
Preface

Following the Stanford Encyclopedia of Philosophy,

“the term temporal logic has been broadly used to cover all approaches to the
representation of temporal information within a logical framework”.

Applications of temporal logic include philosophical issues about time, the semantics
of tenses in natural languages, and its use as a formal framework for the treatment of
behavioural aspects of computerized systems.

In a more narrow sense, temporal logic is understood as a modal-logic type of
approach: temporal relationships between different assertions are expressed by ap-
plying particular temporal logic operators to them. This book focuses on this type
of temporal logic and we will study computer science applications to what we call
state systems: systems which involve “states” and exhibit “behaviours” by “running”
through sequences of such states.

One of the most challenging problems facing today’s software engineers and
computer scientists is to find ways and establish techniques to reduce the number of
errors in the systems they build. It is widely acknowledged that formal methods may
contribute to solving this challenge with significant success. In particular, temporal
logic is a well-established and successfully used formal tool for the specification
and verification of state systems. Its formulas are interpreted over “runs” of such
systems and can thus express their behavioural properties. The means induced by
the (semantical and deductive) logical apparatus provide methods to formally prove
such properties.

This monograph is written in the tradition of the first author’s textbook [83]

Temporal Logic of Programs

and the two volumes

The Temporal Logic of Reactive and Concurrent Systems – Specification and
The Temporal Logic of Reactive and Concurrent Systems – Safety

of Manna and Pnueli [102, 104]. This means that we will present the “mathemat-
ics” of temporal logic in considerable detail and we will then systematically study

VI Preface

specification and verification methods, which will be illustrated by fully elaborated
examples.

Compared with those books, however, the topics and their presentation are re-
arranged and we have included significant new material and approaches. In partic-
ular, branching time logics, expressiveness issues of temporal logic, aspects related
to Lamport’s Temporal Logic of Actions (TLA), and model checking methods are
additionally presented.

There is a wealth of relevant and interesting material in the field. The “main text”
of this book presents topics that – in our opinion – constitute a “canonical” exposition
of the field. In additional Second Reading paragraphs we have occasionally inserted
short “excursions” that expand on related or advanced themes or that present inter-
esting complements. These paragraphs can be skipped without loss of continuity in
the main presentation.

The first chapter of this book gives a short overview of basic concepts and no-
tions of (mathematical) logic. This is not only to introduce the reader not familiar
with logic into that world, it also defines basic terminology and notation that we use
throughout the remaining text.

Chapters 2–5 and 10 form the purely logical part of the book. Even when re-
stricted to the modal-logic type as mentioned above, there are many different ver-
sions and variants of temporal logic. We start in Chap. 2 with the basic propositional
linear temporal logic and study in Chap. 3 some important propositional extensions.
It should be mentioned that even the borderline between temporal logic(s) and modal
logics is not really well defined. Some relationships concerning this are briefly dis-
cussed in Second Reading paragraphs.

Chapter 4 is devoted to the expressiveness of propositional linear temporal logics.
In particular, the logics are compared with other description formalisms: classical
predicate logic and ω-automata.

Chapter 5 introduces first-order linear temporal logic together with some addi-
tional useful extensions. Chapter 10 discusses some other temporal logics and, par-
ticularly, introduces branching time logics.

The remaining Chaps. 6–9 and 11 deal with applications of temporal logics to
state systems. Various versions of transition systems – as formal representations of
such systems – are introduced in Chap. 6, and Chap. 7 gives a general systematic
presentation of (deductive) temporal logic verification methods for them. Chapter 8
applies the methods to the special (“classical”) case of the verification of concurrent
programs.

Chapter 9 addresses aspects that arise when system specifications are “struc-
tured”. Particularly, the refinement of specifications is considered and we study how
this can be described in the logic TLA.

The “semantical” model checking approach to system verification offers an alter-
native to deductive methods. It has attracted much interest, largely because it can be
fully automated in a way that scales to systems of interesting complexity. Chapter 11
presents the essential concepts and techniques underlying this approach.

Preface VII

Every chapter ends with some bibliographical notes referring to the relevant liter-
ature. After the last chapter we include an extensive list of formal laws of the various
temporal logics studied in this book.

We have used drafts of this book as supports for courses at the advanced un-
dergraduate and the graduate level. Different selections of the material are possible,
depending on the audience and the orientation of the course. The book is also in-
tended as an introduction and reference for scientists and practicing software engi-
neers who want to familiarize themselves with the field. We have aimed to make the
presentation as self-contained as possible.

We are indebted to P. Fontaine, M. Hammer, A. Knapp, and H. Störrle for helpful
remarks during the preparation of this text.

Finally, we thank Springer-Verlag for the interest in publishing this book and the
overall support during its completion.

Munich and Nancy, Fred Kröger
January 2008 Stephan Merz

1

Basic Concepts and Notions of Logics

In this book various temporal logics will be studied. In preparation, we first introduce
some basic concepts, notions, and terminology of logics in general by means of a
short overview of classical logic. Particularly, items are addressed which will be of
relevance in subsequent considerations. This includes some well-known results from
classical logic which we list here without any proofs.

1.1 Logical Languages, Semantics, and Formal Systems

A logic formalizes the reasoning about “statements” within some area of application.
For this purpose, it provides formal languages containing formulas for the representa-
tion of the statements in question and formal concepts of reasoning like consequence
and derivability relations between formulas.

Classical (mathematical) logic applies to mathematical systems: number systems
such as the natural or real numbers, algebraic systems such as groups or vector
spaces, etc. In a separable “nucleus” of this logic, called propositional logic PL, the
effect of building formulas with boolean operators like and, or, implies, etc. is stud-
ied, while the atomic building blocks of such formulas are viewed as “black boxes”
without any further internal structure.

Generally, a logical language is given by an alphabet of different symbols and the
definition of the set of formulas which are strings over the alphabet. Given a set V
whose elements are called propositional constants, a language LPL(V) (also shortly:
LPL) of propositional logic can be defined as follows.

Alphabet

• All propositional constants of V,
• the symbols false | → | (|) .

(The stroke | is not a symbol but only used for separating the symbols in the list.)

2 1 Basic Concepts and Notions of Logics

Formulas

1. Every propositional constant of V is a formula.
2. false is a formula.
3. If A and B are formulas then (A→ B) is a formula.

The clauses 1–3 (also called formation rules) constitute an inductive definition which
may be understood to work like a set of production rules of a formal grammar: a
string over the alphabet is a formula if and only if it can be “produced” by finitely
many applications of the rules 1–3.

The set V is a parameter in this definition. For concrete applications, V has to
be fixed yielding some particular language tailored for the “universe of discourse” in
question. There are no assumptions on how many elements V may have. This most
general setting may sometimes cause some technical complications. In applications
studied in this book we do not need the full generality, so we actually may restrict V
to be finite or “at most” denumerable.

In general, a logical language is called countable if its alphabet is finite or denu-
merable. We will tacitly assume that all the languages still to be defined subsequently
will be countable in this sense.

The symbol→ is a (binary) logical operator, called implication; false is a special
formula. Further logical operators and another distinguished formula true can be
introduced to abbreviate particular formulas.

Abbreviations

¬A ≡ A→ false,
A ∨ B ≡ ¬A→ B ,
A ∧ B ≡ ¬(A→ ¬B),
A↔ B ≡ (A→ B) ∧ (B → A),
true ≡ ¬ false.

(We have omitted surrounding parentheses and will do so also in the following. By
≡ we denote equality of strings.) The operators ¬, ∨, ∧, and↔ are called negation,
disjunction, conjunction, and equivalence, respectively.

The symbols A and B in such definitions are not formulas (of some LPL) them-
selves but syntactic variables ranging over the set of formulas. Accordingly, a string
like ¬A→B is not a formula either. It yields a formula by substituting proper formu-
las for A and B . Nevertheless, we freely use wordings like “formula A” or “formula
¬A → B” to avoid more precise but complicated formulations like “formula of the
form ¬A→ B where A and B stand for formulas”. Moreover, we speak of formulas
“of PL” since the concrete language LPL is not relevant in this notation. In all the
other logics developed subsequently, we will adopt these conventions accordingly.

The language definition of a logic constitutes its syntax. Its semantics is based on
formal interpretations J of the syntactical elements together with a notion of validity
in (or satisfaction by) J.

In the case of PL, interpretations are provided by (boolean) valuations. Given
two distinct truth values, denoted by ff (“false”) and tt (“true”), a valuation B for a

1.1 Logical Languages, Semantics, and Formal Systems 3

set V of propositional constants is a mapping

B : V → {ff, tt}.

Every such B can be inductively extended to the set of all formulas of LPL(V):

1. B(v) for v ∈ V is given.
2. B(false) = ff.
3. B(A→ B) = tt ⇔ B(A) = ff or B(B) = tt.

(We use ⇔ as an abbreviation for “if and only if”; later we will also use ⇒ for
“if. . . then. . . ”.) This also defines B for the formula abbreviations above:

4. B(¬A) = tt ⇔ B(A) = ff.
5. B(A ∨ B) = tt ⇔ B(A) = tt or B(B) = tt.
6. B(A ∧ B) = tt ⇔ B(A) = tt and B(B) = tt.
7. B(A↔ B) = tt ⇔ B(A) = B(B).
8. B(true) = tt.

A formula A of LPL is called valid in B (or B satisfies A), denoted by �
B
A, if

B(A) = tt.
Based on this notion, the consequence relation and (universal) validity in PL are

defined. Let A be a formula, F a set of formulas of LPL.

• A is called a consequence of F if �
B
A holds for every valuation B with �

B
B for

all B ∈ F .
• A is called (universally) valid or a tautology if it is a consequence of the empty

set of formulas, i.e., if �
B
A holds for every B.

The pattern of this definition will occur analogously for all other subsequent
logics with other interpretations. For any logic,

F �A, also written B1, . . . ,Bn �A if F = {B1, . . . ,Bn},n ≥ 1

will denote that A is a consequence of F , and

�A

will denote that A is valid.
With these definitions there are two possible formal statements (in PL) of what

informally is expressed by a phrase like “B follows from A”. The first one is asserted
by implication within the language:

A→ B .

The second one is given by the consequence relation:

A � B .

A fundamental fact of classical (propositional) logic is that these notions are equiva-
lent:

4 1 Basic Concepts and Notions of Logics

A � B ⇔ � A→ B

or more generally (F being an arbitrary set of formulas):

F ∪ {A} � B ⇔ F � A→ B

which can be “unfolded” for finite F to

A1, . . . ,An � B ⇔ � A1 → (A2 → . . .→ (An → B) . . .)

or, equivalently, to the more readable

A1, . . . ,An � B ⇔ � (A1 ∧ . . . ∧An) → B .

Note that we write (A1 ∧ . . .∧An) without inner parentheses, which is syntactically
not correct but justified as a shortcut by the fact that the real bracketing is of no
relevance (more formally: the operator ∧ is associative). The analogous notation will
be used for disjunctions.

Validity and consequence are key notions of any logic. Besides their semanti-
cal definitions they can (usually) be described in a proof-theoretical way by formal
systems. A formal system Σ for a logical language consists of

• a set of formulas of the language, called axioms,
• a set of (derivation) rules of the form A1, . . . ,An �B (n ≥ 1).

The formulas A1, . . . ,An are called the premises, the formula B is the conclusion
of the rule. To distinguish it from other existing forms, a formal system of this kind
is called Hilbert-like. Throughout this book we will use only this form.

The derivability (in formal system Σ) of a formula A from a set F of formulas
(assumptions), denoted by F �

Σ
A or F �A when Σ is understood from the context,

is defined inductively:

1. F �A for every axiom.
2. F �A for every A ∈ F .
3. If F �A for all premises A of a rule then F �B for the conclusion of this rule.

A formula A is called derivable, denoted by �
Σ

A or �A, if ∅ �A. If A is derivable
from some A1, . . . ,An then the “relation” A1, . . . ,An �A can itself be used as a
derived rule in other derivations.

For languages of PL there are many possible formal systems. One of them, de-
noted by ΣPL, is the following.

Axioms

• A→ (B → A),
• (A→ (B → C)) → ((A→ B) → (A→ C)),
• ((A→ false) → false) → A.

1.1 Logical Languages, Semantics, and Formal Systems 5

Rule

• A,A→ B � B (modus ponens).

We remark once more that the strings written down are not formulas. So, for example,
A → (B → A) is not one axiom but an axiom scheme which yields infinitely many
axioms when formulas are substituted for A and B . Actually, ΣPL is written in a
form which is independent of the concrete language of PL. So we may call ΣPL a
formal system “for PL”. In the same sense we will subsequently give formal systems
for other logics. A formal system for a logic is also called its axiomatization.

Like the semantical consequence relation �, derivability is related to implication
in the following sense:

F ∪ {A} � B ⇔ F � A→ B .

The only if part of this fact is called the Deduction Theorem (of PL).
An indispensable requirement of any reasonable formal system is its soundness

with respect to the semantical notions of the logic. ΣPL is in fact sound, which means
that

F �
ΣPL

A ⇒ F � A

holds for every F and A. Moreover, it can also be shown that

F � A ⇒ F �
ΣPL

A

which states the completeness of ΣPL. As a special case both facts imply

�
ΣPL

A ⇔ � A

for every formula A.
A formal system allows for “producing” formulas by applying rules in a “me-

chanical” way. So, a particular effect of the latter relationship is that the set of valid
formulas of (any language of) PL can be “mechanically generated” (in technical
terms: it is recursively enumerable). Moreover, this set is decidable (shortly: PL is
decidable), i.e., there is an algorithmic procedure to decide for any formula whether
it is valid.

We illustrate the main concepts and notions of this section by an example. A
simple logical principle of reasoning is informally expressed by

“If B follows from A and C follows from B then C follows from A”.

This chaining rule can formally be stated and verified in several ways: we can estab-
lish the formula

F ≡ ((A→ B) ∧ (B → C)) → (A→ C)

as valid, i.e., �F (speaking semantically), or as derivable, i.e., �F (speaking proof-
theoretically), or we can express it by

6 1 Basic Concepts and Notions of Logics

A→ B ,B → C � A→ C (or A→ B ,B → C � A→ C).

The proofs for the semantical formulations are straightforward from the definitions.
As an example of a formal derivation within the formal system ΣPL and in order to
introduce our standard format of such proofs we derive A → C from A → B and
B → C , i.e., we show that A→ B ,B → C �A→ C :

(1) A→ B assumption
(2) B → C assumption
(3) (B → C) → (A→ (B → C)) axiom
(4) A→ (B → C) modus ponens,(2),(3)
(5) (A→ (B → C)) → ((A→ B) → (A→ C)) axiom
(6) (A→ B) → (A→ C) modus ponens,(4),(5)
(7) A→ C modus ponens,(1),(6)

In each of the numbered steps (lines) we list some derivable formula and indicate
on the right-hand side if it is an axiom or an assumption or by what rule applied to
previous lines it is found.

We add a selection of some more valid formulas. These and other tautologies will
(very often implicitly) be used in the subsequent chapters.

• A ∨ ¬A,
• ¬¬A↔ A,
• (A ∧ (B ∨ C)) ↔ ((A ∧ B) ∨ (A ∧ C)),
• ¬(A ∧ B) ↔ (¬A ∨ ¬B),
• ((A ∧ B) → C) ↔ (A→ (B → C)),
• (A→ B) ↔ (¬B → ¬A),
• (A ∧ true)↔ A,
• (A ∨ false) ↔ A,
• (A→ C) → ((A ∧ B)→ C),
• ((A ∨ B) → C) → (A→ C).

As mentioned at the beginning, PL formalizes (a part of) reasoning about state-
ments in mathematical systems. Its semantics formalizes the natural basic point of
view of “usual” mathematics that a statement is something which is either “false” or
“true”. We still remark that, for specific applications or propagated by philosophical
considerations, there are other “non-standard” semantical concepts as well. Exam-
ples are three-valued logic (a statement can have three different truth values which
may be understood as “false”, “possible”, or “true”), probabilistic logic (truth is
given with a certain probability), or intuitionistic logic (statements are interpreted
constructively which, e.g., means that the tertium non datur formula A ∨ ¬A is no
longer valid since it might be that neither the truth nor the falsity of A can be found
in a constructive way).

1.2 Classical First-Order Logic 7

1.2 Classical First-Order Logic

Mathematical statements and argumentations usually need more means than can be
represented in propositional logic. These are provided by extending PL to predicate
logic which investigates a more detailed structure of formulas dealing with objects,
functions, and predicates, and includes the concept of quantification with operators
like for some and for all.

The standard form of predicate logic is first-order logic FOL which we describe
in its many-sorted version as follows.

A signature SIG = (S,F,P) is given by

• a set S of sorts,
• F =

⋃
�s∈S∗,s∈S F(�s,s) where F(�s,s), for every �s ∈ S∗ and s ∈ S, is a set of

function symbols (also called individual constants in the case of �s = ε),
• P =

⋃
�s∈S∗ P(�s) where P(�s), for every �s ∈ S∗, is a set of predicate symbols

(also called propositional constants in the case of �s = ε).

(S∗ denotes the set of finite strings over S; ε is the empty string.) For f ∈ F we will
often write f (�s,s) to indicate that f belongs to F(�s,s), and analogously for p ∈ P.

Given a signature SIG = (S,F,P), a first-order language LFOL(SIG) (also
shortly: LFOL) is given by the following syntax.

Alphabet

• All symbols of F and P,
• for every s ∈ S denumerably many (individual) variables,
• the equality symbol = ,
• the symbols false | → | ∃ | , | (|) .

We will denote the set of variables for s ∈ S by Xs and define X =
⋃

s∈S Xs .
Strictly speaking, LFOL(SIG) does not only depend on the given signature SIG but
also on the choice of (the notations for) all these variables. We do not display this
dependence since X could also be fixed for all languages. Note that requesting each
Xs to be denumerable is only for having “enough” variables available.

Terms and their sorts (inductively defined):

1. Every variable of Xs is a term of sort s .
2. If f ∈ F(s1...sn ,s) is a function symbol and ti are terms of sorts si for 1 ≤ i ≤ n

then f (t1, . . . , tn) is a term of sort s .

An atomic formula is a string of the form

• p(t1, . . . , tn), where p ∈ P(s1...sn) is a predicate symbol and ti are terms of sorts
si for 1 ≤ i ≤ n , or

• t1 = t2, where t1 and t2 are terms of the same sort.

Formulas (inductively defined):

1. Every atomic formula is a formula.

8 1 Basic Concepts and Notions of Logics

2. false is a formula, and if A and B are formulas then (A→ B) is a formula.
3. If A is a formula and x is a variable then ∃xA is a formula.

We reuse the abbreviations from LPL and introduce two more:

∀xA ≡ ¬∃x¬A,
t1 �= t2 ≡ ¬ t1 = t2.

Furthermore, we will write f instead of f () for individual constants f ∈ F(ε,s) and
p instead of p() for propositional constants p ∈ P(ε); x , y and the like will be used
to denote variables.

A variable x (more precisely: an occurrence of x) in a formula A is called bound
if it appears in some part ∃xB of A; otherwise it is called free. If t is a term of
the same sort as x then Ax (t) denotes the result of substituting t for every free
occurrence of x in A. When writing Ax (t) we always assume implicitly that t does
not contain variables which occur bound in A. (This can always be achieved by
replacing the bound variables of A by others.) A formula without any free variables
is called closed. If A is a formula that contains no free occurrences of variables other
than x1, . . . , xn then the (closed) formula ∀x1 . . . ∀xnA is called the universal closure
of A.

As an example of a first-order language consider the signature

SIGgr = ({GR}, {NEL(ε,GR), ◦(GR GR,GR), INV (GR,GR)}, ∅).

The terms of LFOL(SIGgr) are the variables x ∈ XGR = X of the language, the
individual constant NEL, and expressions of the form ◦(t1, t2) or INV (t) with terms
t , t1, t2. All terms are of the sole sort GR. Since SIGgr contains no predicate symbols
the only atomic formulas are “equalities” t1 = t2 with terms t1, t2. The string

∀x ◦(NEL, x) = x

is an example of a formula.
For the semantics of FOL, interpretations are given by structures which gen-

eralize the valuations of PL to the new situation. A structure S for a signature
SIG = (S,F,P) consists of

• |S| =
⋃

s∈S |S|s where |S|s is a non-empty set (called domain) for every s ∈ S,
• mappings f S : |S|s1× . . .×|S|sn → |S|s for all function symbols f ∈ F(s1...sn ,s),
• mappings pS : |S|s1×. . .×|S|sn → {ff, tt} for all predicate symbols p ∈P(s1...sn).

Note that for individual constants f ∈ F(ε,s) we obtain f S ∈ |S|s . For p ∈ P(ε) we
have pS ∈ {ff, tt} which justifies these p again being called propositional constants.

A variable valuation ξ (with respect to S) assigns some ξ(x) ∈ |S|s to every
variable x ∈ Xs (for all s ∈ S). A structure together with a variable valuation ξ
defines inductively a value S(ξ)(t) ∈ |S| for every term t :

1. S(ξ)(x) = ξ(x) for x ∈ X .
2. S(ξ)(f (t1, . . . , tn)) = f S(S(ξ)(t1), . . . ,S(ξ)(tn)).

1.2 Classical First-Order Logic 9

Furthermore, we can define S(ξ)(A) ∈ {ff, tt} for every atomic formula:

1. S(ξ)(p(t1, . . . , tn)) = pS(S(ξ)(t1), . . . ,S(ξ)(tn)).
2. S(ξ)(t1 = t2) = tt ⇔ S(ξ)(t1) and S(ξ)(t2) are equal values in |S|s

(where s is the sort of t1 and t2).

Analogously to the valuations B in PL, S(ξ) can be inductively extended to all for-
mulas of LFOL. Defining the relation ∼x for x ∈ X between variable valuations
by

ξ ∼x ξ′ ⇔ ξ(y) = ξ′(y) for all y ∈ X other than x ,

the inductive clauses are:

1. S(ξ)(A) for atomic formulas is already defined.
2. S(ξ)(false) = ff.
3. S(ξ)(A→ B) = tt ⇔ S(ξ)(A) = ff or S(ξ)(B) = tt.
4. S(ξ)(∃xA) = tt ⇔ there is a ξ′ such that ξ ∼x ξ′ and S(ξ′)(A) = tt.

The truth values for formulas like ¬A, A∨B , etc. result from these definitions as in
PL, and for ∀xA we obtain:

5. S(ξ)(∀xA) = tt ⇔ S(ξ′)(A) = tt for all ξ′ with ξ ∼x ξ′.

The value S(ξ)(A) depends only on the valuation of variables that have free occur-
rences in A. In particular, S(ξ)(A) does not depend on the variable valuation ξ when
A is a closed formula. This observation justifies our convention that bound variables
are suitably renamed before a substitution Ax (t) is performed.

A formula A of LFOL is called valid in S (or S satisfies A), denoted by �
S
A, if

S(ξ)(A) = tt for every variable valuation ξ. Following the general pattern from
Sect. 1.1, A is called a consequence of a set F of formulas (F �A) if �

S
A holds

for every S with �
S
B for all B ∈ F . A is called (universally) valid (�A) if ∅ �A.

Continuing the example considered above, a structure Z for the signature SIGgr

could be given by

|Z| = |Z|GR = Z (the set of integers),
NELZ = 0 ∈ Z, ◦Z(k , l) = k + l , INV Z(k) = −k (for k , l ∈ Z).

The formula ∀x ◦(NEL, x) = x is valid in Z but not universally valid: consider the
structure S that differs from Z by defining NELS = 1. An example of a valid formula
is

◦(x , y) = INV (y) → INV (y) = ◦(x , y).

More generally,

t1 = t2 → t2 = t1

is a valid formula (“scheme”) for arbitrary terms t1, t2 (of the same sort), and this
formulation is in fact independent of the concrete signature SIG in the sense that it
is valid in every LFOL(SIG) for terms t1, t2 that can be built within SIG .

10 1 Basic Concepts and Notions of Logics

The fundamental relationship

F ∪ {A} � B ⇔ F � A→ B

between implication and consequence stated in Sect. 1.1 for PL has to be modified
slightly in FOL. It holds if A does not contain free variables.

In contrast to PL, FOL is not decidable (for arbitrary first-order languages), but
there exist again sound and complete axiomatizations of FOL. An example is given
by the following formal system ΣFOL (which uses x and y to denote variables).

Axioms

• All axioms of ΣPL,
• Ax (t) → ∃xA,
• x = x ,
• x = y → (A→ Ax (y)).

Rules

• A,A→ B � B ,
• A→ B � ∃xA→ B if there is no free occurrence of x in B

(particularization).

According to the remark above, the Deduction Theorem for FOL must be formu-
lated with somewhat more care than in PL. A possible formulation is:

F ∪ {A} � B ⇒ F � A→ B if the derivation of B from F ∪ {A} con-
tains no application of the particulariza-
tion rule involving a variable that occurs
free in A.

Note in particular that the condition for the applicability of this rule is trivially ful-
filled if A is a closed formula.

The converse connection holds without any restrictions (as in PL).
Again we list some valid formulas (now of FOL) in order to give an impression

what kinds of such predicate logical facts may be used subsequently.

• t1 = t2 ↔ t2 = t1,
• t1 = t2 ∧ t2 = t3 → t1 = t3,
• ∀xA→ Ax (t),
• ∀x (A→ B) → (∀xA→ ∀xB),
• ∃x (A ∨ B) ↔ (∃xA ∨ ∃xB),
• ∃x (A→ B) ↔ (∀xA→ B), x not free in B ,
• ∃x∀yA→ ∀y∃xA.

Finally we note a derivable rule, called generalization, which is “dual” to the
above particularization rule:

• A→ B �A→ ∀xB if there is no free occurrence of x in A.

1.3 Theories and Models 11

1.3 Theories and Models

Languages of predicate logic provide a general linguistic framework for the descrip-
tion of mathematical systems. This framework is instantiated to specific systems by
fixing an according signature. For example, the language LFOL(SIGgr) with

SIGgr = ({GR}, {NEL(ε,GR), ◦(GR GR,GR), INV (GR,GR)}, ∅),

mentioned in the previous section, is an appropriate language for formalizing groups:
GR represents the underlying set of the group, NEL should be interpreted as the
neutral element, ◦ as the group product, and INV as the inverse operation. This
interpretation is formally performed by a structure, and in fact, the sample structure
Z for SIGgr of Sect. 1.2 is a group.

Valid formulas hold in all structures. Structures that “fit” the mathematical sys-
tem in question can be distinguished by a set of formulas that are valid in those
structures, though not necessarily universally valid. Formalizing this concept, a (first-
order) theory Th = (LFOL(SIG),A) is given by a language LFOL(SIG) and a set
A of formulas of LFOL(SIG), called the non-logical axioms of Th . A structure S for
SIG satisfying all formulas of A is called a model of the theory Th . Given a class
C of structures for a signature SIG , a C-theory is a theory Th = (LFOL(SIG),AC)
such that all structures of C are models of Th . A formula F of LFOL(SIG) is valid
in all structures of C if

AC �ΣFOL
F

since ΣFOL is sound and therefore AC �ΣFOL
F implies AC � F .

With these definitions, the theory Group = (LFOL(SIGgr),G) with G consisting
of the formulas

(x1 ◦ x2) ◦ x3 = x1 ◦ (x2 ◦ x3),
NEL ◦ x = x ,
INV (x) ◦ x = NEL

– where we write x1 ◦ x2 instead of ◦(x1, x2) – is a (first-order) group theory. More
precisely, Group is a Cgr -theory where Cgr is the class of all structures G for SIGgr

such that the set |G| = |G|GR together with the interpretations NELG, ◦G, and INV G

form a group. The non-logical axioms of G are just well-known group axioms. For-
mulas F valid in groups can be obtained within the logical framework by derivations

G �
ΣFOL

F .

The axioms of G contain free variables. Sometimes it might be convenient to write
such axioms in “closed form” by taking their universal closures, e.g.,

∀x1∀x2∀x3((x1 ◦ x2) ◦ x3 = x1 ◦ (x2 ◦ x3))

instead of the first axiom above. The definition of validity in a structure implies that
any structure satisfies a formula A if and only if it satisfies the universal closure of
A; therefore the two versions of how to write the axioms are in fact equivalent.

12 1 Basic Concepts and Notions of Logics

We give some more examples of theories: let

SIGlo = ({ORD}, ∅, {≺(ORD ORD)}),
LinOrd = (LFOL(SIGlo),O)

with O consisting of the axioms (in non-closed form)

¬ x ≺ x ,
(x1 ≺ x2 ∧ x2 ≺ x3) → x1 ≺ x3,
x1 �= x2 → (x1 ≺ x2 ∨ x2 ≺ x1).

(As for ◦ in LFOL(SIGgr), we mostly use infix notation – here and in the fol-
lowing – for “binary” function and predicate symbols.) Every structure O where
|O| = |O|ORD is a non-empty set and ≺O is a (strict) linear order on |O| is a model
of LinOrd which, hence, may be called a linear order theory.

A natural number theory Nat is based on a signature

SIGNat = ({NAT},F, ∅)

with

F = {0(ε,NAT),SUCC (NAT ,NAT),+(NAT NAT ,NAT), ∗(NAT NAT ,NAT)}.

In the intended structure N for SIGNat , |N| = |N|NAT is the set N of natural num-
bers (including zero), 0N is the number zero, SUCCN is the successor function
on natural numbers, and +N and ∗N are addition and multiplication, respectively.
Nat = (LFOL(SIGNat),N) is an {N}-theory if we let N contain the following ax-
ioms:

SUCC (x) �= 0,
SUCC (x) = SUCC (y) → x = y ,
x + 0 = x ,
x + SUCC (y) = SUCC (x + y),
x ∗ 0 = 0,
x ∗ SUCC (y) = (x ∗ y) + x ,
(Ax (0) ∧ ∀x (A→ Ax (SUCC (x)))) → ∀xA.

The notion of C-theories is not very sharp. If Th = (LFOL,A) is a C-theory
then, by definition, so is every (LFOL,A′) where A′ ⊆ A. Hence, in general, a
C-theory does not really “characterize” the class C of structures. The reason is that in
the definition we only required that all structures of C satisfy the non-logical axioms,
but not that these structures be the only models of the theory.

The theories Group and LinOrd actually satisfy this stronger requirement:
somewhat roughly speaking, a structure is a model of Group or LinOrd if and only
if it is a group or a linearly ordered set, respectively. The theories characterize these
mathematical systems and we may call them theory of groups and theory of linear
orders (instead of “C-theories”).

1.3 Theories and Models 13

In the case of Nat , however, the situation is fundamentally different. The struc-
ture N cannot be characterized in this way: every first-order theory which has N as a
model has also other (even “essentially” different) models. This is a consequence of
the famous (First) Gödel Incompleteness Theorem which (particularly) says that N
cannot be completely axiomatized in first-order logic. More precisely: for any first-
order {N}-theory whose non-logical axiom set A is decidable there are formulas F
of SIGNat such that �

N
F but F is not derivable from A in ΣFOL.

In the presence of different models for natural number theories, N is usu-
ally called the standard model. This model, together with its underlying signature
SIGNat , will frequently occur in subsequent sections. If necessary, we will feel free
to assume (without explicitly mentioning) that the signature may also be enriched by
more symbols than shown above (e.g., symbols for other individual constants like
1, 2, . . ., for subtraction, division, order relations, etc.) together with their standard
interpretations in N. Furthermore, we will overload notation by denoting the inter-
pretations of syntactic symbols by these same symbols (e.g., +N, ∗N, 1N, 2N, . . . will
be denoted by +, ∗, 1, 2, . . .).

Besides formalizing mathematical systems such as groups and linear orders, the
concept of logical theories also finds applications in computer science. For exam-
ple, the theory Nat (perhaps presented with some extra “syntactic sugar”) would
typically be called an algebraic specification of the natural numbers. In general, an
algebraic specification of an abstract data type (in a functional setting) is just the
same as a theory.

A further example is given by the signature

SIGst = ({OBJ ,STACK},F, ∅)

with

F = {EMPTY (ε,STACK),PUSH (STACK OBJ ,STACK),
POP (STACK ,STACK),TOP (STACK ,OBJ)}

and the theory (or algebraic specification)

Stack = (LFOL(SIGst),S)

with S consisting of the axioms

PUSH (x , y) �= EMPTY ,
POP(PUSH (x , y)) = x ,
TOP(PUSH (x , y)) = y

(where x ∈ XSTACK , y ∈ XOBJ). Clearly, Stack is a theory of stacks: the domain
|S|STACK of its (standard) models consists of stacks of objects from |S|OBJ and
EMPTY S, PUSH S, POPS, and TOPS are functions implementing the usual stack
operations.

Note that the semantical definitions in the previous section obviously assume
that the mappings which interpret function and predicate symbols are total since

14 1 Basic Concepts and Notions of Logics

otherwise the evaluation S(ξ) would not always be defined. In this example, on the
other hand, pop and top are usually understood to be partial (not defined on the
empty stack). To solve this technical problem in a trivial way, we assume that pop
and top deliver some arbitrary values when applied to the empty stack and, hence,
are total. In subsequent similar situations we will always tacitly make corresponding
assumptions.

In some computer science texts, specifications like Nat or Stack additionally
contain (or “use”) an explicit specification of a data type Boolean containing the
boolean values and the usual boolean operators. Because Boolean is implicitly con-
tained in the propositional fragment of first-order logic, it does not have to be an
explicit part of a first-order theory.

We have introduced the concept of theories in the framework of classical first-
order logic. Of course, it can be defined in the same way for any other logic as well.
For example, a theory could also be based on propositional logic. Such propositional
theories are of minor interest in mathematics. In computer science, however, this
changes, particularly because of the decidability of PL. A typical situation arises by
first-order theories of structures with finite domains. These can be encoded as propo-
sitional theories (essentially by expressing a quantification ∃xA by a disjunction of
all instantiations of A with the finitely many possible values ξ(x) of x) and can then
be accessible to appropriate algorithmic treatments. We will investigate this aspect
in the context of temporal logic in Chap. 11 and content ourselves here with a toy
example of the kind which typically serves as a measure for automatic proof systems.
Consider the following criminal story:

Lady Agatha was found dead in her home where she lived together with her butler
and with uncle Charles. After some investigations of the detective, the following
facts are assured:

1. Agatha was killed by one of the inhabitants.
2. Nobody kills somebody without hating him or her.
3. The perpetrator is never richer than the victim.
4. Charles hates nobody whom Agatha was hating.
5. Agatha hated all inhabitants except perhaps the butler.
6. The butler hates everybody not richer than Agatha or hated by Agatha.
7. No inhabitant hates (or hated) all inhabitants.

Who killed Agatha?

In order to fix a language of propositional logic we have to determine the set V of
propositional constants. For our story we represent the persons Agatha, the butler,
and Charles by a , b, and c, respectively, and let P = {a, b, c} and

Vmurder = {killij , hateij , richerij | i , j ∈ P}.

The elements of Vmurder represent the propositions “i killed j ”, “i hates (or hated)
j ”, and “i is (was) richer than j ” for i , j ∈ P, respectively. With this in mind we get a
propositional theory (LPL(Vmurder),M) by collecting inM the following formulas
which formally express the above facts:

1.4 Extensions of Logics 15

1. killaa ∨ killba ∨ killca ,
2. killij → hateij for all i , j ∈ P,
3. killij → ¬richerij for all i , j ∈ P,
4. hateaj → ¬hatecj for all j ∈ P,
5. hateaa ∧ hateac ,
6. (¬richerja ∨ hateaj) → hatebj for all j ∈ P,
7. ¬hateia ∨ ¬hateib ∨ ¬hateic for all i ∈ P.

The case can be solved semantically by showing that for any model M of the theory,
which in this propositional situation is just a valuation M : Vmurder → {ff, tt},
M(killaa) = tt must hold whereas M(killba) = M(killca) = ff, or proof-theoretically
by showing that

M �
ΣPL

killaa ∧ ¬killba ∧ ¬killca .

Anyway, the conclusion is that Agatha committed suicide. One should also convince
oneself by exhibiting a model M forM that the assumed facts are not contradictory:
otherwise, the conclusion would hold trivially.

1.4 Extensions of Logics

The logic FOL extends PL in the sense that every formula of (any language LPL(V)
of) PL is also a formula of (some language containing the elements of V as propo-
sitional constants of) FOL. Furthermore, PL is a sublogic of FOL: all consequence
relationships and, hence, universal validities in PL hold in FOL as well. The logics
to be defined in the next chapters will be extensions of PL or even FOL in the same
way.

Staying within the classical logic framework, we still want to mention another
extension of FOL which allows for addressing the non-characterizability of the stan-
dard model of natural numbers in FOL as pointed out in the previous section. The
reason for this deficiency is that FOL is too weak to formalize the fundamental Peano
Postulate of natural induction which states that for every set M of natural numbers,

if 0 ∈ M and if for every n ∈ N, n + 1 ∈ M can be concluded from the
assumption that n ∈ M, then M = N.

This is only incompletely covered by the induction axiom

(Ax (0) ∧ ∀x (A→ Ax (SUCC (x)))) → ∀xA

of the theory Nat . In our assumed framework of countable languages (cf. Sect. 1.1)
this fact is evident since A (which “represents” a set M) then ranges only over denu-
merably many formulas whereas the number of sets of natural numbers is uncount-
able. But even in general, the Peano Postulate cannot be completely described in
FOL.

16 1 Basic Concepts and Notions of Logics

An extension of FOL in which the Peano Postulate can be described adequately is
(classical) second-order logic SOL. Given a signature SIG = (S,F,P), a second-
order language LSOL(SIG) (again shortly: LSOL) is defined like a first-order lan-
guage with the following additions: the alphabet is enriched by

• denumerably many predicate variables for every �s ∈ S∗.

Let the set of predicate variables for �s ∈ S∗ be denoted by R�s and R =
⋃

�s∈S∗ R�s .
These new symbols allow for building additional atomic formulas of the form

• r(t1, . . . , tn), where r ∈ Rs1...sn is a predicate variable and ti are terms of sorts
si for 1 ≤ i ≤ n ,

and the inductive definition of formulas in FOL is extended by the clause

• If A is a formula and r is a predicate variable then ∃rA is a formula.

∀rA abbreviates ¬∃r¬A.
The semantics of a language LSOL(SIG) is again based on the concept of a

structure S for SIG . Variable valuations are redefined to assign for all s ∈ S and
s1 . . . sn ∈ S∗

• some ξ(x) ∈ |S|s to every individual variable x ∈ Xs (as in FOL),
• some mapping ξ(r) : |S|s1 × . . . × |S|sn → {ff, tt} to every predicate variable

r ∈ Rs1...sn .

The definition of S(ξ)(A) is extended to the new kind of formulas by

• S(ξ)(r(t1, . . . , tn)) = ξ(r)(S(ξ)(t1), . . . ,S(ξ)(tn)),
• S(ξ)(∃rA) = tt ⇔ there is a ξ′ such that ξ ∼r ξ′ and S(ξ′)(A) = tt

where r ∈ R and ξ ∼r ξ′ ⇔ ξ(r̄) = ξ′(r̄) for all r̄ ∈ R other than r . Finally the
notions of validity and consequence from FOL are transferred verbatim to SOL.

A second-order theory (LSOL,A) consists of a second-order languageLSOL and a
setA of non-logical axioms (formulas of LSOL). Models of such theories are defined
as in FOL. Any first-order theory can be viewed as a second-order theory as well.
E.g., the theory LinOrd of the previous section can be made into a second-order
theory of linear orders just by replacing LFOL(SIGlo) by LSOL(SIGlo).

A proper second-order theory for the natural numbers takes the signature SIGNat

and the first six axioms of the first-order theory Nat together with the new induction
axiom

∀r(r(0) ∧ ∀x (r(x) → r(SUCC (x))) → ∀x r(x))

where r ∈ RNAT is a predicate variable. The standard model N is a model of this
theory and in fact it is the only one (up to “isomorphism”; this relation will be made
more precise in Sect. 5.3). So this theory really characterizes the natural numbers.

But the background of Gödel’s Incompleteness Theorem is some inherent in-
completeness of Peano arithmetic and this now becomes manifest at another place:
in contrast to FOL, SOL cannot be completely axiomatized, i.e., there is no sound

Bibliographical Notes 17

and complete formal system for SOL, not even in the simple sense that every valid
formula should be derivable.

This statement has to be taken with some care, however. If we took all valid
formulas of SOL as axioms of a formal system then this would be trivially sound
and complete in that sense. But this is, of course, not what is intended by a formal
system: to allow for “mechanical” generation of formulas. This intention implicitly
supposes that in a formal system the set of axioms is decidable and for any finite
sequence A1, . . . ,An ,B of formulas it is decidable whether A1, . . . ,An � B is a
rule. Since SOL (like FOL) is undecidable, the above trivial approach does not meet
this requirement.

To sum up, a logic LOG with a consequence relation � is called incomplete if
there is no formal system Σ for LOG in this sense such that

�A ⇔ �
Σ
A

for every formula A of (any language of) LOG. According to this definition, SOL is
incomplete.

We finally note that the above considerations are not restricted to SOL. In fact, the
incompleteness result of Gödel may be extended to the following general principle:

Gödel Incompleteness Principle. Let LOG be a logic with a consequence relation �
and LLOG a language of LOG such that every formula of LFOL(SIGNat) is a formula
of LLOG. If there is a decidable set F of formulas of LLOG such that

F �A ⇔ �
N
A

holds for every closed formula A of LFOL(SIGNat) then LOG is incomplete.

(As before, SIGNat = ({NAT}, {0,SUCC ,+, ∗}, ∅) and N is the standard model
of natural numbers.) This shows the fundamental “trade-off” between logical com-
pleteness and characterizability of the natural numbers.

Bibliographical Notes

Logic is a discipline with a long history of more than 2,000 years. Mathematical
logic as we understand it nowadays – investigating mathematical reasoning and it-
self grounded in rigorous mathematical methods – began at the end of the nineteenth
century with Frege’s Begriffsschrift [50], the Principia Mathematica [158] by White-
head and Russell, and other pioneering work. For some time, logicians then had the
“vision” that it should be possible to “mechanize” mathematics by completely for-
malizing it within logic. Gödel’s work, particularly his famous incompleteness re-
sult [57], showed that there are fundamental bounds to this idea.

In the present-day literature, there is a huge number of textbooks on mathematical
logic. The selection of contents and the usage of notions and terminology is not
uniform in all these texts. In our presentation we mainly refer to the books [43, 60,
105, 137].

