_{n}, f\left(x_{n}\right)\right)$ intersects the x-axis at $x=x_{n+1}$.

Sufficient conditions for convergence of Newton's method.

A precise estimation of the accuracy of Newton's method.
2.38
$y-f\left(x_{1}\right)=f^{\prime}\left(x_{1}\right)\left(x-x_{1}\right)$
$2.39 \quad y-f\left(x_{1}\right)=-\frac{1}{f^{\prime}\left(x_{1}\right)}\left(x-x_{1}\right)$
2.40

(i) $a^{r} \cdot a^{s}=a^{r+s}$
(ii) $\left(a^{r}\right)^{s}=a^{r s}$
2.41

$$
\text { (iii) }(a b)^{r}=a^{r} b^{r}
$$

(iv) $a^{r} / a^{s}=a^{r-s}$
(v) $\left(\frac{a}{b}\right)^{r}=\frac{a^{r}}{b^{r}}$
(vi) $a^{-r}=\frac{1}{a^{r}}$

- $e=\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}=2.718281828459 \ldots$
2.42
- $e^{x}=\lim _{n \rightarrow \infty}\left(1+\frac{x}{n}\right)^{n}$
- $\lim _{n \rightarrow \infty} a_{n}=a \Rightarrow \lim _{n \rightarrow \infty}\left(1+\frac{a_{n}}{n}\right)^{n}=e^{a}$
2.43
$e^{\ln x}=x$

$\ln (x y)=\ln x+\ln y ; \quad \ln \frac{x}{y}=\ln x-\ln y$
$\ln x^{p}=p \ln x ; \quad \ln \frac{1}{x}=-\ln x$

The equation for the tangent to $y=f(x)$ at $\left(x_{1}, f\left(x_{1}\right)\right)$.

The equation for the normal to $y=f(x)$ at $\left(x_{1}, f\left(x_{1}\right)\right)$.

The tangent and the normal to $y=f(x)$ at $\left(x_{1}, f\left(x_{1}\right)\right)$.

Rules for powers. (r and s are arbitrary real numbers, a and b are positive real numbers.)

Important definitions and results. See (8.23) for another formula for e^{x}.

Definition of the natural logarithm.

The graphs of $y=e^{x}$ and $y=\ln x$ are symmetric about the line $y=x$.

Rules for the natural logarithm function. (x and y are positive.)

Definition of the logarithm to the base a.
2.47
$\log _{a} x=\frac{\ln x}{\ln a} ; \quad \log _{a} b \cdot \log _{b} a=1$
$\log _{e} x=\ln x ; \quad \log _{10} x=\log _{10} e \cdot \ln x$
$\log _{a}(x y)=\log _{a} x+\log _{a} y$
2.48
$\log _{a} \frac{x}{y}=\log _{a} x-\log _{a} y$
$\log _{a} x^{p}=p \log _{a} x, \quad \log _{a} \frac{1}{x}=-\log _{a} x$
$2.49 \quad 1^{\circ}=\frac{\pi}{180} \mathrm{rad}, \quad 1 \mathrm{rad}=\left(\frac{180}{\pi}\right)^{\circ}$
2.50

$2.53 \tan x=\frac{\sin x}{\cos x}, \quad \cot x=\frac{\cos x}{\sin x}=\frac{1}{\tan x}$

Logarithms with different bases.

Rules for logarithms.
(x and y are positive.)

Relationship between degrees and radians (rad).

Relations between degrees and radians.

Definitions of the basic trigonometric functions. x is the length of the arc, and also the radian measure of the angle.

The graphs of $y=\sin x$ $(-)$ and $y=\cos x(---)$. The functions sin and cos are periodic with period 2π :
$\sin (x+2 \pi)=\sin x$, $\cos (x+2 \pi)=\cos x$.

Definition of the tangent and cotangent functions.
2.54

x	0	$\frac{\pi}{6}=30^{\circ}$	$\frac{\pi}{4}=45^{\circ}$	$\frac{\pi}{3}=60^{\circ}$	$\frac{\pi}{2}=90^{\circ}$
$\sin x$	0	$\frac{1}{2}$	$\frac{1}{2} \sqrt{2}$	$\frac{1}{2} \sqrt{3}$	1
$\cos x$	1	$\frac{1}{2} \sqrt{3}$	$\frac{1}{2} \sqrt{2}$	$\frac{1}{2}$	0
$\tan x$	0	$\frac{1}{3} \sqrt{3}$	1	$\sqrt{3}$	$*$
$\cot x$	$*$	$\sqrt{3}$	1	$\frac{1}{3} \sqrt{3}$	0

* not defined
2.56

x	$\frac{3 \pi}{4}=135^{\circ}$	$\pi=180^{\circ}$	$\frac{3 \pi}{2}=270^{\circ}$	$2 \pi=360^{\circ}$
$\sin x$	$\frac{1}{2} \sqrt{2}$	0	-1	0
$\cos x$	$-\frac{1}{2} \sqrt{2}$	-1	0	1
$\tan x$	-1	0	$*$	0
$\cot x$	-1	$*$	0	$*$

* not defined
$2.57 \lim _{x \rightarrow 0} \frac{\sin a x}{x}=a$
$2.58 \quad \sin ^{2} x+\cos ^{2} x=1$
$2.59 \quad \tan ^{2} x=\frac{1}{\cos ^{2} x}-1, \quad \cot ^{2} x=\frac{1}{\sin ^{2} x}-1$
$\cos (x+y)=\cos x \cos y-\sin x \sin y$
$\cos (x-y)=\cos x \cos y+\sin x \sin y$
$\sin (x+y)=\sin x \cos y+\cos x \sin y$
$\sin (x-y)=\sin x \cos y-\cos x \sin y$

$$
\operatorname{sml}(x-y)-\sin x \cos y-\cos x \sin y
$$

The graphs of $y=\tan x$ $(-)$ and $y=\cot x(---)$. The functions \tan and cot are periodic with period π :
$\tan (x+\pi)=\tan x$, $\cot (x+\pi)=\cot x$.

Special values of the trigonometric functions.

An important limit.

Trigonometric formulas.
(For series expansions of trigonometric functions, see Chapter 8.)
2.61
$\tan (x+y)=\frac{\tan x+\tan y}{1-\tan x \tan y}$
$\tan (x-y)=\frac{\tan x-\tan y}{1+\tan x \tan y}$
$\cos 2 x=2 \cos ^{2} x-1=1-2 \sin ^{2} x$
$\sin 2 x=2 \sin x \cos x$
2.63
2.64
2.65
$\sin x+\sin y=2 \sin \frac{x+y}{2} \cos \frac{x-y}{2}$
$\sin x-\sin y=2 \cos \frac{x+y}{2} \sin \frac{x-y}{2}$
$y=\arcsin x \Leftrightarrow x=\sin y, x \in[-1,1], y \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
$y=\arccos x \Leftrightarrow x=\cos y, x \in[-1,1], y \in[0, \pi]$
$y=\arctan x \Leftrightarrow x=\tan y, x \in \mathbb{R}, y \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$
$y=\operatorname{arccot} x \Leftrightarrow x=\cot y, x \in \mathbb{R}, y \in(0, \pi)$
2.67

$\sin ^{2} \frac{x}{2}=\frac{1-\cos x}{2}, \quad \cos ^{2} \frac{x}{2}=\frac{1+\cos x}{2}$
$\cos x+\cos y=2 \cos \frac{x+y}{2} \cos \frac{x-y}{2}$
$\cos x-\cos y=-2 \sin \frac{x+y}{2} \sin \frac{x-y}{2}$

Trigonometric formulas.

Definitions of the inverse trigonometric functions.

Graphs of the inverse trigonometric functions $y=\arcsin x$ and $y=$ $\arccos x$.

Graphs of the inverse trigonometric functions $y=\arctan x$ and $y=$ $\operatorname{arccot} x$.
2.70
$2.71 \quad \sinh x=\frac{e^{x}-e^{-x}}{2}, \quad \cosh x=\frac{e^{x}+e^{-x}}{2}$
2.72
$\cosh ^{2} x-\sinh ^{2} x=1$
$\cosh (x+y)=\cosh x \cosh y+\sinh x \sinh y$
$\cosh 2 x=\cosh ^{2} x+\sinh ^{2} x$
$\sinh (x+y)=\sinh x \cosh y+\cosh x \sinh y$ $\sinh 2 x=2 \sinh x \cosh x$
$y=\operatorname{arsinh} x \Longleftrightarrow x=\sinh y$
$y=\operatorname{arcosh} x, x \geq 1 \Longleftrightarrow x=\cosh y, y \geq 0$
$\operatorname{arsinh} x=\ln \left(x+\sqrt{x^{2}+1}\right)$
$\operatorname{arcosh} x=\ln \left(x+\sqrt{x^{2}-1}\right), x \geq 1$

Alternative notation for the inverse trigonometric functions.

Properties of the inverse trigonometric functions.

Hyperbolic sine and cosine.

Graphs of the hyperbolic functions $y=\sinh x$ and $y=\cosh x$.

Properties of hyperbolic functions.

Definition of the inverse hyperbolic functions.

Complex numbers

$z=a+i b, \quad \bar{z}=a-i b$

$$
|z|=\sqrt{a^{2}+b^{2}}, \quad \operatorname{Re}(z)=a, \quad \operatorname{Im}(z)=b
$$

- $(a+i b)+(c+i d)=(a+c)+i(b+d)$
- $(a+i b)-(c+i d)=(a-c)+i(b-d)$
- $(a+i b)(c+i d)=(a c-b d)+i(a d+b c)$
- $\frac{a+i b}{c+i d}=\frac{1}{c^{2}+d^{2}}((a c+b d)+i(b c-a d))$

$$
\begin{aligned}
& \left|\bar{z}_{1}\right|=\left|z_{1}\right|, \quad z_{1} \bar{z}_{1}=\left|z_{1}\right|^{2}, \overline{z_{1}+z_{2}}=\bar{z}_{1}+\bar{z}_{2}, \\
& \left|z_{1} z_{2}\right|=\left|z_{1}\right|\left|z_{2}\right|,\left|z_{1}+z_{2}\right| \leq\left|z_{1}\right|+\left|z_{2}\right|
\end{aligned}
$$

$z=a+i b=r(\cos \theta+i \sin \theta)=r e^{i \theta}$, where

$$
r=|z|=\sqrt{a^{2}+b^{2}}, \quad \cos \theta=\frac{a}{r}, \quad \sin \theta=\frac{b}{r}
$$

A complex number and its conjugate. $a, b \in \mathbb{R}$, and $i^{2}=-1 . i$ is called the imaginary unit.
$|z|$ is the modulus of $z=a+i b . \operatorname{Re}(z)$ and $\operatorname{Im}(z)$ are the real and imaginary parts of z.

Geometric representation of a complex number and its conjugate.

Addition, subtraction, multiplication, and division of complex numbers.

Basic rules. z_{1} and z_{2} are complex numbers.

The trigonometric or polar form of a complex number. The angle θ is called the argument of z. See (2.84) for $e^{i \theta}$.

Geometric representation of the trigonometric form of a complex number.

$$
\text { If } \begin{aligned}
& z_{k}=r_{k}\left(\cos \theta_{k}+i \sin \theta_{k}\right), k=1,2, \text { then } \\
& \qquad \begin{aligned}
z_{1} z_{2} & =r_{1} r_{2}\left(\cos \left(\theta_{1}+\theta_{2}\right)+i \sin \left(\theta_{1}+\theta_{2}\right)\right) \\
\frac{z_{1}}{z_{2}} & =\frac{r_{1}}{r_{2}}\left(\cos \left(\theta_{1}-\theta_{2}\right)+i \sin \left(\theta_{1}-\theta_{2}\right)\right)
\end{aligned}
\end{aligned}
$$

$2.83(\cos \theta+i \sin \theta)^{n}=\cos n \theta+i \sin n \theta$

If $z=x+i y$, then

$$
e^{z}=e^{x+i y}=e^{x} \cdot e^{i y}=e^{x}(\cos y+i \sin y)
$$

In particular,

$$
e^{i y}=\cos y+i \sin y
$$

$2.85 e^{\pi i}=-1$
$e^{\bar{z}}=\overline{e^{z}}, e^{z+2 \pi i}=e^{z}, e^{z_{1}+z_{2}}=e^{z_{1}} e^{z_{2}}$,
$e^{z_{1}-z_{2}}=e^{z_{1}} / e^{z_{2}}$
$2.87 \quad \cos z=\frac{e^{i z}+e^{-i z}}{2}, \quad \sin z=\frac{e^{i z}-e^{-i z}}{2 i}$
If $a=r(\cos \theta+i \sin \theta) \neq 0$, then the equation $z^{n}=a$
has exactly n roots, namely

$$
z_{k}=\sqrt[n]{r}\left(\cos \frac{\theta+2 k \pi}{n}+i \sin \frac{\theta+2 k \pi}{n}\right)
$$

for $k=0,1, \ldots, n-1$.

De Moivre's formula, $n=0,1, \ldots$.
Multiplication and division on trigonometric form.

The complex exponential function.

A striking relationship.

Rules for the complex exponential function.

Euler's formulas.
nth roots of a complex number, $n=1,2, \ldots$.

References

Most of these formulas can be found in any calculus text, e.g. Edwards and Penney (1998) or Sydsæter and Hammond (2005). For (2.3)-(2.12), see e.g. Turnbull (1952).
http://www.springer.com/978-3-540-26088-2
Economists' Mathematical Manual
Sydsaeter, K.; Strom, A; Berck, P. 2005, XII, 225 p. 66 illus., Hardcover ISBN: 978-3-540-26088-2

