Chapter 2

Equations. Functions of one variable. Complex numbers

2.1
$$ax^2 + bx + c = 0 \iff x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

If x_1 and x_2 are the roots of $x^2 + px + q = 0$, 2.2 then

 $x_1 + x_2 = -p, \qquad x_1 x_2 = q$

$$2.3 \quad ax^3 + bx^2 + cx + d = 0$$

$$2.4 \quad x^3 + px + q = 0$$

 $x^3 + px + q = 0$ with $\Delta = 4p^3 + 27q^2$ has

- three different real roots if $\Delta < 0$;
- 2.5 three real roots, at least two of which are equal, if $\Delta = 0$;
 - one real and two complex roots if $\Delta > 0$.

The solutions of $x^3 + px + q = 0$ are $x_1 = u + v, x_2 = \omega u + \omega^2 v$, and $x_3 = \omega^2 u + \omega v$, where $\omega = -\frac{1}{2} + \frac{i}{2}\sqrt{3}$, and

2.6

$$u = \sqrt[3]{-\frac{q}{2} + \frac{1}{2}\sqrt{\frac{4p^3 + 27q^2}{27}}}$$
$$v = \sqrt[3]{-\frac{q}{2} - \frac{1}{2}\sqrt{\frac{4p^3 + 27q^2}{27}}}$$

The roots of the general quadratic equation. They are real provided $b^2 \ge 4ac$ (assuming that a, b, and c are real).

Viète's rule.

The general *cubic* equation.

(2.3) reduces to the form (2.4) if x in (2.3) is replaced by x - b/3a.

Classification of the roots of (2.4) (assuming that p and q are real).

Cardano's formulas for the roots of a cubic equation. *i* is the imaginary unit (see (2.75)) and ω is a complex third root of 1 (see (2.88)). (If complex numbers become involved, the cube roots must be chosen so that 3uv = -p. Don't try to use these formulas unless you have to!) If x_1 , x_2 , and x_3 are the roots of the equation $x^3 + px^2 + qx + r = 0$, then

2.7
$$x_1 + x_2 + x_3 = -p x_1 x_2 + x_1 x_3 + x_2 x_3 = q x_1 x_2 x_3 = -r$$

2.8
$$P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

For the polynomial P(x) in (2.8) there exist constants x_1, x_2, \ldots, x_n (real or complex) such that

$$P(x) = a_n(x - x_1) \cdots (x - x_n)$$

$$x_1 + x_2 + \dots + x_n = -\frac{a_{n-1}}{a_n}$$
2.10
$$x_1 x_2 + x_1 x_3 + \dots + x_{n-1} x_n = \sum_{i < j} x_i x_j = \frac{a_{n-2}}{a_n}$$

$$x_1 x_2 \cdots x_n = (-1)^n \frac{a_0}{a_n}$$

If $a_{n-1}, \ldots, a_1, a_0$ are all integers, then any integer root of the equation

2.11
$$x^{n} + a_{n-1}x^{n-1} + \dots + a_{1}x + a_{0} = 0$$

must divide a_0 .

Let k be the number of changes of sign in the sequence of coefficients a_n , a_{n-1} , ..., a_1 , a_0 in (2.8). The number of positive real roots of P(x) = 0, counting the multiplicities of the roots, is k or k minus a positive even number. If k = 1, the equation has exactly one positive real root.

The graph of the equation

$$Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0$$

is

• an ellipse, a point or empty if $4AC > B^2$;

- a parabola, a line, two parallel lines, or empty if $4AC = B^2$;
- a hyperbola or two intersecting lines if $4AC < B^2$.

Useful relations.

A polynomial of degree $n. (a_n \neq 0.)$

The fundamental theorem of algebra. x_1, \ldots, x_n are called zeros of P(x) and roots of P(x) = 0.

Relations between the roots and the coefficients of P(x) = 0, where P(x) is defined in (2.8). (Generalizes (2.2) and (2.7).)

Any integer solutions of $x^3 + 6x^2 - x - 6 = 0$ must divide -6. (In this case the roots are ± 1 and -6.)

Descartes's rule of signs.

Classification of *conics*. A, B, C not all 0.

2.9

0 1 1

2.13

2.14
$$\begin{aligned} x &= x' \cos \theta - y' \sin \theta, \quad y &= x' \sin \theta + y' \cos \theta \\ \text{with } \cot 2\theta &= (A - C)/B \end{aligned}$$

2.15
$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

2.16
$$(x - x_0)^2 + (y - y_0)^2 = r^2$$

2.17
$$\frac{(x-x_0)^2}{a^2} + \frac{(y-y_0)^2}{b^2} = 1$$

2.19
$$\frac{(x-x_0)^2}{a^2} - \frac{(y-y_0)^2}{b^2} = \pm 1$$

2.22
$$y - y_0 = a(x - x_0)^2, \quad a \neq 0$$

2.23
$$x - x_0 = a(y - y_0)^2, \quad a \neq 0$$

Transforms the equation in (2.13) into a quadratic equation in x' and y', where the coefficient of x'y' is 0.

The (Euclidean) distance between the points (x_1, y_1) and (x_2, y_2) .

Circle with center at (x_0, y_0) and radius r.

Ellipse with center at (x_0, y_0) and axes parallel to the coordinate axes.

Graphs of (2.16) and (2.17).

Hyperbola with center at (x_0, y_0) and axes parallel to the coordinate axes.

Formulas for asymptotes of the hyperbolas in (2.19).

Hyperbolas with asymptotes, illustrating (2.19) and (2.20), corresponding to + and - in (2.19), respectively. The two hyperbolas have the same asymptotes.

Parabola with vertex (x_0, y_0) and axis parallel to the y-axis.

Parabola with vertex (x_0, y_0) and axis parallel to the x-axis.

How to find a nonvertical asymptote for the curve y = f(x) as $x \to \infty$:

- Examine $\lim_{x\to\infty} (f(x)/x)$. If the limit does not exist, there is no asymptote as $x\to\infty$.
- 2.33 If $\lim_{x \to \infty} (f(x)/x) = a$, examine the limit $\lim_{x \to \infty} (f(x) ax)$. If this limit does not exist, the curve has no asymptote as $x \to \infty$.
 - If $\lim_{x \to \infty} (f(x) ax) = b$, then y = ax + b is an asymptote for the curve y = f(x) as $x \to \infty$.

To find an approximate root of f(x) = 0, define x_n for n = 1, 2, ..., by

2.34
$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

 \boldsymbol{u}

If x_0 is close to an actual root x^* , the sequence $\{x_n\}$ will usually converge rapidly to that root.

x

y = f(x)

 x_{n+1}

 x_n

Suppose in (2.34) that f is twice differentiable with $f(x^*) = 0$ and $f'(x^*) \neq 0$. Suppose further that there exist a K > 0 and a $\delta > 0$ such that for all x in $(x^* - \delta, x^* + \delta)$,

2.37
$$\frac{|f(x)f''(x)|}{f'(x)^2} \le K|x-x^*| < 1$$

Then if $x_0 \in (x^* - \delta, x^* + \delta)$, the sequence $\{x_n\}$ in (2.34) converges to x^* and

$$|x_n - x^*| \le (\delta K)^{2^n} / K$$

Method for finding nonvertical asymptotes for a curve y = f(x) as $x \to \infty$. Replacing $x \to \infty$ by $x \to -\infty$ gives a method for finding nonvertical asymptotes as $x \to -\infty$.

Newton's approximation method. (A rule of thumb says that, to obtain an approximation that is correct to n decimal places, use Newton's method until it gives the same n decimal places twice in a row.)

Illustration of Newton's approximation method. The tangent to the graph of f at $(x_n, f(x_n))$ intersects the x-axis at $x = x_{n+1}$.

Sufficient conditions for convergence of Newton's method.

A precise estimation of the accuracy of Newton's method.

2.35

2.38
$$y - f(x_1) = f'(x_1)(x - x_1)$$
The equation for the tangent to $y = f(x)$ at $(x_1, f(x_1))$.2.39 $y - f(x_1) = -\frac{1}{f'(x_1)}(x - x_1)$ The equation for the normal to $y = f(x)$ at $(x_1, f(x_1))$.2.40 y normal tangent tangent $(x_1, f(x_1))$.The tangent and the normal to $y = f(x)$ at $(x_1, f(x_1))$.2.40 y x_1 x_1 The tangent and the normal to $y = f(x)$ at $(x_1, f(x_1))$.2.40 y x_1 x_1 The tangent and the normal to $y = f(x)$ at $(x_1, f(x_1))$.2.41(ii) $(a^r) \cdot a^s = a^{r+s}$ (ii) $(a^r)^s = a^{rs}$
 $(v) $\left(\frac{a}{b}\right)^r = \frac{a^r}{b^r}$ (vi) $a^{-r} = \frac{1}{a^r}$ Rules for powers. $(r \text{ and } s \text{ are arbitrary real numbers.)$ 2.42 $e^x = \lim_{n \to \infty} \left(1 + \frac{n}{n}\right)^n = 2.718281828459 \dots$
 e^x .Important definitions and results. See (8.23) for another formula for e^x .2.43 $e^{\ln x} = x$ Definition of the natural logarithm.2.44 y e^x 2.44 y e^x y e^x x y y e^x x x <$

2.55

x	0	$\frac{\pi}{6} = 30^{\circ}$	$\frac{\pi}{4} = 45^{\circ}$	$\frac{\pi}{3} = 60^{\circ}$	$\frac{\pi}{2} = 90^{\circ}$
$\sin x$	0	$\frac{1}{2}$	$\frac{1}{2}\sqrt{2}$	$\frac{1}{2}\sqrt{3}$	1
$\cos x$	1	$\frac{1}{2}\sqrt{3}$	$\frac{1}{2}\sqrt{2}$	$\frac{1}{2}$	0
$\tan x$	0	$\frac{1}{3}\sqrt{3}$	1	$\sqrt{3}$	*
$\cot x$	*	$\sqrt{3}$	1	$\frac{1}{3}\sqrt{3}$	0

The graphs of $y = \tan x$ (--) and $y = \cot x$ (---). The functions \tan and \cot are periodic with period π : $\tan(x + \pi) = \tan x$, $\cot(x + \pi) = \cot x$.

Special values of the trigonometric functions.

* not defined

2.56	x	$\frac{3\pi}{4} = 135^{\circ}$	$\pi = 180^{\circ}$	$\frac{3\pi}{2} = 270^{\circ}$	$2\pi = 360^{\circ}$
	$\sin x$	$\frac{1}{2}\sqrt{2}$	0	-1	0
	$\cos x$	$-\frac{1}{2}\sqrt{2}$	-1	0	1
	$\tan x$	-1	0	*	0
	$\cot x$	-1	*	0	*

* not defined

$$2.57 \quad \lim_{x \to 0} \frac{\sin ax}{x} = a$$

2.58
$$\sin^2 x + \cos^2 x = 1$$

2.59
$$\tan^2 x = \frac{1}{\cos^2 x} - 1, \qquad \cot^2 x = \frac{1}{\sin^2 x} - 1$$

2.60 $\cos(x+y) = \cos x \cos y - \sin x \sin y$ $\sin(x-y) = \cos x \cos y + \sin x \sin y$ $\sin(x+y) = \sin x \cos y + \cos x \sin y$ $\sin(x-y) = \sin x \cos y - \cos x \sin y$ An important limit.

Trigonometric formulas. (For series expansions of trigonometric functions, see Chapter 8.)

2.69
$$\operatorname{arcsin} x = \sin^{-1} x$$
, $\operatorname{arccos} x = \cos^{-1} x$
 $\operatorname{arctan} x = \tan^{-1} x$, $\operatorname{arccos} x = \cot^{-1} x$
 $\operatorname{arcsin} (-x) = -\operatorname{arcsin} x$
 $\operatorname{arccos} (-x) = \pi - \operatorname{arccos} x$
 $\operatorname{arctan} (-x) = \operatorname{arctan} x$
 $\operatorname{arccot} (-x) = \pi - \operatorname{arccos} x$
 $\operatorname{arctan} (-x) = \operatorname{arctan} x$
 $\operatorname{arccot} (-x) = \pi - \operatorname{arccos} x$
 $\operatorname{arctan} x + \operatorname{arccos} x = \frac{\pi}{2}$
 $\operatorname{arctan} \frac{1}{x} = \frac{\pi}{2} - \operatorname{arctan} x$, $x > 0$
 $\operatorname{arctan} \frac{1}{x} = -\frac{\pi}{2} - \operatorname{arctan} x$, $x < 0$
2.71 $\sinh x = \frac{e^x - e^{-x}}{2}$, $\cosh x = \frac{e^x + e^{-x}}{2}$
 $\operatorname{arctan} \frac{1}{x} = -\frac{\pi}{2} - \operatorname{arctan} x$, $x < 0$
2.72 $\begin{array}{c} y = \cosh x & \frac{y}{1} \\ y = \sinh x \end{array}$
 $\operatorname{arcsin} x + \operatorname{arccos} x = \frac{x}{2}$
 $\operatorname{arctan} \frac{1}{x} = -\frac{\pi}{2} - \operatorname{arctan} x$, $x < 0$
2.71 $\sinh x = \frac{e^x - e^{-x}}{2}$, $\cosh x = \frac{e^x + e^{-x}}{2}$
 $\operatorname{arctan} \frac{1}{x} = -\frac{\pi}{2} - \operatorname{arctan} x$, $x < 0$
2.72 $\begin{array}{c} y = \cosh x & \frac{y}{1} \\ y = \sinh x \end{array}$
 $\operatorname{arcsin} x = \operatorname{arcsin} x + \operatorname{arccos} x = \frac{e^x + e^{-x}}{2}$
 $\operatorname{arcsin} x = \operatorname{arcsin} x + \operatorname{arccos} x = \frac{e^x + e^{-x}}{2}$
 $\operatorname{arcsin} x = \operatorname{arcsin} x + \operatorname{arccos} x = \frac{e^x + e^{-x}}{2}$
 $\operatorname{arcsin} x = \operatorname{arccos} x + \operatorname{arccos} x = \operatorname{arcsin} x + \operatorname{arccos} x = \operatorname{arccos} x$

$$2.75 \quad z = a + ib, \quad \bar{z} = a - ib$$

2.76
$$|z| = \sqrt{a^2 + b^2}$$
, $\operatorname{Re}(z) = a$, $\operatorname{Im}(z) = b$

A complex number and
its conjugate.
$$a, b \in \mathbb{R}$$
,
and $i^2 = -1$. *i* is called
the *imaginary unit*.

|z| is the modulus of z = a + ib. Re(z) and Im(z) are the real and imaginary parts of z.

Geometric representation of a complex number and its conjugate.

Addition, subtraction, multiplication, and division of complex numbers.

Basic rules. z_1 and z_2 are complex numbers.

The trigonometric or polar form of a complex number. The angle θ is called the argument of z. See (2.84) for $e^{i\theta}$.

Geometric representation of the trigonometric form of a complex number.

•
$$(a+ib) + (c+id) = (a+c) + i(b+d)$$

• $(a+ib) - (c+id) = (a-c) + i(b-d)$
2.78 • $(a+ib)(c+id) = (ac-bd) + i(ad+bc)$
• $\frac{a+ib}{c+id} = \frac{1}{c^2+d^2}((ac+bd) + i(bc-ad))$

2.79
$$|\bar{z}_1| = |z_1|, \ z_1\bar{z}_1 = |z_1|^2, \ \overline{z_1 + z_2} = \bar{z}_1 + \bar{z}_2,$$

 $|z_1z_2| = |z_1||z_2|, \ |z_1 + z_2| \le |z_1| + |z_2|$

2.80
$$z = a + ib = r(\cos\theta + i\sin\theta) = re^{i\theta}, \text{ where}$$
$$r = |z| = \sqrt{a^2 + b^2}, \quad \cos\theta = \frac{a}{r}, \quad \sin\theta = \frac{b}{r}$$

If
$$z_k = r_k(\cos \theta_k + i \sin \theta_k)$$
, $k = 1, 2$, then
 $z_1 z_2 = r_1 r_2(\cos(\theta_1 + \theta_2) + i \sin(\theta_1 + \theta_2))$
 $\frac{z_1}{z_2} = \frac{r_1}{r_2}(\cos(\theta_1 - \theta_2) + i \sin(\theta_1 - \theta_2))$
2.83 $(\cos \theta + i \sin \theta)^n = \cos n\theta + i \sin n\theta$
If $z = x + iy$, then
 $e^z = e^{x+iy} = e^x \cdot e^{iy} = e^x(\cos y + i \sin y)$
In particular,
 $e^{iy} = \cos y + i \sin y$
2.85 $e^{\pi i} = -1$
2.86 $e^{\overline{z}} = \overline{e^z}$, $e^{z+2\pi i} = e^z$, $e^{z_1+z_2} = e^{z_1}e^{z_2}$,
 $e^{z_1-z_2} = e^{z_1}/e^{z_2}$
2.87 $\cos z = \frac{e^{iz} + e^{-iz}}{2}$, $\sin z = \frac{e^{iz} - e^{-iz}}{2i}$
If $a = r(\cos \theta + i \sin \theta) \neq 0$, then the equation
 $z^n = a$
2.88 has exactly *n* roots, namely
 $z_k = \sqrt[n]{r}\left(\cos\frac{\theta + 2k\pi}{n} + i \sin\frac{\theta + 2k\pi}{n}\right)$
for $k = 0, 1, \dots, n-1$.
Multiplication and division on trigonometric
form.
Multiplication trigonometric
form.
Multiplication trigonometric
form.
Multiplication and division trigonometric
form.
Multiplication trig

References

Most of these formulas can be found in any calculus text, e.g. Edwards and Penney (1998) or Sydsæter and Hammond (2005). For (2.3)–(2.12), see e.g. Turnbull (1952).

http://www.springer.com/978-3-540-26088-2

Economists' Mathematical Manual Sydsaeter, K.; Strøm, A.; Berck, P. 2005, XII, 225 p. 66 illus., Hardcover ISBN: 978-3-540-26088-2