
Preface
This book is organised into a large number of brief, self-contained entries.

Admittedly, there is no such thing as a self-contained entry. For exam-
ple, you need some knowledge of English to understand this paragraph.
But, the principle is that each entry, of one or two pages, is a conceptual
whole as well as a part of a greater whole (see note 20) in the same way
that a car has four whole wheels, and not eight half wheels.

Some entries are intended to demonstrate a technique, or introduce an
historically contingent fact such as the actual syntax of a contemporary
language, or in this case, a specific issue regarding this book. Others
are intended to illustrate a more eternal truth. They may be about a
contemporary language, but stress a philosophical position or broadly
based attitude. Both of these I have called notions. Finally, there are
entries that are intended to cause the reader to do something other than
just nodding their head as a sign of either agreement or an incipient
dormant state. These are the exercises.

The distinction can only be arbitrary; the classification is merely a guide
to suggest the sense in which the pages are intended.

In many cases, entries that are not specifically labelled as exercises in-
volve generic opportunities for self-study. As this is a book on computer
programming, it is natural and strongly advised that the reader try im-
plementing each concept of interest as it arises. With this in mind, I
have tried hard not to leave out pragmatic details whose omission would
leave the reader with nothing but the illusion of understanding. Nev-
ertheless, actually cutting practice code makes a big difference in the
ability of the programmer to use the concepts when the need arises.

At the end of the book are the notes explaining short and simple issues
or (paradoxically) issues that are too complex to explain in this book.
If a note became too lengthy while being written it was converted into
a notion or an exercise.

Chapter 2

A Grab Bag of Computational Models

In which we take the view that designing software is the technological
aspect of computer science in analogy to the designing of hardware being
the technological side of electronic science. We find that there is a smooth
shift from one to the other, with firmware in the twilight zone.

Knowing that a hardware engineer or technician requires a grab bag
full of formal models of the material at hand, small enough and simple
enough to submit to analysis, realistic enough to be relevant, we admit
that a programmer likewise needs a collection of software models: pure
archetypical computational mechanisms that assist analysis and design
of practical software in the real and very impure world.

We recognise that every piece of software is a virtual machine. And so,
study a collection of specific abstract models, including Turing machines,
state machines, Von Neumann machines, s-code reduction, lambda cal-
culus, primitive recursive functions, pure string substitution expression
reduction, etc.

We learn about unification-reduction, which has been rightly referred to
as the arithmetic of computer science, acting both as a low- and high-
level concept. It is a first model of every computer language so far de-
vised. The substitution of equals for equals is a beguilingly simple con-
cept; we learn that it is a deeply powerful representation of computation
itself. Computation is constructive logic, the propositional and predicate
calculi being the foundational material.

18 Theoretical Introduction to Programming

Notion 8: Abstract and Virtual Machines

We do not know how the universe actually works.

Through whatever process pleases us, scientific or otherwise, we decide
to act on incompletely justified assumptions about the possible effects
of our actions. A physical machine, be it a can-opener or a computer,
is always designed as an idealised conception in our minds. For digital
computers, we construct small component machines whose behaviour
may be finitely described.

The nand gate takes two in-
puts, whose values may only
be 0 or 1, and so the out-
put can be listed explicitly
for each of the four possible
input combinations.

a b a nand b
0 0 1
0 1 1
1 0 1
1 1 0

We may also conceptualise a component as a physical device.

a

b
a nand b

While this might (or might not depending on your background) appeal
more strongly to your intuition, it is still a virtual machine, an abstract
construction, or an idealised conception of our minds.

Inspired by this concept, we build a physical device that is supposed to
work in like manner. In reality it never does. If we are smart then we
know that it does not. But it works correctly, under the right conditions,
to sufficient accuracy, with sufficient probability, to make it practical to
assume that it will work.

Abstract devices abound. They include everything from idealised can-
openers to spacecraft complete with navigational software and zero-

A Grab Bag of Computational Models 19

gravity toilet. But, in this discussion we concentrate on abstract digital
computational machines. Generically this will involve a finite symbolic
state that changes in time.

Any computer language defines an abstract machine.

The distinction between an abstract machine and a virtual machine is
that we have an implementation of the virtual machine.

Pragmatically, there is little to distinguish the nature of the firmware or
hardware virtual machine from the pure software virtual machine.

For example, Java is said to operate on the Java Virtual Machine or
JVM, which is typically implemented in software. But we could equally
build a JVM chip. The JVM is just an orthodox Von Neumann archi-
tecture, and would be easy to design and manufacture. We could also
build a CVM to run our C programs. In a strong sense that is exactly
what the compiler is.

Micro-coded machines have machine code in which each instruction is
actually a small program written in a simpler lower-level machine code.
Thus, the supposed hardware, the target for an assembler, is actually
being emulated on even lower level-hardware.

Software is easy to modify; firmware can be modified with moderate
effort; and hardware is typically difficult to change. As components
become smaller towards the size of atoms and electrons, we find less
ability to control them directly via high-level software in our machine,
but there is no precise cutoff.

The difficulty of modifying hardware is contingent. Programmable gate
arrays can be modified in normal operation. Research is ongoing into
ways in which the arrangement of transistors on the chip may be dy-
namically modified. In the longer run, hardware may be just another
form of software.

Conceptually, they are all virtual machines.

20 Theoretical Introduction to Programming

Notion 9: State Machines

The interactive state machine concept is central computational technol-
ogy. To apply this concept we first identify its four components. The
device must be distinct from its environment. A wristwatch, for exam-
ple, is distinct from its wearer. The device must internalise information.
A wristwatch stores the time. The device must act externally. A wrist-
watch may display the time, or sound an alarm. The user must act on
the device. The wearer may push buttons or turn knobs on the watch.
Finally, the device must exist in time, responding to actions of the envi-
ronment by actions of its own, and by modifying its stored information.
Any computer, analogue or digital, is a state machine.

Discreteness is definitive of digital technology. Quantities are discrete
if each may be distinguished by a definite amount from all others. The
display of a digital watch is discrete because the numerals are distinct
from each other. In contrast, the possible positions of the second hand of
an analogue watch form a continuum. No matter how good our eyesight,
there are always two locations so close together that we cannot tell them
apart. Pushing a button is a discrete action — we either manage to
push the button, or we do not. Turning a knob is continuous; we may
turn the knob a little or a lot, with indefinite shades in between. A
digital watch might act only ten times a second, it operates at discrete
times. An analogue watch responds continuously to the continuous turn
of the knob. The state of the analogue watch is a continuous voltage
or position, while the digital watch stores only a collection of discrete
symbols.

On closer examination, most analogue watches are discrete state. The
second hand moves by distinct jumps. But looked at even more closely,
the jumps of the second hand are fast, but continuous. So are the
changes in the display of a digital watch. It is an open question whether
the universe is ultimately discrete or continuous. In practice, the ques-
tion is resolved by asking which model most simply describes the inter-
esting behaviour to the desired accuracy. In programming, we model a
digital computer as having a discrete state, display, input and action.
This is referred to as a discrete state machine. If the states, display,
input, and actions performed in a finite time are all finite, we refer to
this as a finite state-machine.

A Grab Bag of Computational Models 21

Another example of a discrete-state machine is a video cassette player
interface. Each step is discrete. As we operate the machine we switch it
from one state to another. The validity of an input varies from state to
state. The video player responds by showing information on its display
and updating the information that it stores.

date

new date

stop time

Channel

Start

Recall

start timeP

R ok

cancel

cancel

today

new

enter enter

enter
2

1

3

As above, we can draw a diagram, a network of nodes and links that
represents the states and transitions of the state machine. The input is
written on the links, and the output (not indicated in the above diagram)
may be thought of as being dependent on the state. This notion may
be given a much more precise formalism. (see page 103).

A state machine may be used to map input strings to output strings
(see page 22). This can either be used as a program, mapping an input
question to the output response, or as a temporal interaction for interac-
tive systems such as communication protocol implementation, and user
interface design.

Explicit use of state machines is most important for embedded con-
trollers and communication devices. Often such a machine is written
up as an array of transition and state information (see page 110). State
machines can be implemented easily by a microprocessor, but also rather
nicely by regular arrays of logic gates.

22 Theoretical Introduction to Programming

Notion 10: State Machines in Action

State machines (see page 20) can operate on symbolic strings in a variety
of ways. Fundamentally, it maps a symbolic string to a sequence of
states and transitions. If we associate a symbol with the state (a Moore
machine) or transition (a Mealy machine), then we have a string-to-
string map. Alternatively, by taking the last symbol of the output string,
we obtain a string to symbol map in either case.

A B

1

00

1

The state machine on the left responds to a
{0,1} string on its input with an {A,B} string
on its output. If the machine starts in state
A, then 0011010 is mapped to AAABAABB.
The machine will be in state B exactly when
the number of 1s so far is odd. Thus, state B
is the odd parity state, and state A is the even
parity state. The final symbol (in this case B)
shows us the parity of the whole input string.

Indicating state A as the starting state, this machine is said to recognise,
at state B, even parity strings. The final state, A or B, classifies the input
string as even or odd parity.

For a Moore machine the output string is one symbol longer than the
input string. For a Mealy machine the lengths are the same. Sometimes,
since the starting symbol does not depend on the input string, the start-
ing symbol is ignored in a Moore machine. But in the above example
the parity of an empty string is even, and the output "A" is correct. A
Mealy machine would not provide this output, but we can fix this by
providing a start of string indicator. By using these and similar tricks,
either machine can be used equally.

In the parity example, there is an output symbol for every state. We may
relax this condition so that some states, or transitions, do not generate
an output symbol. In this case, the string mapping behaviour of the
Moore and Mealy machines is identical.

Explicit coding of state machines is most typically advisable in tem-
poral interaction. User interfaces, communications systems, parsing of
languages, and embedded control code all can benefit from this approach.

A Grab Bag of Computational Models 23

A state machine may be hard-coded by a systematic use of nested con-
ditionals, with a variable storing a state number. The state number is
tested and set to the new state. Procedural code and state machine code
tend to fight each other. It is still possible for them to coexist, even call
each other. But they should normally be written separately, and from a
different point of view.

state = 0;
while(state<2)
{
putchar(state==0?’A’:’B’));
c = getchar();
if(state==0 && c==’0’) state=0; else
if(state==0 && c==’1’) state=1; else
if(state==1 && c==’0’) state=1; else
if(state==1 && c==’1’) state=0; else
state=2;

}
putchar(state==0?’A’:’B’))

Rather than hard-coding the machine, an array can store output for
given state. Another array can store new state versus old state and
input. Generic code can then be used for the heart of the machine.

state = 0;
while(putchar(output[state]))
{
input = parse(getchar());
if(input==error) break;
state = next[state,input];
}

In some cases, it is best for the ar-
rays to be replaced by functions,
since either the size of the state
machine or a lack of knowledge of
its structure may prevent explicit
listing of the states and state tran-
sitions.

Typically, the table driven approach (see page 110) to implementing a
state machine is the most practical, as well as being the closest to the
formal algebra (see page 103). This close association between the most
formal and the most pragmatic approach to a datatype is very common,
more than is often realised, and should be design focus.

24 Theoretical Introduction to Programming

Exercise 1: Virtual Machines

Design a pneumatic digital computer. (See hints below.)

Separate in your mind computers from electronics. The first fully fledged
digital computer designed (by Charles Babbage) was mechanical, and
was largely the same as the modern electronic digital computer. Pneu-
matics has many advantages over mechanics, e.g., an air hose can be
bent around easily, while rods and wheels need careful alignment. Pneu-
matic computers are less affected by the environment and were used for
industrial control into the 1980s.

The basic element in many computers is the nand-gate. It has two
signal inputs and one output. If both inputs are active, then the output
is inactive, otherwise the output is active. It computes "not both".

The simplest place to start is to design an inverter. It has one hose
connector for input and one for output. If there is high pressure on the
input then there is low pressure on the output; low pressure on the input
means high pressure on the output.

In principle, an inverter can use an input to
slide a block to shut off a high-pressure bias
intake. If the input is low-pressure the bias
escapes to the output, otherwise the output
is low pressure. The one on the right is not
practical because of difficulties such as seal-
ing the sliding surfaces. For simplicity we
can ignore this, but your solution is better
if you consider the mechanics.

in
out

bias

Two pressures can be used for each signal. A hi-lo combination means
a logic 1, and a lo-hi means 0. An inverter might just swap the hoses.
This is simple, but loses signal strength. The output should mainly be
driven by a separate bias intake, which you can assume to be provided
globally. Springs can also be used, from which a valve may be built.

Experiment and use your imagination.

A Grab Bag of Computational Models 25

Exercise 2: Finite State-Machines

A finite state-machine (see page 20) classifies strings (see page 22).
Design finite state-machines that classifies strings according to —

1. whether it ends in the substring 1010, or not;

2. whether it contains the substring 1010, or not;

3. whether it is a binary number greater than 1010, or not;

4. its remainder after division by 4. (so, four categories).

In a standard msb first binary numeral, x3x2x1x0, x3 is the most sig-
nificant bit. The reverse order is lsb first, and is more natural for fi-
nite state-machines. To store two binary numbers we can use an infix
x3x2x1x0 + y3y2y1y0, or spliced x3y3x1y2x1y1x0y0+, format.

A finite state-machine (see page 20) maps strings (see page 22).
Design state machines that map strings to the effect —

1. of incrementing an lsb first binary number;

2. of adding two spliced lsb first binary numbers;

3. of multiplying an lsb first number by 3;

4. of adding two msb first binary numbers;

5. of adding two lsb first infix binary numbers;

6. of multiplying two lsb first spliced binary numbers.

Some of the above operations are impossible for a finite state-machine
— which ones and why?

26 Theoretical Introduction to Programming

Notion 11: Turing Machine

As a physical intuition, the definitive Turing machine is built from an
infinite tape of discrete memory cells, together with an interactive cpu
that moves along the tape reading and writing the cells. The cpu moves
at a finite speed and has a finite number of states. Each cell contains
one (at a time) of a finite collection of symbols. The choice of action,
writing a symbol, moving to the left or right, or halting, is determined
by a lookup table from the current tape symbol and cpu state.

0 1 0 1 1 0 0 1 0 0 0 0 0 0... ...

The classic view is that each Turing machine computes a natural number
function. The n symbols may be taken as the digits of a base-n natural
number. At startup, all cells to the left of the cpu are 0, and only
a finite number to the right are non-0. The initial tape represents a
natural number. If the machine halts after a finite time, the tape will
still only have a finite number of non-0 cells. The input number has been
mapped to the output number. Generically, a Turing machine defines
only a partial map, since the output is undefined if the machine never
halts.

By finitely placing non-0 symbols to the left, we can program a Turing
machine. For each program, the machine computes a potentially distinct
function. But it is a generic limitation of effective computational devices
that not all natural functions can be thus computed.

Other encodings can allow a Turing machine to solve problems on other
domains. For example, a universal Turing machine takes a pair (m,d)
of a Turing machine table m, and input data d, and emulates the ma-
chine operating on the data. Oddly, universality is subjective. Mar-
vin Minksky’s classic 7-state universal Turing machine works, but the

A Grab Bag of Computational Models 27

"proof" is mainly a subjective justification of the encoding.

To illustrate this point, consider the machine M that increments each
even number, and deliberately does not halt on odd numbers. For each
input (m,d) there is a unique output r. If the machine m does not halt
on the data d, then we want the universal machine to not halt. If m
halts on d, then encode (m,d) as an even number and encode r as the
next odd number. Otherwise encode (m,d) as an odd number. Thus, M
is universal. True, from any standard description of a Turing machine
it is a non-computable problem to determine what to feed this universal
machine. But logically, the representation is valid.

There are many Turing variations. Some have a lesser computational
ability, but none have more. A one-way (single-pass) Turing machine
moves only in one direction. Increment in binary can be performed by
one pass, but this is so strong a restriction that this variants ability is
reduced.

There are multi-tape and multi-cpu versions, as well as a two-dimensional
one that can move north, east, south, and west. Trying to envisage this
physically can lead to tangles of tape all over the floor. For simplicity,
assume that the tapes and cpu’s pass through each other.

The tapes may be fed around in circles, forming limited storage; and the
surface may be a cylinder, a sphere, a torus, or something topologically
more interesting. The cells might be connected to five neighbours, or
more, or less, or form an irregular graph. Any number of dimensions
can be used.

A continuous version might be a linear filter in which the speed of the
interactive head depends on an output computed from the input read
on the tape, and an internal state in the head.

Non-deterministic Turing machines are also possible, as are versions in
which the head can cut and splice pieces of tape. However, once it is
generalised too far, like any other model, it becomes something other
than what was envisaged by the creator and is more of an outlook on
computation than a particular device.

28 Theoretical Introduction to Programming

Exercise 3: Design a Turing Machine

You do not understand a virtual machine until you have written several
programs for it. In this exercise, we try to understand Turing machines.
One direct way to specify a Turing machine is a transition table. The
columns are old-state, old-symbol, new-symbol, new-state, and move-
ment, where L means go left, R means go right, and H means halt. The
starting state is s, and the halting state is h.

For example, given a tape that contains only 0’s except for a single run of
1’s, we can make the run an even length by overwriting the first 0 on the
right with a 1, if required. A Turing machine might do this by starting
on the leftmost 1 and then moving to the right, switching between two
states to keep track of whether the run of 1’s is so far even or odd in
length.

s 1 → 1 b R
b 1 → 1 s R
s 0 → 0 h H
b 0 → 1 h H

The machine switches between states s and b at each occurrence of the
symbol 1 on the tape. Thus, s is the even parity state, and b is the odd
parity state. When a 0 is found, the appropriate symbol is written and
the machine halts. Even if the tape symbol is unchanged, we still fill in
the entry in the table explicitly.

It is fairly easy to write a simple Turing machine simulator in a finite
array, and it is recommended that you do so to help with these exercises.

The state of the Turing machine is easy to represent as a single finite
string of tape symbols with an extra symbol, T, for the cpu; we as-
sume that the final character on either end is repeated indefinitely. So,
00001T000 represents a tape full of 0’s except for a single 1, and the
Turing head is currently located on the cell containing the single 1.

The tally system of representing numbers just means to represent 1 as 1

A Grab Bag of Computational Models 29

and 2 as 11 and 3 as 111 and so on, with an arbitrary amount of padding
with 0s on either side, so 0111000 also represents 3.

1. We write the addition 4+2 as 0001111011T000 in the tally system,
where the T represents the Turing head initial position.

Write a machine that moves only to the left, and changes this into
a single equivalent tally base number.

2. In the binary system, we can increment a number by moving to
the left, changing 1 into 0, until we find a 0. Write such a Turing
machine.

3. Write a machine that converts tally to binary, by repeated use of
an incrementing state on a binary number, and decrementing the
tally number.

4. Write a machine that adds two numbers in binary. This time we
include three symbols on the tape, so that the initial state might
be sss10010s101sss, where s represents a space character. The
desired output in this case is sss10111sss, where the original
numbers have been erased.

5. Different Turing machines behave differently to the same input,
such as an initially blank tape. Given a two-symbol tape, we can
ask, how many 1’s will Turing machine T write before halting
(assuming it does halt). Since there are only a finite number of
machines of a given number of states, there must be a maximum
number of 1s that can be written. Such a maximal Turing machine
is a Busy Beaver.

Write a 1-, 2-, and 3-state Busy Beaver.

6. Determining that an n-state machine is a Busy Beaver, or just how
many 1’s an n-state Busy Beaver will write is very difficult, and
the number rises rapidly, in the manner of Akerman’s function.

Can you work out any conclusions?

30 Theoretical Introduction to Programming

Notion 12: Non-Deterministic Machines

By an engineering definition, a state of a machine is some information
which determines the machine’s future behaviour. Strictly, it is tautolo-
gous that every state machine is deterministic. Any other machine does
not have a state. It is unknown whether the universe as a whole has a
state. But, even if a state exists, often only a part can be measured.
The rest is hidden. Observing only the measurable part means that for
each (observable) state there may be multiple possible futures.

For a discrete deterministic machine, each state leads to a unique next
state. The next state is a function of the current state. Such a machine
is characterised by a space of states equipped with a next-state function.
It is natural to describe a non-deterministic discrete machine by a next-
state relation.5 Each state has a collection of next states.

Given a collection of (observable) states in which the machine might
be, the set of states it might be in next is the union of the sets for
each of the states in the collection. Thus, a non-deterministic machine
is a special case of a deterministic machine on the power set of the
states of the original machine. The final value returned by the non-
deterministic machine is the value returned by the first deterministic
machine to terminate. Of course, in general, this is a collection of values.

The power set of the states of a finite machine (see page 20) is also
finite. So, a non-deterministic finite machine is still a finite machine,
just on a larger state space. However, a finite machine viewed as a non-
deterministic machine may be easier to design or modify than if viewed
as deterministic. The non-deterministic machine has a special structure,
admitting direct parallel implementation.

For Turing machines (see page 26), the machine state is the state and
location of the cpu together with the state of the tape. This can be en-
coded as a finite integer. A Turing machine is a countable state machine.
The set of subsets of a countable state space is uncountable, which takes
us outside the scope of the modern desktop computer entirely. For this
reason, the subsets will be restricted to be finite. The set of finite subsets
of a countable state space is also countable.

5Sometimes referred to as a multi-valued function.

A Grab Bag of Computational Models 31

It is true, but not immediately clear, that a non-deterministic Turing
machine can be emulated by a deterministic one. By using the Hanoi
sequence (see note 22) we can splice a countable number of virtual tapes
into one single tape. With one virtual tape used for scratch space, a
deterministic Turing machine may simulate a non-deterministic Turing
machine.

The true non-deterministic machine might compute more than, the same
as, but never less than, the deterministic machine. Similarly, it is typ-
ically faster but never slower. However, this speed-up might be only
in time used, since we really should count the steps of every one of the
deterministic machines involved.

In practice, the overhead of emulating n machines on 1 is roughly pro-
portional to n; the slowdown is about n as well. So it is a contradiction
to have a greater than n times speed-up using a parallel machine. In
practice, the speed-up may be much less. Logical dependencies between
intermediate results computed during an algorithm can make it tricky
at best to split it into parallel threads.

Many variations of this idea are used. In the Communicating Sequential
Process [10] approach, the non-deterministic version acts in all ways that
the hidden version can, but may also act in ways that the hidden version
does not. A non-deterministic Turing machine might duplicate only
the state of the cpu, becoming a shared memory device. A stochastic
machine can be developed by introducing the probability that a machine
will progress to a given state.

The full details of some of these models are complicated, and require
great deals of theory to justify. However, the starting point of a set of
states replacing a singular state is simple and foundational, finds many
uses on its own, and has the merit of assuming very little about the
nature of the non-determinism.

The question of whether there are problems for which a polynomial time
algorithm exists on a non-deterministic Turing machine, but not on a
deterministic Turing machine, is currently a (im)famously open problem
in theoretical computer science (see page 146).

32 Theoretical Introduction to Programming

Exercise 4: Non-Deterministic Machines

A deterministic Turing machine can emulate a non-deterministic Turing
machine (see page 30) and the principle is relatively straightforward.
But the technical details require some work. Also, there is more than
one way to complete the task. In practice, writing a Turing machine
emulator would be a good idea before attempting this exercise.

Go through the details of making this work.

A couple of clues follow.

For the Hanoi sequence 1 2 1 3 1 2 1 4 1 2 1 3 1 2 1 5, notice that every
second entry is 1; and if you ignore 1’s then every 2nd entry is 2; and
if you ignore 1’s and 2’s, every 2nd entry is 3. In this way, we see that
finding the elements of a specific tape is in principle straightforward. If
you are on tape 1, skip 1 space, on tape 2 skip 3, and so on. But in
order for this to work with a finite cpu, we need to store the info on
tape. So we might put a tape number marker cell next to each virtual
tape, but knowing which tape you are on cannot be stored in the cpu,
or in a single cell (since there is an infinite number of virtual tapes). Of
course, a Turing machine with an infinite number of tapes is different,
like a register machine with an infinite number of registers. It could just
use location 0 on each tape as an infinite random access memory.

A deterministic single-tape Turing machine simulating a non-deterministic
Turing machine is ok, even for an infinite number of Turing machines,
because we are simulating completely separate machines of which we
have only a finite number at any one time, and each one has a finite
description at all times. We could store the ones we are not using to
the left, and fold the full tape over so that odd means negative and even
means positive to get a full tape into one-half a tape to run the active
Turing machine. However, this does require a lot of shifting machines
around, and it does not enable us to determine which machine finishes
first (once one machine finishes at n steps, how do we know that not
one of the infinite number we have stops at, say, n− 1 steps).

A Grab Bag of Computational Models 33

Exercise 5: Quantum Computing

Ignoring the physics, a quantum computer inputs a complex vector rep-
resenting qubit logic values which is multiplied by a hermitian matrix,
which is then projected onto a subspace, and the magnitude gives the
result. We will not duplicate this exactly. We take logic inputs as being
just (1, 0) to represent a logic 1 and (0, 1) to represent a logic 0.

The following has the flavour but not the detail of designing quantum
algorithms.

This is the identity logic function:
[
0 1
0 0

] [
1 0
0 1

]
=
[
0 1
0 0

]

This is negation:
[
0 0
0 1

] [
1 0
0 1

]
=
[
0 0
0 1

]

This is exclusive-or:

1
2

⎡
⎢⎢⎣

1 0 −1 0
0 1 0 −1
−1 0 1 0
0 −1 0 1

⎤
⎥⎥⎦
⎡
⎢⎢⎣

0
0
1
1

⎤
⎥⎥⎦
⎡
⎢⎢⎣

1
1
0
0

⎤
⎥⎥⎦
⎡
⎢⎢⎣

0
1
0
1

⎤
⎥⎥⎦
⎡
⎢⎢⎣

1
0
1
0

⎤
⎥⎥⎦

= 1
2

⎡
⎢⎢⎣

0
−1
1
0

⎤
⎥⎥⎦
⎡
⎢⎢⎣

0
1
−1
0

⎤
⎥⎥⎦
⎡
⎢⎢⎣

0
1
−1
0

⎤
⎥⎥⎦
⎡
⎢⎢⎣

0
−1
1
0

⎤
⎥⎥⎦

The principle of operation is that the input logical data is presented
in 01 or 10 form for 0 and 1, respectively. So one logic input is two
dimensions, two logic inputs is 4, and so on. The output of the function
is determined by taking the magnitude of the output vector, which must
be either 0 or 1. The matrix must be symmetric.

Find as many of the 16 two-input logic functions as you can.

Find a system for determining matrices for logic functions.

34 Theoretical Introduction to Programming

Notion 13: Von Neumann Machine

The Von Neumann machine is traditionally described as being distinct
from the Turing machine. It has a linear array of memory cells, each
with a non-negative integer index, called its address. The memory ar-
ray is read and modified by the central processing unit, or cpu. The
cpu is an otherwise finite state-machine that can access several cells si-
multaneously. The location of the cells being accessed can be changed
arbitrarily, a behaviour referred to as random access into memory.

But the memory array is simply half a Turing machine tape, and the
cpu a Turing cpu. The multi-access aspect is identical to the multi-tape
Turing machine in which the multiple tapes are just the same tape folded
over and fed back into the cpu.

The mechanism for the random access is the pointer, which is a register
that contains the address of a memory cell. However, unrestricted ac-
cess to the pointer, as an indefinite precision integer, would completely
change the character of the machine, and admit general-purpose pro-
gramming within the cpu itself (see page 38).

In practice, the infinite memory array is addressed by a sequence of
smaller moves, which could be simulated by having a stepping register
in the Turing machine. The machine could then continue to step as long
as the register was non-zero. Adding a finite capacity register to the
Turing head does not change it from being a finite state-machine.

Thus, the Von Neumann machine is essentially a multi-tape Turing ma-
chine with a long-jump instruction to help speed things up. And, just as
for the Turing machine, it is assumed that the Von Neumann machine
memory begins with a finite amount of information, possibly in a finite
number of non-zero cells.

The reasons for distinguishing the Von Neumann machine from the Tur-
ing machine are contingent, partly, on the politics of their invention.
More significantly, the Von Neumann machine was designed to be im-
plemented, and is the machine most implemented in desktop hardware,
by a very wide margin. The Turing machine is simple and easy to im-
plement, and while not intended to be used this way, would be perfectly

A Grab Bag of Computational Models 35

serviceable. But the limitation in movement to a single step is in practice
very constraining, and easy to improve on in hardware.

A Turing machine storing its program in one part of its tape and the data
in another has to move constantly between the two in order to determine
what to do next, and then to do it. The ability of the Von Neumann
machine to refer to two locations at once means that one can be the
program and the other data, allowing the machine to execute program
on data without the constant shuttling. However, this is almost identical
to the 2-tape Turing machine, storing program on one tape and data on
the other.

Further, the Turing machine has no problem with data overrun errors
destroying the program. Memory protection mechanisms, both in hard-
ware and software, are typically based around partitioning the memory
into virtual distinct tapes in order to avoid memory clash.

The often-heard phrase Von Neumann bottleneck is a somewhat unfair
reference to the fact that there are very few pointers into memory com-
pared to the number of memory cells. In principle, if we could open this
up so that a vast number of the cells could be processed at the same time,
then we could speed up processing. But, in practice, (except in special
cases often involving vector and matrix operations) there has been little
prospect of an alternative. Further, if Von Neumann was not the most
common hardware, we would no doubt hear about the register machine
bottleneck, or the stack machine bottleneck, or something similar.

The fact is, the situation could be improved, but it is not easy to do so,
and this is not specific to the Von Neumann machine. Ultimately the
fact that the information needs to be sent across space would lead to
the geometric bottleneck.

Technologically, the Von Neumann machine has been a very service-
able abstraction that has allowed the construction of practical, though
conceptually "dirty", digital machines. The actual architectures are typ-
ically much more complicated to describe than is apparent in the above
discussion, and involve many specific concepts, such as memory protec-
tion, indirection tables, memory mapped interaction, and so forth.

36 Theoretical Introduction to Programming

Notion 14: Stack Machine

Many abstract devices are expressed as a finite state machine cpu oper-
ating on a potentially infinite memory whose initial state contains only
a finite amount of information. The volition is intrinsic to the cpu. The
memory is used only as a scratch pad, remembering what the cpu can-
not, analogously to a human computing with pencil and paper. But,
curiously, it is in the memory that different devices differ, rather than
in the cpu.

The symbolic stack machine memory is, naturally, a finite collection of
stacks of symbols. Each individual stack is finite, but there is no finite
upper bound to the possible stack size. The symbols are drawn from a
constant finite alphabet. Each row in the table defining the cpu gives
the current state, the stack to pop, the symbol popped, the stack to
push, the symbol to push, and the new state. A halting state may be
included.

A cpu augmented by a finite register storing a fixed-length integer is still
a finite state-machine. The natural state space is the direct product of
the states of the original cpu with the states of the register (see page
113). It is common to describe the nature of the cpu in the language
of registers rather than directly in the primitive concepts of the state
machine (see page 50).

To perform a binary operation the cpu can copy one symbol into an
internal register first and then perform the correct unary operation on
the other symbol. The register may be larger than the stack cells. Such a
register can be pushed onto and popped from the stack, taking multiple
cells and multiple steps. A common approach is to pop two arguments
from a single stack, compute internally, and then push the result onto a
(possibly different) stack.

A one-stack machine is limited by having to remember within its own
state anything popped from the stack or lose the information forever.
Such a machine cannot count the number of open brackets seen preceding
a close bracket, and thus cannot compute whether brackets are matched.
It is not a general-purpose computer. The simplest general-purpose case
is the two-stack machine.

A Grab Bag of Computational Models 37

Stack machines have been implemented within compilers to convert in-
fix expressions into postfix expressions, and within compiled code to
evaluate the resulting postfix expression. Using an expression stack and
a result stack, each expression symbol is popped in turn, and used to
determine the action to take on the result stack. For example, a +
symbol could cause the top two elements to be popped and their sum
pushed. Data symbols in the expression are pushed directly onto the
result stack. It is usually very easy to convert these actions into Von
Neumann machine code.

Pure postfix numeric expressions do not need any brackets and are easy
to evaluate. Repeatedly take the leftmost operator whose arguments are
all known numbers and evaluate it. Reverse polish calculators are built
on this principle. They typically have only one stack, the other stack is
in the head of the person using the calculator.

The two-stack stack machine is almost identical to the one-tape Turing
machine. The memory of the Turing machine is like two stacks of paper.
The cpu views the top element of one of the stacks. To write is to pop
and push a different symbol on the same stack, and to move is to pop
and push the same symbol on different stacks.

In this analogy, the stack machine has the option of adding and deleting
cells on the tape, which is one variant of the Turing machine. This
approach has the philosophical advantage of needing only an Aristotelian
potential infinity rather than the Cantorian completed infinity. More
pragmatically, the entire Turing machine is at all times a finite structure.
Related formal constructive definitions of Turing machines are neater
than their infinite counterparts are.

Stack machines are a good basis to implement lambda calculus. Since
the essential data structure in lambda calculus is a computed function,
and the action is to call it, a stack machine can fairly naturally execute a
lambda expression directly. This has been suggested as a practical way
of building a computer. However, there are some issues with the building
of large stacks, and the Von Neumann architecture is well established.
There would have to be a major reason to change.

38 Theoretical Introduction to Programming

Notion 15: Register Machine

Instead of unlimited memory cells (see page 26) that store a limited range
of integers, the register machine has a limited number of cells that store
an unlimited range of integers. The register machine is analogous to the
stack machine (see page 36); the stack is replaced by an integer. The
standard constraint (starting with only finite information) is satisfied.
The memory is a finite collection of finite integers.

The numeral "123" is not just a notation. It is an expression involving
digits and an implicit operator. Let a◦b = 10a+b. Then (1◦2)◦3 is
(1×10+2)◦3, which is (1×10+2)×10+3, which is 1×100+2×10+3×1.
123 = 1◦2◦3 is an integer valued expression not a syntactic primitive.

The remainder from 123 after division by 10 is 3. That is, the digits
of the integer do not disappear after the integer has been constructed,
but can be determined arithmetically. An integer is a stack of base 10
digits. To read the top digit take the number modulo 10, to push a digit,
multiply by 10 and add the digit.

More precisely, given b symbols to store, use

push(s, e) = s× b + e
top(s, e) = s mod b
pop(s, e) = s div b

An integer storing a collection of Boolean flags is the same situation.

From step(n) = if n<0 then 0 else 1,

form m = step(n) ∗ A + (1-step(n)) ∗ B

which sets m to two distinct values depending on the sign of n. This is
one of a vast collection of useful arithmetic conditional constructions.6

No Booleans need apply.

Two integer-registers equipped with arithmetic
allows general-purpose computing.

6Similar constructs can be useful C and Java.

A Grab Bag of Computational Models 39

Notion 16: Analogue Machine

Most of the abstract machines considered in this discussion are digital;
they have discrete states that change discretely in time. However, in the
earlier part of the 20th century, analogue machines were more common.

Analogue originally meant by analogy. Many physical systems can be
modelled by differential equations. Two distinct systems having the
same equations are analogues of each other. For certain differential equa-
tions, especially (but not only) linear ones, it is easy to set up a system
of electronic components that behave as specified by the equations. A
collection of such components constitutes an electronic analogue com-
puter [13]. It could print out directly a waveform from within the system
being modelled, something that could be very difficult to determine ex-
perimentally.

Digits are the symbols used in enumeration systems. Originally, com-
puters that explicitly did arithmetic with digits were unable to compete
with analogue computers for speed and adaptability. Such digital com-
puters were promoted through their use in combinatorial problems such
as breaking foreign encryption systems before and during the Second
World War.

However, since the most obvious difference between digital and analogue
computers is that the digital ones are discrete, and the analogue ones
continuous, this has become the use of the word today.

An analogue computer is one that takes in a collection of continuous
functions of time, and outputs likewise. The obvious application is in
solving differential equations (but there are others). We feed in the
forcing function for an ordinary differential equation, and the machine
feeds out the solution to the equation. More generally, it might solve
partial differential equations. There might also be auxiliary functions
that are entered to assist the computation.

However, by interpreting ranges of real numbers as coding discrete sym-
bols we can input and output discrete information. This is actually how
digital computers are designed at a low level.

40 Theoretical Introduction to Programming

Notion 17: Cellular Automata

The input of a finite machine (see page 20) can be the output or state
of another machine. Compounds built from a finite number of finite
machines are still finite. However, the compound structure gives them
an intuitive aspect that would not be apparent in a direct listing of the
states.

The component machines of a cellular automata are typically arranged
into a regular grid. Most often they are square 1-, 2-, or 3-dimensional
(see page 42) but hexagonal grids are also common. At each clock-tick,
every machine undergoes one transition, inputting the current state or
symbol of the neighbouring machines. Less synchronous behaviour may
also be considered.

Hexagonal grids have proved better than square grids for simulating
physical systems such as two-dimensional fluid-flow. Artifacts of square-
ness often persist at a large scale, while the hexagonal grids discrete
nature rapidly becomes unobservable.

Machines may also be built on other surfaces, such as spheres or toroids.
However, regular grids on a sphere cannot be scaled. Irregular grids
must be used. Common examples of simulated cellular automata are
the numerical models for solution of partial differential equations. This
merges seamlessly with finite element analysis.

By including states indicating the cpu is here, a one-dimensional cellular
automata can easily emulate a Turing machine (see page 26). This leads
naturally to a Turing Machine that wanders around on a surface. Often
such a device is called an ant. One famous ant is Langton’s ant — if
on a white cell turn left, if on a black cell turn right, as you leave a
cell, toggle the colour. It is famous for the complexity of behaviour it
generates from such a simple rule, and in particular because it tends
eventually to spend all its time building highways of regular pattern, no
matter the (finite) pattern on which it was originally placed.

In biology, a developing embryo can be viewed as a solid cellular au-
tomaton able to change its underlying topology.

A Grab Bag of Computational Models 41

Notion 18: Unorthodox Models

This is a collection of special-purpose mechanical devices that appear
to have an order of complexity advantage over the best digital tech-
niques. They are selected partially for aesthetics, but also to emphasise
the broad search space available for computational solutions. No dis-
cussion of the foundation of computation should ignore these options.
Programming is about finding the desired computation within the given
environment.

To sort a list of numbers, cut spaghetti into lengths proportional to the
numbers (a linear time operation), thump them on a table (a constant
time operation) and then pick the longest one, and the next longest, and
so on (a linear operation). This is a linear time sorting routine.

To find the point whose weighted total distance to a set of other points
is minimal, drill a hole through a board at the location of each points,
put a rope through each hole with weighted proportionaly to the point,
tie all the ropes together, and release.

To find out the shortest road network joining a collection of points, place
a nail between two boards at the location of each point, dip into soap
water. Shake it a bit to be more certain of a global rather than local
minimum.

To find the convex hull of a set of points, drive nails into a board at
required locations and stretch an elastic band around them. Alterna-
tively, put a ruler against the nails (to find a single point on the hull)
then wrap string, or just walk the ruler around. The ruler will make
exactly one full rotation.

To find the shortest path in a network, make a string and beads model.
The beads are nodes and the connecting strings have length proportional
to the length of the corresponding edge. Grasp the points you want
the shortest path between and try to pull the points apart; then the
shortest path is the one that goes tight first. The longest path is found
by constantly cutting the shortest path.

42 Theoretical Introduction to Programming

Notion 19: The Game of Life

Although it is a specific machine, the modern desktop computer may be
used to simulate a multitude of other architectures. Thus, an awareness
of other virtual machines can be a boon to the practical programmer.
Finite state-machines, for example, are often useful in the construction
of protocols for security, cryptography, communications, or parsing of
input. It has already been mentioned that a cpu machine has a com-
pound of state machines as memory; however, the way in which these
state machines receive their input and output means that they might
as well be randomly scattered. An alternative is to stitch the finite
state-machines together into a fabric called a cellular automaton. Cellu-
lar automata whose states are integers (or floating-point numbers) can
be used for doing matrix multiplication in parallel (see page 232), in
time proportional to the side, instead of the area, or the matrix. The
numerical integration of partial differential vector equations is typically
achieved using cellular automata.

A conceptually and historically significant exemplar is Conway’s game
of life (see note 8). Intuitively, Conway’s life represents a population of
stationary creatures analogous to coral or plants. In an infinite chess-
board garden, each square either contains a plant, or it does not. At
each clock-tick, every square is updated. If the square is occupied and
has two or three occupied neighbours, then it survives into the next
generation, otherwise it dies (of loneliness or overpopulation). If the
square was vacant, but has three occupied neighbours, then a new plant
is born into this square. The interest, however, is not with the individual
cells, but the emergent phenomena.

Some patterns are stable — they do not change un-
der the transformation — for example, a 2×2 black
square, the block. Any larger or smaller square is
not stable.

Some patterns repeat themselves pe-
riodically — for example blinkers,
which cycle between two states. (A
row of three blinkers is called traffic
lights.)

A Grab Bag of Computational Models 43

More interesting behav-
iour is shown by the
glider. It moves. Af-
ter four iterations it re-
appears in a different lo-
cation looking the same.

Many moving patterns exist; gliders move diagonally, space ships move
horizontally, some leave debris behind as they move. The speed of light
is one cell per clock-tick.

There are also Garden of Eden configurations, which have no precursor
pattern, they must be explicitly entered into the grid.

The vast array of behaviours that this simple model produces is signif-
icant. In particular, there are very large structures with complex prop-
erties, such as reproduction and general-purpose computation. Some
require millions of cells. Although the rules generalise in obvious ways,
most variants tend to lead to uninteresting universes. However, two
variants in particular, high life (survive — 2 or 3, birth — 3 or 6) and
night and day (survive — 3 4 6 7 8, birth — 3 6 7 8) have been found
to have interesting properties.

Can life evolve in Conway’s life? The restriction to two dimensions is a
severe restriction, sometimes thought to be completely prohibitive. How-
ever, some interesting work has been done on this (see note 9). Studies
have also been made in higher-dimensional life (see note 11). Of cen-
tral interest is the question of how to get the computer to recognise life
forms, should they evolve. Rapid exact cycling is fairly straightforward
to check. But recognising that something kept its general appearance
is an open problem on which a lot of work has been done (in vision
research).

44 Theoretical Introduction to Programming

Notion 20: The Modern Desktop Computer

Almost all computers in use now, at
the dawn of the 21st century, are cpu
machines. A state machine (see page
20) called the cpu is augmented by
a compound of state machines called
memory cells that provide the input
and record the output of the cpu. At
each moment the cpu access to mem-
ory (see note 5) is limited in scope
or in nature. But the resulting feed-
back expands the power above that
of the cpu alone in a manner which
may reasonably be emulated in our
technology. Examples include the
stack (see page 36) and register (see
page 38) machines.

9234818

9011238

0098735

0127654

9087622

3452876

1123890

7893421

5567483

0010200

0000000

0000000

0000000

0000000

9087622

3546687

0012875

9234818

The standard modern desktop machine, regardless of brand, is inspired
by the Turing (see page 26) or Von Neumann machines, in which the
memory is a belt of cells, each of which contains a single symbol from
a finite collection, and the cpu is a finite state-machine augmented by
special pointers into memory. When the machine is started, the memory
contains only a finite amount of information (see note 6). At each tick of
the clock, the the memory is written, and the internal state of the cpu is
updated. This simple cycle of computation is repeated indefinitely. Only
a finite number of clock-ticks occur in a finite time. Only a finite amount
of information is in the memory at any point in time. The machine,
however, is potentially infinite. The memory and time available for the
computation is indefinitely extensible. This subtle balance between finite
and infinite has made this type of machine a very useful abstraction of
computation.

Despite the utility of a potentially infinite model, any physical computer
we can build has a finite number of states. Taking all the bits in the

A Grab Bag of Computational Models 45

memory (including disk storage) of a hundred million interconnected
modern desktop computers, we still have less than 10^30 bits. So, the
complete state of all these computers is a single finite integer in the
range from 0 to 2^(10^30)-1 inclusive. If the machine does not suffer a
hardware error, then, knowing the input (the key press or mouse click),
the next state of the machine is determined uniquely by the current state.
Thus, a finite list expresses the complete behaviour of the machine. Such
an abstraction is called a finite state-machine.

Running EjectedHalted

push play insert tape

push stop push stop

A state machine may be in one of several conditions, called states. The
state affects the way the machine responds. An example is an audio
recorder with a red button that stops the tape if it is running but ejects
the tape otherwise.

A desktop computer is a device that accepts a sequence of input events,
acts in a manner dependent on its state, changes its state, and then
awaits another input event. The number of states is astronomical, but
finite.

The cpu of the desktop machine is a finite state-machine whose input is
from, and output to, a potential infinity of information in memory. The
design of the cpu-on-a-chip of the modern desktop computer is explicitly
an exercise in the construction of a finite state-machine. The memory
belt is implemented by the indefinite memory and disk resources. Many
limitations proved for finite state-machines cannot be applied directly
to the desktop machine because there is no hard limit to the resources
(memory and time) available. It may be expanded indefinitely subject
to vague economic and physical constraints.

46 Theoretical Introduction to Programming

Notion 21: Aspects of Virtual Machines

Digital machine: a physical limit of discrete technology. Although
there are other things that may be said to compute, the basic idea of
the modern digital computer can be nicely abstracted by saying that it
is a state machine, whose states are countably many (may be numbered
by the integers) and so are the transitions. Further, in any run of the
machine, there are a countable number of clock-ticks.

Universal machine: acts like every other machine. It is possible to
program some computers to simulate others. For example, you may
be aware of PC simulators that were written for Macs, a number of
years ago, in order to be able to run PC software on a Mac. I personally
worked with a simulator that allowed Windows 3.1 to run under another
operating system (RMX) as an application. In practice, any sufficiently
complex computer can run a simulation of any other, with typically no
more than a low-order polynomial slowdown.

General purpose machine: to do anything that can be done. It is
a curious implication of the idea that any sufficiently complex machine
can simulate another that the set of things that each can compute is the
same. Indeed, there seems to be a natural boundary to digital computa-
tion. Problems that fall inside this boundary are called computable. All
"reasonable" models of computation turn out to be able to compute ex-
actly this set, the same set, no matter what type of digital computer we
are talking about. There is a connection between this and constructive
logic. There is a strong sense in which this limit is the limit of certain
knowledge. It is the limit of those things that can be worked out, or
known, in a finite amount of time, using discrete and definite steps.

Quantum computing: A current research topic, but is it different?
Quantum computing is essentially analogue, a qubit encodes a continu-
ous phase. The evolution of a quantum computer is related to multiplica-
tion of a vector by a matrix. This type of programming is difficult. The
only good algorithms so far are of the Shor or Grover type. But it might
be possible to implement these algorithms directly in nano-technology,
and thus have a very fast solution to things that are currently out-
side the capacity of our computational technology. Whether a quantum
computer can compute anything that is classically non-computable is

A Grab Bag of Computational Models 47

an open theoretical question. This is essentially a question about the
relation between a continuous- and discrete-state machine. It might be
possible, but it would require the precision of variable storage to be able
to be increased without bound, making any solution physically mean-
ingless. Any realisation to a bounded precision (and accuracy) would be
equivalent to some digital machine. This is no more than the admission
that a single real number contains an infinite amount of information,
a fact that is of theoretical interest, but, due to finite signal-to-noise
ratios, of no practical consequence.

Implementation: Can we build it? The idea of a finite state-machine
is powerful and forms the heart of all our computational machinery. The
memory structure used in each of the different digital computers has a
potential infinity of information. This allows us to implement limited
extensible versions of many types of machine, with the idea that it will
run all those programs that do not require more than a certain amount of
information storage. All the various discrete-state machines mentioned
in this book have been implemented in this sense.

The register machine is essentially the same as the stack machine in real-
isation, and the Von Neumann machine has the advantage of speed and
cost in most implementations. This would be reduced by the economies
of scale, or the use of different compilation technology. Along these lines,
multi-stack machines have been suggested and built which use lambda
calculus as machine code.

Analogue computing was more common in the first half of the 20th cen-
tury. But analogue signals are inherently hard to correct, while digital
signals can be checked and corrected. In addition, digital computers can
be easily adapted to other tasks, such as symbolic processing. These two
factors lead to the demise of the analogue computer.

Quantum computing is in many ways a return to analogue computing,
based on the behaviour of certain nano-technology. But, researchers are
having a very hard time implementing anything non-trivial in quantum
technology.

48 Theoretical Introduction to Programming

Notion 22: Aspects of Programming

Programming: Many abstract machines (see page 18) have a state
which can be divided into a product of a processor state and a memory
state. The pure use of this machine is to encode the input value into the
memory and start the processor in its distinguished starting state. Later
the output value is retrieved from memory. This encodes a function
F (problem) = solution. But a new machine is required for each new
class of problem. An alternative is to allow another part of memory to be
used to record information that tells the computer how to solve the class
of problem it has been given. In digital computers, this extra information
is a sequence of symbols. In an analogue computer, it might be the
interconnections between the analogue elements. This extra information
is called a program. Technically this means that the problem is specified
as the union of the two sections of memory, but the outlook is very
different. F (program, problem) = solution. Given the machine, the
task is to find the program that will solve the problem. We view each
program as producing a new virtual machine.

Real programming: Programming is not menu-lookup. Certain pro-
gram code can be written by checking which library call performs the
required action and providing the correct arguments. This is not the
type of programming discussed in the book, and in fact does not sat-
isfy the intention of the word as used, except in a trivial sense. Real
programming means to increase the computational capacity, to begin
with a set of operations, and develop them into new operations that
were not obviously implicit in the original set. To borrow an economics
term, real programming is computational value-adding, i.e., providing
new capacity in a non-trivial manner.

Algorithmic computation: In the strict sense, an algorithm for de-
termining a result is a process that has discrete, exactly defined steps
and is sure to terminate after a finite number of steps, producing as a
result the required result. Precisely when a step is exactly defined is
actually a philosophical matter, but in practice it appears that exactly
defined means expressible by formal, unification production (see page
64), axioms. For an ongoing process that has no natural termination,
the requirement is that the steps are exact and correctness is certain.

A Grab Bag of Computational Models 49

Heuristic computation: When no algorithm is available, or those
that are available are too slow, a heuristic might suffice. A heuristic
generally has precise, uniquely determined discrete steps, but it is not
certain to produce the right result. It is often considered acceptable for
a computer to be right only a certain fraction of the time if this results
in a lower use of resources.

Stochastic computation: An alternative approach related to heuris-
tics is a computation in which random choices are made at certain points.
The curious character of these computations is that they can be devel-
oped so that there is a tweaking parameter (such as how long a loop runs)
that can push the probability of a correct answer toward certainty. Once
a process produces the right answer with a chance of 1,000,000,000:1,
we would start to worry about hardware failure before worrying about
the process going wrong. Many computations in theorem proving, group
theory, prime factorisation, and cryptological work are stochastic these
days.

Another curious character of stochastic computation, in practice, is that
the asymptotic correctness is established on the assumption of the use
of a true random number. But, in a typical computer, this is imple-
mented as a pseudo-random number, generated by a computation with
extremely erratic, but deterministic, behaviour. The resulting patterns
can break the computation. In particular, some attacks on certain en-
cryption systems involve locking onto the pseudo-random computation.
This would not be possible if the encryption was based on a truly random
number.

This is a pragmatic computational problem. But it leads us immediately
into the deeply philosophical problems of what a random number is,
and whether there really is such a thing. One suggestion for getting
around this is to use physical noise sources, especially ones based on
quantum mechanical principles. However, whether that will remove the
correlation with other factors remains to be seen. A device sitting inside
a computer is subject to many influences and might not be random even
if the truly isolated device would be. Perhaps randomness in isolated
quantum systems actually comes from that isolation, leading to true lack
of information.

50 Theoretical Introduction to Programming

Notion 23: Register Indirection

A typical contemporary desktop computer is built on a collection of low-
level storage cells. Each cell contains at each instant a single symbol
from a finite alphabet (see page 44). Each cell is referred to via an
address which is unique to that cell. Each of these identical cells is
called a register (see note 15). We assume that the address space and the
alphabet are the same (see note 14) so, any register may be interpreted
to contain the address of another register.

It is common to use numerals from 1 to m as the symbols. Parentheses
refer to content. So (123) means the symbol contained in the register
with address 123, or more briefly (123), is the contents of 123. If x and
y are symbols, then x← y is the command to place the symbol y in the
register at address x. This is similar to assignment in many common
languages, but there is no implicit indirection. What you see is what
you get. This is best understood by interpreting all symbols in register
language to be constant symbols. That is, x ← y does not affect x any
more than M[1]=5 affects the number 1. There are no variable symbols
in register language. Everything dynamic is stored in the registers.

In C, a variable symbol is a constant pointer, an address. The assignment
x=y is implemented as x← (y). Implicitly the symbol y is treated as an
indirect reference to its contents. So if x has (or is) the address 123 and
y is the address 64, then x=y in C causes the contents of location 64 to
be placed into location 123. In register indirection, this is 123 ← (64).
The command x = y has one level of indirection on the right, and none
on the left. The automatic de-reference can be prevented in C by using
the form x=&y, which means x ← y. The & quotes the variable name.
In C, ∗x is largely the same as (x) in register indirection. In C, ∗x = y
is (x)← (y).

Any occurrence of the symbol x in C means (x). C expects an l-value7

to have parentheses, and removes them. Sometimes an error occurs, l-
value expected, exposing this behaviour. In register indirection, 123← 5
is valid, but in C, 123 = 5 generates an error because the compiler
tried to remove one level of indirection. This is the meaning of &. The
term ∗x means (x) but &∗x means x. Thus, &&x is often an error. A

7Left hand side of an assignment.

A Grab Bag of Computational Models 51

constant value has no address. But ∗∗&&x has the intuitive meaning of
x, even though by strict application the second & was an error. Some C
compilers allow compound expressions such as ∗∗&&x with any number
of ∗ and &. Occurrences of & and ∗ cancel. This is useful in association
with #define directives.

Each machine code instruction has an address. The program counter
pc is a register that stores the address of the current instruction. Thus,
pc ← 123 is a jump. Also if sp is the location of a stack in memory,
then (sp) ← (x); sp ← (sp) + 1 pushes the value of variable x onto the
stack, while sp ← (sp) − 1;x ← (sp) pops the value from the stack.
This introduces (sp)−, which is a post-decrement operation. Obtain the
value and then decrement the register. So the pop is x← (sp)− and the
push is +(sp)← (x).

Something very similar was used on the PDP series of machines, and it
is likely that this is where C obtained its ++ and -- operators.

Register indirection is supplemented by at least one conditional form,
such as "f x then x← 23". With only these elements in the language it is
typically possible to give a simple formal specification of each assembler
instruction in a machine. The C language can also largely be defined in
these terms.

Register indirection is a good concrete model for an understanding of
the operation of pointers. All abstract pointer algorithms can be cleanly
expressed in this manner. It is a high-level generic method for under-
standing many specific Von Neumann machines, and machine codes.

Caveat: it is common to find register language in which (x)← y means
the contents of x becomes y. That is, what we are notating as x← (y).
This leaves the requirement for getting at the actual value of y, which
is done by an immediate reference, denoted typically $y or #y.

52 Theoretical Introduction to Programming

Notion 24: Pure Expression Substitution

Given that x = 6, we deduce that x+ y = 6+ y by replacing the symbol
"x" by the symbol "6" in the expression "x + y". This replacement of
equals by equals is deeply fundamental to all formal reasoning and may
be performed in an entirely mechanical manner.

The environment of an expression such as "x+y" is the set of values of
the symbols it contains. Not all symbols need to be given a value. A
symbol is bound if it has a value, and free if it does not. An environment
is a partial function whose domain is the set of symbols. An environ-
ment may be naturally represented as a set of ordered pairs. Thus,
{(x, 5), (y, 6)} acting on "x+y" produces "5+6". The value might also
be an expression, in the environment {(x, (a+b)), (y, 23)}, the expression
"x+y" becomes "(a+b)+23".

An environment E = {(xi, yi) : i ∈ I} is a function taking a primitive
expression, and returning an expression. The action A of E is a natural
extension of E to compound expressions.

1. ∀i ∈ I : A(xi) = yi

2. ∀x �∈ {xi : i ∈ I} : A(x) = x
3. A(a1, .., an) = (A(a1), .., A(an))

Although it is non-trivial to prove, A is a function. As a set of ordered
pairs A includes composite expressions on the left, if we allow composite
expressions in E, then the action may become a more general relation
than a function. For example, starting with E = {(xy,w), (yz,w)} we
get A(xyz) = wz or xw.

A substitution system S = {(xi, yi) : i ∈ I} is a set of ordered pairs of
expressions. A substitution is a relation. The action of S is the closure
of S under composition of its elements.

1. ∀i ∈ I : (xi, yi) ∈ A
2. ∀x �∈ {xi : i ∈ I} : (x, x) ∈ A
3. ∀(a1, b1)..(an, bn) ∈ A : ((a1..an), (b1..bn)) ∈ A

Generically, an inductive definition of a set will include a number of
clauses of the form if x,y,z are elements then C(x,y,z) is also. From this

A Grab Bag of Computational Models 53

we derive the induction if A includes (x1, v1), .., (xn, vn), then A also
includes (C(x1, .., xn), C(v1, .., vn)).

The action of an environment is a special case of a substitution system,
a simple substitution system. If S1 = {xi → yi : i ∈ I} is a simple
substitution and S2 is any substitution system, then relation composition
S1(S2(E)) = {(xi, (S1(yi)) : i ∈ I}. This is a fairly natural result but
is not generically true. If compound expressions exist on the left of S1,
then it is possible for a rule in S1 applied to S2(xy) = S2(x)S2(y) to
match on a subexpression that overlaps the two pieces. But this does
not occur in the case of a simple substitution system, derived from using
only primitive symbols on the left.

The composition equation was determined using the assumption that
the left-hand sides were primitive symbols. The rule does not cover all
cases with a composite left-hand side. But if there is no instance of an
entities on the left overlapping, then it does still work. Intuitively we
could replace each instance of the composite symbol by a single primitive
one.

Each pair (x, y) stands for a logical equality. One substitution is more
general than another if, treated as a collection of equalities, the latter
implies the former. A term is primitive with respect to a substitution if
the substitution leaves it unchanged.

By allowing a substitution to be applied in the reverse as well as forward
sense, we can use it to generate a concept of equality very similar to a
Prolog program. If, however, we allow substitutions to be applied only
in the forward direction, then we have a model of computation very
similar to a Haskell program.

One aspect not covered here, but of significance in lambda calculus, is
the concept of locally bound variables. If our expression is (sum(n =
1to10)n)∗n, then substituting n = 2 would produce (sum(2 = 1to10)2)∗
2, which is not quite what we intended. The n used as an index for the
summation is distinct in intention from the free occurrence of n. The
idea of substitution can be modified by allowing local bindings to be
recognised, and to avoid substituting in this case.

54 Theoretical Introduction to Programming

Notion 25: Lists Pure and Linked

A singly linked list allows us to put something on the head of the list
and find it there again later. Abstractly it is identical to a stack. To
look down the list we have to move past all the earlier elements. An
abstract list datatype is a tuple (List,Item,head,tail,cons,empty), such
that —

empty is a List
for each Item a, and List b : head(cons(a,b)) = a
for each Item a, and List b : tail(cons(a,b)) = b

This can be constructed by the following substitutions:

empty = ()
head((a,b)) = a
tail((a,b)) = b
cons(a,b) = (a,b)

By inspection . . .
head(cons(a,b)) = head((a,b)) = a
tail(cons(a,b)) = tail((a,b)) = b
So, the axioms are satisfied.

The (Haskell/Prolog style) list [1,2,3] is (1,(2,(3,()))).

It is good, if possible, to implement an abstract type so that there is a
natural correspondence between the code and the axioms. This helps to
prove, technically and intuitively, that the code conforms to the axioms.

Firstly, the type definitions:

struct pair {item x; list *next;};
typedef pair *list;
pair newPair(item x, list l){pair p={x,l}; return p;}

Now the definitive code:

item empty = 0;
item head(list l){return l->x;}
item tail(list l){return l->next;}
list cons(item x, list l){return newPair(x,l);}

This code is so close to the substitutions that it is almost just a syntax
change. Thus, we have a rigorous implementation.

A Grab Bag of Computational Models 55

Pragmatically, these axioms are incomplete.

Firstly, there is no way to compute head(empty) and tail(empty). In
principle, the attempt to do so is an error, and we could insist that any
system that satisfies the axioms must assure that these terms are never
evaluated. Technically, this is a valid solution, with rigorous logical
justification. But in practice, it puts too heavy a load on the user of
the abstract type. What we need is error handling. A simple option is
. . . head(empty) = tail(empty) = error = head(error) = tail(error). The
full study of pure error handling is non-trivial.

Secondly, they are satisfied by this trivial construction:

head(empty) = empty
tail(empty) = empty
cons(empty,empty) = empty

The generic way out to state that the system must not satisfy any equal-
ity involving head, tail and cons, other than those implied by the original
axioms. This amounts to such things as cons(a,b) �= empty. But nega-
tive axioms are more difficult to deal with.

Pure expressions are naturally interpreted as trees. The nodes are
weighted by operators, and the subtrees are arguments. Recursion scans
down the tree. But the only way back is to return from the recursion.
Generic networks have no natural counterpart in pure expressions. A
network can be a list of pairs of nodes, but a constant time search for
neighbours does not exist. Contrast this with back pointers in doubly
linked lists. Or, perhaps, it does not exist for pointers either; rather,
pointers are fast hardware assistance for random lookup limited to the
machine memory. Severe slow-down occurs once disk or network storage
is required. Pointers are a fast hardware implementation of a network.
With an in-built fast network type included, pure expressions can match
the impure performance. Haskell, which is very pure, has array and net-
work types available if required.

However, reorganisation of the details of the software can often achieve
the same aim. The programming required in the pure case is for sorting,
for example, is different, rather than less efficient.

56 Theoretical Introduction to Programming

Notion 26: Pure String Substitution

Pure substitution into expressions (see page 52) respects the bracketing.
Acting on x × y with {(x, a + b), (y, 23)} produces (a + b) × 23, not
a + b × 23. The latter, using implicit bracketing, would standardly be
interpreted as a + (b × 23). Expression substitution software based on
trees would not typically make this sort of mistake. But it is a very
common mistake among teenagers learning algebra in secondary school.
Partly, this is because the student is dealing with the expression as a
pure string, an otherwise unstructured sequence of characters on the
page. If we literally replace "x" by "a + b" in the string "x× y", then
we get "a + b× y", resulting in a change in semantics.

With this rather dubious beginning,8 we enter the world of pure string
substitution. We can act on a string s using a pair of strings (s1, s2).
Find a decomposition (by catenation) of s = as1b, and construct the
string s′ = as2b. We have replaced an instance, in s, of the substring
s1 by an instance of s2. The decomposition might not be unique, so
there are multiple possible resulting strings. String substitution does
not inherently respect the structure of the expression that the string
might happen to represent.

String substitution is a special case of replacing one directed subgraph
by another (see page 117). In the simplest case, replace a subgraph
by another with the same number of terminals. In the string case, we
replace a compound directed link by another in the same direction.

A string is primitive with respect to a substitution if the action of the
substitution is sure to leave it unchanged. For example, zxzx is prim-
itive with respect to xx → y. A string reduction machine repeats the
action of a substitution on a state string until a primitive string is pro-
duced. The string machine includes in a natural way parallelism and
non-determinism. Two substitutions working on non-overlapping pieces
of the string may act at the same time, when there are multiple options
at one location a non-deterministic choice is made.

8I have found that often advanced study in mathematics or computation is a
casebook of things you were told not to do in secondary school.

A Grab Bag of Computational Models 57

A string reduction machine is a general-purpose computer.
The substitutions on the right define an operator I that
increments a binary number enclosed in brackets. The use
of c forces the computation to be local.

0c → 1
1c → c0
[c → [1
]I → c]

An example shows its action. Although the brack-
ets do actually delimit the binary number, this is
an emergent property; in detail they are treated
as any other character. DNA computing works this
way. The string of symbols is the sequence of bases,
and the substitutions are performed by the various
enzymes.

[100111]I
→ [100111c]
→ [10011c0]
→ [1001c00]
→ [100c000]
→ [1010000]

The basic notion above, of a symbol filter, is broadly applicable and
corresponds to the mechanism of DNA computation. Enzymes move
along the DNA performing operations, such as hydration. As the desired
computation becomes more complex multiple symbol filters are required,
leaving the possibility of one filter operating on another to change its
function.

To show string reduction is general-purpose, construct a Turing ma-
chine. We could use a symbol for each state of the Turing head (see
page 40), but the state is naturally indicated by [xxxx], where the
xxxx is a binary sequence, the state number. We take the current tape
symbol to the be one to the left of the state, and have substitutions of
the form 0[001]→[010]1, to indicate a choice of move to the left and
0[001]0→01[010] for a move to the right.

The lack of respect for bracketing and variable symbols can cause trou-
ble. How to deal with parameterised computation and function calls?
How would we design a lambda reduction engine on a string reduction
machine? It can be done. The problems can be solved. To solve it once
is an excellent programming exercise for honing general programming
skills.

But, commonly, a non-trivial level of respect for brackets and variables
is assumed in working with reduction machines, largely because it is
tedious and otherwise unilluminating to achieve from first principles
each time we want to program with strings.

58 Theoretical Introduction to Programming

Notion 27: The Face Value of Numerals

A distinction is sometimes stressed by expositors between the abstract
concept of number and its written form numeral. This emphasises that
the numeral has an existence in its own right, but obscures the fact
that number and numeral can validly be equated. The identification of
written form with semantics is natural in computation. If we define the
non-negative integers to be literally the strings 0, 1, 10, and so on, which
are normally taken as a representation in binary notation, then we may
define increment as an operation on strings by the following axioms:

inc(0) = 1,
inc(1) = 10,
inc(X0) = X1,
inc(X1) = inc(X)0,

The symbol X (and any other capital
letter) stands for any nonempty string,
and string concatenation is represented
by juxtaposition of symbols.

inc(111) = inc(11)0 = inc(1)00 = 1000

Technically we may then say that the abstract non-negative integers are
the set of all such systems isomorphic to this. But this leads to logical
problems with the term all. The approach used here avoids that, and is
also similar in spirit to the Von Neumann style encoding into set theory
that was used to give pure set theoretical structures for various abstract
structure in mathematics.

Extending the identification of syntax and semantics, we interpret inc,
not as a function, but as a literal string. The entire computation is an
expression being reduced by the unification reductions.

inc(X0) → X1
inc(X1) → inc(X)0

add(X0,Y0) → add(X,Y)0
add(X0,Y1) → add(X,Y)1
add(X1,Y0) → add(X,Y)1
add(X1,Y1) → add(X,inc(Y))0
mul(X,Y0) → mul(X,Y)0
mul(X,Y1) → add(X,mul(X,Y0))

Arithmetic is expressed
completely by the reduc-
tions. The inclusion of the
terminal (not involving a
variable) cases is left as an
exercise.

A Grab Bag of Computational Models 59

Given a set of axioms, an irreducible element is one which does not
match the left-hand side of any of the axioms. The meaning of a string
can be taken as the irreducible element to which it reduces. Of course,
for arbitrary axioms there is no certainty that the irreducable element is
unique, or even that it exists. However, certain systems (such as lambda
calculus) have been shown to have this property, known as confluence.
A unique irreducible element is sometimes referred to as a normal form.

If every sequence of reductions ends finitely at an irreducible element,
the set of axioms are said to produce a Noetheren reduction system. The
property that one string can be modified into another by a sequence of
substitutions is sometimes used as a definition of equality within sets
described by a language. The pragmatic problem is that determining
this equality is not computable in general. One significance of a normal
form in a Noetheren reduction system is that its universal existence
means that equality is a computable property with a simple algorithm.
Just reduce each string to its normal form, and see if they are the same.

An example of this is the expansion of algebraic expressions using only
addition, subtraction, and multiplication. By multiplying out all the
terms, we obtain pure powers of the variables, which can be listed in a
systematic order to determine the equality of two such expressions.

It is significant for our interpretation of strings that we recognise brack-
ets (see page 52). If not, then when we try to compound the expressions,
as in add(10,mul(110, 1010)), the rule might misfire to set Y ="1010)",
leading to a syntactically incorrect irreducible. The problem is partially
relieved but not solved by insisting that only the whole expression can
match. However, if we insist that each variable can only match syntac-
tically correct substrings, then the problem is solved.

But if this approach is too high-level for the reader, rest assured that
it is possible, by selecting the reduction rules appropriately, to produce
systems that operate correctly, without any special interpretation of the
syntax. With this in mind a simpler set can be used, inc(X0) → X1,
inc()→ 1, and inc(X1) → inc(X)0, involving the form inc(), which can
be thought of as standing in for the increment of an empty string, or
just a working string as part of the computation.

60 Theoretical Introduction to Programming

Exercise 6: The Face Value of Numerals

This is a non-trivial, but very instructive, exercise in digital algorith-
mic thinking. It is something (like checking the Jacobi identity for the
vector cross product in mathematics is for mathematicians) that every
computer scientist should do once in their lives. Thinking of a binary
integer is a string of 0’s and 1’s, develop some arithmetic. Encoding
numbers as pairs (see page 215) is useful here.

1. Develop syntactic reductions for equality, increment, addition, in-
teger division, multiplication, modulus, order, and greatest com-
mon divisor for unsigned integers.

2. Develop syntactic reductions for equality, increment, addition, sub-
traction, modulus and order of signed integers.

3. Develop syntactic reductions for division in the rationals

4. Develop complex rational arithmetic.

5. Some people say quantum computers can avoid the limitations (see
note 23) of reduction.

What do you think?

It is recommended that a simple program to reduce expressions given a
set of reductions be written in conjunction with this exercise. Brute force
search for the substring and copying the whole string during substitution
(for example using sprintf in C) is probably sufficient, but there are
many more-sophisticated algorithms that can be used.

The basic concept of substituting one part of a structure for another is
not a side issue in digital computing, but really the central theme.

Macrolanguages (short for macroscopic substitution) use essentially the
type of approach as above.

A Grab Bag of Computational Models 61

Exercise 7: Pure Substitution Computation

Implement binary arithmetic with pure string substitution. The solution
is a set of substitutions (see page 56) that inevitably reduce the valid
input string to the required output string. It is highly recomended that
you write a string reduction engine (in your favorite language) prior to
this, so the solutions can be tested and debugged.

Each part introduces a filter symbol, intuitively similar to a Turing cpu,
which overwrites the tape as it moves (but can also splice in new cells).
The whole computation is a non-deterministic Turing machine. A sta-
tionary symbol might generate several filters that move away from it to
perform one each of several stages. Binary numbers are represented as
[0010110], or [bbabaab] to keep two numbers distinct.

1. Create A, which changes 0s to as and 1s to bs,
For example, A[01001] becomes [abaab].

2. Create B, which interlaces a 0-1 number with an a-b number
For example, B[10011aabab] becomes [1a0a0b1a1b].

3. Create S, which adds interlaced 0-1 and a-b numbers
For example, [1a0a0b1a1b]S becomes [11000].

4. Combine 1,2 and 3 into +, which adds two numbers
For example, [10011]+[00101] becomes [11000].

5. Create -, which substracts two numbers
For example, [101]-[10] becomes [11] .

6. Write a multiplication operator ∗
For example [1010]∗[10] becomes [10100].

7. Write P, which reduces prefix arithmetic expressions with addition,
subtraction and multiplication to a single binary number. (Protect
each operator from the action of the others).

8. Write B, so that is is similar to part 7, but uses infix arithmetic
and recognises parentheses "(" and ")" correctly.

62 Theoretical Introduction to Programming

Notion 28: Solving Equations

Technical programming from a formal specification means finding code
that is the solution to an equation in unknown code symbols. The spec-
ification is the equation the code must satisfy. The concept of solving
an equation applies in a very broad context. Computation itself is re-
peated solution of formal equations. The constraint on the code is an
expression in constant and variable symbols.

To solve is to find values that when substituted for the variables produce
a true equality. Typically, in a + b = 12 the variables are {a, b}, and
constants are + (a known binary function) and 12. The = symbol is
metalogical.9 ,10,11 To solve a + b = 12 is to find values for a and b. The
substitution {a→ 4, b→ 8} acting on a+ b = 12 yields 4+8 = 12 which
is true. So this is a (not the) solution to the original equation.

This is the same for an unknown function.

We solve f(x + y) = f(x)f(y) for f as follows:

f(x) = f(x + 0) = f(x)f(0) so either f(x) = 0 or f(0) = 1.

f(nx) = f((n− 1)x)f(x) = f((n− 2)x)f(x)f(x) = · · · = f(x)n

f(m x
m) = fm(x

m) so f(x
m) = f(x)

1
m

That is, f(ax) = f(x)a, and so f(a) = f(1)a for all rational a. (This
extends to complex a if we assume continuity). The formal substitution
{f(x) → bx} acting on f(x + y) = f(x)f(y) produces bx+y = bxby,
which is true. The solution is generic. (This equation is definitive of
exponentiation).

A general solution is a description of all the solutions, often couched in
terms of expressions over some free-ranging variables. In the above case,
this could be {a→ t, b→ 12− t}, in which t is a variable taking values
from a numerical set, which might be whole, real, or complex numbers.

9The distinction between proof and truth.
10It means, If you don’t already know what I mean then, I cannot explain it.
11It’s a Zen thing.

A Grab Bag of Computational Models 63

Solving multiple equations, such as {a + b = 12, a − b + c = 10} is a
similar process, we look for values for all the variables involved that
when substituted yield a collection of true equations. In this case, a
specific solution is {a → 3, b → 9, c → 16}, and a general solution is
{a → t, b → 12 − t, c → 22 − 2t}, where t is a free parameter. More
generally there might be more than one parameter.

Collecting terms on one side produces {a+b−12 = 0, a−b+c−10 = 0}.
The solution is equivalent to finding values of a and b such that all
the expressions in {a + b − 12, a − b + c − 10, 0} become equal. The
substitution is said to unify the expressions. Even without arithmetic,
any set of equalities can be expressed as unification by forming tuples.
For example unify the set, {(a+b, a−b+c), (12, 10)} to solve the original
equations.

In C, we define a function int f(int x, int y){...}. When calling
f , in a=f(23,45), the set {f(23, 45), f(x, y)} is unified to determine the
values x and y take as local variables in the body of f . Commonly
the syntactic solution {x → 23, y → 45} is used. But if we know that
f(x, y) = f(y, x), a second solution, {x = 45, y = 23}, is obtained.
This is unification with axioms. Unification with axioms is the generic
concept of solution of equations.

For commutative f , an optimising compiler might use the second solu-
tion for reasons of size or speed. The syntactic (or empty axiom set)
solution has the significant property that it works regardless of the na-
ture of f , while other solutions require more information.

Computation is a process of solution of equations. Syntactic solutions,
found by unification, exist independent of meaning of the symbols. We
determine values for the variables which make the expressions equal. A
general solution may exist with free parameters whose value is arbitrary
(within the context). The complete solution set depends on the nature
of the constants. But, a solution with less axioms is also a solution for
the original. Solutions that depend on no axioms work by making the
expressions syntactically identical. This is known as a formal solution.

64 Theoretical Introduction to Programming

Notion 29: Pure Unification

Definitively, a formal equation is solved without any reference to any
semantic domain for the symbols. One solution, for x, y, a, and b,
to the formal equation m(x, y) = m(a, b) is the substitution (see page
52) S = {x → t, y → t, a → t, b → t}. Applying S here produces
m(t, t) = m(t, t), true regardless12 of the semantics of m. The substi-
tution unifies (see page 62) the set {m(x, y),m(a, b)}, making all the
expressions identical. More formally, a substitution, S, unifies a set, E,
of expressions exactly when ∀e1, e2 ∈ E : S(e1) = S(e2).

The input (E,V,C) to unification is a set E of expressions over a set
S = V ∪ C of symbols, paritioned (V ∩ U = {}) into variables V and
constants C. A substitution over V is called an environment. The task
is to find an environment that maps E to one single expression. There
is typically more than one solution.

An environment S1 is at least as general as S2 if there exists S3 such
that S2 = S3 ◦S1. Generality is a measure of how little the variables are
constrained. The substitution {x→ a, y → b, z → c} is less constraining
than {x→ a, y → b, z → b}, which is less so than {x→ a, y → a, z → a}.
A unifier S1 of E is a most general unifier if for any other unifier S2, S1

is at least as general as S2. All the most general unifiers are essentially
the same, differing only in the choice of free variable names.

For the example above, S1 = {x → p, y → q, a → p, b → q} is a most
general unifier, and so is S2 = {x → w, y → z, a → w, b → z}. The
original solution S = S3 ◦ S1, where S3 = {p→ t, q → t}.

To unify M(x, (a, b)), M(F (a), (a, z)) and
M(F (F (b)), (y, b)), over {a, b, x, y, z} we need
x = F (a), a = F (b), y = a and z = b. Lining
up the expressions makes this clear.

M(x ,(a,b))
M(F(a) ,(a,z))
M(F(F(b)) ,(y,b))

By using a = F (b) in other equalities involving a, some reflection should
convince that {x → F (F (b)), a → F (b), y → F (b),z → b} is a most
general unifier. But if we included M(b, (a, b)), then we would have
needed b = F (F (b)), for which there is no finite formal solution.

12Well, not quite (see note 10), but the conclusion is very broadly sound.

A Grab Bag of Computational Models 65

Functions might not be constants, so we use s-expressions and denote
f(x) by (f, x). To unify {(f1, x1), (f2, x2)} is to simultaneously unify
{f1, f2} and {x1, x2}. The natural problem is to find an environment
that simultaneously unifies each set in a collection of sets of expressions,
such as {{f1, f2}, {x1, x2}}. One level of computation on each set of
expressions produces a collection of sets of expressions. The union of
these collections gives an equivalent collection to unify. When a variable
symbol occurs in a set of expressions, as in {x, f(a), f(f(b))}, we may
set aside a pair, such as (x, f(a)), as giving the definitive restriction on
the variable symbol.

Some expression must be of maximal depth, and at each step we break
up compound expressions, removing one level. So, eventually all sets
contain a primitive symbol. We remove any instance of x → x and if
x has multiple values, we select one, and unify the rest. We eventually
have only symbol–value pairs. A dependency exists when x1 occurs in
the value of x2. If x1 depends on x1, or on x2 that depends on x1, or
there is any longer chain arriving back at x1, then a loop exists, such
as x → f(x). If there is a loop or a constant is given a compound
value, then no finite formal unification is possible. Otherwise, this is
an environment that unifies the original expressions. Treating the data
as a collection of equalities, the information content is unchanged. The
resulting environment is a most general unifier.

We don’t have to wait for the complete expansion to detect problems. In
actual implementation, the not-unifiable result can be returned as soon
as a problem is detected.

However, loops are not illogical, and allowing them then the above
process does obtain the minimal extra conditions for unification. If
we accept these extra conditions we obtain unification. Unification with
axioms starts with similar extra equalities. The above algorithm finds
the minimal set of axioms required. Unification with axioms does not
always admit a most general unifier.

An axiom is a triple (E1, E2, V) of two expressions and a set of variables.
I stands for all the subexpression reductions S(E1) → S(E2), where S
is an environment for V . To compute S, find the most general unifier of
E1 over V with a subexpression of the expression being reduced.

66 Theoretical Introduction to Programming

Notion 30: Equality of Expressions

When we look at the two arabic13 numerals 1,935 and 51,837, we rapidly
become aware of whether they represent the same number. This process
is often seen as so natural as to not require further explanation. How-
ever, if asked about the equality of two roman numerals, such as CCCCC
and CCCCLXXXXVIIIII, the situation is not so clear. Nevertheless, by
computation, IIIII = V, VV = X, XXXXX = L, LL = C, we can work out
in this case that they are equal. Returning to the arabic example, we
see that there is a computation. Each symbol of one is checked against
the other, to see whether they are all equal.

The form of arabic numerals is canonical. Symbol-by-symbol equality
testing of two numerals is a correct test for equality of the numbers. This
is because we do insist that arabic numerals are normalised, ’leventy
’leven is 121, but does not normally obtain a high score in an arithmetic
exam.

We usually accept non-normalised roman numerals, so we need to do
more work. But if we insist that in a roman numeral any symbol that
can be replaced by a higher value symbol must be, and that the larger-
valued symbols are placed to the left, then we are using a canonical form
for the roman numerals, and a symbol-by-symbol check works.

Generically the equality of two tuples is component by component. A
set is more troublesome. When we write down a set we give an order,
{a,b} is distinct on the page from {b,a} and there is nothing we can
do about this. So, we have to learn that the order makes no difference.
Proving equality of sets can be quite difficult.

As for rational numbers, when are they equal? Is 4/6 the same as 2/3?
The generic test for equality of a/b and c/d is ad = bc. But there
is a canonical form of rational numbers, no common factors. We can
determine it by dividing out any common factors: 4/6 becomes 2/3,
which is symbol-by-symbol equal to 2/3.

Strictly, symbol-by-symbol equality is not simple. For you to identify
that this x is the same as this x, you have to do a complex vision-

13Strictly, this is Moroccan Arabs, the rest use the Urdu system.

A Grab Bag of Computational Models 67

processing computation, in your head. Further under the right condi-
tions you would say that this x is the same as this x even though they
are in different fonts. Writing a program that determines the equality
of handwritten symbols on a page is a non-trivial exercise.

What, then, is equality?

By now you should have some doubt that there is such a concept. I hope,
at least, I have demonstrated that there is no singular natural equality.
Rather, our idea of when two things are equal is defined for the given
context. For each data type we construct we must decide what equality
will mean in that context.

What is equality in computation?

It is a binary relation, a predicate, a Boolean valued function. But it
must satisfy some conditions. Firstly, it is clear that A = A; nothing
that we would call equality could fail in this condition. Then A = B
means that B = A. This excludes relations such as A > B, which behave
a little like equality, but are not any type of equality. Also, and very
commonly, we reason A = B = C so A = C; again this is very deeply
fundamental to our concept of equality.

The computer provides us with a definition of byte equality. A memory
block is a sequence of bytes, and can be tested for equality as such, using
component by component equality. In C, this is automatically available
for structs defined by the programmer. Often byte-wise equality of a
memory block is sufficient to imply equality of the two abstract data
elements. But, as for rational numbers, it is often not necessary. Thus,
byte-wise and abstract equality may be different. For this reason,14 Java
does not allow byte-wise equality. You have to define what you mean by
equality when you define Java classes, or you cannot test for equality.

It is also logicaly possible (even if inadvisable) for the meaning of a data
element to depend on its location in memory, thus making byte-wise
equality insufficient for determining abstract equality.

14And others such as some security reasons.

68 Theoretical Introduction to Programming

Notion 31: Equational Reasoning

Equality (see page 66) is well defined by its nature.

A = A,
A = B ⇒ B = A,
A = B = C ⇒ A = C,

That is, equality is a reflexive, symmetric, transitive binary operation.
However, in reasoning with equality it is often assumed without explicit
statement that substitution respects equality. But, in C, given x+y=y+x,
and substituting z++ for x, we get (z++)+y == y+(z++). The exact sta-
tus of this equality has varied over the years. Some compilers evaluated
++ as it occurred; others waited until after the expression; others did
whatever they pleased at the time. The logical status of this equality is
contingent.

We need to include an explicit axiom into our logic system.

A = B ⇒ m(A) = m(B)

If we know A = B, then for any(see note 10) expression m we know
that m(A) = m(B), even when we do not know what either side of the
equality means. A system that satisfied these axioms is said to admit
equational reasoning.

Substitution of equals for equals in pure expressions preserves equality
because there are no side effects. But in many languages, expressions
have side effects. The value of the expression has been taken to be
the return value within the language. This is very misleading. For
example, given x + y = y + x, we might substitute values to obtain
f(1) + y = y + f(2), which is not generically true. But, you say, we
substituted a different value of the argument to f in each case, this is
why the equality is violated. But this is exactly what side effects are
about. Hidden parameters and hidden return values.

Systems with side effects do not admit equational reasoning if the side
effects are ignored in the equality of the expressions. An expression with
side effects can be turned into one without by just listing the variables

A Grab Bag of Computational Models 69

affected on the side explicitly in the argument lists.

Given, int f(int x){y=x; return z;}, the call a=f(b) has side ef-
fects, but if f is defined by f(x, z) = (z, y), then we have the same effect
using (a, y) = f(b, z), and all expressions are pure.

The problem with equational reasoning in languages with side effects is
just that it is common to ignore part of the action of the expression.
This is essentially a misinterpretation of the notion of equality, rather
than a breakdown of equational reasoning.

However, what is true is that certain languages make it very difficult to
determine when two expressions are identical. A language like Haskell
that admits equational reasoning does so by requiring that all effects be
declared.

The equality x + y = y + x is based on the idea that x and y are
numbers (for example), but i++ is not a number, but rather a piece of
code. Suppose that i==2, can we substitute 2 for i++? No, even though
this is its value, since i++ is actually {t=i; i=i+1; return t;}, which
is not the same as the number 2, or even the variable i.

It is difficult to avoid side effects when dealing with interaction. Printing
a document is, in itself, a side effect. The essential way around this is
to express the program as a whole as a function from a string of input
events to a string of output events.

Another complication is that if the hidden parameters of a function are
changed it is not required to change the code in which it is used. But
if all have to be declared, then the code must be changed every where
the function is used . . . resulting in non-modular code. The generic way
out of this is to pass records, rather than inline tuple lists; and then the
extra fields in the records do not have to be explicitly mentioned in the
code. But a full solution still involves more thinking.

The fact remains, however, equational reasoning is often worth the effort
due to the increase in robustness of code.

70 Theoretical Introduction to Programming

Notion 32: Unification Reduction

Unification reduction is the arithmetic of computation. It is at once a
low-level mechanism and a high-level concept. It takes an expression as
representing nothing other than itself. It is a casebook of those things
you were told not to do in high school (see note 2) like identifying number
and numeral (see page 58).

Let E1 and E2 be two expressions using variable symbols x1..xn. To
unify (see page 64) E1 and E2 is to find expressions to subsititute for
x1..xn so that E1 and E2 become the same expression. If we substitute
x = 1 and y = 2 in "x + 2" and "1 + y", we get in each case "1 + 2".

Unification commonly occurs in standard programming languages in the
evaluation of function calls. We are told that f(x) = x2. We unify
f(a+b) with f(x) to get x = a+b, and then substitute into x2 to obtain
f(a + b) = (a + b)2. The sudden appearance of a pair of parentheses is
important and their absence is a common novice error, but this is simply
the original implicit grouping being made explict.

We may need multiple substitutions going both ways. For example (x, z)
is unified with (1, (1, y)) by the substitution {x = 1, y = 2, z = (1, 2)}, or
more generally by {x = 1, y = a, z = (1, a)}, where a is a free parameter.

The process of changing one expression into another by substituting the
values for variable symbols is reduction. The full process involves three
exressions, E1, E2, and E3. We unify E1 and E2 to obtain values for
variable symbols, and then substitute these values into E3. Though often
mentioned only implicitly, and accepted without comment, unification
reduction is deeply fundamental to the concept of both computation and
proof.

Languages such as C and Java use limited unification reduction in func-
tion calls. In compiling the expression f(x*x,y+2), the identification of
expressions to substitute for the formal parameters of f must be made.
But this is only unification of flat tuples. In Haskell, we can unify
f(x,(a,b),[c,d,e]) or any other compound structure with the origi-
nal declaration of f. But, no repetition of variable symbols is allowed in
the formal parameters. In Haskell, we cannot define equality with the

A Grab Bag of Computational Models 71

clause eq(x, x). Prolog does allow this. In Prolog, full pure unification
(with no axioms) is used for procedure calls. So, a problem of the form
f(x) may be changed to sqr(add(x, 1)), or sqr(add(x, 1)) to f(x).

The complete state of a countable state machine may be described as a
string of characters such as "(1,23,a,3.14)" listing the values of all the
variables as they would be printed. Syntax respecting subsitutions on
such strings provide a mechanism for changing the state of the machine.
Any computable process can be expressed in this manner.

An axiom is a logical starting point, the definition of what we may
assume. Typically axioms are expressed as unification reductions, even
if this point is not formally recognised. The factorial function may be
defined by 0! = 1 and n! = n × (n − 1)!. The 1st axiom states that we
may replace the subexpression "0!" by "1", and the 2nd axiom is a non-
trivial unification. Repeated application of this unification reduction
will change 3! into 3×(3-1)×(3-1-1)×(3-1-1-1)!. With only the
given axioms this would continue indefinitely. But, if we have arithmetic
defined by unification reduction (see page 58), we can change it into
3×2×1×0!, and thence into 3×2×1×1 and 6.

More general systems of unification with a variety of axioms are studied
in universal algebra (see note 3), a study of which is highly recommended
for any serious programmer. The semantics of code, including imper-
ative, procedural code, can be expressed as unification reduction. (see
page 74)

In a reduction all meaning is erased from the computation. Separation of
syntax from semantics is the universal task of the programmer. Meaning
is a human-imposed association. A formal system (a program) is a
pure syntactic system that is homomorphic to the human system with
meaning.

Many bugs arise from the incorrect assumption that the program is
imbued with natural meaning. The truth is that the meaning is only in
the head of the programmer. Pushing further, we find that the meaning
of meaning is emphemeral, and most likely only exists in a single head,
and cannot be transfered even from human to human. We transmit only
the syntax of written or spoken word.

72 Theoretical Introduction to Programming

Exercise 8: Unification Reduction Engine

Write a simple unification-reduction engine.

Of course this exercise is not so simple. But it should be very illu-
minating for those that attempt it. The basic operation is that the
engine matches an expression E(x, y) against a the left-hand side of
the substitutions in a database of rules (A1(x, y) → B1(x, y), . . .) best
thought of as a tuple rather than a set. Finding one that matches,
we then substitute the values into the right-hand side to obtain the
next expression. For example, with Add(F (x), y)), and having the rule
Add(x, y) = Add(y, x), reduce the expression to Add(y, F (x)). This is
repeated until no reductions are possible.

Parsers

Although the target of the exercise is unification and not parsing, at-
tempting to avoid all parsing will mean constant hand built data struc-
tures and recompilation. So it is best that your program can parse basic
expressions from the keyboard, or from a file. Possibly the easiest ex-
pressions to parse are s-expressions. The expression (f a b c) means
f applied to (a, b, c). All brackets must be included, so that f(x + y)
becomes (f (+ x y)). However, anyone who wishes to build more com-
plex expression parsing is encouraged to do so.

Internally, an expression should be stored and manipulated as a tree. In
fact, an s-expression can be seen simply as a notation for a tree. For
example, (f a b) means, the tree with root weighting f, and subtrees a
and b.

Expressions

Trees are fairly easy to implement in C, Java, Prolog or Haskell. In C,
a struct node {symbol r; node *child[10]}; will do even though
it limits the number of arguments to 10. For the more enthusiastic, a
linked list of arguments struct node {symbol r; node *child; node
*next}; is more general. In Java, just use analogous classes. You cannot
use lists of lists in Haskell to represent an s-expression because the type

A Grab Bag of Computational Models 73

system will object to the infinite signature. However, it is possible to
define an analgous new data structure that does not suffer from this
limitation. Prolog comes with unification reduction inbuilt; however,
getting at it for the purposes of retrieving the required environment still
needs some effort.

Unification

The simplest case treats all symbols as variable, get this running first.
Later look at including the list of constants that are not to be given
values. The giving of a value to a constant can be checked on the fly or
as post-processing on the all-variable case.

We can replace all occurrences of a variable in values at the time that its
value becomes apparent. Then it is simple and fast to check for cyclic
dependencies. But it is logically neater to eliminate cycles afterwards,
and the program could instead give the minimum set of axioms under
which the expressions unify.

We need a mechanism to indication non-unification. We cannot use an
empty set for this, since two expressions might unify with an empty envi-
ronment. This suggests adding a special element, not-an-environment.
Handling this with an exception in Java is also suitable but does not
necessarly constitute improved code.

Substitution

Substitution of values for variable symbols is fairly simple recursively.
For example, this is a simple routine to subsitute values into a Prolog
List. The arguemnts are the environment (a list of pairs), the original
list, and the final list with the variables replaced by their values.

subst([],X,X) :- !.
subst(L,[A|B],[X|Y]) :- subst(L,A,X),subst(L,B,Y),!.
subst([(A,B)|_],A,B) :- !.
subst([_|B],X,Z) :- subst(B,X,Z), !.

74 Theoretical Introduction to Programming

Notion 33: Code Reduction

An expression is a correctly bracketed (see note 13) sequence of symbols
that may be written down on a piece of paper or stored in an electronic
digital computer memory. Sometimes the bracketing is irrelevant, as
in 1 + 2 + 3, where it is left out because it makes no difference to the
value, or implicit, as in 2 + 3 × 4, where there is a convention that the
terms are bracketed thusly, 2 + (3× 4). A subexpression is a part of an
expression which respects the (possibly implicit) bracketing. So 2 + 3
is not a subexpression of 2 + 3 × 4 because it cuts across the implicit
brackets. Given a reduction, x∗y → y ∗x, where x and y are unification
variables, we can apply it to subexpression in situ, for example, as used
to produce the reduction 3 + (5 ∗ 6) → 3 + (6 ∗ 5). This concept is the
most primitive in any discussion of digital computation as well as in
algebra. Without this or a similar concept we can do no computation,
with this we can do all possible computations.

We have a reduction process with suggested inuitive meanings:

(add x 0) → x x + 0 = x
(add x (s y)) → (s (add x y)) x + (y + 1) = (x + y) + 1
(mul x 0) → 0 x ∗ 0 = 0
(mul x (s y)) → (add x (mul x y)) x ∗ (y + 1) = (x ∗ y) + x

This defines addition and multiplication of non-negative integers,

for example,

(mul (s(s 0)) (s(s 0)))
→ (add (s(s 0)) (mul (s(s 0)) (s 0)))
→ (add (s(s 0)) (add (s(s 0)) (mul (s(s 0)) 0)))
→ (add (s(s 0)) (add (s(s 0)) 0))
→ (add (s(s 0)) (s(s 0)))
→ (s (add (s(s 0)) (s 0)))
→ (s (s (add (s(s 0)) 0)))
→ (s (s (s (s 0))))

The expression being reduced is an s-expression, and is valid Scheme
code. The above is an example of evaluation of Scheme by expression
reduction.

A Grab Bag of Computational Models 75

When we write a pure function in C code we can think of it in exactly
the same way:

int f(int x){return x ? x*f(x-1) : 1;}

may be read as

f(x) → (x ? x*f(x-1) : 1)

so

f(4)
→ 4 ? 4*f(3) : 1
→ 4*f(3)
→ 4*(3 ? 3*f(2) : 1)
→ 4*(3*f(2))
→ 4*(3*(2 ? 2*f(1) : 1))
→ 4*(3*(2*f(1)))
→ 4*(3*(2*(1 ? 1*f(0) : 1))))
→ 4*(3*(2*(1*f(0))))
→ 4*(3*(2*(1*(0?0*f(-1):1)))))
→ 4*(3*(2*(1*1))))
→ 4*(3*(2*1)))
→ 4*(3*2)
→ 4*6
→ 24

Pure unification string productions of this type can be used to define the
semantics of a language precisely at a reasonably high-level. It avoids
the complications of trying to explain how the code will be executed
on a Von Neumann machine. There are ways to translate this type
of definition into a compiler for the language. However, this is a very
powerful method, and it is easy to define semantics that can bog down
the largest computer. Some restraint is required when using it to define
a language.

76 Theoretical Introduction to Programming

Notion 34: Programming With Logic

Predicate calculus can be used as a programming language. The prin-
ciple is straightforward. For simplicity we look only at pure programs
that read data in and write out a result.

Take, as an example, the computa-
tion of the greatest common divisor,
gcd(x, y), which satisfies the axioms
on the right using the convention that
a variable is universally qualified by
default.

gcd(a, a) = a
gcd(x, y) = gcd(y, x)
gcd(x, y) = gcd(x, y − x)

We already have enough information to determine gcd(50, 15),

gcd(50, 15)
= gcd(15, 50)
= gcd(15, 35)
= gcd(15, 20)
= gcd(5, 15)
= gcd(5, 10)
= gcd(5, 5)
= 5

Each step is a unification reduction (see page 70). By trying all possible
rules at each step, and producing a tree of resulting expressions, an
automated process can discover a node in which the term gcd does not
exist. This is a leaf node on the tree, and is the required answer.

Pure logic programming is an axiom-building exercise. We presume that
the computer provides the ability to determine the logical conclusions.
This is no different from the requirement that the computer provide
the ability to follow through the instructions given to it in C, Java, or
Haskell.

Real logic programming is not programming in the sense the term is usu-
ally used, it is too powerful. It removes all the basic issues of program-
ming, and replaces them by only the problem of writing specifications,
and working out if they satisfy human desires. But real logic program-
ming is not possible, since the problem as posed is non-computable.

A Grab Bag of Computational Models 77

Pragmatic logic programming involves a lot of work in determining which
of several logically equivalent axiom sets will reduce efficiently under
a given unification reduction scheme, as well as including meta-logical
information such as advice on which order the unifcations should be
tried.

Many aspects of C and Java are logical in nature. A declaration int x;
is an assertion that x is in the int set of data elements. A function def-
inition f(x){int y = x+x; return 2*y;} asserts an equality between
evaluation of f(x) and evaluation of the body of the code.

In Haskell, a logic style program is possible:

fact 0 = 1
fact n = n∗(fact(n-1)).

These Haskell clauses look and act very much like their pure logic in-
terpretation, indeed even the axiom fact (n+1) = (n+1)*(fact n) is
valid Haskell.

It is trivial to interpret an appropriately written Haskell program as
a pure logical scheme. What makes Haskell not a logic programming
language is that it does not go in reverse. Logically, the assertion
fact n (fact(n+1))/(n+1) is just as valid. But working from top to
bottom and left to right, Haskell would not finish the computation.

In principle, the notion of programming in logic refers not to the con-
struction of a program as a set of predicate calculus axioms, but rather
the requirement that the behaviour of the program be unchanged by
permuting the axioms in the program, or by reversing the logic of an
individual axiom. A logic program is an unordered set of bi-directional
equality assertions.

In practice, the art of logic programming is all about choosing the order
of assertions and the direction of equalities, to make the computations
work in practical time. There are no real logic languages, but much
progress has been made in the latter part of the 20th century, largely
under the guise of optimising compilers and compilers for functional
languages.

78 Theoretical Introduction to Programming

Notion 35: Negation in Logic Programming

Negation is a complex and subtle concept.

If I say I am lying, then am I lying?

I define the negation of a predicate A, to be the predicate (not A) such
that ((not A) xor A) is always true. But it is not axiomatic of all logic
systems that such a predicate exists, or that if it exists it will be unique.

The negation of Fred has a mouse in his pocket might be Fred does not
have a mouse in his pocket. But what is the negation of The present
king of France has a mouse in his pocket. If we say that the present
king of France has no mice, we assume that the king exists. There is no
problem talking of fictional characters, such as Sherlock Holmes (who
has no mice). But, we are talking of a real king of France. The negation
is closer to the king is mouseless, or there is no king.

Stating the original with more caution, we say someone is Fred, and
something is a mouse, and that something is in the someone’s pocket.

Exists x : Exists y : Fred(x) and mouse(y) and inPocket(x,y)

Negating this

Forall x : Forall y : not Fred(x) or not mouse(y) or not inPocket(x,y)

Either Fred does not exist, or the mouse does not exist, or the mouse is
not in Fred’s pocket. This very close to no one called Fred has a mouse
in his pocket. But I did not mean just anyone called Fred; I have a
specific person in mind. So, I find myself asserting that this specific real
individual might not exist.

Is it logically valid to say that Fred (my boss from when I worked as
a control systems engineer) does not exist? If not, then from whom
did I just receive an email? Is existence a property of an object? I
do not claim this conundrum is a logical paradox. There are plausible
responses. But our choice affects the method for negating, and whether
negation can be done at all.

A Grab Bag of Computational Models 79

Negation in logic programming is similarly fraught with difficulty.

We might define negation by automated logical rules for transforming
a predicate. But we would have difficulty knowing if these rules are
correct, consistent, or complete. It might be better in practice to require
the programmer to supply the meaning of negation of each predicate as
needed. This is similar to requiring the programmer, as Java does, to
supply the definition of equality for a new datatype.

Alternatively, as in Prolog, we may define negation as failure. If a search
fails to find a goal, then the negation of the goal is asserted true. Thus,
(not g) means run the proof technique, see if it proves g; if not, then
take this as a proof of (not g). Mind you, how then are we to list all
the solution space of (not g(X))? If g(X) results in an infinite stream
of integral instances, then we cannot be sure to compute whether any
specific integer satisfies (not g).

Failure to prove and proof of failure are two different things. Given only
that X is a real number we would fail to prove that it is positive, and
fail to prove it is negative, and thus we have proved that an arbitrary
real number is zero.

The logically correct Prolog program

positive(1).
negative(-1).
neutral(X) :- not(positive(X)), not(negative(X)).

returns the following rather uniluminating results:

neutral(2) == yes.
neutral(X) == no.

Thus, Prolog has a negation but it should be called not in the database.
Prolog negation does not have the properties normally required of logical
negation, if you want a negation, then you should decide for yourself,
and explicitly code, what you had in mind, case by case. The use of the
metalogical operators is advised, but great caution is needed to avoid
introducing other illogical results.

80 Theoretical Introduction to Programming

Notion 36: Impure Lambda Calculus

The phrase lambda calculus means different things to different people.15

The common theme is computation with function-like elements. In this
section, we motivate the lambda calculus as a whole by looking at some
technical issues of the use of functions.

In orthodox languages we do not need to name an integer to use it. To
pass the square of the integer 123 to a function f, we use an expres-
sion such as f(123*123). We do not need to define a variable int x =
123*123; and then call f(x). But, if we wish to pass the double appli-
cation of a function f to a numerical integration routine integrate we
need to declare g(x)=f(f(x)) and then pass g as in integrate(a,b,g).

This restriction on function declaration is sometimes conflated with the
notion of functions not being first-class datatype. But the notion of
first-class datatype is more typically used to mean that the datatype can
be stored in arrays, passed as arguments, and returned as values from
functions. By this definition, function is a first-class datatype in C, since
(implicit) function pointers provided the essentials of this behaviour.
But in C we are unable to construct new functions without some form
of machine-level hacking. It is the ability to construct and operate on
arbitrary elements of the datatype that make all the difference in practice
between a datatype that is clumsy or one that is deft.

The first thing that lambda calculus gives is a mechanism for in-place
function construction and use. For example, (λx · x2) is the function
that squares its argument. More generally (λx1..xn · E(x1, .., xn)) is a
function that takes n arguments and returns the value of the indicated
expression. In this context, the lambda calculus appears to be a simple
syntactic convenience, in which the arguments and code for an anony-
mous function are packaged into an expression that can be used at the
place of the call.

Our earlier example might become integrate(lambda(x){f(f(x)}).
Notice that the expression f(f(x)) still occurs because this is our way
of expressing the required function. The point is that now we do not

15This state of affairs is not unprecedented: see, for example, the large variety of
approaches to the meaning of the term differential calculus.

A Grab Bag of Computational Models 81

need to make a declaration, which in particular means that we do not
need to know when we write our code what functions we are going to
use. Imagine the problems caused if you had to declare all the integers
(1,2,3,45 . . .) that were going to appear during the running of a program.

Notice that in the above piece of code a pair of braces {} appears inside
parentheses (). In practice, this is often a sign that something unusual
is occurring. It occurs in Java when anonymous extension classes are
used; anonymous extension classes can be used in a manner very similar
to a scheme lambda expression. While at first seeming a small detail,
syntactic sugar, it is the ability to use a class anonymously that makes
it easily adaptable. In principle, C++ can duplicate this effect by the
use of explicit class definitions, but it becomes tedious, and moves the
definition of the function away from the place it is used.

Lambda expressions could be used to good effect in other areas of study.
For example, in algebra the expression x2 is often confused with the
function (λx→ x2). Taking the expression x2 and producing (λx→ x2)
is called lambda abstraction.

The Newtonian approach to differentiation f ′(x) requires us to predefine
f , while the Leibnitzian d

dxx2, allows an implicit lambda abstraction. It
is interesting to note that Leibnitz was much more strongly into con-
structive logic and computer science than was Newton. However, beware
that d

dxx2 = 2x uses implicit lambda abstraction. Perhaps we should
say, d(λx.x2) = (λx.2x), just to be careful.

Partial differentiation could be handled by taking an expression, with
no λs, and abstracting it. That is ...

∂
∂xE = (D (λx.E)) x

where D is an operator that takes a function of a single variable and
returns the derivative. This is a formal, constructive, definition for the
intuition that a partial derivative treats all other variables as constants.

82 Theoretical Introduction to Programming

Notion 37: Pure Lambda Calculus

Normally unless, and even perhaps if, you are heavily into formal logics,
it is best to be introduced to the impure lambda calculus (see page 80)
for motivation before tackling the purest form described here. It might
also help to review substitution computation (see page 52).

Given an alphabet Σ (intuitively the collection of variable names), not
containing "(", ")", "." or "λ", we define the set of lambda expressions
Λ(Σ) over Σ, inductively, as the smallest (see note 18) set that satisfies
the following three axioms:

x ∈ Σ⇒ x ∈ Λ(Σ) .we need to start somewhere
A,B ∈ Λ(Σ)⇒ (AB) ∈ Λ(Σ) think function application
x ∈ Σ, E ∈ Λ(Σ)⇒ (λx.E) ∈ Λ(Σ) think function construction

In (λp.B), p is the parameter and B the body. The substitution [x→ X],
of the value X for the variable name x, must respect the declaration of
parameters in sub expressions that mask the body of the subexpressions
from the scope of the variable x.

[x→ X]x = X
[x→ X](AB) = (([x→ X]A)([x→ X]B))
[x→ X](λx.E) = (λx.E)
[x→ X](λy.E) = (λy.[x→ X]E)

There are three reductions, alpha, beta and gamma:

Alpha: (λx.E)→ (λy.[x→ y]E) change of parameter
Beta: (λx.E)B → [x→ B]E function application
Gamma: [x→ B]E → (λx.E)B reverse application

Alpha reduction as stated above is not always valid. For example,
(λy.[x → y]xy) is (λy.yy). Alpha reduction [x → y] on (λx.E) is valid
exactly when y does not occur within the scope of x in E. A free oc-
currence is not in the scope of any appropriate parameter declaration.
There are complete syntactic rules for free and scope. But, pragmati-
cally, alpha reduction is valid exactly when [y → x][x→ y]E = E, that
is, when the substitution can be reversed.

A Grab Bag of Computational Models 83

We have a collection of expressions equipped with a reduction system.
This is a directed graph. But each alpha reduction can be reversed
by another alpha reduction, and each beta reduction has its inverse in
the gamma reductions. Thus, each link can be traversed both ways.
Expression A reduces to B exactly when B reduces to A. The reduction
graph is undirected. Also, it is clear that if A reduces to B, which reduces
to C, A reduces to C, by catenating the reductions from A to B and B
to C. We include as a special case the trivial reduction of A to A.

Thus, reduction is reflexive, symmetric, and transitive, and defines a
form of equivalence (see page 68) between lambda expressions. Two
expressions are equivalent if they are in the same connected component
of the reduction graph.

A normal lambda expression is one which admits no beta reductions. All
normal forms equivalent to a given lambda expression are alpha equiv-
alent. That is, if you can reduce lambda A to two distinct primitives
p and q, then p and q are identical except for a change of the names
of the parameters. We may think of p as the value of A, while A is a
compound expression whose value is p.

Each beta reduction is associated with a λ in the expression. If we
repeatedly select the outermost (leftmost) λ that can be reduced and
reduce it, then if a normal form exists it will be reached after a finite
number of reductions. Speaking informally, any lambda for factorial
must satisfy f = (λ n . n = 0 ? 1 : (n ∗ (f (n − 1)))). So, factorial
has no normal form, and neither does factorial of −1, but factorial of 3
does.

The lambda calculus is one of the more successful of a variety of sys-
tems for formalising the notion of computation. It has been suggested
at times as the basis for physical computational devices, but our desk-
top computers are based more closely on the Turing and Von Neumann
machines. The physical construction of a lambda engine requires large,
fast stacks. Possible, but perhaps more complicated than current com-
puters. In its favour, it has been argued that the increased ability to
prove lambda systems correct would offset any difficulties. But the com-
mercial reality is that we are less likely to see lambda machines on every
desk than electric cars in every garage.

84 Theoretical Introduction to Programming

Notion 38: Pure Lambda Arithmetic

Impure lambda calculus (see page 80) is additional syntax for defining
functions in terms of operators that we already have. The pure lambda
calculus, taken strictly, has no other operators, only lambda expressions.
This includes no numbers, no arithmetic, and no conditional statements.
The meaning of a pure lambda expression is imposed by its use, outside
the context of the calculus itself. Here we discuss a few aspects of how to
program in pure lambda calculus. The principle is to construct lambda
expressions that behave like the structure we are trying to program. This
is true of programming in languages such as C, Java or Scheme, but this
point is much more explicit in pure lambda calculus.

To construct the positive integers we need a collection of expressions
that encode the concept of that many. For example, 1 ≡ (λx.x), 2 ≡
(λx.(xx)), 3 ≡ (λx.((xx)x)) etc. For simplicity we assume left associ-
ation in the absence of brackets, and obtain n ≡ (λx.xxxx..x) with n
occurrences of x.

Although it is then apparent to the programmer what needs to be done to
operate on these numbers, pure lambda calculus is heavily flavoured by
the point that it is impossible for one lambda expression to determine the
actual construction of another. Only the external behaviour is available,
and that only through explicit test cases.

To justify its meaning as the integers, within lambda calculus we must
define increment as a lambda expression. To simplify the expressions, we
take the convention of curried expressions in which (λxy.E) ≡ (λx.(λy.E)).
Like the left associative brackets, this is purely a shorthand, and not the
introduction of a different type of expression. It is then possible to define
inc ≡ (λnx.nxx).

For a non-trivial implementation of the integers we would want addi-
tion. Reviewing the previous construction we might be tempted to try
(λnmx.(nx)(mx)), certainly this gets the right number of occurrences
of x, but they are bracketed in the wrong manner.

The problem is that we need to construct ((((xx)x)x)x) from ((xx)x)
and (xx), this means putting the (xx) in the place of the first x in

A Grab Bag of Computational Models 85

((xx)x), which we cannot get at. The way out of this conundrum is to
put this facility into the number from the beginning. Redefine n to be
(λyx.yxxx..x) with n − 1 occurences of x. Thus, inc = (λnyx.nyxx),
and now add = (λnmyx.m(nyx)x).

Now that we have this bit of inner workings to use, we can look to
multiply as repeated addition, except that we need n applications of
+m, to get n × m. If we reverse the application order so that n =
(λxy.(x(x(x . . . (xy) . . .)), then inc and add work roughly as above, and
mul = (λnmxy.m(add n)(λxy.y)). This amounts to adding n to 0 a
total of m times.

The representation we have developed is reasonably servicable. The
definition of the number n as an operator that applies a function n
times means that many arithmetic operations are easy to define. Powers,
for example could be defined by repeated multiplication. Equality to
zero can be tested by a slightly more subtle approach. The function
(λx.false) applied zero times to true is true, any more times, and it
is false. However, we have not yet discussed how to build conditionals.

We still do not have decrement. One problem with decrement is decre-
ment of 0, which is an error, but we have no mechanism for handling it.
By default typically a non-numerical lambda expression will result. But
the larger problem is that further operations are not produced in any
obvious manner, because the number does not already have the required
facility.

An (more efficient) alternative is to represent the number in binary, for
example, (λxy.xyxxyyxy). To build the operations, we need conditional
structures, which are discussed elsewhere (see page 86).

The reason for the mass of technicalities involved in developing arith-
metic in pure lambda calculus is that we are insisting on doing every-
thing from the beginning. This is using pure lambda calculus as a form
of assembly language. Once all these pieces are defined, we can proceed
at a higher level.

86 Theoretical Introduction to Programming

Notion 39: Pure Lambda Flow Control

The conditional can be constructed in pure lambda calculus by an almost
trivial mechanism once we realise the manner in which the conditional
is used. Refering to the C language, (a ? b : c) returns either b or
c depending on whether a is true or false. That is, a is a mechanism for
deciding which of b or c to return. Let true and false represent the two
options. Now, we can define this directly in lambda. true = (λxy.x)
and false = (λxy.y). Then if A is an expression that returns true or
false, we have if = (λabc.abc).

This gives the conditional, but how do we make operators that return the
appropriate truth value? One idea is to build them into the datatype.
So a number n can be (λt.tab), where a is the answer to the question
are you zero, and b is the number as represented by some other mecha-
nism (see page 84). This makes the process extremely close in style to
object programming. We cannot look inside the datatype we have been
given, but it will listen to certain requests for information, mediated by
methods that it defines, and we can use.

Although the convention of using a name in place of a lambda expression
is certainly used heavily, we must recall that this is shorthand for writing
out the expression. It is easy to fall into the error of using a name in its
own definition. It is an error because if we do then it is no longer pure
lambda calculus, but an extension allowing recursive definition.

The Y -combinator, however, is a mechanism which provides the practical
power of recursive definition without actually being recursive itself (see
page 88). In essence, given a function defined recursively by f(x) =
E(f, x), the Y -combinator has the property that Y E = f ; Y manages to
find the function that would have been defined by the recursive defintion
using E.

Now, we can define (see page 238) the while-loop

while t s x = if t x then x else while t s (s x)

A Grab Bag of Computational Models 87

Exercise 9: Lambda Reduction

It is possible to write a simple lazy lambda reduction engine in Java
(see page 262). This or a similar lambda engine can be used to test and
debug this exercise. The Java code can get tangled: if you are happy
with parsing text files you might want to consider a lambda to Java
converter, using lambda calculus syntax such as (L x . x ∗ x) for
lambda expressions.

1. Implement natural numbers with addition.

2. Include subtraction.

3. Include multiplication.

4. Include the ability to test a number for being zero.

5. Include a numeric error value for an invalid subtraction.

6. Include the ability to test any number to see if it is valid.

7. Include a test for equality that subtracts and tests for zero.

8. Include test of relative size that subtracts and tests for validity.

9. Implement factorial using pure lambda all the way.

10. Implement fibonacci using pure lambda all the way.

There are a number of approaches. In the minimumalist approach, with
only increment, decrement, and a zero test, we can define the rest by

add(n,m) = add(n-1,m+1)
sub(n,m) = sub(n-1,m-1)
mul(n,m) = add(n,mul(n,m-1))

But there are more efficient mechanisms. Initially you may find it easier
to assume that the subtraction is valid, rather than including the error
code up front.

88 Theoretical Introduction to Programming

Notion 1: Computing Hyperfactorial Values

We define the Y -combinator (see page 86), also known as the fixed point
operator, to be the lambda expression:

Y = (λfx.(f(xx)))(λfx.(f(xx)))

Clearly, using beta reduction, Y f = f(Y f). So Y f is a fixed point of
f , regardless of what f is. Thus, Y finds fixed points. A function may
have more than one fixed point. Y finds the simplest fixed point (in a
strict technical sense that we will not define here).

A recursive definition such as

fact x = if x==0 then 1 else x * (fact(x-1))

can be abstracted to

hfact fact x = if x==0 then 1 else x * (fact(x-1))

The original factorial function is then the minimal fixed point of hfact,
which is then extracted by the Y -combinator. Detailed understanding,
however, is not provided by this definition. But lack of understanding
does not prevent the use of the definition to explore its meaning. You
do not know what the function f(x) = x96 + 5x23 + 45x looks like, but
you can compute some values, such as f(2). It is similar with lambda
expressions.

As sqr(x) = x ∗ x leads us to sqr(6) = 6 ∗ 6 = 36, so does

hf(f) = λx.(x == 0?1 : x ∗ f(x− 1)) lead us to

hf(λx.0) = λx.(x == 0?1 : x ∗ (λx.0)(x − 1))

noting that (λx.0)(x − 1) = 0 we have:

hf(λx.0) = λx.(x == 0?1 : x ∗ 0) = λx.(x == 0?1 : 0)

As sqr2(6) = sqr(sqr(6)) = sqr(36) = 1, 295 we look at hf2(λx.0).

A Grab Bag of Computational Models 89

hf2(λx.0) = hf(hf(λx.0)) = hf(λx.(x == 0?1 : 0))

By straight substitution we get

= λx.(x == 0?1 : x ∗ (λx.(x == 0?1 : 0))(x− 1))

Applying λx.(x == 0?1 : 0)) to the argument x− 1 we get:

= λx.(x == 0?1 : x ∗ (x− 1 == 0?1 : 0))

Noting that x− 1 == 0 is the same as x == 1, we get

= λx.(x == 0?1 : x ∗ (x == 1?1 : 0))

Distributing ∗ over ? :, we get

= λx.(x == 0?1 : (x == 1?x : 0))

Finally, the true condition is only evaluated when x == 1, so

= λx.(x == 0?1 : (x == 1?1 : 0))

Repeating these steps we find that

hf3(λx.0) = λx.(x == 0?1 : (x == 1?1 : (x == 2?2 : 0)))

Continuing hfn(λx.0) expands out the first n− 1 values of factorial.

In particular, (hfn+1(λx.0))(n) = n!

We can now see the mechanism by which the Y -combinator works. Given
an expression E(f) in f , which might be used to define f recursively as
in f(x) = E(f)(x), the Y -combinator simply applies E(f) to x without
ever asking what f actually is. If f(x) = E(f)(x) is a legitimate recur-
sive defition of f , suitable for use in a program, then in the repeated
application of E(f) to x eventually it will turn out that the value of f
is not required. Thus, the Y combinator manages to return the required
value.

90 Theoretical Introduction to Programming

Notion 40: S-K Combinators

One fine day longer ago than I care to admit, I noticed on the wall of
the corridor of the university I was attending a circular about a talk
on programming. I will show you it said how to write a program with
no recursion, no iteration, and no variables. I was fascinated. I had
by then realised that recursion and iteration where essentially the same
concept. You could build a language with either iteration or recursion
playing the central role of allowing repeated application of some piece
of code to some data stored in some variable. But to lose both? How
could you program anything?

Some reflection on the matter formed in my mind a concept akin to the
Y -combinator (see page 86), a constructor for functions using operators
that encapsulate the recursion or iteration concept analogous to the
summation operator in orthodox mathematics. But, developing this
thought I found even more reliance on variable symbols and tricks for
modifying stored data. I arrived at the time and place of the talk in a
highly dubious frame of mind, expecting a dirty trick.

At this talk I was introduced to S-K combinators, which, unlike pictures
of Lilly, did not make my life complete, but certainly did opened my
eyes to the point that such an approach was possible. The central issue
is really one of how to move the values around.

If I have a number of basic functions available, and operators on those
functions, then I can build up more functions. I do not need to have
any variables to do this, for example, a summation operator might be
defined so that

(sumOp 0 f) n =
n∑

i=0

f(i).

An example program is (sumOp 0 sqr), and contains only constants,
no variables at all.

In Haskell, we can use a function such as sub b a = b - a in the defin-
ition f x = (sub 5) x, but since x occurs on the end of the expression
on both sides we can instead say f = sub 5. The x was an arbitrary

A Grab Bag of Computational Models 91

place holder. So far so good. But when we try to define f(x) = x-4,
we get f x = sub x 4. Now x is in the middle and cannot be thrown
away. How do we avoid using it? We include the operator, R f x y =
f y x and define f x = R sub 4 x. Now, f = R sub 4, and we have
eliminated x.

A moment’s reflection should now convince the reader that what we
need is the ability to define arbitrary expression construction where the
(unknown) arguments are inserted into an expression being built. At
this point it is logically possible that, there being an infinite number of
expressions, we might need an infinite number of constructors. However,
it has been shown that two are sufficient.

K x y = x
S x y z = x z (y z)

Defining I = S K K so that I x = x is worthwhile and we can reduce
an SK expression as follows:

(S (K S) K) I) f x = f (f x)
(S (S (K S) K) I) f x
S (K S) K f (I f) x
(K S) f (K f) f x
S (K f) f x
(K f) x (f x)
f (f x)

The original thought behind SK combinators was that they would make
compilation of functional languages efficient, but the size of the expres-
sion tends to double each time a variable is eliminated, thus making the
expression horribly large.

However, if we abandon minimality, and use other combinators, for ex-
ample, C x y z = x (y z), then we can reduce the size of some ex-
pressions, (S C I) f x = f (f x). The use of a much larger set of
rather more complicated "super" combinators, can actually make this
approach work. Bu, it is a non-trivial exercise.

