
Chapter 2

Equations. Functions of one variable.
Complex numbers

2.1 ax2 + bx + c = 0 ⇐⇒ x1,2 =
−b±√b2 − 4ac

2a

The roots of the gen-
eral quadratic equation.
They are real provided
b2 ≥ 4ac (assuming that
a, b, and c are real).

2.2
If x1 and x2 are the roots of x2 + px + q = 0,
then

x1 + x2 = −p, x1x2 = q

Viète’s rule.

2.3 ax3 + bx2 + cx + d = 0 The general cubic
equation.

2.4 x3 + px + q = 0
(2.3) reduces to the form
(2.4) if x in (2.3) is
replaced by x − b/3a.

2.5

x3 + px + q = 0 with Δ = 4p3 + 27q2 has
• three different real roots if Δ < 0;
• three real roots, at least two of which are

equal, if Δ = 0;
• one real and two complex roots if Δ > 0.

Classification of the
roots of (2.4) (assuming
that p and q are real).

2.6

The solutions of x3 + px + q = 0 are
x1 = u+ v, x2 = ωu+ω2v, and x3 = ω2u+ωv,
where ω = − 1

2 + i
2

√
3, and

u =
3

√
−q

2
+

1
2

√
4p3 + 27q2

27

v =
3

√
−q

2
− 1

2

√
4p3 + 27q2

27

Cardano’s formulas
for the roots of a cubic
equation. i is the imagi-
nary unit (see (2.75))
and ω is a complex third
root of 1 (see (2.88)).
(If complex numbers be-
come involved, the cube
roots must be chosen so
that 3uv = −p. Don’t
try to use these formulas
unless you have to!)
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2.7

If x1, x2, and x3 are the roots of the equation
x3 + px2 + qx + r = 0, then

x1 + x2 + x3 = −p

x1x2 + x1x3 + x2x3 = q

x1x2x3 = −r

Useful relations.

2.8 P (x) = anxn + an−1x
n−1 + · · ·+ a1x + a0

A polynomial of degree
n. (an �= 0.)

2.9

For the polynomial P (x) in (2.8) there exist
constants x1, x2, . . . , xn (real or complex) such
that

P (x) = an(x− x1) · · · (x− xn)

The fundamental
theorem of algebra.
x1, . . . , xn are called
zeros of P (x) and roots
of P (x) = 0.

2.10

x1 + x2 + · · ·+ xn = −an−1

an

x1x2 + x1x3 + · · ·+ xn−1xn =
∑
i<j

xixj =
an−2

an

x1x2 · · ·xn = (−1)n a0

an

Relations between the
roots and the coefficients
of P (x) = 0, where P (x)
is defined in (2.8). (Gen-
eralizes (2.2) and (2.7).)

2.11

If an−1, . . . , a1, a0 are all integers, then any
integer root of the equation

xn + an−1x
n−1 + · · ·+ a1x + a0 = 0

must divide a0.

Any integer solutions of
x3 + 6x2 − x − 6 = 0
must divide −6. (In this
case the roots are ±1
and −6.)

2.12

Let k be the number of changes of sign in the
sequence of coefficients an, an−1, . . . , a1, a0
in (2.8). The number of positive real roots of
P (x) = 0, counting the multiplicities of the
roots, is k or k minus a positive even number.
If k = 1, the equation has exactly one positive
real root.

Descartes’s rule of signs.

2.13

The graph of the equation
Ax2 + Bxy + Cy2 + Dx + Ey + F = 0

is
• an ellipse, a point or empty if 4AC > B2;
• a parabola, a line, two parallel lines, or

empty if 4AC = B2;
• a hyperbola or two intersecting lines if

4AC < B2.

Classification of conics.
A, B, C not all 0.



9

2.14
x = x′ cos θ − y′ sin θ, y = x′ sin θ + y′ cos θ

with cot 2θ = (A− C)/B

Transforms the equa-
tion in (2.13) into a
quadratic equation in
x′ and y′, where the
coefficient of x′y′ is 0.

2.15 d =
√

(x2 − x1)2 + (y2 − y1)2
The (Euclidean) distance
between the points
(x1, y1) and (x2, y2).

2.16 (x− x0)2 + (y − y0)2 = r2 Circle with center at
(x0, y0) and radius r.

2.17
(x− x0)2

a2 +
(y − y0)2

b2 = 1
Ellipse with center at
(x0, y0) and axes parallel
to the coordinate axes.

2.18

y

x

r
(x, y)

x0

y0

y

x

b

a

(x, y)

x0

y0 Graphs of (2.16) and
(2.17).

2.19
(x− x0)2

a2 − (y − y0)2

b2 = ±1
Hyperbola with center at
(x0, y0) and axes parallel
to the coordinate axes.

2.20
Asymptotes for (2.19):

y − y0 = ± b

a
(x− x0)

Formulas for asymp-
totes of the hyperbolas
in (2.19).

2.21

y

xx0

y0 a
b

y

x

b
a

x0

y0

Hyperbolas with asymp-
totes, illustrating (2.19)
and (2.20), correspond-
ing to + and − in
(2.19), respectively. The
two hyperbolas have the
same asymptotes.

2.22 y − y0 = a(x− x0)2, a = 0
Parabola with vertex
(x0, y0) and axis parallel
to the y-axis.

2.23 x− x0 = a(y − y0)2, a = 0
Parabola with vertex
(x0, y0) and axis parallel
to the x-axis.
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2.24

y

x

y0

x0

y

x

y0

x0

Parabolas illustrating
(2.22) and (2.23) with
a > 0.

2.25

A function f is
• increasing if

x1 < x2 ⇒ f(x1) ≤ f(x2)
• strictly increasing if

x1 < x2 ⇒ f(x1) < f(x2)
• decreasing if

x1 < x2 ⇒ f(x1) ≥ f(x2)
• strictly decreasing if

x1 < x2 ⇒ f(x1) > f(x2)
• even if f(x) = f(−x) for all x

• odd if f(x) = −f(−x) for all x

• symmetric about the line x = a if
f(a + x) = f(a− x) for all x

• symmetric about the point (a, 0) if
f(a− x) = −f(a + x) for all x

• periodic (with period k) if there exists a
number k > 0 such that

f(x + k) = f(x) for all x

Properties of functions.

2.26

• If y = f(x) is replaced by y = f(x) + c, the
graph is moved upwards by c units if c > 0
(downwards if c is negative).

• If y = f(x) is replaced by y = f(x + c), the
graph is moved c units to the left if c > 0 (to
the right if c is negative).

• If y = f(x) is replaced by y = cf(x), the
graph is stretched vertically if c > 0 (stretch-
ed vertically and reflected about the x-axis
if c is negative).

• If y = f(x) is replaced by y = f(−x), the
graph is reflected about the y-axis.

Shifting the graph of
y = f(x).
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2.27

y

x

y

x

Graphs of increasing
and strictly increasing
functions.

2.28

y

x

y

x

Graphs of decreasing
and strictly decreasing
functions.

2.29

y

x

y

x

y

xx = a

Graphs of even and odd
functions, and of a func-
tion symmetric about
x = a.

2.30

y

x(a, 0)

y

x

k
Graphs of a function
symmetric about the
point (a, 0) and of a
function periodic with
period k.

2.31

y = ax + b is a nonvertical asymptote for the
curve y = f(x) if

lim
x→∞

(
f(x)− (ax + b)

)
= 0

or
lim

x→−∞
(
f(x)− (ax + b)

)
= 0

Definition of a nonverti-
cal asymptote.

2.32

y

x

f(x) − (ax + b)

y = ax + b

y = f(x)

x

y = ax + b is an
asymptote for the curve
y = f(x).
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2.33

How to find a nonvertical asymptote for the
curve y = f(x) as x→∞:
• Examine lim

x→∞
(
f(x)/x

)
. If the limit does not

exist, there is no asymptote as x→∞.
• If lim

x→∞
(
f(x)/x

)
= a, examine the limit

lim
x→∞

(
f(x)−ax

)
. If this limit does not exist,

the curve has no asymptote as x→∞.
• If lim

x→∞
(
f(x)−ax

)
= b, then y = ax+b is an

asymptote for the curve y = f(x) as x→∞.

Method for finding non-
vertical asymptotes for
a curve y = f(x) as
x → ∞. Replacing
x → ∞ by x → −∞
gives a method for find-
ing nonvertical asymp-
totes as x → −∞.

2.34

To find an approximate root of f(x) = 0, define
xn for n = 1, 2, . . . , by

xn+1 = xn − f(xn)
f ′(xn)

If x0 is close to an actual root x∗, the sequence
{xn} will usually converge rapidly to that root.

Newton’s approxima-
tion method. (A rule of
thumb says that, to ob-
tain an approximation
that is correct to n deci-
mal places, use Newton’s
method until it gives the
same n decimal places
twice in a row.)

2.35

y

xxn xn+1

x∗

y = f(x)

Illustration of Newton’s
approximation method.
The tangent to the
graph of f at (xn, f(xn))
intersects the x-axis at
x = xn+1.

2.36

Suppose in (2.34) that f(x∗) = 0, f ′(x∗) = 0,
and that f ′′(x∗) exists and is continuous in a
neighbourhood of x∗. Then there exists a δ > 0
such that the sequence {xn} in (2.34) converges
to x∗ when x0 ∈ (x∗ − δ, x∗ + δ).

Sufficient conditions for
convergence of Newton’s
method.

2.37

Suppose in (2.34) that f is twice differentiable
with f(x∗) = 0 and f ′(x∗) = 0. Suppose fur-
ther that there exist a K > 0 and a δ > 0 such
that for all x in (x∗ − δ, x∗ + δ),
|f(x)f ′′(x)|

f ′(x)2
≤ K|x− x∗| < 1

Then if x0 ∈ (x∗− δ, x∗ + δ), the sequence {xn}
in (2.34) converges to x∗ and
|xn − x∗| ≤ (δK)2

n

/K

A precise estimation of
the accuracy of Newton’s
method.
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2.38 y − f(x1) = f ′(x1)(x− x1)
The equation for the
tangent to y = f(x) at
(x1, f(x1)).

2.39 y − f(x1) = − 1
f ′(x1)

(x− x1)
The equation for the
normal to y = f(x) at
(x1, f(x1)).

2.40

y

xx1

y = f(x)

tangentnormal

The tangent and the
normal to y = f(x) at
(x1, f(x1)).

2.41

(i) ar · as = ar+s (ii) (ar)s = ars

(iii) (ab)r = arbr (iv) ar/as = ar−s

(v)
(a

b

)r

=
ar

br
(vi) a−r =

1
ar

Rules for powers. (r and
s are arbitrary real num-
bers, a and b are positive
real numbers.)

2.42

• e = lim
n→∞

(
1 +

1
n

)n

= 2.718281828459 . . .

• ex = lim
n→∞

(
1 +

x

n

)n

• lim
n→∞ an = a ⇒ lim

n→∞

(
1 +

an

n

)n

= ea

Important definitions
and results. See (8.23)
for another formula for
ex.

2.43 eln x = x
Definition of the natural
logarithm.

2.44

y

x

ln x

ex

1

1

The graphs of y = ex

and y = ln x are sym-
metric about the line
y = x.

2.45
ln(xy) = lnx + ln y; ln

x

y
= lnx− ln y

lnxp = p lnx; ln
1
x

= − lnx

Rules for the natural
logarithm function.
(x and y are positive.)

2.46 aloga x = x (a > 0, a = 1) Definition of the loga-
rithm to the base a.
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2.47
loga x =

lnx

ln a
; loga b · logb a = 1

loge x = lnx; log10 x = log10 e · lnx

Logarithms with differ-
ent bases.

2.48

loga(xy) = loga x + loga y

loga

x

y
= loga x− loga y

loga xp = p loga x, loga

1
x

= − loga x

Rules for logarithms.
(x and y are positive.)

2.49 1◦ =
π

180
rad, 1 rad =

(
180
π

)◦
Relationship between de-
grees and radians (rad).

2.50 0

π/6
π/4

π/3
π/2

3π/4

π

3π/2

0◦

90◦

180◦

270◦

30◦
45◦

60◦
135◦

Relations between de-
grees and radians.

2.51

x
1

cos x

sin x
tan x

cot x

Definitions of the basic
trigonometric functions.
x is the length of the
arc, and also the radian
measure of the angle.

2.52

y

x

− 3π
2 −π − π

2
π
2 π 3π

2

y = sin xy = cos x

The graphs of y = sin x
(—) and y = cos x (- - -).
The functions sin and
cos are periodic with
period 2π:
sin(x + 2π) = sin x,
cos(x + 2π) = cos x.

2.53 tanx =
sin x

cos x
, cot x =

cos x

sin x
=

1
tanx

Definition of the tangent
and cotangent functions.
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2.54

y

x

− 3π
2 −π − π

2
π
2 π 3π

2

y = tan xy = cot x

The graphs of y = tan x
(—) and y = cot x (- - -).
The functions tan and
cot are periodic with
period π:
tan(x + π) = tan x,
cot(x + π) = cot x.

2.55

x 0 π
6 = 30◦ π

4 = 45◦ π
3 = 60◦ π

2 = 90◦

sin x 0 1
2

1
2

√
2 1

2

√
3 1

cos x 1 1
2

√
3 1

2

√
2 1

2 0

tan x 0 1
3

√
3 1

√
3 ∗

cot x ∗ √
3 1 1

3

√
3 0

* not defined

Special values of the
trigonometric functions.

2.56

x 3π
4 = 135◦ π = 180◦ 3π

2 = 270◦ 2π = 360◦

sin x 1
2

√
2 0 −1 0

cos x − 1
2

√
2 −1 0 1

tan x −1 0 ∗ 0

cot x −1 ∗ 0 ∗

* not defined

2.57 lim
x→0

sin ax

x
= a An important limit.

2.58 sin2 x + cos2 x = 1

Trigonometric formulas.
(For series expansions of
trigonometric functions,
see Chapter 8.)

2.59 tan2 x =
1

cos2 x
− 1, cot2 x =

1
sin2 x

− 1

2.60

cos(x + y) = cos x cos y − sin x sin y

cos(x− y) = cos x cos y + sin x sin y

sin(x + y) = sinx cos y + cos x sin y

sin(x− y) = sinx cos y − cos x sin y
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2.61
tan(x + y) =

tanx + tan y

1− tanx tan y

tan(x− y) =
tanx− tan y

1 + tanx tan y

Trigonometric formulas.

2.62
cos 2x = 2 cos2 x− 1 = 1− 2 sin2 x

sin 2x = 2 sin x cos x

2.63 sin2 x

2
=

1− cos x

2
, cos2

x

2
=

1 + cos x

2

2.64
cos x + cos y = 2 cos

x + y

2
cos

x− y

2

cos x− cos y = −2 sin
x + y

2
sin

x− y

2

2.65
sin x + sin y = 2 sin

x + y

2
cos

x− y

2

sin x− sin y = 2 cos
x + y

2
sin

x− y

2

2.66

y = arcsin x⇔ x = sin y, x ∈ [−1, 1], y ∈ [−π

2
,
π

2
]

y = arccos x⇔ x = cos y, x ∈ [−1, 1], y ∈ [0, π]

y = arctanx⇔ x = tan y, x ∈ R, y ∈ (−π

2
,
π

2
)

y = arccot x⇔ x = cot y, x ∈ R, y ∈ (0, π)

Definitions of the inverse
trigonometric functions.

2.67

y

x

y = arcsin x

− π
2

π
2

1−1

y

x

y = arccos x

1−1

π

π
2 Graphs of the inverse

trigonometric functions
y = arcsin x and y =
arccos x.

2.68

y

x

y = arccot x

y = arctan x

π

π
2

− π
2

1

Graphs of the inverse
trigonometric functions
y = arctan x and y =
arccot x.
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2.69
arcsin x = sin−1 x, arccos x = cos−1 x

arctanx = tan−1 x, arccot x = cot−1 x

Alternative notation for
the inverse trigonometric
functions.

2.70

arcsin(−x) = − arcsin x

arccos(−x) = π − arccos x

arctan(−x) = arctanx

arccot(−x) = π − arccot x

arcsin x + arccos x =
π

2
arctanx + arccot x =

π

2

arctan
1
x

=
π

2
− arctanx, x > 0

arctan
1
x

= −π

2
− arctanx, x < 0

Properties of the inverse
trigonometric functions.

2.71 sinhx =
ex − e−x

2
, cosh x =

ex + e−x

2
Hyperbolic sine and
cosine.

2.72

y

x

y = sinh x

y = cosh x

1

1

Graphs of the hyperbolic
functions y = sinh x and
y = cosh x.

2.73

cosh2 x− sinh2 x = 1
cosh(x + y) = cosh x cosh y + sinhx sinh y

cosh 2x = cosh2 x + sinh2 x

sinh(x + y) = sinhx cosh y + cosh x sinh y

sinh 2x = 2 sinhx cosh x

Properties of hyperbolic
functions.

2.74

y = arsinhx ⇐⇒ x = sinh y

y = arcosh x, x ≥ 1 ⇐⇒ x = cosh y, y ≥ 0

arsinhx = ln
(
x +

√
x2 + 1

)
arcosh x = ln

(
x +

√
x2 − 1

)
, x ≥ 1

Definition of the inverse
hyperbolic functions.
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Complex numbers

2.75 z = a + ib, z̄ = a− ib

A complex number and
its conjugate. a, b ∈ R,
and i2 = −1. i is called
the imaginary unit .

2.76 |z| = √
a2 + b2, Re(z) = a, Im(z) = b

|z| is the modulus of
z = a + ib. Re(z) and
Im(z) are the real and
imaginary parts of z.

2.77

|z|

z = a + ib

z̄ = a − ib

Real axis

Imaginary axis

a

b

Geometric representation
of a complex number
and its conjugate.

2.78

• (a + ib) + (c + id) = (a + c) + i(b + d)
• (a + ib)− (c + id) = (a− c) + i(b− d)
• (a + ib)(c + id) = (ac− bd) + i(ad + bc)

• a + ib

c + id
=

1
c2 + d2

(
(ac + bd) + i(bc− ad)

)
Addition, subtraction,
multiplication, and
division of complex
numbers.

2.79
|z̄1| = |z1|, z1z̄1 = |z1|2, z1 + z2 = z̄1 + z̄2,
|z1z2| = |z1||z2|, |z1 + z2| ≤ |z1|+ |z2|

Basic rules. z1 and z2

are complex numbers.

2.80
z = a + ib = r(cos θ + i sin θ) = reiθ, where

r = |z| = √
a2 + b2, cos θ =

a

r
, sin θ =

b

r

The trigonometric or
polar form of a complex
number. The angle θ is
called the argument of z.
See (2.84) for eiθ.

2.81
θ

r

a + ib = r(cos θ + i sin θ)
b

Imaginary axis

a Real axis

Geometric representa-
tion of the trigonomet-
ric form of a complex
number.
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2.82

If zk = rk(cos θk + i sin θk), k = 1, 2, then

z1z2 = r1r2
(
cos(θ1 + θ2) + i sin(θ1 + θ2)

)
z1

z2
=

r1

r2

(
cos(θ1 − θ2) + i sin(θ1 − θ2)

)
Multiplication and di-
vision on trigonometric
form.

2.83 (cos θ + i sin θ)n = cos nθ + i sin nθ
De Moivre’s formula,
n = 0, 1, . . . .

2.84

If z = x + iy, then
ez = ex+iy = ex · eiy = ex(cos y + i sin y)

In particular,
eiy = cos y + i sin y

The complex exponential
function.

2.85 eπi = −1 A striking relationship.

2.86
ez̄ = ez, ez+2πi = ez, ez1+z2 = ez1ez2 ,
ez1−z2 = ez1/ez2

Rules for the complex
exponential function.

2.87 cos z =
eiz + e−iz

2
, sin z =

eiz − e−iz

2i
Euler’s formulas.

2.88

If a = r(cos θ + i sin θ) = 0, then the equation
zn = a

has exactly n roots, namely

zk = n
√

r
(
cos

θ + 2kπ

n
+ i sin

θ + 2kπ

n

)
for k = 0, 1, . . . , n− 1.

nth roots of a complex
number, n = 1, 2, . . . .
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