
1

Introduction

The field of logical and relational learning, which is introduced in this chap-
ter, is motivated by the limitations of traditional symbolic machine learning
and data mining systems that largely work with propositional representations.
These limitations are clarified using three case studies: predicting the activity
of chemical compounds from their structure; link mining, where properties of
websites are discovered; and learning a simple natural language interface for a
database. After sketching how logical and relational learning works, the chap-
ter ends with a short sketch of the history of this subfield of machine learning
and data mining as well as a brief overview of the rest of this book.

1.1 What Is Logical and Relational Learning?

Artificial intelligence has many different subfields. Logical and relational learn-
ing combines principles and ideas of two of the most important subfields of
artificial intelligence: machine learning and knowledge representation. Ma-
chine learning is the study of systems that improve their behavior over time
with experience. In many cases, especially in a data mining context, the ex-
perience consists of a set of observations or examples in which one searches
for patterns, regularities or classification rules that provide valuable new in-
sights into the data and that should ideally be readily interpretable by the
user. The learning process then typically involves a search through various
generalizations of the examples.

In the past fifty years, a wide variety of machine learning techniques have
been developed (see Mitchell [1997] or Langley [1996] for an overview). How-
ever, most of the early techniques were severely limited from a knowledge rep-
resentation perspective. Indeed, most of the early techniques (such as decision
trees [Quinlan, 1986], Bayesian networks [Pearl, 1988], perceptrons [Nilsson,
1990], or association rules [Agrawal et al., 1993]) could only handle data and
generalizations in a limited representation language, which was essentially

2 1 Introduction

propositional. Propositional representations (based on boolean or proposi-
tional logic) cannot elegantly represent domains involving multiple entities
as well as the relationships amongst them. One such domain is that of so-
cial networks where the persons are the entities and their social interactions
are characterized by their relationships. The representational limitations of
the early machine learning systems carried over to the resulting learning and
data mining techniques, which were in turn severely limited in their applica-
tion domain. Various machine learning researchers, such as Ryszard Michalski
[1983] and Gordon Plotkin [1970], soon realized these limitations and started
to employ more expressive knowledge representation frameworks for learning.
Research focused on using frameworks that were able to represent a variable
number of entities as well as the relationships that hold amongst them. Such
representations are called relational. When they are grounded in or derived
from first-order logic they are called logical representations. The interest in
learning using these expressive representation formalisms soon resulted in the
emergence of a new subfield of artificial intelligence that I now describe as
logical and relational learning.

Logical and relational learning is thus viewed in this book as the study of
machine learning and data mining within expressive knowledge representation
formalisms encompassing relational or first-order logic. It specifically targets
learning problems involving multiple entities and the relationships amongst
them. Throughout the book we shall mostly be using logic as a representation
language for describing data and generalizations, because logic is inherently
relational, it is expressive, understandable, and interpretable, and it is well
understood. It provides solid theoretical foundations for many developments
within artificial intelligence and knowledge representation. At the same time,
it enables one to specify and employ background knowledge about the domain,
which is often also a key factor determining success in many applications of
artificial intelligence.

1.2 Why Is Logical and Relational Learning Important?

To answer this question, let us look at three important applications of logical
and relational learning. The first is concerned with learning to classify a set
of compounds as active or inactive [Srinivasan et al., 1996], the second with
analyzing a website [Craven and Slattery, 2001], and the third with learning
a simple natural language interface to a database system [Mooney, 2000]. In
these applications there are typically a variable number of entities as well as
relationships amongst them. This makes it very hard, if not impossible, to
use more traditional machine learning methods that work with fixed feature
vectors or attribute-value representations. Using relational or logical repre-
sentations, these problems can be alleviated, as we will show throughout the
rest of this book.

1.2 Why Is Logical and Relational Learning Important? 3

1.2.1 Structure Activity Relationship Prediction

Consider the compounds shown in Fig. 1.1. Two of the molecules are active
and two are inactive. The learning task now is to find a pattern that dis-
criminates the actives from the inactives. This type of task is an important
task in computational chemistry. It is often called structure activity relation-
ship prediction (SAR), and it forms an essential step in understanding various
processes related to drug design and discovery [Srinivasan and King, 1999b],
toxicology [Helma, 2005], and so on. The figure also shows a so-called struc-
tural alert, which allows one to distinguish the actives from the inactives be-
cause the structural alert is a substructure (subgraph) that matches both of
the actives but none of the inactives. At the same time, the structural alert is
readily interpretable and provides useful insights into the factors determining
the activity.

O CH=N-NH-C-NH 2O=N

O - O

nitrofurazone

N O

O

+

-

4-nitropenta[cd]pyrene

N

O O-

6-nitro-7,8,9,10-tetrahydrobenzo[a]pyrene

NH

N

O O
-

+

4-nitroindole

Y=Z

Active

Inactive

Structural alert:

Fig. 1.1. Predicting mutagenicity. Reprinted from [Srinivasan et al., 1996], page
288, c©1996, with permission from Elsevier

Traditional machine learning methods employ the single-tuple single-table
assumption, which assumes that the data can be represented using attribute-
value pairs. Within this representation, each example (or compound) corre-
sponds to a single row or tuple in a table, and each feature or attribute to a
single column; cf. Table 1.1. For each example and attribute, the cells of the

4 1 Introduction

table specify the value of the attribute for the specific example, for instance,
whether or not a benzene ring is present. We shall call representations that
can easily be mapped into the single-tuple single-table format propositional.

Table 1.1. A table-based representation

Compound Attribute1 Attribute2 Attribute3 Class

1 true false true active
2 true true true active
3 false false true inactive
4 true false true inactive

From a user perspective, the difficulty with this type of representation is
the mismatch between the graphical and structured two-dimensional repre-
sentation in the molecules and the flat representation in the table. In order
to use the flat representation, the user must first determine the features or
attributes of interest. In structure activity relationship prediction, these are
sometimes called fingerprints. Finding these features is in itself a non-trivial
task as there exist a vast number of potentially interesting features. Further-
more, the result of the learning process will critically depend on the quality of
the employed features. Even though there exist a number of specialized tools
to tackle this kind of task (involving the use of libraries of fingerprints), the
question arises as to whether there exist general-purpose machine learning
systems able to cope with such structured representations directly. The an-
swer to this question is affirmative, as logical and relational learners directly
deal with structured data.

Example 1.1. The graphical structure of one of the compounds can be repre-
sented by means of the following tuples, which we call facts:

active(f1) ← bond(f1, f11, f12, 7) ←
logmutag(f1, 0.64) ← bond(f1, f12, f13, 7) ←
lumo(f1,−1.785) ← bond(f1, f13, f14, 7) ←
logp(f1, 1.01) ← bond(f1, f14, f15, 7) ←
atom(f1, f11, c, 21, 0.187) ← bond(f1, f18, f19, 2) ←
atom(f1, f12, c, 21,−0.143) ← bond(f1, f18, f110, 2) ←
atom(f1, f13, c, 21,−0.143) ← bond(f1, f11, f111, 1) ←
atom(f1, f14, c, 21,−0.013) ← bond(f1, f111, f112, 2) ←
atom(f1, f15, o, 52,−0.043) ← bond(f1, f111, f113, 1) ←
. . .

In this encoding, each entity is given a name and the relationships among
the entities are captured. For instance, in the above example, the compound
is named f1 and its atoms f11, f12, Furthermore, the relation atom/5 of
arity 5 states properties of the atoms: the molecule they occur in (e.g., f1),

1.2 Why Is Logical and Relational Learning Important? 5

the element (e.g., c denoting a carbon) and the type (e.g., 21) as well as the
charge (e.g., 0.187). The relationships amongst the atoms are then captured
by the relation bond/3, which represents the bindings amongst the atoms.
Finally, there are also overall properties or attributes of the molecule, such
as their logp and lumo values. Further properties of the compounds could be
mentioned, such as the functional groups or ring structures they contain:

ring size 5(f1, [f15, f11, f12, f13, f14]) ←
hetero aromatic 5 ring(f1, [f15, f11, f12, f13, f14]) ←
...

The first tuple states that there is a ring of size 5 in the compound f1 that
involves the atoms f15, f11, f12, f13 and f14 in molecule f1; the second one states
that this is a heteroaromatic ring.

Using this representation it is possible to describe the structural alert in
the form of a rule

active(M) ← ring size 5(M,R), element(A1,R), bond(M,A1,A2, 2)

which actually reads as1:

Molecule M is active IF it contains a ring of size 5 called R and atoms
A1 and A2 that are connected by a double (2) bond such that A1 also
belongs to the ring R.

The previous example illustrates the use of logical representations for data
mining. It is actually based on the well-known mutagenicity application of re-
lational learning due to Srinivasan et al. [1996], where the structural alert
was discovered using the inductive logic programming system Progol [Mug-
gleton, 1995] and the representation employed above. The importance of this
type of application is clear when considering that the results were published
in the scientific literature in the application domain [King and Srinivasan,
1996], that they were obtained using a general-purpose inductive logic pro-
gramming algorithm and were transparent to the experts in the domain. The
combination of these factors has seldom been achieved in artificial intelligence.

1.2.2 A Web Mining Example

While structure activity relationship prediction involves the mining of a (po-
tentially large) set of small graphs, link mining and discovery is concerned
with the analysis of a single large graph or network [Getoor, 2003, Getoor and
Dielh, 2005]. To illustrate link mining, we consider the best known example
of a network, that is, the Internet, even though link mining is applicable in
1 This form of description is sometimes called ‘Sternberg’ English in inductive logic

programming, after the computational biologist Michael Sternberg, who has been
involved in several pioneering scientific applications of logical learning.

6 1 Introduction

other contexts as well, for instance, in social networks, protein networks, and
bibliographic databases. The following example is inspired by the influential
WebKB example of Craven and Slattery [2001].

Example 1.2. Consider the website of a typical university. It contains several
web pages that each describe a wide variety of entities. These entities belong
to a wide variety of classes, such as student, faculty, staff, department, course,
project, and publication. Let us assume that for each such web page, there is
a corresponding tuple in our relational database. Consider, for instance, the
following facts (where the urls denote particular URLs):

faculty(url1, stephen) ← faculty(url2, john) ←
course(url3, logic for learning) ← project(url4, april2) ←
department(url5, computer science) ← student(url6, hiroaki) ←
. . .

In addition, there are relationships among these entities. For instance, various
pages that refer to one another, such as the link from url6 to url1, denote a par-
ticular relationship, in this case the relationship between the student hiroaki
and his adviser stephen. This can again be modeled as facts in a relational
database:

adviser(stephen, hiroaki) ←
teaches(john, logic for learning) ←
belongsTo(stephen, computer science) ←
follows(hiroaki, logic for learning) ←
. . .

Again, the structure of the problem can elegantly be represented using a
relational database. This representation can easily be extended with additional
background knowledge in the form of rules:

studentOf(Lect,Stud) ← teaches(Lect,Course), follows(Stud,Course)

which expresses that

Stud is a studentOf Lect IF Lect teaches a Course and Stud follows the
Course.

Further information could be contained in the data set, such as extracts of the
text appearing on the different links or pages. There are several interesting
link mining tasks in this domain. It is for instance possible to learn to predict
the classes of web pages or the nature of the relationships encoded by links
between web pages; cf. [Getoor, 2003, Craven and Slattery, 2001, Chakrabarti,
2002, Baldi et al., 2003]. To address such tasks using logical or relational
learning, one has to start from a set of examples of relations that are known to
hold. For instance, the fact that stephen is the adviser of hiroaki is a (positive)
example stating that the link from hiroaki to stephen belongs to the relation
adviser. If for a given university website, say the University of Freiburg, all

1.2 Why Is Logical and Relational Learning Important? 7

hyperlinks would be labeled (by hand) with the corresponding relationships,
one could then learn general rules using logical and relational learning that
would allow one to predict the labels of unseen hyperlinks. These rules could
then be applied to determine the labels of the hyperlinks at another university
website, say that of the University of Leuven. An example of a rule that might
be discovered in this context is

adviser(Prof,Stud) ←
webpage(Stud,Url), student(Url),
contains(Url, advisor), contains(Url,Prof)

which expresses that

Prof is an adviser of Stud IF Stud has a webpage with Url of type
student that contains the words adviser and Prof.

To tackle such problems, one often combines logical and relational learning
with probabilistic models. This topic will be introduced in Chapter 8.

Link mining problems in general, and the above example in particular,
cannot easily be represented using the single-tuple single-table assumption
(as in Table 1.1) without losing information.

Exercise 1.3. Try to represent the link mining example within the single-
tuple single-table assumption and identify the problems with this approach.

Exercise 1.4. Sketch other application domains that cannot be modeled un-
der this assumption.

1.2.3 A Language Learning Example

A third illustration of an application domain that requires dealing with knowl-
edge as well as structured data is natural language processing. Empirical
natural language processing is now a major trend within the computational
linguistics community [Manning and Schütze, 1999], and several logical and
relational learning scientists have contributed interesting techniques and ap-
plications; cf. [Cussens and Džeroski, 2000, Mooney, 2000]. As an illustration
of this line of work, let us look at one of the applications of Raymond Mooney’s
group, which pioneered the use of logical and relational learning techniques for
language learning. More specifically, we sketch how to learn to parse database
queries in natural language, closely following Zelle and Mooney [1996].2 The
induced semantic parser is the central component of a question-answering
system.

Example 1.5. Assume you are given a relational database containing informa-
tion about geography. The database contains information about various basic
2 For ease of exposition, we use a slightly simplified notation.

8 1 Introduction

entities such as countries, cities, states, rivers and places. In addition, it con-
tains facts about the relationships among them, for instance, capital(C,Y),
which specifies that C is the capital of Y, loc(X,Y), which states that X is lo-
cated in Y, nextTo(X,Y), which states that X is located next to Y, and many
other relationships.

The task could then be to translate queries formulated in natural language
to database queries that can be executed by the underlying database system.
For instance, the query in natural language

What are the major cities in Kansas?

could be translated to the database query

answer(C, (major(C), city(C), loc(C,S), equal(S, kansas)))

This last query can then be passed on to the database system and executed.
The database system then generates all entities C that are major, a city, and
located in kansas.

Zelle and Mooney’s learning system [1996] starts from examples, which
consist of queries in natural language and in database format, from an ele-
mentary shift-reduce parser, and from some background knowledge about the
domain. The task is then to learn control knowledge for the parser. Essentially,
the parser has to learn the conditions under which to apply the different op-
erators in the shift-reduce parser. The control knowledge is represented using
a set of clauses (IF rules) as in the previous two case studies. The control
rules need to take into account knowledge about the stack used by the parser,
the structure of the database, and the semantics of the language. This is
again hard (if not impossible) to represent under the single-tuple single-table
assumption.

1.3 How Does Relational and Logical Learning Work?

Symbolic machine learning and data mining techniques essentially search a
space of possible patterns, models or regularities. Depending on the task,
different search algorithms and principles apply. For instance, consider the
structure activity relationship prediction task and assume that one is searching
for all structural alerts that occur in at least 20% of the actives and at most
2% of the inactives. In this case, a complete search strategy is applicable.
On the other hand, if one is looking for a structural alert that separates the
actives from the inactives and could be used for classification, a heuristic
search method such as hill climbing is more appropriate.

Data mining is often viewed as the process of computing the set of patterns
Th(Q,D,L) [Mannila and Toivonen, 1997], which can be defined as follows (cf.
also Chapter 3). The search space consists of all patterns expressible within a
language of patterns L. For logical and relational learning this will typically

1.3 How Does Relational and Logical Learning Work? 9

be a set of rules or clauses of the type we encountered in the case studies of
the previous section; the data set D consists of the examples that need to
be generalized; and, finally, the constraint Q specifies which patterns are of
interest. The constraint typically depends on the data mining task tackled, for
instance, finding a single structural alert in a classification setting, or finding
all alerts satisfying particular frequency thresholds. So, the set Th(Q,D,L)
can be defined as the set of all patterns h ∈ L that satisfy the constraint
Q(h,D) with respect to the data set D.

A slightly different perspective is given by the machine learning view,
which is often formulated as that of finding a particular function h (again
belonging to a language of possible functions L) that minimizes a loss function
l(h,D) on the data. Using this view, the natural language application of the
previous subsection can be modeled more easily, as the goal is to learn a
function mapping statements in natural language to database queries. An
adequate loss function is the accuracy of the function, that is, the fraction of
database queries that is correctly predicted. The machine learning and data
mining views can be reconciled, for instance, by requiring that the constraint
Q(h,D) succeeds only when l(h,D) is minimal; cf. Chapter 3.

Central in the definition of the constraint Q(h,D) or the loss function
l(h,D) is the covers relation between the data and the rules. It specifies
when a rule covers an example, or, equivalently, when an example satisfies
a particular rule. There are various possible ways to represent examples and
rules and these result in different possible choices for the covers relation (cf.
Chapter 4). The most popular choice is that of learning from entailment. It
is also the setting employed in the case studies above.

Example 1.6. To illustrate the notion of coverage, let us reconsider Ex. 1.1
and let us also simplify it a bit. An example could now be represented by the
rule:

active(m1) ←
atom(m1,m11, c), . . . , atom(m1,m1n, c),
bond(m1,m11,m12, 2), . . . , bond(m1,m11,m13, 1),
ring size 5(m1, [m15,m11,m12,m13,m14]), . . .

Consider now the rule

active(M) ← ring size 5(M,R), atom(M,M1, c)

which actually states that

Molecule M is active IF it contains a ring of size 5 called R and an
atom M1 that is a carbon (c).

The rule covers the example because the conditions in the rule are satis-
fied by the example when setting M = m1, R = [m15,m11,m12,m13,m14] and
M1 = m11. The reader familiar with logic (see also Chapter 2) will recognize
that the example e is a logical consequence of the rule r, which is sometimes
written as r |= e.

10 1 Introduction

Now that we know what to compute, we can look at how this can be
realized. The computation of the solutions proceeds typically by searching
the space of possible patterns or hypotheses L. One way of realizing this is to
employ a generate-and-test algorithm, though this is too naive to be efficient.
Therefore symbolic machine learning and data mining techniques typically
structure the space L according to generality. One pattern or hypothesis
is more general than another if all examples that are covered by the latter
pattern are also covered by the former.

Example 1.7. For instance, the rule

active(M) ← ring size 5(M,R), element(A1,R), bond(M,A1,A2, 2)

is more general than the rule

active(M) ←
ring size 5(M,R), element(A1,R),
bond(M,A1,A2, 2), atom(M,A2, o, 52,C)

which reads as

Molecule M is active IF it contains a ring of size 5 called R and atoms
A1 and A2 that are connected by a double (2) bond such that A1 also
belongs to the ring R and atom A2 is an oxygen of type 52.

The former rule is more general (or, equivalently, the latter one is more
specific) because the latter one requires also that the atom connected to the
ring of size 5 be an oxygen of atom-type 52. Therefore, all molecules satisfying
the latter rule will also satisfy the former one.

The generality relation is quite central during the search for solutions. The
reason is that the generality relation can often be used 1) to prune the search
space, and 2) to guide the search towards the more promising parts of the
space. The generality relation is employed by the large majority of logical
and relational learning systems, which often search the space in a general-to-
specific fashion. This type of system starts from the most general rule (the
unconditional rule, which states that all molecules are active in our running
example), and then repeatedly specializes it using a so-called refinement oper-
ator. Refinement operators map rules onto a set of specializations; cf. Chapters
3 and 5.

Example 1.8. Consider the rule

active(Mol) ← atom(Mol,Atom, c,Type,Charge),

which states that a molecule is active if it contains a carbon atom. Refinements
of this rule include:

1.4 A Brief History 11

active(Mol) ← atom(Mol,Atom, c, 21,Charge)
active(Mol) ← atom(Mol,Atom, c,T,Charge), atom(Mol,Atom2, h,T2,Charge2)
active(Mol) ← atom(Mol,Atom, c,T,Charge), ring size 5(Mol,Ring)
. . .
The first refinement states that the carbon atom must be of type 21, the second
one requires that there be carbon as well as hydrogen atoms, and the third one
that there be a carbon atom and a ring of size 5. Many more specializations
are possible, and, in general, the operator depends on the description language
and generality relation used.

The generality relation can be used to prune the search. Indeed, assume that
we are looking for rules that cover at least 20% of the active molecules and at
most 1% of the inactive ones. If our current rule (say the second one in Ex.
1.7) only covers 18% of the actives, then we can prune away all specializations
of that rule because specialization can only decrease the number of covered
examples. Conversely, if our current rule covers 2% of the inactives, then all
generalizations of the rule cover at least as many inactives (as generaliza-
tion can only increase the number of covered examples), and therefore these
generalizations can safely be pruned away; cf. Chapter 3 for more details.

Using logical description languages for learning provides us not only with a
very expressive representation, but also with an excellent theoretical founda-
tion for the field. This becomes clear when looking at the generality relation.
It turns out that the generality relation coincides with logical entailment. In-
deed, the above examples of the generality relation clearly show that the more
general rule logically entails the more specific one.3 So, the more specific rule
is a logical consequence of the more general one, or, formulated differently, the
more general rule logically entails the more specific one. Consider the simpler
example: flies(X) ← bird(X) (if X is a bird, then X flies), which logically entails
and which is clearly more general than the rule flies(X) ← bird(X), normal(X)
(only normal birds fly). This property of the generalization relation provides
us with an excellent formal basis for studying inference operators for learning.
Indeed, because one rule is more general than another if the former entails the
latter, deduction is closely related to specialization as deductive operators can
be used as specialization operators. At the same time, as we will see in detail
in Chapter 5, one can obtain generalization (or inductive inference) operators
by inverting deductive inference operators.

1.4 A Brief History

Logical and relational learning typically employ a form of reasoning known as
inductive inference. This form of reasoning generalizes specific facts into gen-
3 This property holds when learning from entailment. In other settings, such as

learning from interpretations, this property is reversed; cf. Chapter 5. The more
specific hypothesis then entails the more general one.

12 1 Introduction

eral laws. It is commonly applied within the natural sciences, and therefore
has been studied in the philosophy of science by several philosophers since
Aristotle. For instance, Francis Bacon investigated an inductive methodology
for scientific inquiry. The idea is that knowledge can be obtained by care-
ful experimenting, observing, generalizing and testing of hypotheses. This is
also known as empiricism, and various aspects have been studied by many
other philosophers including Hume, Mill, Peirce, Popper and Carnap. Induc-
tive reasoning is fundamentally different from deductive reasoning in that the
conclusions of inductive reasoning do not follow logically from their premises
(the observations) but are always cogent; that is, they can only be true with
a certain probability. The reader may notice that this method is actually very
close in spirit to that of logical and relational learning today. The key differ-
ence seems to be that logical and relational learning investigates computational
approaches to inductive reasoning.

Computational models of inductive reasoning and scientific discovery have
been investigated since the very beginning of artificial intelligence. Several
cognitive scientists, such as a team involving the Nobel prize winner Her-
bert A. Simon (see [Langley et al., 1987] for an overview), developed several
models that explain how specific scientific theories could be obtained. Around
the same time, other scientists (including Bruce Buchanan, Nobel prize win-
ner Joshua Lederberg, Ed Feigenbaum, and Tom Mitchell [Buchanan and
Mitchell, 1978]) started to develop learning systems that could assist scien-
tists in discovering new scientific laws. Their system Meta-Dendral pro-
duced some new results in chemistry and were amongst the first scientific
discoveries made by an artificial intelligence system that were published in
the scientific literature of the application domain. These two lines of research
have actually motivated many developments in logical and relational learning
albeit there is also a crucial difference between them. Whereas the mentioned
approaches were domain-specific, the goal of logical and relational learning is
to develop general-purpose inductive reasoning systems that can be applied
across different application domains. The example concerning structure activ-
ity relationship is a perfect illustration of the results of these developments
in logical and relational learning. An interesting philosophical account of the
relationship between these developments is given by Gillies [1996].

Supporting the scientific discovery process across different domains re-
quires a solution to two important computational problems. First, as scien-
tific theories are complex by their very nature, an expressive formalism is
needed to represent them. Second, the inductive reasoning process should be
able to employ the available background knowledge to obtain meaningful hy-
potheses. These two problems can to a large extent be solved by using logical
representations for learning.

The insight that various types of logical and relational representations can
be useful for inductive reasoning and machine learning can be considered as
an outgrowth of two parallel developments in computer science and artifi-
cial intelligence. First, and most importantly, since the mid-1960s a number

1.4 A Brief History 13

of researchers proposed to use (variants of) predicate logic as a formalism
for studying machine learning problems. This was motivated by severe lim-
itations of the early machine learning systems that essentially worked with
propositional representations. Ranan Banerji [1964] was amongst the earliest
advocates of the use of logic for machine learning. The logic he proposed was
motivated by a pattern recognition task. Banerji’s work on logical descriptions
provided inspiration for developing logical learning systems such as Confu-

cius [Cohen and Sammut, 1982] and Marvin [Sammut and Banerji, 1986],
which already incorporated the first inverse resolution operators; cf. Chapter
5. These systems learned incrementally and were able to employ the already
learned concepts during further learning tasks.

Around the same time, Ryszard Michalski [1983] developed his influential
AQ and Induce systems that address the traditional classification task that
made machine learning so successful. Michalski’s work stressed the importance
of both learning readable descriptions and using background knowledge. He
developed his own variant of a logical description language, the Variable Val-
ued Logic, which is able to deal with structured data and relations. At the
same time, within VVL, he suggested that induction be viewed as the in-
verse of deduction and proposed several inference rules for realizing this. This
view can be traced back in the philosophy of science [Jevons, 1874] and still
forms the basis for much of the theory of generalization, which is extensively
discussed in Chapter 5.

Theoretical properties of generalization and specialization were also stud-
ied by researchers such as Plotkin [1970], Reynolds [1970], Vere [1975] and
Buntine [1988]. Especially, Plotkin’s Ph.D. work on θ-subsumption and rela-
tive subsumption, two generalization relations for clausal logic, has been very
influential and still constitutes the main framework for generalization in logi-
cal learning. It will be extensively studied in Chapter 5. Second, there is the
work on automatic programming [Biermann et al., 1984] that was concerned
with synthesizing programs from examples of their input-output behavior,
where researchers such as Biermann and Feldman [1972], Summers [1977] and
Shapiro [1983] contributed very influential systems and approaches. Whereas
Alan Biermann’s work was concerned with synthesizing Turing machines, Phil
Summers studied functional programs (LISP) and Ehud Shapiro studied the
induction of logic programs and hence contributed an inductive logic program-
ming system avant la lettre. Shapiro’s Model Inference System is still one
of the most powerful program synthesis and inductive inference systems today.
It will be studied in Chapter 7.

In the mid-1980s, various researchers including Bergadano et al. [1988],
Emde et al. [1983], Morik et al. [1993], Buntine [1987] and Ganascia and
Kodratoff [1986] contributed inductive learning systems that used relational
or logical description languages. Claude Sammut [1993] gives an interesting
account of this period in logical and relational learning.

A breakthrough occurred when researchers started to realize that both
problems (in automatic programming and machine learning) could be stud-

14 1 Introduction

ied simultaneously within the framework of computational logic. It was the
contribution of Stephen Muggleton [1991] to define the new research field of
inductive logic programming (ILP) [Muggleton and De Raedt, 1994, Lavrač
and Džeroski, 1994] as the intersection of inductive concept learning and logic
programming and to bring together researchers in these areas in the inductive
logic programming workshops [Muggleton, 1992b] that have been organized
annually since 1991. A new subfield of machine learning was born and at-
tracted many scientists, especially in Japan, Australia and Europe (where
two European projects on inductive logic programming were quite influen-
tial [De Raedt, 1996]). Characteristic for the early 1990s was that inductive
logic programming was developing firm theoretical foundations, built on logic
programming concepts, for logical learning. In parallel, various well-known
inductive logic programming systems were developed, including Foil [Quin-
lan, 1990], Golem [Muggleton and Feng, 1992], Progol [Muggleton, 1995],
Claudien [De Raedt and Dehaspe, 1997], Mobal [Morik et al., 1993], Linus

[Lavrač and Džeroski, 1994]. Also, the first successes in real-life applications of
inductive logic programming were realized by Ross King, Stephen Muggleton,
Ashwin Srinivasan, and Michael Sternberg [King et al., 1992, King and Srini-
vasan, 1996, King et al., 1995, Muggleton et al., 1992]; see [Džeroski, 2001] for
an overview. Due to the success of these applications and the difficulties in
true progress in program synthesis, the field soon focused on machine learn-
ing and data mining rather than on automatic programming. A wide variety
of systems and techniques were being developed that upgraded traditional
machine learning systems towards the use of logic; cf. Chapter 6.

During the mid-1990s, both the data mining and the uncertainty in artifi-
cial intelligence communities started to realize the limitations of the key repre-
sentation formalism they were using. Within the data mining community, the
item-sets representation employed in association rules [Agrawal et al., 1993]
corresponds essentially to a boolean or propositional logic, and the Bayesian
network formalism [Pearl, 1988] defines a probability distribution over propo-
sitional worlds. These limitations motivated researchers to look again at more
expressive representations derived from relational or first-order logic. Indeed,
within the data mining community, the work on Warmr [Dehaspe et al.,
1998], which discovers frequent queries and relational association rules from
a relational database, was quite influential. It was successfully applied on
a structure activity relationship prediction task, and motivated several re-
searchers to look into graph mining [Washio et al., 2005, Inokuchi et al.,
2003, Washio and Motoda, 2003]. Researchers in data mining soon started to
talk about (multi-)relational data mining (MRDM) (cf. [Džeroski and Lavrač,
2001]), and an annual series of workshops on multi-relational data mining was
initiated [Džeroski et al., 2002, 2003, Džeroski and Blockeel, 2004, 2005].

A similar development took place in the uncertainty in artificial intelli-
gence community. Researchers started to develop expressive probabilistic log-
ics [Poole, 1993a, Breese et al., 1994, Haddawy, 1994, Muggleton, 1996], and
started to study learning [Sato, 1995, Friedman et al., 1999] in these frame-

1.4 A Brief History 15

works soon afterward. In the past few years, these researchers have gathered in
the statistical relational learning (SRL) workshops [Getoor and Jensen, 2003,
2000, De Raedt et al., 2005, 2007a]. A detailed overview and introduction to
this area is contained in Chapter 8 and two recent volumes in this area in-
clude [Getoor and Taskar, 2007, De Raedt et al., 2008]. Statistical relational
learning is one of the most exciting and promising areas for relational and
logical learning today.

To conclude, the field of logical and relational learning has a long history
and is now being studied under different names: inductive logic program-
ming, multi-relational data mining and (statistical) relational learning. The
approach taken in this book is to stress the similarities between these trends
rather than the differences because the problems studied are essentially the
same even though the formalisms employed may be different. The author
hopes that this may contribute to a better understanding of this exciting
field.

http://www.springer.com/978-3-540-20040-6

