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Discontinuous Finite Element Procedures 

The discontinuous finite element method makes use of the same function space as 
the continuous method, but with relaxed continuity at interelement boundaries. It 
was first introduced by Reed and Hill [1] for the solution of the neutron transport 
equation, and its history and recent development have been reviewed by Cockburn 
et al. [2,3]. The essential idea of the method is derived from the fact that the shape 
functions can be chosen so that either the field variable, or its derivatives or 
generally both, are considered discontinuous across the element boundaries, while 
the computational domain continuity is maintained. From this point of view, the 
discontinuous finite element method includes, as its subsets, both the finite element 
method and the finite difference (or finite volume) method. Therefore, it has the 
advantages of both the finite difference and the finite element methods, in that it 
can be effectively used in convection-dominant applications, while maintaining 
geometric flexibility and higher local approximations through the use of higher 
order elements. This feature makes it uniquely useful for computational dynamics 
and heat transfer. Because of the local nature of a discontinuous formulation, no 
global matrix needs to be assembled; and thus, this reduces the demand on the in-
core memory. The effects of the boundary conditions on the interior field 
distributions then gradually propagate through element-by-element connection. 
This is another important feature that makes this method useful for fluid flow 
calculations. Computational fluid dyanmics is an evolving subject, and very recent 
developments in the area are discussed in [4]. 

In the literature, the discontinuous finite element method is also called the 
discontinuous Galerkin method, or the discontinuous Galerkin finite element 
method, or the discontinuous method [1, 2, 3, 5, 6]. These terms will be used 
interchangeably throughout this book. 

This chapter introduces the basic ideas of the discontinuous finite element 
method through simple and illustrative examples. The keyword here is  
discontinuous. Various views have been adapted to interpret the concept of 
discontinuity and three widely accepted ones are presented below [5, 7]. The 
discontinuous finite element formulation for boundary value problems, and overall 
procedures for numerical solutions are presented. The advantages and 
disadvantages of the various methods are also discussed, in comparison to the 
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continuous finite element method. Examples used to illustrate the basic features 
and the solution procedures of the discontinuous finite element formulation are 
given. 

2.1 The Concept of Discontinuous Finite Elements

To illustrate the basic ideas of the discontinuous finite element method, we 
consider a simple, one-dimensional, first order differential equation with u
specified at one of the boundaries: 

0)()( uf
dx
duuC ; ],[ bax  (2.1) 

auaxu )(  (2.2) 

where, without loss of generality, the coefficient C(u) is considered a function of 
the field variable u.  By defining dF = C(u) du, the above differential equation may 
be further written as 

0)(uf
dx
dF  (2.3) 

The domain is discretized such that j = [xj, xj+1] with j = 1, 2, …, N.  Then, 
integrating the above equation over the element j, j, with respect to a weighting 
function v(x),
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and performing integration by parts on the differential operator, we have  
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On j = [xj, xj+1], u is approximated by uh H, H being an appropriate function 
space of finite dimension, and v by vh taken from the same function space as uh,
with j = 1, 2, …, N. Upon substituting (uh, vh) for (uh, vh) in Equation 2.4b, we have 
the discontinuous Galerkin finite element formulation: 
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In the continuous finite element approach, the field variable uh is forced to be 
continuous across the boundary. As we know, this causes a problem of numerical 
instability, when | c(uh) | is large. The essential idea for the discontinuous method is 
that uh is allowed to be discontinuous across the boundary. Therefore, across the 
element, the following two different values are defined at the two sides of the 
boundary: 
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Furthermore, we note that uh is discontinuous only at the element boundaries. 
The solution u and F(u) are smooth within (but excluding) the boundary. By this 
definition, the above equation contains the variables only within the integral limits 

j. There is no direct coupling with other intervals or other elements. The field 
values at a node, or the interface between two elements, are not unique. They are 
calculated using the two limiting values approaching the interface from the two 
adjacent elements. This feature is certainly desirable for problems with internal 
discontinuities, such as those pertaining to shock waves. We will discuss these 
specific problems in the chapters to follow. 

The discontinuous formulation expressed in Equtation 2.5 may be viewed from 
different perspectives, which all involve the cross-element treatments either by 
weakly imposing the continuity at the element interface, or by using numerical 
fluxes, or by boundary constraint minimization. These views are discussed below, 
so that the reader can fully appreciate the concept of discontinuity embedded in the 
formulation. 

2.1.1 Weakly Imposed Cross-element Continuity 

For the continuous finite element solution of boundary value problems, the 
consistency condition often requires that the field variable and its derivative be 
continuous in the computational domain, which implies the cross-element 
continuity requirement for these variables [8, 9]. In the continuous finite element 
formulation, the cross-element continuity is strongly enforced. The discontinuous 
formulation relaxes this continuity requirement, so that the cross-element 
continuity is weakly imposed. This is accomplished if F(u), at the element 
boundaries, is chosen as follows [3, 5]: 

)())(( iih uFxuF   ; )())(( iih uFxuF   (2.7) 

so that the upstream value outside the element interval j is used, following the 
well known treatment for finite difference schemes. With Equation 2.7 substituted 
into Equation 2.5, the following integral equation is obtained: 
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This is one popular formulation for discontinuous finite element solutions. 
Equation 2.8 may be integrated once again with the result, 
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Here we stay with the upwinding rule at xj, because only one boundary 
condition is available and it is applied at xj. For this first order equation, F(uh

+) = 
F(uh(xj+1)) at xj+1. If one works with a second order equation, a similar rule may be 
applied at xj+1. This point will be discussed further in Chapter 4. With these 
choices, the above equation is simplified as: 
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or more often, it is written in terms of a jump across the element boundary, 
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where the jump is defined by 

)]([ juF = )()( jj uFuF  (2.12) 

In deriving the above equations, we have used the upwinding rule: +F(uh(xj)) = +
F(uj

+). This procedure is graphically illustrated in Figure 2.1. 
We now look at the implication of the above equation, i.e., Equation 2.12.  

Here, in essence, the continuity condition at xj is satisfied weakly with respect to 
the weighting function v(x). Note that xj can be an internal boundary or external 
boundary. This is in contrast to the continuous finite element formulation, by 
which the continuity conditions are satisfied strongly across the element 
boundaries, [F(uj)] =0. 
 We note that since v(x) is arbitrary, Equation 2.11 is equivalent to the following 
mathematical statement: 
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Figure 2.1.  An illustration of the jump across xj of element j: xj and xj+1 mark the 
boundaries of the element 

0)()( jj uFuF for   x=xj (2.13) 

0)(
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      for    x (xj, xj+1) (2.14) 

Here, 0)()( jj uFuF also implies that jj uu  for monotone F(u). Thus, 
Equation 2.11 is the weak form of Equations 2.13 and 2.14.  

2.1.2 Numerical Boundary Fluxes for Discontinuity 

Another treatment of the cross-element continuity is based on the use of a 
numerical flux to model F(u). This is demonstrated by Cockburn et al. [2, 3]. 
Using this approach, F(u) is replaced by the following flux expressions: 

),())(( 111 jjjh uuhxuF ; ),())(( jjjh uuhxuF  (2.15) 

with an imposed consistency condition, 

)(),( uFuuh     (2.16) 

Many different types of flux expressions have been used in the literature for 
this purpose, and have been reviewed in a recent paper by Arnold et al. [10]. To 
reproduce Equation 2.5, we may use the following definition for the numerical 
flux: 

)(),( jjj uFuuh     (2.17) 

which basically states that the flux at the element boundary is equal to the flux of 
the upstream element. With the numerical flux, the discontinuous finite element 
formulation for the 1-D problem is recast as 
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It is apparent from the above discussion that construction of consistent 
numerical fluxes is important in discontinuous finite element calculations. These 
fluxes need to be chosen to satisfy numerical stability conditions and various forms 
of numerical fluxes and their stability conditions are given in [3,10]. We note that 
different forms of numerical fluxes may be used to model various types of 
differential equations, and, as such, Equation 2.18 is more general. Selection of 
appropriate numerical fluxes for computational fluid dynamics applications is 
discussed in Chapters 4 7.

2.1.3 Boundary Constraint Minimization 

The third view of the discontinuous treatment across the element boundaries is 
from the element boundary constraint minimization approach. To illustrate this 
view, we apply the Weight Residuals method to both the elements and their 
boundaries,  
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Performing integrating by parts on Equation 2.19 and noting that the test 
function does not have to be continuous across the boundaries because of the 
intrinsic assumptions associated with a discontinuous finite element formulation, 
we have the following expression: 
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where (u, v) are approximated by (uh, vh). Different forms of the weighting function 
may be used. One of the simple forms uses a linear combination of vh(x), defined 
on two adjacent elements as 

jjjh vvxv )1()(     (2.21) 

With the above equation substituted into Equation 2.20, one obtains the 
following formulation: 
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This expression of the formulation is also general. In fact, when  = 1, one 
recovers the upwinding approach, as in Equation 2.11. On the other hand, if we 
carry out the integration once more and define the numerical flux as follows:  

)()1()(),( jjjj uFuFuuh     (2.23) 

then Equation 2.22 reduces to Equation 2.18. 
From the examples given above, a discontinuous element formulation can be 

constructed in three different ways: (1) by weakly imposed boundary conditions 
across element boundaries (Equation 2.11), (2) by the use of numerical flux 
expressions at the element boundaries (Equation 2.18), and (3) by the minimization 
of constraints across element boundaries (Equation 2.22). We note that while these 
three approaches treat cross-element discontinuities differently, they all fall into the 
general category of the Weighted Residuals method [6]. The first two involve the 
integration by parts, while the third one does not. If equations are written in non-
conservative form, or if a conservative form does not exist, it is not straightforward 
to perform partial integration of the equations, because there is no “flux”. In this 
case, the boundary minimization is more convenient for developing a 
discontinuous finite element formulation for these equations. 

2.1.4 Treatment of Discontinuity for Non-conservative Systems 

As stated in Section 1.7, a system of differential equations may be written in the 
“divergence” or “conservation law” form. By the definition given in Section 1.7, 
Equation 2.3 is in a conservative form, while Equation 2.1 is not. 

In numerical analyses, the primitive variable is often solved instead of the flux 
function F(u), and thus Equation 2.1 needs to be applied directly. In this case, from 
the definition, dF(u)=C(u) du, we may write, 
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where iii uuu][  is the jump across the element boundary. Since u is a smooth 
function, and [u] i is small, we may numerically approximate the integral by a mid-
point rule, 
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The relations given in the above two equations allow us to rewrite Equation 
2.22 in the following form: 
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The last term, however, can be discarded without affecting the accuracy [3]. 
Thus, for the non-conservative equation stated in Equation 2.21, the discontinuous 
formulation is: find uh(x) Pl ( j) such that 
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where Pl ( j) is a piecewise polynomial of degree l defined over the interval j = 
[xj, xj+1]. The boundary terms are set at 0

1
0 uu and 1 1.N Nu u

2.1.5 Transient Problems 

The discussion thus far has been limited to steady state problems. As with other 
methods, the treatment of the cross-element discontinuities can be readily extended 
to develop discontinuous finite element formulations for transient problems. Let us 
illustrate this point by considering a 1-D transient problem of hyperbolic type, 
sometimes referred to as convective wave equation, or convection equation, which 
is mathematically stated as 

0
x
uc

t
u ,            c > 0, [ , ],x a b 0t     (2.28) 

where c is a constant. Any of the above formulations can be applied to develop the 
needed integral formulation for a discontinuous finite element solution. Here we 
take the boundary constraint minimization approach and integrate the above partial 
differential equation with respect to a weighting function v(x), whence we have the 
following result: 
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For a typical interval, j = [xj, xj+1], j = 1, …, N, the above equation reduces to 
the following form after integrating the second term: 
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Comparing this with Equation 2.22, and noticing that F(u) = cu for this problem,  
we see that the transient term enters the integral description directly, as in the 
continuous finite element method.   

2.2 Discontinuous Finite Element Formulation 

We may extend the discussions on the 1-D examples to consider a more general 
class of problems and formally introduce the discontinuous finite element 
formulation for boundary value problems.  

2.2.1 Integral Formulation 

Let us consider a partial differential equation, written in the form of the 
conservation law for a scalar u,

0)( bu
t
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To start, the computational domain is broken into a tessellation of finite 
elements 1 .N

j j  The field variable u is approximated by the interpolation 
function uh, defined on each element j. Since the function uh is allowed to be 
discontinuous across the element boundaries for discontinuous formulations, the 
finite element space, over which uh is defined, is sometimes referred to as finite 
element broken space, to differentiate it from continuous finite element space [11]. 
The broken space is denoted by j

hV and 2 ( )j
hV L , where L2( ) is the Lebesgue 

space of square integrable functions, defined over .
 If the above equation is integrated over j with respect to a weighting function 
v, one has the weak form expression: 
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We now perform integration by parts on the second term involving the 
divergence of flux and obtain the nornal fluxes along the boundary. This procedure 
yields the following result:  
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where n is the local outnormal vector on the element boundary j. By substituting 
numerical fluxes along the element boundaries,  

),( uuFnnF       (2.34) 

Equation 2.33 can be integrated numerically. The construction of numerical fluxes 
is important, and there are many different fluxes for popular fluid flow and heat 
transfer problems. These fluxes will be discussed in subsequent chapters for 
specific applications. 

The integration of Equation 2.33 with an appropriate choice of numerical fluxes 
will result in a set of ordinary differential equations, 
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where U(j) is the vector of nodal values of variable u associated with element j, K
the stiffness matrix, M the mass matrix, and F(j) the force vector consisting of 
contributions from the source and boundary terms.  

2.2.2 Time Integration 

Time integration can proceed, in theory, by using the general approaches for the 
solution of initial value problems. Two important points, however, are noted when 
the time integration is carried out for Equation 2.35. First, since the discontinuous 
formulation is a local formulation, it often leads to standard explicit structures. 
Thus, the explicit methods for time integration are preferred with discontinuous 
finite element formulations, whenever possible. Of course, this does not mean that 
the implicit method is not possible. In practice, both explicit and implicit 
integrators can be applied, though the latter is much less frequently used with 
discontinuous formulations. Second, since the explicit methods are prone to 
numerical instability, appropriate stability analysis is needed for the time 
integration schemes [13–15]. Fortunately, stability criteria have been established 
for the most commonly used time integration methods for the fluid flow and heat 
transfer applications. 

The following equations show some of the commonly used time integration 
schemes for the discontinuous finite element applications.  
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(1) First order Euler forward:  
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(2) Second order scheme: 
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(3) Third order scheme: 
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(4) Fourth order scheme: 
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schemes are explicit, the time step has to satisfy the CFL (Courant–Friedrich– 
Lewy) condition for stability. While they represent some of the popular choices, 
other schemes are also possible. For example, a Total Variation Diminishing (TVD)
scheme has been used for oscillation-free shock wave simulations [15]. It is noted 
that time integration can be most efficiently calculated if the mass matrix is 
diagonalized when an explicit scheme is used. For this purpose, the orthogonal 
hierarchical shape functions presented in Chapter 3 have been proven to be 
extremely useful. The use of these transient schemes will be discussed in 
subsequent chapters for the numerical solution of specific problems of fluid 
dynamics and heat transfer. 

An implicit time integration scheme may also be used with a discontinuous 
finite element formulation. However, the use of an implicit scheme results in an 
even larger global matrix than a conventional finite element formulation, thereby 
eliminating the advantage of localized formulation associated with discontinuous 
finite elements. Consequently, almost all discontinuous finite element formulations 
presented thus far use the explicit time integration scheme for the solution of 
transient problems, for the purpose of facilitating the parallel computation 
associated with a local formulation. 
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2.3 Solution Procedures  

We now consider the general computational procedure by which the discontinuous 
finite element method is used to obtain numerical solutions. From the above 
discontinuous formulations, it is clear that this method is local, in that the weakly 
imposed across-element boundary conditions permit the element-wise solutions. 
For each element, the elemental calculation is required, and is essentially the same 
as that used in the continuous finite element method. Also, as for the continuous 
counterpart, the discontinuous Galerkin formulation is obtained when the same 
interpolation functions are used for both unknowns and the trial functions.  

One important implication of the above discontinuous formulation is that, 
because of a weakly imposed boundary condition across adjacent elements, a 
variety of elements or shape functions, including the discontinuous shape 
functions, can be chosen for computations. As a result, the discontinuous 
formulation embeds the continuous finite element and the finite volume/finite 
difference formulations. If, in particular, a constant element is chosen, then the 
formulation boils down to the traditional finite difference method. On the other 
hand, if the continuous function is chosen, and the cross-boundary continuity is 
enforced, one implements the continuous finite element method.  

We note that the discontinuous finite element method falls also into the general 
category of the Weighted Residuals method for the solution of partial differential 
equations. Various familiar forms of domain- and boundary-based numerical 
methods can be derived from this general integral formulation, depending upon the 
choice of the weighting functions. For the Galerkin formulation, the weighting 
functions are chosen the same as the shape functions. The weighting functions, 
however, may be chosen differently from the shape functions. For example, if 
Green’s functions are chosen as weighting functions, then the well known 
boundary element formulation of boundary value problems is obtained [16].  

2.4 Advantages and Disadvantages of Discontinuous Finite 
Element Formulation 

In comparison with the other numerical methods (finite difference and finite 
elements), the discontinuous finite element formulations have both advantages and 
disadvantages. It is important to understand these issues for developing specific 
applications.

2.4.1 Advantages 

In discontinuous formulations, the interelement boundary continuity constraints are 
relaxed. Various upwinding schemes, proven successful for convection-dominant 
flows, can be easily incorporated through element boundary integrals that only 
involve the spatial derivative terms in the equations. Inside the elements, all terms 
are treated by the standard Galerkin method, leading to classical symmetric mass 
matrices and standard treatment of source terms. 
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Higher order approximations are obtained simply by increasing the order of the 
polynomials or other basis functions. The decoupling of the upwinding convection 
terms, and the other terms, yields a very attractive feature of the discontinuous 
method, especially in the case of convection-dominant problems. This method 
performs very well, and in fact it is often better than the SUPG method, for 
advection type problems. Even for linear elements, this method performs 
remarkably well [6]. 

The coupling between element variables is achieved through the boundary 
integrals only. This means that u/ t and the source terms are fully decoupled 
between elements. The mass matrices can be inverted at the element level, 
rendering the U(j)/ t explicit. With an appropriate choice of orthogonal shape 
functions, a diagonal mass matrix can be obtained, thereby resulting in a very 
efficient time marching algorithm. 

The discontinuous finite element formulation is a local formulation and the 
action is focused on the element and its boundaries. Whatever the space dimension 
or the number of unknowns, the formulation remains basically the same and no 
special features need to be introduced.  

Because of the local formulation, a discontinuous finite element algorithm will 
not result in an assembled global matrix and thus the in-core memory demand is 
not as strong. Also, the local formulation makes it very easy to parallelize the 
algorithm, taking advantage of either shared memory parallel computing or 
distributed parallel computing.  

Also, because of the local formulation, both the h- and p-adaptive refinements 
are made easy and convenient. Compared with the continuous finite element 
method, the hp-adaptive algorithm based on the discontinuous formulation requires 
no additional cost associated with node renumbering.  

2.4.2 Disadvantages 

Like any other numerical methods, the discontinuous finite element method has its 
drawbacks. The blind use of this method would certainly result in a very inefficient 
algorithm. In comparison with finite elements using continuous basis functions, the 
number of variables is larger for an identical number of elements [7, 17]. This is 
obvious from the formulations given above, and is a natural consequence of 
relaxing the continuity requirements across the element boundaries. 

Since the basis and test functions are discontinuous across element boundaries, 
second order spatial terms (diffusion) need to be handled by mixed methods, which 
enlarge the number of unknowns, or other special treatments. This is a serious 
drawback, when compared to the continuous methods where elliptic operators are 
handled relatively easily. Also, our experience with the heat conduction or 
diffusion problems indicates that if stabilization parameters are not used, the 
element matrix may become singular and thus pollute the numerical solution. The 
solution algorithm, based on the discontinuous formulation in general, is inferior to 
the continuous finite element method in its execution speed for pure conduction or 
diffusion problems, in particular steady state heat conduction and diffusion 
problems. Thus, for these problems, if memory is not a constraint in applications, 
the discontinuous formulation should be avoided. 
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In computer-aided thermal and fluids engineering design applications, complex 
numerical models are often required to represent a wide range of thermal and fluid 
flow phenomena. It is, therefore, unlikely that one single method would be best 
suited for modeling all the physical phenomena in a thermal/fluid system. Thus, a 
combination of methods, best suited for modeling certain types of phenomena, 
would be required, in order to develop the most efficient algorithms for specific 
applications. These issues are explored further in subsequent chapters of this book. 

2.5 Examples 

The examples in this chapter are selected for the purpose of illustrating the basic 
concepts of the discontinuous finite element formulation, and the general solution 
procedures for the numerical solution to boundary value problems. As a result, 
very simple problems are considered.  

Example 2.1. Apply the discontinuous Galerkin finite element method to obtain the 
numerical solution of the following initial value problem: 

   1
dx
du        with     u(0) = 0; ]2,0[x  (2.1e) 

and compare the numerical results with the analytical solution with the domain 
discretized by two linear elements.   

Solution. The analytic solution to the problem is simple, u = x. Now, following the 
procedure in Section 2.1 leading to the element-wise formulation, we have the 
following integral equation with F replaced by uh and v by i:
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du x f u x dx u u x
dx

  (2.2e)    

where i is the shape function. Now the domain is discretized into two elements, as 
shown in Figure 2.1e. 

For simplicity, a linear interpolation is used for each of the elements. When an 
isoparametric shape function is used, we have the following relations: 

Figure 2.1e.  Discretization of the domain into two elements 

x = 0 x = 1 x = 2 
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2211 uuuh  ,   )1(5.0)(1  ,   )1(5.0)(2

2211 xxx ; dxxxdxddx )(5.0 122211

2
2

1
1 u

dx
du

dx
d

dx
duh ; 125.011

dx
d

d
d

dx
d

; 12

dx
d

Applying Equation 2.11 to the first element x [0, 1], and making use of the 
condition )0(0 uu = 0, one has  

   
1

0
0

1 ( ) (0) 0h
i i

du x dx u
dx

     (2.3e) 

Now with 10 uu , 1)1()0( 11 x , and 2)1( uxu  and with the 
unknown variable replaced by its local approximation using interpolation functions 
in Equation 2.3e, the following expression is obtained for the first element: 

   
1 1

1 1 1 11 2

0 02 2 2 2

1 0
,

0 0
u ud d dx dx

dx dx u u
     (2.4e) 

For this problem, the integration can be carried out analytically, whence we 
have the results, 

1 1
1 1 2

0 12

11, 1, 1
4 1

d d dx d
dx dx

   
1

1

1 , 11
4 1 , 1

d =
4,4
4,4

8
1 =

1,1
1,1

2
1      (2.5e) 

121 1
1 1

120 12
1

(1 )(1 )1 1
2 8(1 ) (1 )

dxdx d
d 1

1
2
1

4
4

8
1

        (2.6e) 

Substituting Equations 2.5e–2.6e into Equation 2.4e yields the follwing matrix 
equation,  

   1 1

2 2

1, 1 1 0 11 1
2 21, 1 0 0 1

u u
u u

     (2.7e) 

which can be solved for u1 and u2,
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   1

2

1, 1 1
1,1 1

u
u

    =>       
1
0

2

1

u
u

 (2.8e) 

where )0(1 uu  and )1(2 uu .
Now the same procedure is applied to the second element x [1, 2] with the 

result, 

2

1

( ) 1 ( ) (1 ) (1 ) ( ) 0h
i i j

du x x dx u u x
dx

 (2.9e) 

At this point, u(1 ) = u2 is known from Equation 2.8e. Furthermore, if the 
upwinding scheme is used, the following matrix equation is then obtained: 

2
1 1 11 2

1 2 2 2

1 0
,

0 0
u ud d dx

dx dx u u
1

1

0 2 2

1 0 (1 )
0 0

udx
u

  (2.10e) 

The detailed integration is almost the same as for the first element,  

1 1

2 2 2

1, 1 1 0 1 1 0 11 1
2 21, 1 0 0 1 0 0

u u
u u u

 (2.11e) 

Rearranging, we have the solution for the second element, 

1

2

1, 1 3
1, 1 1

u
u

    =>   
2
1

2

1

u
u

 (2.12e) 

where u1 = u(1+) and u2 = u(2 ). The numerical results for this elementary example 
are: u0 = 0, u1 = 0.5(u(1+) + u(1 )) = 1 and u2 = 2.

As discussed above, the discontinuous shape functions may be used because the 
field variable is considered discontinuous across the boundary. The use of 
discontinuous shape functions to obtain the same numerical results is illustrated in 
the following example.  

Example 2.2. Re-solve the problem defined in Equation (2.1e) using geometrically 
discontinuous linear elements. 

Solution. For the purpose of demonstration only, we consider the discontinuous 
shape function for the first element that is normalized at x1 = 0.2 and x2 = 0.8, 
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which corresponds to  =0 and  =1 respectively, as shown in Figure 2.2e. Thus the 
following expressions are obtained: 

2211 uuuh ; )8.0/1(5.0)(1

2211 xxx ; )8.0/1(5.0)(2

4/35.08.0/)(5.0 122211 ddxxxdxddx

2
2

1
1 u

x
u

xx
uh ;

6.0
1

2.08.0
8.02

8.02
111

xx

6.0
1

2.08.0
8.02

8.02
122

xx

Figure 2.2e.  An illustration of two linear discontinuous elements 

To calculate the integration limits for the normalized coordinate  that 
correspond to x = 0 and x = 1, we make use of the isoparametric element to obtain 
the integration limits: 

8.0)8.0/1(5.02.0)8.0/1(5.00 2211 xxx  => 4 / 3

8.0)8.0/1(5.02.0)8.0/1(5.01 2211 xxx  => 4 / 3

These expressions and integration limits are now substituted into Equation 2.11 
for the first element and the resultant equation can be integrated analytically, 
whence we have 

1
1 11 2

0 2 2
,

ud d dx
dx dx u

1
1 1 1

1 2
02 2 2

4 / 3
4 / 3 , 4 / 3

4 / 3
u

dx
u

 (2.13e) 

x = 0 x = 1 x = 2 

0.8 1.20.2 1.8
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1
1

0 2
dx =

4/ 324 /3

24 /3 4/ 3

1 / 0.81 / 0.83 2.4
16 321 / 0.8 1 / 0.8

d

 =
1
1

2
1  (2.14e) 

1 4/3
1 1 2

0 4/ 32

1 / 0.81, 1, 1
3.2 1 / 0.8

d d dx d
dx dx

4/3

4/3

1 / 0.8 , 1 / 0.81
3.2 1 / 0.8 , 1 / 0.8

d

3/4

3/4
22

22

8.0/1,8.0/1
8.0/1,8.0/1

8
1 =

1,1
1,1

2.1
1      (2.15e) 

1
1 2

2

4 / 3 4 / 3
4 / 3 , 4 / 3 4 / 3, 1/ 3

4 / 3 1/ 3

14
416

9
1      (2.16e) 

The above results are combined to yield a matrix equation for the first element,  

1,1
1,1

2.1
1 +

14
416

9
1 =

3,3
3,3

6.3
1 +

4.0,6.1
6.1,4.6

6.3
1

 =
4.3
4.1

,6.4
,4.3

6.3
1      (2.18e) 

1

2

3.4, 1.41
3.6 4.6, 3.4

u
u

=
1
1

2
1  (2.17e) 

Equation 2.17 is then solved to obtain the numerical solution, 

1

2

3.4 1.4 1.8
4.6 3.4 1.8

u
u

=>
2

1

u
u

=
8.0
2.0

 (2.19e) 

We see that u1 = u(x = 0.2) = 0.2 and u2 = u(x = 0.8) = 0.8, which match with the 
exact solutions. It is a simple exercise to show that the calculations for the second 
element yield the same results as in Example 2.1.   
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Example 2.3. Consider this internal radiation problem, defined by the following 
differential equation and boundary condition: 

1u
dx
du ,   with    00xu    (2.20e) 

Obtain the numerical solution using the discontinuous Galerkin finite element 
formulation with two linear discontinuous finite elements, and compare the results 
with the exact solution. 

Solution. We first obtain the analytical solution to the problem above. The problem 
is solved by direct integration and the solution is u(x) = 1 e x.  Application of the 
discontinuous finite element formulation for the first element gives the result, 

1

0
0

1 ( ) (0) 0h
h i i

du u x dx u
dx

   (2.21e) 

where we have applied u0  = u(0 ) = 0. Now with u0
+ = u1 = 0,  1(x = 0) = 1(   =  

–1), u(x  = 1) = u2 substituted, one has 

1 1
1 1 1 1 11 2

1 2
0 02 2 2 2 2

1 0
, ,

0 0
u u u

dx dx
x x u u u

1
1

0 2
dx    (2.22e) 

The detailed calculations are the same as before, whence we have the following 
expressions: 

1
1

0 2

11
2 1

dx ;
1

1 1 2

0 2
, dx

x x
=

1,1
1,1

2
1    (2.23e) 

The additional term comes from the treatment of u(x), 

1 1
1 2

2
,

j

j

x

x
dx

1

1

11 1 , 1
8 1

d

 =
2 21

221

1 , 11
8 1 , 1

d =
1

1
3

3
13

3
1

3
3
13

3
1

1,
,1

8
1

 =
3
8

3
4

3
4

3
8

,
,

8
1 =

2,1
1,2

6
1    (2.24e) 
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Assembling these expressions into Equation 2.33, one has the matrix equation, 

1 1 1

2 2 2

1, 1 2, 1 1 0 11 1 1
2 6 21, 1 1, 2 0 0 1

u u u
u u u

 (2.25e) 

Simplifying, we have the following numerical results for the first element: 

1

2

5, 4 3
2,5 3

u
u

 =>
0.636

091.0
)1(
)0(

2

1

u
u

u
u

 (2.26e) 

where u1 = u(0+) and u2 = u(1 ).  This compares with the analytical solution: u(0) = 
0 and u(1) = 0 .632.   

For the second element, the same procedure is applied with the result, 

11 1 1

2 2 2 2

1, 1 2, 1 1 0 1 1 01 1 1
2 6 21, 1 1, 2 0 0 1 0 0

u u u u
u u u u

  (2.27e) 

Rearranging and setting u1
– = u(1 ), we have the numerical values for the second 

element, 

1

2

5, 4 75 11
2,5 3

u
u

 =>
0.868
0.669

)2(
)1(

2

1

u
u

u
u

 (2.28e) 

which compares with the analytical solution: u(2) = 0.865. 
For this simple example, the solutions can be readily obtained using the 

continuous finite element method or the finite difference method. For comparison, 
the numerical results using different methods are listed in Table 2.1e, and 
compared with those calculated using the analytic solution. 

Table 2.1e.  Comparison of numeric results with analytical solution 

x 0 1 2 
DFEM u(x) 0.04545 0.653 0.868 

Analytic (1 e x) 0 0.632 0.865 

DFEM u(x ) 0 0.636 0.868 
FEM 0 0.643 0.857 
FD 0 0.500 0.750 

In Table 2.1e, the values of DFEM u(x) are obtained using the averaged 
quantities across the element boundary: that is, u(x) = 0.5(u(x ) + u(x+)). The 
solution is better approximated if we take u(x) = u(x ), as shown by those given in 



 Discontinuous Finite Element Procedures 41 

the row associated with DFEM u(x ). The standard continuous finite element 
solution (FEM) is reasonably good, although not as good as the discontinuous 
finite element solution (DFEM u(x )). The standard finite difference approximation 
(FD), with upwinding, seems to be least accurate for this problem.    

Example 2.4. Consider a two-dimensional convection problem defined by the 
following differential equation and boundary condition: 

0
y
u

x
u

t
u ],0(],[],[ Tx  (2.29e) 

with periodic boundary conditions and initial data 

)sin()sin(0,, yxtyxu  (2.30e) 

Obtain the numerical solutions using the discontinuous finite element method and 
discuss parallel computing performance.   

Solution. This problem was solved by Biswas et al. [18], and is used here as an 
example to demonstrate the parallel performance of the discontinuous finite 
element method. Their algorithm employed a discontinuous Galerkin finite element 
discretization, with a basis of piecewise Legendre polynomials. Temporal 
discretization employes a Runge–Kutta method. Dissipative fluxes and projection 
limiting prevent oscillations near the solution discontinuities. Parallel computing 
used from 1 to 256 processors. The computed results are given in Table 2.2e.  It is 
seen from the results that, as the number of processors increases while keeping the 
work per processor constant, the discontinuous finite element method achieves a 
very impressive parallel computing performance. 

Table 2.2e. Scaled parallel efficiency: solution times (without I/O) and total execution 
times, measured on the nCUEE/2 

Number of 
processors

Work (W) Solution 
time (s) 

Solution
parallel

efficiency

Total
time (s) 

Total parallel 
efficiency

1 18432 926.92 927.16
2 36864 927.06 99.98% 927.31 99.98% 
4 73728 927.13 99.97% 927.45 99.96% 
8 147456 927.17 99.97% 927.58 99.95% 

16 294912 927.38 99.95% 928.13 99.89% 
32 589824 927.89 99.89% 929.90 99.70% 
64 1179648 928.63 99.81% 931.28 99.55% 
128 2359296 930.14 99.65% 937.67 98.88% 
256 4718592 933.97 99.24% 950.25 97.57% 
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Exercises

1. Show that when a delta function is chosen as the weighting function, the 
Weighted Residuals formulation gives the finite volume scheme.  

2. Solve the problem defined by Equation 2.1e using five linear elements and 
compare with the analytic solution. 

3. Solve Example 2.1e using five linear continuous finite elements and five 
finite volume cells. Compare the results with the results in Exercise 1 and 
the analytical solution. 

4.  Complete the calculations in Example 2.2e for the second element and 
compare with the analytic solution. 

5.  Apply a discontinuous finite element formulation to solve the problem 
defined by Equation 2.20e when the domain is discretized into six linear 
elements. 

6.  Solve Equation 2.20e using six linear continuous finite elements and six 
finite volume cells respectively and compare the results with those obtained 
in Exercise 5. 

7. Use discontinuous finite element formulation and three quadratic elements 
to solve Equation 2.20e and compare with the results obtained in Exercise 5. 

8. Develop a computer code for a discontinuous finite element solution to 
Equation 2.20e, and compare the results obtained from the code with those 
calculated in Exercises 6 and 7. 
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