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Analysis of Thermoluminescence Data

Introduction

In this chapter, the analytical expressions presented in Chapter 1 will be used in
several detailed numerical exercises. A variety of methods will be used to analyze
the same TL glow-curve data, and the results from the different methods will be
compared with each other.

Chen and McKeever [1] have provided an excellent summary of how to system-
atically analyze TL glow curves, by following these steps:

(1) Ensure that the temperature measurement during the TL glow peak is accu-
rate, by optimizing the thermal contact between the sample and the heating
element.

(2) Eliminate the possibility of nearby overlapping peaks, by using a thermal
cleaning process. Thermal quenching effects must also be accounted for, if
present, and corrected using theoretical considerations. The study of emission
spectra during the TL glow curve provides also valuable information about
the TL process.

(3) Characterize the isolated glow peak by evaluating the three parameters E, s,
and b using several of the standard methods of analysis. Methods utilizing the
whole glow peak should be preferred over methods based on only a few points
on the glow curve. It is essential to carry out this analysis for different trap
filling, by studying, for example, samples irradiated at different doses.

(4) It is important to get good agreement between several methods of analysis.
Any discrepancies should be examined in more detail.

(5) In order to resolve discrepancies and obtain more information about the pro-
cesses involved, the analysis should be carried out for glow peaks measured
under different heating rates, various irradiation doses, powdered and bulk
samples, etc.

(6) Additional information should be obtained using experimental methods based
on different physical processes, such as isothermal decay techniques, dose-
dependence measurements, excitation and emission spectra, and simultaneous
TL-TSC (thermally stimulated current) measurements.
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24 2. Analysis of Thermoluminescence Data

Exercises 2.1–2.3 contain a detailed example of analyzing first-order TL data
using three different methods: peak shape methods, variable heating rate methods,
and isothermal decay techniques. Similarly, examples of analyzing second- and
general-order TL glow curves are given in Exercises 2.4–2.6. Although the material
in these exercises may seem to be repeated at times, we have chosen to provide
complete and self-contained exercises for easy reference, instead of constantly
referring the reader to previous sections of the book.

Extra attention has been paid to include an error analysis of the data whenever
possible, because there seems to be a general lack of such detailed examples
of error analysis in the TL literature. Exercises 2.7 and 2.9 present examples
of the effect of experimental background on the accuracy of the initial rise (IR)
method, and of the propagation of errors in the peak shape methods of analysis.
Exercise 2.8 is a simulated study of the well-known “15% TL intensity” rule of
thumb which is commonly used in experimental TL work.

Exercise 2.1: Analysis of a First-Order TL Peak

You are given the experimental data in Table 2.1 and Figure 2.1, for a TL glow
curve (TL versus temperature T), and a known heating rate β = 1 K s−1.

(a) Apply the IR method to find the activation energy E. The value for E obtained
using the IR method is assumed to be independent of the order of kinetics.

(b) Apply Chen’s peak shape equations to find the activation energy E , using the
shape parameters τ, δ, and ω. By assuming that the experimental error in
the quantities τ, δ, and ω is �T = 2 K, estimate the error �µ in the value
of the geometrical shape factor µ.

Show that the values of µ and �µ are consistent with the assumption that
the TL glow curve obeys first-order kinetics.

(c) By using the experimental data, apply the whole glow-peak method to find E,
s, and the order of kinetics b. Graph ln(I/nb) versus 1/T for various values of

Table 2.1. The experimental data for a first-order TL glow curve

T(C) TLexperimental T(C) TLexperimental

20 7.56 × 104 85 8.07 × 107

25 1.28 × 105 90 1.20 × 108

30 2.44 × 105 95 1.71 × 108

35 4.54 × 105 100 2.31 × 108

40 8.29 × 105 105 2.90 × 108

45 1.49 × 106 110 3.26 × 108

50 2.61 × 106 115 3.15 × 108

55 4.51 × 106 120 2.43 × 108

60 7.65 × 106 125 1.34 × 108

65 1.27 × 107 130 4.49 × 107

70 2.09 × 107 135 6.75 × 106

75 3.35 × 107 140 2.57 × 105

80 5.27 × 107 145 2.73 × 103
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b between 0.8 and 1.2, and find the correct value of b that gives a linear graph.
From the slope and intercept of the graph ln(I/nb) versus 1/T calculate E and s.
Verify that the given TL glow curve corresponds to first-order kinetics.

(d) Using the experimental values of IM (maximum TL intensity) and TM

(temperature of maximum intensity), do a curve fitting to the given numerical
data. Use the following analytical equation developed by Kitis et al for
first-order kinetic peaks [2]. The expression relies on two experimentally
measured quantities, IM and TM:

I (T ) = IM exp

[
1 + E

kT
· T − TM

TM
− T 2

T 2
M

×
(

1 − 2kTM

E

)
exp

(
E

kT
· T − TM

TM

)
− 2kTM

E

]
. (2.1)

The activation parameter E can be treated as an adjustable parameter in this
expression. Graph both the experimental data and the calculated first-order
TL glow curve on the same graph and compare them. Calculate the figure of
merit (FOM) of the TL glow curve.

(e) Can it be concluded for this material that this TL peak will always follow
first-order kinetics?

Solution

(a) The IR method. We calculate in Table 2.2. the values of 1/kT (T = temperature
in K, k = Boltzman constant) and the values of the natural logarithm of the TL
data, ln(TL) in a spreadsheet.

We next graph the ln(TL) versus 1/kT data as shown in Figure 2.2.
A very important consideration when applying the IR method is deciding how

many data points to use for the regression analysis of the graph ln(TL) versus
1/kT . We obtain the activation energy E by graphing ln(TL) versus 1/kT for
the initial part of the data. By performing a regression line analysis using the first
16 data points up to a temperature of 100◦C, we obtain the graph in Figure 2.3.
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Table 2.2. Calculated values of 1/kT and the values of ln(TL) for first-order glow curve

T (C) TLexperimental 1/kT (eV−1) ln(TL) T(C) TLexperimental 1/kT (eV−1) ln(TL)

20 7.56 × 104 39.47 11.23 85 8.07 × 107 32.42 18.11
25 1.28 × 105 38.94 11.66 90 1.20 × 108 31.97 18.60
30 2.44 × 105 38.30 12.41 95 1.71 × 108 31.54 18.86
35 4.54 × 105 37.68 12.93 100 2.31 × 108 31.11 19.26
40 8.29 × 105 37.08 13.63 105 2.90 × 108 30.70 19.38
45 1.49 × 106 36.49 14.11 110 3.26 × 108 30.30 19.60
50 2.61 × 106 35.93 14.78 115 3.15 × 108 29.91 19.47
55 4.51 × 106 35.38 15.22 120 2.43 × 108 29.53 19.31
60 7.65 × 106 34.85 15.85 125 1.34 × 108 29.16 18.62
65 1.27 × 107 34.33 16.26 130 4.49 × 107 28.80 17.62
70 2.09 × 107 33.83 16.85 135 6.75 × 106 28.44 15.62
75 3.35 × 107 33.35 17.23 140 2.57 × 105 28.10 12.45
80 5.27 × 107 32.88 17.78 145 2.73 × 103 27.76 7.91

When the first 16 data points are used (intensity up to a temperature of 100◦C,
corresponding to a TL intensity equal to approximately 70% of the maximum TL
intensity), the value of the activation energy E = 0.976 ± 0.004 eV is obtained
with a value of the regression coefficient R2 = 0.9997.

By performing a similar regression line analysis using only the first 11 data
points up to a temperature of 75◦C, we obtain the graph in Figure 2.4.

When the first 11 data points are used (up to a temperature of 75◦C, correspond-
ing to a TL intensity equal to approximately 9% of the maximum TL intensity),
a value of E = 0.986 + 0.003 eV is obtained, with an R2 value of 0.9997. Both
graphs in Figures 2.3 and 2.4 give an equally good fit with the same value of
R2.
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Figure 2.2. The IR method applied to the first-order TL glow curve.
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Figure 2.3. Applying the IR method to the first 16 experimental points.

The example above shows that the value of the activation energy E obtained
from the IR method by doing a regression analysis of the data is very sensitive
to the number of points used in the analysis. Exercise 2.7 is an example of the
influence of the experimental background on the results of the IR method.

As a general practical rule, application of the IR technique should be restricted
to the portion of the TL glow curve corresponding to about 5–10% of the maximum
TL intensity. Exercise 2.8 is a detailed simulation of this so-called “15% intensity”
rule of thumb commonly used in the IR method.

(b) Chen’s peak shape equations. From the given experimental data for a TL
glow peak, we can estimate the three temperatures required for Chen’s peak shape
equations:

T1 = 92◦C = 365 K, T2 = 122◦C = 395 K, TM = 110◦C = 383 K,
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Figure 2.4. Applying the IR method to the first 11 experimental points.
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where

TM = peak temperature at the maximum TL intensity,

T1, T2 = temperatures on either side of TM, corresponding to the half-maximum

intensity.

We first calculate the quantities µ, τ, δ, and ω:

τ = TM − T1 = 18 K,

δ = T2 − TM = 12 K,

ω = T2 − T1 = 30 K,

µ = δ/ω = 12/30 = 0.40.

Using the value of τ :

E = 1.51kT 2
M

τ
− 1.58(2kTM) = 1.060 − 0.104 = 0.956 eV.

Using the value of δ:

E = 0.976kT 2
M

δ
= 1.028 eV.

Using the value of ω:

E = 2.52kT 2
M

ω
− 2kTM = 1.062 − 0.066 = 0.996 eV.

The value of the geometrical shape factor µ = 0.40 is very close to the value
expected for a first-order TL peak which is equal to µ = δ/ω = 0.42.

Using the known experimental error �T = 2 K or the quantities τ, δ, and ω,

we can do an error analysis of the values of µ. By taking the logarithmic derivative
of the equation µ = δ/ω, we find the relative error �µ/µ:

ln µ = ln δ − ln ω∣∣∣∣�µ

µ

∣∣∣∣ =
∣∣∣∣�δ

δ

∣∣∣∣ +
∣∣∣∣�ω

ω

∣∣∣∣ =
∣∣∣∣ 2

12

∣∣∣∣ +
∣∣∣∣ 2

30

∣∣∣∣ = 0.167 + 0.067 = 0.234.

This leads to a value of µ ± �µ = 0.40 ± 0.09. This value is consistent with the
assumption of first-order kinetics.

In order to estimate the error �E in the activation energy E , we take the loga-
rithmic derivative of the equation E = 0.976kT 2

M/δ:∣∣∣∣�E

E

∣∣∣∣ = 2

∣∣∣∣�TM

TM

∣∣∣∣ +
∣∣∣∣�δ

δ

∣∣∣∣ = 2

∣∣∣∣ 2

383

∣∣∣∣ +
∣∣∣∣ 2

12

∣∣∣∣ = 0.010 + 0.167 = 0.177.

This gives a rather large error in �E = 0.177E = 0.177(1.028) = 0.18 eV.
A much more detailed error analysis of the peak shape equations is given in

Exercise 2.9.
(c) The whole glow-peak method. In the whole glow-peak area method, the area

n(T ) under the glow peak is calculated starting at temperature T , to the maximum
temperature available, as shown in Figure 2.5. In the data shown in Table 2.1, the
maximum available temperature is 145◦C.
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Figure 2.5. Applying the whole
glow-peak method.

The area n(T ) under the glow peak can be approximated by using the sum of all
the data points from any temperature T upwards, up to the maximum temperature
available in the data. According to equation (1.21), this sum must be multiplied
by the temperature interval �T and must be also divided by the heating rate β. In
our case, we are given �T = 5 K and β = 1 K s−1.

In the spreadsheet example shown in Table 2.3, column C labeled “Area” is
calculated using the command:

Cell C1 = sum(B1:B26)∗5/1,

Cell C2 = sum(B2:B26)∗5/1, etc.

Once the “Area” column is calculated, column D labeled “ln(TL/Area)” can be
calculated by using the command:

Cell D1 = ln(B1/C1),

Cell D2 = ln(B2/C2), etc.

Additional columns are created in the spreadsheet for the quantities of ln(TL/Areab)
and for several values of the kinetic order b = 1.2, 1.1, 1.0, and 0.9. Not all
columns are shown for the sake of saving space.

In Figure 2.6, graphs of ln(TL/Areab) versus 1/kT are drawn for several values
of the kinetic order b = 1.2, 1.1, 1.0, and 0.9.

The graphs in Figure 2.6 corresponding to b = 0.9, 1.0, and 1.2 clearly deviate
from straight lines at low values of 1/kT , and must be rejected.

The b = 1.1 graph has the highest value of R2 and therefore gives the best fit.
The data leads us to conclude that the given TL glow peak is described by b = 1.1
kinetics. Due to experimental uncertainties in the data and also due to the fact that
only 27 data points are available on the TL glow curve, we can say that to a good
approximation this can be considered a first-order kinetics TL peak. A regression
line is fitted to the best line corresponding to b = 1.1, to obtain the best slope and
the best intercept, as shown in Figure 2.7:

Best intercept = 24.579 ± 0.11,

Best slope E = 0.979 ± 0.003 eV.
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Table 2.3. The quantities ln(I/n) and 1/kT for first-order glow curve

A B C D E

T(C) TLexperimental Area ln(TL/Area) 1/kT ln(TL/Area1.1)

1 20 7.56 × 104 1.05 × 1010 −11.84 39.61 −14.15
2 25 1.28 × 105 1.05 × 1010 −11.31 38.94 −13.62
3 30 2.44 × 105 1.05 × 1010 −10.67 38.30 −12.98
4 35 4.54 × 105 1.05 × 1010 −10.05 37.68 −12.35
5 40 8.29 × 105 1.05 × 1010 −9.45 37.08 −11.75
6 45 1.49 × 106 1.05 × 1010 −8.86 36.49 −11.17
7 50 2.61 × 106 1.05 × 1010 −8.30 35.93 −10.61
8 55 4.51 × 106 1.05 × 1010 −7.75 35.38 −10.06
9 60 7.65 × 106 1.04 × 1010 −7.22 34.85 −9.53

10 65 1.27 × 107 1.04 × 1010 −6.71 34.33 −9.01
11 70 2.09 × 107 1.03 × 1010 −6.21 33.83 −8.51
12 75 3.35 × 107 1.02 × 1010 −5.72 33.35 −8.03
13 80 5.27 × 107 1.01 × 1010 −5.25 32.88 −7.56
14 85 8.07 × 107 9.81 × 109 −4.80 32.42 −7.10
15 90 1.20 × 108 9.41 × 109 −4.36 31.97 −6.66
16 95 1.71 × 108 8.81 × 109 −3.94 31.54 −6.23
17 100 2.31 × 108 7.95 × 109 −3.54 31.11 −5.82
18 105 2.90 × 108 6.80 × 109 −3.16 30.70 −5.42
19 110 3.26 × 108 5.35 × 109 −2.80 30.30 −5.04
20 115 3.15 × 108 3.72 × 109 −2.47 29.91 −4.67
21 120 2.43 × 108 2.15 × 109 −2.18 29.53 −4.33
22 125 1.34 × 108 9.31 × 108 −1.94 29.16 −4.00
23 130 4.49 × 107 2.60 × 108 −1.75 28.80 −3.69
24 135 6.75 × 106 3.50 × 107 −1.65 28.44 −3.38
25 140 2.57 × 105 1.30 × 106 −1.62 28.10 −3.03
26 145 2.73 × 103
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Figure 2.6. Applying the whole glow-peak method for different kinetic parameters b.
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Figure 2.7. The value of b = 1.1 provides the best least squares fit in the whole glow-curve
method of analysis.

This value of E is in reasonably good agreement with the value of E = 0.986 ±
0.003 eV obtained from the IR method. The frequency factor s is calculated from
the y-intercept of the graph in Figure 2.7:

s = βe(intercept) = 1e24.579 = 4.7 × 1010 s−1.

The errors �s can be calculated from the uncertainties in the intercept of the
regression line as follows:

� (intercept) = ∂(ln s)

∂s
�s = �s

s
= 0.11.

This gives a typical large 11% error for the value of the frequency factor, with the
final value of s reported as s = (4.7 ± 0.5) × 1010 s−1.

(d) Glow-curve fitting using the Kitis et al equation. The given TL data
can be analyzed by using the following analytical equation developed by Kitis
et al [2] for TL peaks following first-order kinetics. The expression relies on two
experimentally measured quantities, IM (the maximum TL intensity) and TM (the
temperature corresponding to the maximum TL intensity):

I (T ) = IM exp

[
1 + E

kT
· T − TM

TM
− T 2

T 2
M

×
(

1 − 2kTM

E

)
exp

(
E

kT
· T − TM

TM

)
− 2kTM

E

]
. (2.2)

For the given experimental data, TM = 384 K and IM = 3.26 × 108. By treating
the activation parameter E as an adjustable parameter, we calculate several graphs
with values of E = 0.9, 1.0, 1.1, and 1.2 eV. The calculations can be set up easily
in a spreadsheet as shown in Table 2.4. Only the first 5 rows are shown for the sake
of brevity.



32 2. Analysis of Thermoluminescence Data

Table 2.4. Calculations for glow-curve fitting for several E values

A B C D E F G H I J K L

I (T ) I (T ) I (T ) I (T )
1 T (K) TLexperimental E = 1 eV E = 0.9 eV E = 1.1 eV E = 1.2 eV
2 E = 1 eV 0.9 1.1 1.2
3 293 7.56 × 104 6.96 × 104 1.77 × 105 2.74 × 104 1.08 × 104

4 298 1.28 × 105 1.35 × 105 3.21 × 105 5.69 × 104 2.39 × 104

5 303 2.44 × 105 2.57 × 105 5.72 × 105 1.15 × 105 5.17 × 104 TM = 384 K
6 308 4.54 × 105 4.79 × 105 1.00 × 106 2.28 × 105 1.09 × 105 IM = 3.26 × 108

7 313 8.29 × 105 8.74 × 105 1.72 × 106 4.43 × 105 2.24 × 105

Columns A and B contain the experimental data points for the TL glow curve,
while columns C–F contain the calculated data points using equation (2.2) for four
values of the energy parameter E (E = 0.9, 1.0, 1.1, and 1.2 eV).

The following expression is used to calculate the values of the fitted data in
column C, using equation (2.2) for first-order kinetics:

Cell C3 = $H$6∗EXP(1+$H$2/(0.00008617∗A3)
∗((A3-$H$5)/$H$5)-((A3∗A3)/($H$5∗$H$5))
∗(1-2∗0.00008617∗$H$5/$H$2)∗EXP($H$2/(0.00008617∗A3)
∗((A3-$H$5)/$H$5))-2∗0.00008617∗$H$5/$H$2).

This expression refers to cell A3 which contains the absolute temperature
T (K). Also, note that cell H2 in the spreadsheet contains the value of the energy
parameter E = 1.0 eV, cell H5 contains the value of the experimental para-
meter TM = 384 K, and cell H6 contains the value of the experimental maximum
height parameter IM = 3.26 × 108. The above spreadsheet expression refers to the
values contained in these cells by using the Excel commands $H$2, $H$5, $H$6,
correspondingly.

The user controls the value of the parameter E by changing the value in cell H2,
and the whole spreadsheet calculation is automatically updated.

The graphs calculated for E = 0.9, 1.0, 1.1, and 1.2 eV are shown in Figure 2.8.
It can be seen that when the value of E is too low (graph corresponding to

E = 0.9 eV), the calculated TL points lie above the experimental data. This
is also evident by inspection of the calculated I (T ) values in Table 2.4. On
the other hand, when the value of E is too high (graphs corresponding to
E = 1.1 and 1.2 eV), the calculated TL points lie clearly below the experimental
data.

This procedure is a simple example of a glow-curve fitting procedure, in which
we find the value of E that yields the best fit to experimental data obeying first-order
kinetics.

A more precise numerical method of performing the same fitting procedure is
by calculating the FOM for the graphs above. The FOM is defined as [2]

FOM =

∑
p

∣∣yexperimental − yfit

∣∣
∑

p
yfit

, (2.3)
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Figure 2.8. Calculated first-order TL glow peaks for different E-values.

where yexperimental and yfit represent the experimental TL intensity data and the
values of the fitting function, respectively. The summation extends over all the
available experimental points.

Table 2.5 shows an example of a FOM calculation as applied to the previous data.
Column A contains the experimental data points and columns B and C contain the
calculated data points using equation (2.2) for first-order kinetics, for two values
of the energy parameter E (E = 1.0 and 0.9 eV).

Columns E and F contain the calculation of the quantity |TLexperimental −
TLcalculated|, and cells E29 and F29 contain the calculated values of the FOM.
The expressions used in this example are

Cell E3 = ABS(A3 − B3)

Cell F3 = ABS(A3 − C3)

Cell E29 = SUM(E3:E27)/SUM(B3:B27)

Cell F29 = SUM(F3:F27)/SUM(C3:C27).

The FOM for the value of the parameter E = 1.0 eV is equal to 0.026 = 2.6%,
almost four times smaller than the FOM = 0.094 = 9.4% for the case E = 0.9 eV.

The frequency factor s can be calculated by using the value of E = 1.0 eV
and the temperature of maximum TL intensity TM = 384 K in equation (1.8) for
first-order kinetics:

s = βE

kT 2
M

exp

(
E

kTM

)
= (1)1

(8.617 × 10−5)(384)2
exp

(
1

(8.617 × 10−5)384

)
= 1.05 × 1012 s−1
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Table 2.5. Example of a FOM calculation for first-order glow curve

A B C D E F

TLexperimental I (T ) I (T ) |TLexperimental−I (t)| |TLexperimental−I (t)|
1 E = 1 eV E = 0.9 eV E = 1 eV E = 0.9 eV
2
3 7.56 × 104 6.96 × 104 1.77 × 105 6.01 × 103 1.07 × 105

4 1.28 × 105 1.35 × 105 3.21 × 105 6.83 × 103 1.86 × 105

5 2.44 × 105 2.57 × 105 5.72 × 105 1.30 × 104 3.15 × 105

6 4.54 × 105 4.79 × 105 1.00 × 106 2.42 × 104 5.23 × 105

7 8.29 × 105 8.74 × 105 1.72 × 106 4.41 × 104 8.46 × 105

8 1.49 × 106 1.56 × 106 2.90 × 106 7.88 × 104 1.34 × 106

9 2.61 × 106 2.75 × 106 4.82 × 106 1.38 × 105 2.07 × 106

10 4.51 × 106 4.75 × 106 7.87 × 106 2.38 × 105 3.13 × 106

11 7.65 × 106 8.05 × 106 1.26 × 107 4.02 × 105 4.59 × 106

12 1.27 × 107 1.34 × 107 2.00 × 107 6.64 × 105 6.56 × 106

13 2.09 × 107 2.19 × 107 3.10 × 107 1.07 × 106 9.05 × 106

14 3.35 × 107 3.52 × 107 4.72 × 107 1.68 × 106 1.20 × 107

15 5.27 × 107 5.52 × 107 7.03 × 107 2.55 × 106 1.51 × 107

16 8.07 × 107 8.44 × 107 1.02 × 108 3.67 × 106 1.77 × 107

17 1.20 × 108 1.25 × 108 1.44 × 108 4.93 × 106 1.89 × 107

18 1.71 × 108 1.77 × 108 1.94 × 108 5.92 × 106 1.74 × 107

19 2.31 × 108 2.37 × 108 2.49 × 108 5.84 × 106 1.25 × 107

20 2.90 × 108 2.93 × 108 2.98 × 108 3.62 × 106 5.24 × 106

21 3.26 × 108 3.25 × 108 3.25 × 108 1.16 × 106 1.79 × 105

22 3.15 × 108 3.08 × 108 3.12 × 108 6.59 × 106 3.52 × 106

23 2.43 × 108 2.35 × 108 2.51 × 108 7.99 × 106 1.66 × 107

24 1.34 × 108 1.32 × 108 1.61 × 108 2.81 × 106 2.91 × 107

25 4.49 × 107 4.79 × 107 7.50 × 107 3.03 × 106 2.70 × 107

26 6.75 × 106 9.60 × 106 2.29 × 107 2.85 × 106 1.34 × 107

27 2.57 × 105 8.39 × 105 4.00 × 106 5.83 × 105 3.16 × 106

28
29 FOM = 0.026 0.094

The resolution of the Kitis et al fitting method can be refined by repeating this
process of calculating the FOM for different values of E spaced much closer
together (e.g. E = 1.01, 1.00, 0.99, etc.) and finding the value of E that minimizes
the value of the FOM.

Finally, we summarize in Table 2.6 the results of the various methods for ana-
lyzing the given experimental data.

Table 2.6. Summary of the results of various analysis methods for first-order glow curve

E(eV) s(s−1) Comments below

Initial rise method 0.986 ± 0.003 [1, 5]
Chen’s τ -method 0.956 [2, 5]
Chen’s δ-method 1.03 ± 0.18 [2, 5]
Chen’s ω-method 0.996 [2, 5]
Whole glow-peak method 0.979 ± 0.003 (4.7 ± 0.5) × 1010 [3]
Fitting method using Kitis et al 1.1 ± 0.1 1.05 × 1012 [4, 5]

equation (equation (2.21))
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Comments on the Results of Exercise 2.1

1. The value of E obtained from the IR method is independent of the kinetics of
the TL glow peak.

The presence of thermal quenching affects the value of E obtained in the IR
method. A possible correction method for the value of E is given in Chapter 5.

It is best to use the IR method with samples irradiated at low doses, i.e.
samples away from saturation conditions [3].

The test dose used to obtain the TL glow curve is our “probe” of the material,
and must always be as small as possible, so that on one hand it does not disturb
the system and on the other it can give us a statistically satisfactory signal.
Typical values of test doses may be in the mGy or µGy range.

2. The value of E obtained with peak shape methods can be influenced by the
presence of smaller satellite peaks.

3. The whole glow-curve method yields information on both E and the pre-
exponential factor s. By using the values of E, s, and n0 (obtained from the
area under the glow curve), it is possible to compare directly the experimental
data with the TL intensity obtained using equation (1.5) (see also Exercises
2.4–2.6 in this chapter for second- and general-order kinetics).

4. The Kitis et al method is based on two experimentally measured parameters,
TM and IM. The activation energy E is treated as a fitting parameter. The
method can be easily adopted on a computer to yield high accuracy for E .

5. The pre-exponential factor s can be calculated from the value of TM, E , and β

by using equation (1.8). The estimated uncertainties �s/s from equation (1.8)
can be very large (50–100%), even when the uncertainty �E/E is very small.

(e) Can it be concluded for this material that this TL peak will always follow
first-order kinetics?

In general, one cannot assume that the studied TL glow curve of this material
will always follow first-order kinetics. The analysis should be carried out for glow
peaks measured under different heating rates, various irradiation doses, powdered
and bulk samples, etc.

Some of the criteria for first-order kinetics are:

I. Peak shape: First-order peaks have µ = 0.42.
II. Peak shift: In first-order TL glow peaks, the location of maximum TL intensity

does not shift in temperature for different irradiation doses.
III. Isothermal decay results: These can provide valuable independent information

about the kinetics of the TL process involved at different temperatures. First-
order kinetics corresponds to exponential isothermal decay curves.

Exercise 2.2: Heating Rate Method for First-Order Kinetics

You are given the data in Figure 2.9 for four experimental TL glow curves measured
with different heating rates (TL versus Temperature T , and known heating rates
β1 = 0.5, β2 = 1, and β3 = 2, and β3 = 3K s−1). It is known that this TL peak
follows first-order kinetics.
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Figure 2.9. The experimental TL glow curves for different heating rates. (a) The y-axis is
represented as counts/s and (b) the y-axis is represented as counts/K.

(a) Discuss the observed changes in the peak position and peak shape for different
heating rates.

(b) Apply the two-heating rate equation for E (equation (1.26)), to obtain a quick
estimate of the activation energy E .

(c) Apply also the IM − TM variation method (equation (1.31)), to obtain a quick
estimate of the activation energy E .

(d) By applying the heating rate method of analysis find the kinetic parameters E
and s, and their uncertainties �E and �s.

Solution

(a) The data of Figure 2.9 show that as the heating rate increases, the glow peaks
shift to higher temperatures, and the height of the TL peak changes. Because in a
typical TL experiment, one collects the TL signal as a function of time, the y-axis
in Figure 2.9(a) is represented in counts/s. These units of counts/s are not suitable
for graphing the actual TL glow curve which is a function of temperature, so it is
necessary to convert into temperature units. This is done by dividing each of the
graphs in Figure 2.9(a) by the corresponding heating rate β, and one obtains the
y-axis in counts/K as shown in Figure 2.9(b).

The area under the peaks in Figure 2.9(a) is proportional to the heating rate β,
whereas the area under the glow curves in Figure 2.9(b) is constant.

The temperatures TM for the maximum TL intensity and the corresponding
intensities IM are found from the curves of Figure 2.9(a) and (b), and are listed in
Table 2.7.

(b) We can calculate the energy E from the two-heating rate equation
(equation (1.26))

E = k
TM1TM2

TM1 − TM2
ln

[
β1

β2

(
TM2

TM1

)2
]

. (1.26)
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Table 2.7. Calculation of ln(TM
2/β) and 1/kTM for first-order glow curve

β(K s−1) TM(◦C) TM(K) ln(T 2
M /β) 1/kTM(eV)−1 IM(counts/s) IM(counts/K)

0.5 84 357 12.449 32.507 17 34
1 92 365 11.800 31.794 32 32
2 100 373 11.150 31.113 62 31
3 104 377 10.766 30.782 90 30

Inserting TM1 = 357 K, TM2 = 365 K, β1 = 0.5 K s−1, β2 = 1 K s−1, we obtain

E = 8.617 × 10−5 (357)(365)/(357 − 365) ln[0.5(365)2/1(357)2] = 0.911 eV.

(c) We can also estimate the energy E from the two-intensities equation
(equation (1.31))

E = kTm1Tm2

Tm1 − Tm2
ln

Im1

Im2
. (1.31)

Inserting TM1 = 357 K, TM2 = 365 K, IM1 = 34 (counts/K), IM2 = 32
(counts/K), we obtain

E = 8.617 × 10−5 (357)(365)/(357 − 365) ln[(34/32)0.5] = 0.89 eV.

(d) We calculate the quantities 1/kTM (k = Boltzmann constant) and ln(T 2
M /β)

shown in Table 2.7 with β = given heating rates. As discussed in Chapter 1,
equation (1.27) shows that the slope of the graph ln(T 2

M /β) versus 1/kTM will
be equal to the activation energy E , and that the y-intercept will be equal to
ln(E/sk).

From the slope and intercept of the graph ln(T 2
M /β) versus 1/kTM, in

Figure 2.10, we can calculate the kinetic parameters E and s as follows:

1/kTM  (eV−1)

30.4 30.8 31.2 31.6 32.0 32.4 32.8

ln
(T

M
2 /β

)

10.4

10.8

11.2

11.6

12.0

12.4

12.8

Figure 2.10. Graph of ln(T 2
M /β) versus 1/kTM to determine E and s.
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From the slope of the graph, E = 0.9668 eV.
From the value of the y-intercept = ln(E/sk), we obtain

s = Eeintercept/k = 0.9668e(18.962)/(8.617×10−5) = 1.9 × 1012 s−1.

The values of E and s obtained above can be checked for self-consistency as
follows. Because the temperature TM of the maximum TL intensity is known from
the experimental data, the value of s can be calculated in an independent manner
by rearranging equation (1.8) to obtain

s = βE

kT 2
M

exp

(
E

kTM

)
. (2.4)

By using the values of E = 0.9668 eV, TM = 84◦C = 357 K, β = 0.5 K s−1 in
equation (2.4):

s = (0.5)(0.9668)

(8.617 × 10−5)(357)2
exp

(
0.9668

(8.617 × 10−5)357

)
= 2.1 × 1012 s−1.

This value of s is very close to the value of s = 1.9 × 1012 s−1 obtained above
using the y-intercept of the graph, indicating that the results of the heating rate
method are self-consistent with the assumption of first-order kinetics.

(d) The errors �E and �s can be calculated from the uncertainties in the slope
and y-intercept of the best-fitting regression lines.

From the slope of the regression line, E = 0.967 ± 0.029 eV.
This corresponds to a percent error in E of 100(�E/E) = 100(0.029/

0.967) = 3%.
By taking the logarithmic derivative of the equation s = E exp (intercept)/k, we

obtain

ln s = ln E + intercept − ln k,∣∣∣∣�s

s

∣∣∣∣ =
∣∣∣∣�E

E

∣∣∣∣ + |�(intercept)| =
∣∣∣∣0.0288

0.9668

∣∣∣∣ + |0.91| = 0.94. (2.5)

This leads to a very large (but nevertheless typical) uncertainty in s, of the order
of 94%.

As a general comment on applying the heating rate methods of analysis, we
wish to point out that the methods based on the variation of IM with the heating
rate β are easy to use. These methods are perhaps also more reliable than the
methods based on the changes of TM with the heating rate, because they would be
less affected by the presence of nearby overlapping TL peaks. It is rather strange
that these IM-based methods have not been very popular in the TL literature. In
our opinion, this is due most probably to confusion between the theoretical heights
IM and the corresponding heights measured in an experiment. These latter heights
must be divided by the heating rate β as was shown in this exercise, in order to
correct the units and to normalize the areas under the TL glow peaks.

When using theoretical methods involving IM, the units of the height IM are in
counts/s. However, in experimental data, one measures IM in units of counts/K.
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If one tries to apply the IM methods of analysis using the experimental data in
counts/K, these methods fail dramatically to yield the correct values of E . For
correct application of the method, the experimental values of counts/K must be
changed into counts/s by multiplying with the heating rate β.

This important point has not been emphasized or clarified enough in the TL
literature.

Exercise 2.3: Isothermal Method for First-Order Kinetics

You are given the experimental data in Table 2.8 for the isothermal decay
curves of a TL peak, which were measured for four different temperatures of
T = 50◦C, 60◦C, 70◦C, and 80◦C.

(a) Show that these data are consistent with the assumption that the TL glow peak
follows first-order kinetics.

(b) Find the kinetic parameters E and s.

Solution

(a) Figure 2.11 shows the given data for the four different temperatures T =
50◦C, 60◦C, 70◦C, and 80◦C.

As discussed in Chapter 1, the isothermal decay curves for TL peaks following
first-order kinetics are exponential functions of time, given by

I = I0exp(−s · exp(−E/kT ) · t). (2.6)

This equation tells us that a graph of ln(I ) versus time t will be linear for first-order
kinetics peaks, and that the slope of the line will be

|slope| = s · exp(−E/kT). (2.7)

By taking the natural logarithm of this equation, we obtain

ln(|slope|) = ln s − E/kT . (2.8)

Table 2.8. Data for the isothermal decay curves of a first-order TL peak

t(s) TL, T = 50◦C TL, T = 60◦C TL, T = 70◦C TL, T = 80◦C

0 2.48 × 106 7.22 × 106 1.94 × 107 4.74 × 107

20 2.47 × 106 7.11 × 106 1.87 × 107 4.26 × 107

40 2.45 × 106 7.01 × 106 1.79 × 107 3.83 × 107

60 2.44 × 106 6.91 × 106 1.72 × 107 3.45 × 107

80 2.43 × 106 6.80 × 106 1.65 × 107 3.10 × 107

100 2.42 × 106 6.70 × 106 1.58 × 107 2.78 × 107

120 2.40 × 106 6.61 × 106 1.52 × 107 2.50 × 107

140 2.39 × 106 6.51 × 106 1.46 × 107 2.25 × 107

160 2.38 × 106 6.41 × 106 1.40 × 107 2.02 × 107

180 2.37 × 106 6.32 × 106 1.34 × 107 1.82 × 107

200 2.36 × 106 6.23 × 106 1.29 × 107 1.63 × 107

220 2.35 × 106 6.13 × 106 1.24 × 107 1.47 × 107
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Figure 2.11. The isothermal decay curves for first-order TL data.

The graph of the ln(|slope|) versus 1/kT should be a straight line with
slope = −E and y-intercept = ln s.

We first find ln(TL) for each isothermal curve as shown in Table 2.9.
By graphing the ln(TL) versus time, we obtain straight lines as shown

in Figure 2.12, indicating that the given isothermal TL data obey first-order
kinetics. We next find the regression lines through each of the graphs shown in
Figure 2.12.

(b) Next, we tabulate in Table 2.10 the slopes of these linear graphs and calculate
the natural logarithm of the slopes, ln(|slope|). Finally, we graph in Figure 2.13 the
ln(|slope|) versus 1/kT , where T = temperature (in K) at which the isothermal
decay curves were measured.

The slope of the regression line gives the activation energy E :

E = 1.007 ± 0.002 eV.

Table 2.9. The ln(TL) data for each isothermal curve

TL, ln(TL), TL, ln(TL), TL, ln(TL), TL, ln(TL),
t(s) T = 50◦C T = 50◦C T = 60◦C T = 60◦C T = 70◦C T = 70◦C T = 80◦C T = 80

0 2.48 × 106 14.726 7.22 × 106 15.796 1.94 × 107 16.783 4.74 × 107 17.683
20 2.47 × 106 14.722 7.11 × 106 15.782 1.87 × 107 16.750 4.26 × 107 17.594
40 2.45 × 106 14.718 7.01 × 106 15.771 1.79 × 107 16.718 3.83 × 107 17.498
60 2.44 × 106 14.712 6.91 × 106 15.749 1.72 × 107 16.674 3.45 × 107 17.380
80 2.43 × 106 14.705 6.80 × 106 15.735 1.65 × 107 16.629 3.10 × 107 17.264

100 2.42 × 106 14.701 6.70 × 106 15.720 1.58 × 107 16.584 2.78 × 107 17.150
120 2.40 × 106 14.696 6.61 × 106 15.707 1.52 × 107 16.548 2.50 × 107 17.059
140 2.39 × 106 14.690 6.51 × 106 15.699 1.46 × 107 16.511 2.25 × 107 16.961
160 2.38 × 106 14.687 6.41 × 106 15.683 1.40 × 107 16.462 2.02 × 107 16.863
180 2.37 × 106 14.681 6.32 × 106 15.660 1.34 × 107 16.420 1.82 × 107 16.754
200 2.36 × 106 14.675 6.23 × 106 15.645 1.29 × 107 16.385 1.63 × 107 16.634
220 2.35 × 106 14.673 6.13 × 106 15.632 1.24 × 107 16.346 1.47 × 107 16.527
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Figure 2.12. The isothermal decay curves on semilog scale for first-order TL data.

And the frequency factor s can be found from the intercept of the regression line:

Intercept = ln(s) = 27.87 ± 0.07.

Therefore,

s = exp(27.87) = 1.3 × 1012 s−1.

The error in the frequency factor �s can be calculated from the uncertainties in
the intercept of the regression line as follows:

�(intercept) = �s/s = 0.07.

This gives a rather unusually small error of 7% for the value of the frequency
factor s.

Self-Consistency Check of E and s Values

The values of s and E can be checked for self-consistency as follows: We can calcu-
late theoretical slopes of the isothermal decay curves using the E and s values and
compare them with the experimental slopes obtained from the graphs. Theoreti-
cally, the slopes of the graphs ln(TL) versus time t should be given by equation (2.7)

slope = s exp

(−E

kT

)
.

Table 2.10. The slopes of linear isothermal graphs

Calculated %Difference
T (◦C) |slope|(s−1) 1/kT (eV−1) ln(|Slope|) |slope|(s−1) in slopes

50 2.46 × 10−4 35.93 −8.31 2.49 × 10−4 1.2
60 7.35 × 10−4 34.85 −7.22 7.33 × 10−4 −0.3
70 2.04 × 10−3 33.83 −6.19 2.02 × 10−3 −0.8
80 5.33 × 10−3 32.88 −5.23 5.28 × 10−3 −1.0
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Figure 2.13. The ln(|slope|) versus 1/kT graph for first-order TL data.

By using the values of E = 1.007 eV and s = 1.3 × 1012 s−1 in equation (2.7), we
obtain the theoretical values of the slopes shown on the fifth column of Table 2.10.
The last column in Table 2.10 shows that the percent difference between the theo-
retical and experimental slopes in columns 2 and 5 is very small, of the order of 1%,
indicating that the isothermal decay data are consistent with first-order kinetics.

Exercise 2.4: Analysis of a Second-Order TL Peak

You are given in Table 2.11 and Figure 2.14 the experimental data for a TL glow
curve (TL versus Temperature T ), which was measured with a heating rate β =
1 K s−1.

(a) Apply the IR method to find the activation energy E . The value for E obtained
using the IR method is assumed to be independent of the order of kinetics.

Table 2.11. The experimental data for a second-order TL glow curve

T (◦C) TL (a.u.) T (◦C) TL (a.u.)

46 1.58 × 106 124 1.58 × 108

52 3.09 × 106 130 1.20 × 108

58 5.87 × 106 136 8.64 × 107

64 1.09 × 107 142 5.98 × 107

70 1.95 × 107 148 4.05 × 107

76 3.37 × 107 154 2.71 × 107

82 5.60 × 107 160 1.81 × 107

88 8.78 × 107 166 1.21 × 107

94 1.28 × 108 172 8.17 × 106

100 1.70 × 108 178 5.53 × 106

106 2.00 × 108 184 3.77 × 106

112 2.08 × 108 190 2.59 × 106

118 1.92 × 108 196 1.79 × 106
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Figure 2.14. The second-order TL glow curve.

(b) Apply Chen’s peak shape equations for second-order kinetics to find the ac-
tivation energy E , using the shape parameters τ, δ, and ω. By assuming that
the experimental error in the quantities τ, δ, and ω is �T = 2 K, estimate the
error �µ in the value of the geometrical shape factor µ.

Show that the values of µ and �µ are consistent with the assumption that
the TL glow curve obeys second-order kinetics.

(c) Apply the whole glow-peak method to the data given and find E , s, and
the order of kinetics b. Verify that the given TL glow curve corresponds to
second-order kinetics.

(d) Using the values of IM (maximum TL intensity) and TM (temperature of max-
imum intensity) from the data table, do a curve fitting to the given numerical
data. Use the following analytical equation developed by Kitis et al [2] for
second-order kinetics:

I (T ) = 4IM exp

(
E

kT
· T − TM

TM

)

×
[

T 2

T 2
M

·
(

1 − 2kT

E

)
exp

(
E

kT
· T − TM

TM

)
+ 1 + 2kTM

E

]−2

. (2.9)

The activation parameter E in this expression can be treated as an adjustable
parameter.
Graph both the experimental data and the calculated second-order TL glow
curve on the same graph and compare them.
Calculate the FOM for the TL glow curve.

(e) Can it be concluded from the above analysis that this material will always
follow second-order kinetics?

Solution

(a) The IR method. We calculate in Table 2.12 the values of 1/kT (T = temperature
in K) and the values of ln(TL) in a spreadsheet.
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Table 2.12. Calculated values of 1/kT and the values of ln(TL)

T (◦C) TLexperimental 1/kT (eV−1) ln(TL) T (◦C) TLexperimental 1/kT (eV−1) ln(TL)

46 1.58 × 106 36.38 14.27 124 1.58 × 108 29.23 18.88
52 3.09 × 106 35.71 14.94 130 1.20 × 108 28.80 18.61
58 5.87 × 106 35.06 15.59 136 8.64 × 107 28.37 18.27
64 1.09 × 107 34.44 16.20 142 5.98 × 107 27.96 17.91
70 1.95 × 107 33.83 16.78 148 4.05 × 107 27.57 17.52
76 3.37 × 107 33.25 17.33 154 2.71 × 107 27.18 17.12
82 5.60 × 107 32.69 17.84 160 1.81 × 107 26.80 16.71
88 8.78 × 107 32.15 18.29 166 1.21 × 107 26.44 16.31
94 1.28 × 108 31.62 18.67 172 8.17 × 106 26.08 15.92

100 1.70 × 108 31.11 18.95 178 5.53 × 106 25.73 15.53
106 2.00 × 108 30.62 19.11 184 3.77 × 106 25.39 15.14
112 2.08 × 108 30.14 19.15 190 2.59 × 106 25.06 14.77
118 1.92 × 108 29.68 19.07 196 1.79 × 106 24.74 14.40

We next graph in Figure 2.15(a) the ln(TL) versus 1/kT data and find a regres-
sion line through the first 7 data points, as shown in Figure 2.15(b).

The slope of the regression line gives the activation energy E as

E = 0.969 ± 0.006 eV, with R2 = 0.9997.

(b) Chen’s peak shape equations. From the given experimental data, we can
estimate the temperatures

T1 = 91◦C = 364 K, T2 = 133◦C = 406 K, TM = 112◦C = 385 K,

where

TM = peaktemperature at the maximum TL intensity,

T1, T2 = temperatures on either side of TM, corresponding to the half-maximum

intensity.
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Figure 2.15. IR method analysis.
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We next calculate the quantities µ, τ, δ, and ω:

τ = TM − T1 = 21 K, δ = T2 − TM = 21 K, ω = T2 − T1 = 42 K,

µ = δ/ω = 21/42 = 0.50.

The calculated value of the geometrical shape factor µ = δ/ω = 0.50 is very close
to the theoretical value for a second-order TL peak µ = δ/ω = 0.52.

Using the known experimental error �T = 2 K for the quantities τ, δ, and ω,
we can do an error analysis of the values of µ. As in the case of first-order kinetics,∣∣∣∣�µ

µ

∣∣∣∣ =
∣∣∣∣�δ

δ

∣∣∣∣ +
∣∣∣∣�ω

ω

∣∣∣∣ =
∣∣∣∣ 2

21

∣∣∣∣ +
∣∣∣∣ 2

42

∣∣∣∣ = 0.095 + 0.048 = 0.143.

This leads to a value of µ ± �µ = 0.50 ± 0.07, which is consistent with second-
order kinetics within the accuracy of the given TL data.

We apply Chen’s equation for second-order kinetics.
Using the value of τ :

E = 1.81kT 2
M

τ
− 2(2kTM) = 1.101 − 0.133 = 0.968 eV.

Using the value of δ:

E = 1.71kT 2
M

δ
= 1.040 eV.

Using the value of ω:

E = 3.54kT 2
M

ω
− 2kTM = 1.077 − 0.066 = 1.011 eV.

In order to find the error �E in the activation energy E , we take the logarithmic
derivative of the equation E = 1.71kT 2

M/δ:∣∣∣∣�E

E

∣∣∣∣ = 2

∣∣∣∣�TM

TM

∣∣∣∣ +
∣∣∣∣�δ

δ

∣∣∣∣ = 2

∣∣∣∣ 2

385

∣∣∣∣ +
∣∣∣∣ 2

21

∣∣∣∣ = 0.010 + 0.095 = 0.105.

This gives a rather large 10.5% error of �E = 0.105E = 0.105(1.040) = 0.11 eV.
(c) The whole glow-peak method. We graph ln(I/nb) versus 1/T for various

values of b between 1.8 and 2.1, and find the value of b that gives a linear graph.
As in the case of first-order kinetics, n(T ) is the area under the glow peak and it is
calculated starting at a temperature T , up to the maximum temperature available
in the experimental data. In the data shown in Table 2.13, the maximum available
temperature is 196◦C.

By following the same procedure as in the case of first-order kinetics, we set up a
spreadsheet to calculate the quantities ln(I/nb) and 1/kT as shown in Table 2.13.

Additional columns are created in the spreadsheet for the quantities of ln(TL/nb)
for several values of the kinetic order b = 2.0, 2.1, 1.9, and 1.8.

Finally, several graphs are drawn of ln(TL/Areab) versus 1/kT as shown in
Figure 2.16.

It is clear that all four graphs in Figure 2.16 deviate from straight lines, especially
at low values of 1/kT (which correspond to large temperatures located on the high-
temperature end of the TL glow peak). These deviations are due to experimental
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Table 2.13. The quantities ln(I/nb) and 1/kT

A B C D E F G

1/kT
1 T (◦C) (eV)−1 Area ln(TL/Area) ln(TL/n2) ln(TL/n2.1) ln(TL/n1.9) ln(TL/n1.8)

2 46 36.38 9.96 × 109 −8.75 −31.77 −34.07 −29.47 −27.17
3 52 35.71 9.95 × 109 −8.08 −31.10 −33.40 −28.80 −26.49
4 58 35.06 9.94 × 109 −7.43 −30.45 −32.75 −28.15 −25.85
5 64 34.44 9.90 × 109 −6.82 −29.83 −32.13 −27.53 −25.23
6 70 33.83 9.84 × 109 −6.22 −29.23 −31.53 −26.93 −24.63
7 76 33.25 9.72 × 109 −5.66 −28.66 −30.96 −26.36 −24.06
8 82 32.69 9.52 × 109 −5.14 −28.11 −30.41 −25.81 −23.52
9 88 32.15 9.18 × 109 −4.65 −27.59 −29.88 −25.30 −23.00

10 94 31.62 8.65 × 109 −4.21 −27.10 −29.38 −24.81 −22.52
11 100 31.11 7.89 × 109 −3.84 −26.63 −28.91 −24.35 −22.07
12 106 30.62 6.87 × 109 −3.54 −26.19 −28.45 −23.92 −21.66
13 112 30.14 5.67 × 109 −3.30 −25.76 −28.01 −23.52 −21.27
14 118 29.68 4.42 × 109 −3.14 −25.35 −27.57 −23.13 −20.91
15 124 29.23 3.27 × 109 −3.03 −24.94 −27.13 −22.74 −20.55
16 130 28.80 2.32 × 109 −2.96 −24.52 −26.68 −22.37 −20.21
17 136 28.37 1.60 × 109 −2.92 −24.11 −26.23 −21.99 −19.87
18 142 27.96 1.08 × 109 −2.89 −23.69 −25.77 −21.61 −19.53
19 148 27.57 7.19 × 108 −2.88 −23.27 −25.31 −21.23 −19.19
20 154 27.18 4.76 × 108 −2.86 −22.84 −24.84 −20.85 −18.85
21 160 26.80 3.13 × 108 −2.85 −22.41 −24.36 −20.45 −18.50
22 166 26.44 2.04 × 108 −2.82 −21.95 −23.87 −20.04 −18.13
23 172 26.08 1.31 × 108 −2.78 −21.47 −23.34 −19.60 −17.73
24 178 25.73 8.21 × 107 −2.70 −20.92 −22.74 −19.10 −17.28
25 184 25.39 4.89 × 107 −2.56 −20.27 −22.04 −18.50 −16.73
26 190 25.06 2.63 × 107 −2.32 −19.40 −21.11 −17.69 −15.99
27 196
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Figure 2.16. Graphs of ln(TL/Areab) versus 1/kT for several values of kinetic order b.
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Intercept= 3.03 + 0.13
Slope E=−0.954 + 0.004 eV
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Figure 2.17. The parameters E and s ′ can be calculated from the whole glow-peak method.

uncertainties in the data, and also to the fact that only 26 data points are available
on the TL glow curve.

A regression line is fitted to the four graphs above:

b = 1.8: R2 = 0.9983

b = 1.9: R2 = 0.9992

b = 2.0: R2 = 0.9990

b = 2.1: R2 = 0.9979.

The regression line for b = 1.9 gives the largest regression coefficient R2, with
a value that is very close to the regression coefficient for the case b = 2.0. Within
the accuracy of the given experimental data and within the framework of the whole
glow-peak method of analysis, we can conclude that the given TL glow peak data
follow second-order kinetics.

The values of E and s ′ can be calculated from the best-fitting regression line
shown in Figure 2.17:

Best intercept = 3.03 ± 0.13,

Best slope E = −0.954 ± 0.004 eV.

According to equation (1.23), the value of s ′ can be calculated from the intercept
of the regression line:

s ′ = βe(intercept) = 1e(3.03) = 20.697.

The whole glow-peak method yields information about both the activation energy
E and the effective frequency factor s ′ = s/N appearing in equation (1.6):

I (T ) = n2
0

s

N
exp

(
− E

kT

) [
1 + n0s

βN

∫ T

T0

exp

(
− E

kT ′

)
dT ′

]−2

. (1.6)
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Since TL data analysis of a glow curve cannot yield a value for the absolute con-
centration n0 of traps in the material, the factors s/N and n0 appearing in equation
(1.6) represent two empirical fitting parameters for second-order glow peaks. The
value of n0 can be obtained from the area under the glow curve as follows:

Area

β
= 1

β

∫ Tf

T0

I dT =
∫ tf

t0

I dt =
∫ tf

t0

−
(

dn

dt

)
dt

= n(t0) − n(tf) = n0 − 0 = n0. (2.10)

In our example, the area can be estimated by summing the TL intensities
multiplied by the temperature interval �T = 6 K between TL measurements, and
dividing by the heating rate β = 1 K s−1:

n0 ≈ 1

β

∫ Tf

T0

I dT = 1

β

∑
I (T )�T = 1

1

∑
I (T )(6K ) = 9.96 × 109. (2.11)

By using the values of E = 0.954 eV, s ′ = 20.697, n0 = Area = 9.96 × 109, and
β = 1 K s−1, it is possible to calculate the TL intensity using equation (1.6), and
to compare this result directly with the given experimental data. The integral in
equation (1.6) can be calculated using numerical integration methods, as shown
for example in Chapter 3. As an alternative method, the series approximation
given in equation (1.52) can be used to evaluate the integral.

The result of the comparison is shown in Figure 2.18, where the calculated I (T )
from equation (1.6) is compared with the original experimental data. Figure 2.18
shows that the calculated parameters E , s ′, and n0 from the whole glow-peak
method, as well as the second-order equation (equation (1.6)), describe the given
experimental data in a satisfactory manner.

Temperature, oC

0 50 100 150 200 250 300

T
L 

x1
08  (

a.
u.

)

0

1

2 Experimental TL
Calculated

Figure 2.18. Comparison of calculated TL intensity using equation (1.6) (solid line), and
original experimental data (individual data points). The parameters used in equation (1.6)
were calculated using the whole glow-peak method.
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Table 2.14. Calculations for glow-curve fitting for several E values

A B C D E F G H I J K L

I (T ) I (T ) I (T ) I (T )
1 T(K) TLexperimental E = 1 eV E = 0.9 eV E = 1.1 eV E = 1.2 eV
2 E = 1 eV 0.9 1.1 1.2
3 319 1.58 × 106 1.49 × 106 2.63 × 106 8.45 × 105 4.76 × 105

4 325 3.09 × 106 3.02 × 106 4.97 × 106 1.83 × 106 1.10 × 106

5 331 5.87 × 106 5.94 × 106 9.11 × 106 3.85 × 106 2.48 × 106 TM = 380 K
6 337 1.09 × 107 1.13 × 107 1.62 × 107 7.83 × 106 5.39 × 106 IM = 2.08 × 108

7 343 1.95 × 107 2.08 × 107 2.78 × 107 1.54 × 107 1.13 × 107

The observed discrepancies between experiment and calculation in Figure 2.18
are due to the several approximations involved in applying the whole glow-peak
method, and to the approximation of the area using equation (2.11).

(d) Glow-curve fitting using the Kitis et al equation. We use the analytical
equation developed by Kitis et al [2], which relies on two experimentally measured
quantities, IM = 2.08 × 108 and TM = 380 K:

I (T ) = 4IM exp

(
E

kT
· T − TM

TM

)

×
[

T 2

T 2
M

·
(

1 − 2kT

E

)
exp

(
E

kT
· T − TM

TM

)
+ 1 + 2kTM

E

]−2

. (2.12)

The activation parameter E is treated in this equation as an adjustable parameter.
We calculate several graphs with values of E = 0.9, 1.0, 1.1, and 1.2 eV. The
calculations can be easily set up in a spreadsheet as shown in Table 2.14. Only the
first 5 rows are shown for the sake of brevity.

Columns A and B contain the experimental data points for the TL glow curve,
whereas columns C–F contain the calculated data points using equation (2.12) for
second-order kinetics and for four values of the energy parameter E (E = 0.9, 1.0,
1.1, and 1.2 eV).

The following equation is used to calculate the values of the fitted data in column
C, using equation (2.12) for second-order kinetics:

Cell C3 = 4∗$H$6∗EXP($H$2/(0.00008617∗B3)∗((B3-$H$5)/

$H$5))∗((B3∗B3)/($H$5∗$H$5))∗((1-2∗0.00008617∗

$H$5/$H$2)∗EXP($H$2/(0.00008617∗B3)∗((B3-$H$5)/

$H$5))+1+2∗0.00008617∗$H$5/$H$2)∧-2.

Note that cell H2 in the spreadsheet contains the value of the energy parameter
E = 1.0 eV, cell H5 contains the value of the experimental parameter TM = 380 K,
and cell H6 contains the value of the experimental maximum height parameter
IM = 2.08 × 108. The above spreadsheet expression refers to the values contained
in these cells by using the Excel expressions $H$2, $H$5, $H$6, correspondingly.
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Figure 2.19. Experimental data and fitted graphs calculated for several values of E .

Similar expressions are entered in the columns D, E, and F, and the Excel
command Fill Down is used to fill the rest of these columns.

The graphs calculated for E = 0.9, 1.0, 1.1, and 1.2 eV are shown in Figure 2.19,
together with the given experimental data.

It can be seen in Figure 2.19 that when the value of E is too low (graph corre-
sponding to E = 0.9 eV), the calculated TL points lie well above the experimental
data. This is also evident by inspection of the I (T ) data in Table 2.14. On the other
hand, when the value of E is too high (graph corresponding to E = 1.2 eV), the
calculated TL points lie below the experimental data.

This procedure is a simple example of a single glow-curve fitting procedure, in
which we find the value of E that yields the best fit to experimental data obeying
second-order kinetics.

A more precise numerical method of performing a fitting procedure is by cal-
culating the FOM, using a similar calculation to the one employed for first-order
kinetics (Exercise 2.1).

Table 2.15 shows an example of a FOM calculation as applied to the previous
data. Column A contains the experimental data points and columns B and C contain
the calculated data points using equation (2.12) for second-order kinetics and for
two values of the energy parameter E (E = 1.1 and 0.9 eV).

Columns E and F contain the calculation of the quantity |TLexperimental −
TLcalculated|, and cells E29 and F29 contain the calculated values of the FOM.

The expressions used in this example are

Cell E3 = ABS(A3-B3)

Cell F3 = ABS(A3-C3)
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Table 2.15. Example of a FOM calculation

A B C D E F

I (T ) I (T ) |TLexperimental − I (t)| |TLexperimental − I (t)|
1 TLexperimental E = 0.9 eV E = 1.1 eV E = 0.9 eV E = 1.1 eV
2
3 1.58 × 106 2.63 × 106 8.45 × 105 1.05 × 106 7.38 × 105

4 3.09 × 106 4.97 × 106 1.83 × 106 1.88 × 106 1.26 × 106

5 5.87 × 106 9.11 × 106 3.85 × 106 3.23 × 106 2.03 × 106

6 1.09 × 107 1.62 × 107 7.83 × 106 5.34 × 106 3.03 × 106

7 1.95 × 107 2.78 × 107 1.54 × 107 8.36 × 106 4.10 × 106

8 3.37 × 107 4.59 × 107 2.90 × 107 1.22 × 107 4.77 × 106

9 5.60 × 107 7.20 × 107 5.17 × 107 1.60 × 107 4.24 × 106

10 8.78 × 107 1.06 × 108 8.61 × 107 1.82 × 107 1.74 × 106

11 1.28 × 108 1.45 × 108 1.30 × 108 1.68 × 107 2.42 × 106

12 1.70 × 108 1.81 × 108 1.75 × 108 1.14 × 107 5.81 × 106

13 2.00 × 108 2.06 × 108 2.05 × 108 5.41 × 106 5.28 × 106

14 2.08 × 108 2.12 × 108 2.09 × 108 3.98 × 106 6.81 × 105

15 1.92 × 108 2.01 × 108 1.87 × 108 9.36 × 106 4.38 × 106

16 1.58 × 108 1.77 × 108 1.52 × 108 1.86 × 107 6.65 × 106

17 1.20 × 108 1.47 × 108 1.14 × 108 2.68 × 107 5.95 × 106

18 8.64 × 107 1.18 × 108 8.26 × 107 3.13 × 107 3.86 × 106

19 5.98 × 107 9.16 × 107 5.80 × 107 3.18 × 107 1.74 × 106

20 4.05 × 107 7.01 × 107 4.03 × 107 2.96 × 107 1.97 × 105

21 2.71 × 107 5.32 × 107 2.79 × 107 2.60 × 107 7.11 × 105

22 1.81 × 107 4.02 × 107 1.93 × 107 2.20 × 107 1.14 × 106

23 1.21 × 107 3.04 × 107 1.34 × 107 1.82 × 107 1.26 × 106

24 8.17 × 106 2.30 × 107 9.38 × 106 1.48 × 107 1.21 × 106

25 5.53 × 106 1.75 × 107 6.61 × 106 1.19 × 107 1.08 × 106

26 3.77 × 106 1.33 × 107 4.70 × 106 9.57 × 106 9.31 × 105

27 2.59 × 106 1.02 × 107 3.37 × 106 7.65 × 106 7.78 × 105

28 1.79 × 106 7.90 × 106 2.43 × 106 6.11 × 106 6.39 × 105

29 FOM = 0.178 0.040

Cell E29 = SUM(E3:E28)/SUM(B3 : B28)

Cell F29 = SUM(F3:F28)/SUM(C3 : C28).

The FOM for the value of the parameter E = 1.1 eV is equal to 0.040 =
4%, almost four times smaller than the FOM = 0.178 = 17.8% for the case
E = 0.9 eV.

The frequency factor s can be calculated by using the value of E = 1.1 eV
and the temperature of maximum TL intensity TM = 380 K in equation (1.9) for
second-order kinetics (b = 2):

s = βE

kT 2
M

(
1 + 2kTM

E

) exp

(
E

kTM

)
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Table 2.16. Summary of the results of various analysis methods for
second-order data

E (eV) s or s′ Comments below

Initial rise method 0.969 ± 0.006 [1, 4]
Chen’s τ -method 0.968 [2, 4]
Chen’s δ-method 1.04 ± 0.11 [2, 4]
Chen’s ω-method 1.011 [2, 4]
Whole glow-peak method 0.954 ± 0.004 s′ = 20.697 [3]
Fitting method using Kitis 1.1 ± 0.1 s = 1.38 × 1012 s−1 [4]

et al. second-order equation
(equation (2.12))

= 1(1)

(8.617 × 10−5)(380)2

(
1 + 2(8.617 × 10−5)380

1

)

× exp

(
1

(8.617 × 10−5)380

)
= 1.38 × 1012 s−1. (2.13)

The resolution of the Kitis et al fitting method can be refined by repeating this
process of calculating the FOM for different values of E spaced much closer
together (e.g., E = 1.01, 1.00, 0.99, etc.) and then attempt to minimize the value
of the FOM.

Finally, we summarize in Table 2.16 the results of the various methods for
analyzing the given second-order experimental data.

Comments on the Results of Exercise 2.4

1. The value of E obtained from the IR method is independent of the kinetics of
the TL glow peak.

As in the case of first-order kinetics, the presence of thermal quenching affects
the value of E obtained in the IR method.

A possible correction method for the value of E when thermal quenching is
present is given in Chapter 5.

It is best to use the IR and peak shape methods with samples irradiated at
low doses [3].

2. The value of E obtained with peak shape methods can be influenced by the
presence of smaller satellite peaks.

3. The whole glow-curve method yields information on both E and the pre-
exponential factor s. Because TL cannot yield a value for the absolute concen-
tration n0, the quantities s ′ = s/N and n0 appearing in equation (1.6) represent
empirical fitting parameters for second-order glow peaks. The value of n0 can
be obtained from the area under the glow curve.

By using the values of E , s ′ = s/N , and n0 obtained from the whole glow-
peak method, it is possible to compare directly the experimental data with the
TL intensity obtained using equation (1.6), as was shown in this exercise.
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4. The pre-exponential factor s in these methods can be calculated from the value
of TM, E , and β by using equation (2.13). The estimated uncertainties �s/s
from equation (2.13) can be very large (50–100%), even when the uncertainty
�E/E is very small.

(e) Can we conclude that this TL peak follows second-order kinetics?
Chen et al [4] have provided a list of criteria that should be checked before

claiming that a certain TL glow peak is of second-order.
Unfortunately, the TL literature contains many publications claiming a certain

kinetic order for TL glow curves, based solely on peak shape analysis of a single
glow curve.

The criteria for second-order kinetics were listed by Chen et al. [4] as follows:

I. Peak shape: Second-order peaks exhibit µ = 0.52.

II. Peak shift: In most non-first-order TL glow peaks, the location of maxi-
mum TL intensity shifts toward higher temperatures for lower trap filling
(smaller doses). One must be aware that the observed maximum shift in
the experimental data can also be due to the presence of smaller satellite
peaks.

III. Superlinearity effects: Second-order peaks may exhibit slight superlinearity
effects at low doses.

IV. IM − TM dependence: In second-order peaks, a graph of ln

[
IM

(
T 2

M

β

)2
]

versus 1/kTM will yield a straight line of slope E (equation (1.29)).
V. Isothermal decay results: These can provide valuable independent informa-

tion about the kinetics of the TL process involved at different temperatures.
As discussed in Chapter 1, different kinetic orders correspond to different
mathematical behaviors for the isothermal decay laws.

For second-order isothermal decay, a graph of (It/I0)−1/2 versus time should
yield a straight line of slope E .

The TL-like presentation of isothermal decay data can provide useful in-
formation about the kinetics and the kinetic parameters. A numerical example
using this type of presentation is given in Chapter 5.

Exercise 2.5: Isothermal Method for Second-Order Kinetics

Even though this exercise refers specifically to isothermal data following second-
order kinetics, the exact same method of analysis can be used for general-order
kinetics data.

A TL material is irradiated with a certain dose D, and the sample is heated
rapidly to a temperature of 60◦C. The temperature is then kept constant while the
emitted light is measured as a function of time t . The experiment is then repeated
with the same dose D and for two additional temperatures of 70◦C and 80◦C.
The following isothermal decay data in Table 2.17 is obtained for three different
temperatures T = 60◦C, 70◦C, and 80◦C.
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Table 2.17. Isothermal decay data for second-order kinetics

t(s) TL, T = 60◦C TL, T = 70◦C TL, T = 80◦C

0 6.40 × 106 1.40 × 107 2.30 × 107

100 5.57 × 106 1.02 × 107 1.25 × 107

200 4.92 × 106 7.84 × 106 8.10 × 106

300 4.20 × 106 6.18 × 106 5.45 × 106

400 3.92 × 106 4.90 × 106 3.99 × 106

500 3.54 × 106 4.13 × 106 2.90 × 106

600 3.10 × 106 3.47 × 106 2.39 × 106

700 2.91 × 106 2.95 × 106 1.94 × 106

800 2.70 × 106 2.56 × 106 1.80 × 106

900 2.44 × 106 2.21 × 106 1.34 × 106

(a) Show that these data are consistent with the assumption that this TL peak
follows second-order kinetics.

(b) Find the kinetic parameters E and s.

Solution

(a) The graphs in Figure 2.20 show the given data for the three temperatures
T = 60◦C, 70◦C, and 80◦C.

We can rule out the possibility of first-order kinetics by graphing ln(TL) versus
time as shown in Figure 2.21. The graphs obtained are nonlinear, indicating that
the data do not conform to first-order kinetics.

As discussed in Chapter 1, the isothermal decay curves for TL peaks following
general-order kinetics with a kinetic-order parameter b are given by(

It

I0

) 1−b
b

= 1 + s ′nb−1
0 (b − 1)t exp

(
− E

kT

)
, (1.38)
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Figure 2.20. The isothermal data for three different temperatures and for second-order
kinetics.
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Figure 2.21. The ln(TL) versus time graphs for a second-order TL glow curve.

where

I0 = initial TL intensity,
It = the TL intensity at time t ,
s ′ = s/N = effective frequency factor,
E = activation energy,
n0 = initial trapped charged population,
T = temperature of isothermal decay.

This equation indicates that a plot of the quantity (It/I0)(1−b)/b versus time t should
be a straight line when a suitable value of b is found. After the determination of
value of b, we will graph (It/I0)(1−b)/b versus time t for the three different decay
temperatures, and obtain a set of straight lines of slope m given by

m = s ′nb−1
0 (b − 1) exp

(
− E

kT

)
. (1.39)

The activation energy E and the effective frequency factor s ′′ = s ′nb−1
0 will

be determined from the slope and intercept of the plot of ln(m) versus
1/kT .

Table 2.18 shows the calculation of the quantities (It/I0)(1−b)/b for the isothermal
decay data at T = 70oC, and for four different values of the kinetic-order parameter
b = 1.6, 1.8, 2.0, and 2.2. The graph in Figure 2.22 shows these quantities as a
function of time t .

It can be seen that all four graphs yield satisfactory linear fits, with the following
regression coefficients:

b = 1.6: R = 0.9986
b = 1.8: R = 0.9995
b = 2.0: R = 0.9999
b = 2.2: R = 0.9998.
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Table 2.18. Calculation of the quantities (It/I0)(1−b)/b for the isothermal decay data

(I/I0)(1−b)/b (I/I0)(1−b)/b (I/I0)(1−b)/b (I/I0)(1−b)/b

t(s) T = 70◦C b = 2.0 b = 1.8 b = 1.6 b = 2.2

0 1.40 × 107 1.000 1.000 1.000 1.000
100 1.02 × 107 1.172 1.151 1.126 1.189
200 7.84 × 106 1.337 1.294 1.243 1.372
300 6.18 × 106 1.505 1.438 1.359 1.562
400 4.90 × 106 1.690 1.595 1.482 1.773
500 4.13 × 106 1.842 1.721 1.581 1.947
600 3.47 × 106 2.010 1.860 1.688 2.142
700 2.95 × 106 2.178 1.998 1.793 2.338
800 2.56 × 106 2.338 2.128 1.891 2.526
900 2.21 × 106 2.515 2.270 1.997 2.735

This example illustrates one of the possible difficulties with isothermal decay
data: It may be difficult to obtain an exact estimate of the best linear fit, because
small differences may occur between the graphs for various values of b. The above
values of R indicate that the graph corresponding to b = 2.0 represents the best
linear fit, and therefore the given TL data are consistent with second-order kinetics.

The above type of analysis must be carried out for all available isothermal decay
data. Once the kinetic order b is ascertained by the above type of analysis, we graph
(It/I0)(1−b)/b = (It/I0)−1/2 versus time t , and find the slopes of the resulting linear
graphs.

These graphs are shown in Figure 2.23 for the available isothermal decay data
at T = 60◦C, 70◦C, and 80◦C. We next find the regression lines through each of
the graphs in Figure 2.23.

(b) We now tabulate in Table 2.19 the slopes of these linear graphs and calculate
the natural logarithm of the slopes, ln(slope). Finally, we graph in Figure 2.24 the
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Figure 2.22. Graphs calculated for several values of kinetic order b.
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Table 2.19. The slopes of linear isothermal graphs
and their natural logarithms ln(slope)

T(◦C) slope (s−1) 1/kT (eV−1) ln (Slope)

60 6.9580 × 10−4 34.8498 −7.2704
70 1.7310 × 10−4 33.8337 −6.3591
80 3.4560 × 10−4 32.8753 −5.6676
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Figure 2.23. Calculated graphs for kinetic order b = 2.0 and for second-order TL data.
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Figure 2.24. The ln(slope) versus 1/kT graph to determine E for second-order TL data.
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ln(slope) versus 1/kT , where T = temperature (K) at which the isothermal decay
curves were measured.

The slope of the regression line gives the activation energy E :

E = 0.812 ± 0.050 eV.

And the frequency factor s ′′ = s ′nb−1
0 can be found from the intercept of the re-

gression line:

Intercept = ln((b − 1) s ′′) = 21.1 ± 1.7.

Therefore, by substituting in our case b = 2,

s ′′ = exp(21.1) = 1.46 × 109 s−1.

The errors �s ′′ can be calculated from the uncertainties in the intercept of the
regression line as follows:

� (intercept) = ∂(ln s ′′)
∂s ′′ �s ′′ = �s ′′

s ′′ = 1.7.

This gives a typical large error for the value of the effective frequency factor
s ′′ = s ′nb−1

0 .
Once again, it is noted that the parameter s ′′ = s ′nb−1

0 cannot yield any additional
information on the kinetics of the TL process, but rather represents an empirical
fitting parameter for equation (1.38).

Exercise 2.6: Analysis of a General-Order TL Peak

You are given the experimental data in Table 2.20 and Figure 2.25 for a TL glow
curve (TL versus temperature T ), and the known heating rate β = 1K s−1.

(a) Apply the IR method to find the activation energy E . The value for E obtained
using the IR method is assumed to be independent of the order of kinetics.

Table 2.20. Experimental data for general-order kinetics TL peak

T (◦C) TLexperimental T (◦C) TLexperimental

0 8.38 × 105 130 3.96 × 107

10 2.06 × 106 140 1.96 × 107

20 4.74 × 106 150 9.19 × 106

30 1.03 × 107 160 4.22 × 106

40 2.09 × 107 170 1.93 × 106

50 3.98 × 107

60 6.97 × 107

70 1.09 × 108

80 1.49 × 108

90 1.70 × 108

100 1.57 × 108

110 1.18 × 108

120 7.32 × 107
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2Figure 2.25. The general-order
TL glow curve.

(b) Apply Chen’s peak shape equations to find the activation energy E , using the
shape parameters τ, δ, and ω. By assuming that the experimental error in
the quantities τ, δ, and ω is �T = 2 K estimate the error �µ in the value
of the geometrical shape factor µ.

Show that the values of µ and �µ are consistent with the assumption that
the TL glow curve obeys general-order kinetics.

(c) By using the experimental data, apply the whole glow-peak method to find
E, s, and the order of kinetics b. Graph ln(I/nb) versus 1/T for various
values of b and find the correct value of b that gives a linear graph.

From the slope and intercept of the graph ln(l/nb) versus 1/T , calculate the
kinetic parameters.

Verify that the given TL glow curve corresponds to general-order kinetics.
(d) Using the experimental values of IM (maximum TL intensity) and TM (tem-

perature of maximum intensity), do a curve fitting to the given numerical data.
Use the following analytical equation developed by Kitis et al [2] for general-
order kinetic peaks. The expression relies on two experimentally measured
quantities IM and TM:

I (T ) = IMbb−1 exp

(
E

kT
· T − TM

TM

)

×
[

(b − 1)
T 2

T 2
M

(
1 − 2kT

E

)
exp

(
E

kT
·T − TM

TM

)

+ 1 + (b − 1)
2kTM

E

]− b
b−1

. (2.14)

The activation parameter E can be treated as an adjustable parameter. Graph
both the experimental data and the calculated general order TL glow curve on
the same graph and compare them. Calculate the FOM for the TL glow curve.

(e) Can it be concluded from the above analysis that this material will always
follow general-order kinetics?
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Table 2.21. The values of 1/kT and of the natural logarithm of the TL data, ln(TL)

T (◦C) TLexperimental 1/kT (eV−1) ln(TL) T (◦C) TLexperimental 1/kT (eV−1) ln(TL)

0 8.38 × 105 42.51 13.64 130 3.96 × 107 28.80 17.49
10 2.06 × 106 41.01 14.54 140 1.96 × 107 28.10 16.79
20 4.74 × 106 39.61 15.37 150 9.19 × 106 27.43 16.03
30 1.03 × 107 38.30 16.15 160 4.22 × 106 26.80 15.26
40 2.09 × 107 37.08 16.86 170 1.93 × 106 26.20 14.47
50 3.98 × 107 35.93 17.50
60 6.97 × 107 34.85 18.06
70 1.09 × 108 33.83 18.51
80 1.49 × 108 32.88 18.82
90 1.70 × 108 31.97 18.95

100 1.57 × 108 31.11 18.87
110 1.18 × 108 30.30 18.58
120 7.32 × 107 29.53 18.11

Solution

(a) The IR method. We calculate in Table 2.21 the values of 1/kT (T = temper-
ature (K), k = Boltzman constant) and the values of the natural logarithm of the
TL data, ln(TL).

We next graph the ln(TL) versus 1/kT data and find a regression line through
the first 7 data points, as shown in Figure 2.26.

The slope of the regression line gives the activation energy E as

E = 0.580 ± 0.006 eV, with R2 = 0.9996.

(b) Chen’s peak shape equations. From the given experimental data for a TL
glow peak, we can estimate the three temperatures required for Chen’s peak shape
equations:

T1 = 64◦C = 337 K, T2 = 117◦C = 390 K, TM = 91◦C = 364 K,

1/kT   (eV)−1 1/kT   (eV)−1

24 26 28 30 32 34 36 38 40 42 44

ln
(T

L)
 (

a.
u.

)

13

14

15

16

17

18

19

20

34 36 38 40 42 44

ln
(T

L)
  (

a.
u.

)

13

14

15

16

17

18

19

Figure 2.26. The IR analysis for general-order kinetics data.
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where

TM = peak temperature at the maximum TL intensity,

T1, T2 = temperatures on either side of TM, corresponding to the half-maximum

intensity.

We next calculate the quantities µ, τ, δ, and ω:

τ = TM − T1 = 27 K, δ = T2 − TM = 26 K,

ω = T2 − T1 = 53 K, µ = δ/ω = 26/53 = 0.490.

The calculated value of the geometrical shape factor µ = δ/ω = 0.490 corre-
sponds to a value of µ for a general-order TL peak with an approximate value of
b = 1.6 (Figure 1.14).

Using the known experimental error �T = 2 K for the quantities τ, δ, and ω,
we can do an error analysis of the values of µ. As in the similar examples for
first- and second-order kinetics data,∣∣∣∣�µ

µ

∣∣∣∣ =
∣∣∣∣�δ

δ

∣∣∣∣ +
∣∣∣∣�ω

ω

∣∣∣∣ =
∣∣∣∣ 2

26

∣∣∣∣ +
∣∣∣∣ 2

53

∣∣∣∣ = 0.077 + 0.038 = 0.115.

This leads to a value of µ + �µ = 0.490 ± 0.056 which is consistent with
general-order kinetics, within the accuracy of the TL experiment.

In order to find the activation energy E , we apply Chen’s equation for general-
order kinetics:

Eα = cα

(
kT 2

M

α

)
− bα(2kTM), (2.15)

where α is τ, δ, or ω and the values of cα and bα are summarized below

cτ = 1.510 + 3.0(µ − 0.42), bτ = 1.58 + 4.2(µ − 0.42)

cδ = 0.976 + 7.3(µ − 0.42), bδ = 0

cω = 2.52 + 10.2(µ − 0.42), bω = 1. (2.16)

Using the value of τ :

E = 1.720kT 2
M

τ
− 1.874(2kTM) = 0.727 − 0.117 = 0.610 eV.

Using the value of δ:

E = 1.487kT 2
M

δ
= 0.653 eV.

Using the value of ω:

E = 3.234kT 2
M

ω
− 2kTM = 0.671 − 0.062 = 0.609 eV.
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Table 2.22. Calculation of the quantities ln(I/nb) and 1/kT for general-order data

T (◦C) TL 1/kT Area ln(TL/n1.2) ln(TL/n1.4) ln(TL/n1.5) ln(TL/n1.6)

0 8.38 × 105 42.51 9.99 × 108 −13.99 −18.60 −20.90 −23.20
10 2.06 × 106 41.01 9.98 × 108 −13.09 −17.70 −20.00 −22.30
20 4.74 × 106 39.61 9.96 × 108 −12.25 −16.86 −19.16 −21.46
30 1.03 × 107 38.30 9.91 × 108 −11.47 −16.08 −18.38 −20.68
40 2.09 × 107 37.08 9.81 × 108 −10.75 −15.35 −17.65 −19.95
50 3.98 × 107 35.93 9.60 × 108 −10.08 −14.68 −16.98 −19.28
60 6.97 × 107 34.85 9.20 × 108 −9.47 −14.06 −16.35 −18.65
70 1.09 × 108 33.83 8.50 × 108 −8.93 −13.50 −15.78 −18.07
80 1.49 × 108 32.88 7.41 × 108 −8.45 −13.00 −15.27 −17.54
90 1.70 × 108 31.97 5.92 × 108 −8.05 −12.55 −14.80 −17.05

100 1.57 × 108 31.11 4.22 × 108 −7.72 −12.16 −14.37 −16.59
110 1.18 × 108 30.30 2.65 × 108 −7.46 −11.80 −13.97 −16.14
120 7.32 × 107 29.53 1.48 × 108 −7.23 −11.45 −13.56 −15.67
130 3.96 × 107 28.80 7.45 × 107 −7.02 −11.11 −13.15 −15.19
140 1.96 × 107 28.10 3.49 × 107 −6.82 −10.75 −12.72 −14.68
150 9.19 × 106 27.43 1.53 × 107 −6.58 −10.35 −12.24 −14.12
160 4.22 × 106 26.80 6.15 × 106 −6.27 −9.85 −11.65 −13.44
170 1.93 × 106 26.20

In order to find the error �E in the activation energy E , we take the logarithmic

derivative of the equation E = 1.487kT 2
M

δ
:

∣∣∣∣�E

E

∣∣∣∣ = 2

∣∣∣∣�TM

TM

∣∣∣∣ +
∣∣∣∣�δ

δ

∣∣∣∣ = 2

∣∣∣∣ 2

364

∣∣∣∣ +
∣∣∣∣ 2

26

∣∣∣∣ = 0.011 + 0.077 = 0.088.

This gives an error �E of the order of 8.8% or �E = 0.088E = 0.082(0.653) =
0.060 eV.

(c) The whole glow-peak method. We graph ln(I/nb) versus 1/T for various
values of b between 1.2 and 1.6, and find the correct value of b that gives a linear
graph. As in the case of first-order kinetics, n(T ) is the area under the glow peak
and it is calculated starting at a temperature T , up to the maximum temperature
available in the glow curve. In the data shown in Table 2.22, the maximum available
temperature is 170◦C.

By following the same procedure as in the case of first-order kinetics, we set up
an Excel spreadsheet to calculate the quantities ln(I/nb) and 1/kT as shown in
Table 2.22, for several values of the kinetic order b = 1.2, 1.4, 1.5 and 1.6.

Finally, graphs of ln(TL/Areab) versus 1/kT are drawn in Figure 2.27 for several
values of the kinetic order b = 1.2, 1.4, 1.5, and 1.6.

The graphs corresponding to b = 1.5 and 1.6 best approximate straight lines.
The b = 1.5 graph has the highest value of R2 and therefore gives the best fit.
A regression line is fitted to the data corresponding to b = 1.5 in Figure 2.28, to
obtain the best slope and the best intercept:

Best intercept = 3.345 ± 0.17,

Best slope E = −0.568 ± 0.005 eV.
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Figure 2.27. Graphs for several values of kinetic order b.

It is noted that this value of E = 0.568 ± 0.005 eV is in good agreement with
the value of E = 0.580 ± 0.006 eV obtained from the IR method.

Within the accuracy of the given experimental data and within the framework
of the whole glow-peak method of analysis, we can conclude that the given TL
glow peak follows general-order kinetics described by b = 1.5.

The value of s ′ can be calculated from the best-fitting regression line shown in
Figure 2.28:

s ′ = βe(intercept) = 1e(3.345) = 28.36.

The whole glow-peak method yields information about both the activation en-
ergy E and the effective frequency factors s ′ and s ′′ = s ′nb−1

0 appearing in

b=1.5
Slope= −E=−0.568 eV
Intercept=3.345

1/kT  (eV)−1
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ln
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L/
n1.
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Figure 2.28. The value of b = 1.5 gives the best fit for the whole glow-curve analysis. The
parameters E and s ′ can be calculated from this graph.
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equation (1.7):

I (T ) = s ′′n0 exp

(
− E

kT

) [
1 + s ′′(b − 1)

β

∫ T

T0

exp

(
− E

kT ′

)
dT ′

]− b
b−1

. (1.7)

Because TL data analysis of a glow curve cannot yield a value for the absolute
concentration n0 of traps in the material, the quantities s ′′, b, and n0 appearing in
equation (1.7) represent three empirical fitting parameters for general-order glow
peaks.

The value of n0 can be estimated from the area under the glow curve as in
Exercise 2.4, by summing the TL intensities multiplied by the temperature interval
�T between TL measurements, and by dividing with the heating rate β:

n0 ≈ 1

β

∫ T f

T0

I dT = 1

β

∑
I (T )�T = 1

1

∑
I (T )(10 K) = 9.99 × 109.

By using the values of E = 0.56 eV, s ′ = 28.36, n0 = Area = 9.99 × 109, and
β = 1 K s−1, it is possible to calculate the TL intensity using equation (1.7), and
to compare this result directly with the given experimental data.

The result is shown in Figure 2.27, where the calculated I (T ) from equation (1.7)
is compared with the original experimental data. Figure 2.29 shows that the cal-
culated parameters E , s ′, and b and n0 from the whole glow-peak method, as
well as the general order equation (1.7), describe the given experimental data in a
reasonably accurate manner.

The observed discrepancies between experiment and calculation in
Figure 2.29 are due to the several approximations involved in applying the whole
glow-peak method.
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x1
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Figure 2.29. Comparison of calculated TL intensity using equation (1.7) (solid line), and
original experimental data (individual data points). The parameters used in equation (1.7)
were obtained from the whole glow-peak method.
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(d) Glow-curve fitting using the Kitis et al equation. We use the following
analytical equation developed by Kitis et al [2] for TL peaks following general-
order kinetics. The expression relies on two experimentally measured quantities
IM (the maximum TL intensity) and TM (the temperature corresponding to the
maximum TL intensity):

I (T ) = IMbb−1 exp

(
E

kT
· T − TM

TM

)

×
[

(b − 1)
T 2

T 2
M

·
(

1 − 2kT

E

)
exp

(
E

kT
· T − TM

TM

)

+ 1 + (b − 1)
2kTM

E

]− b
b−1

. (2.17)

For the given experimental data, TM = 364 K and IM = 1.70 × 108. By treating
the activation parameter E as an adjustable parameter, we calculate several graphs
with values of E = 0.4, 0.5, 0.6, and 0.7 eV. The calculations can be set up easily
in a spreadsheet as shown in Table 2.23.

Columns A–C contain the experimental data points for the TL glow curve,
whereas columns D–G contain the calculated data points using equation (2.17)
for general-order kinetics b = 1.5 and for four values of the energy parameter
E(E = 0.4, 0.5, 0.6, and 0.7 eV).

The following equation is used to calculate the values of the fitted data in column
D, using equation (2.17) for general-order kinetics:

Cell D3 = ($I$8∧($I$8/($I$8-1)))∗$I$6∗EXP($I$2/(0.00008617∗B3)
∗((B3-$I$5)/$I$5))∗((B3∗B3)/($I$5∗$I$5)
∗(1-2∗0.00008617∗B3/$I$2)∗EXP($I$2/(0.00008617∗B3)
∗((B3-$I$5)/$I$5))∗($I$8-1)+1+($I$8-1)
∗(2∗0.00008617∗$I$5/$I$2))∧-($I$8/($I$8-1)).

This expression refers to cell B3 which contains the absolute temperature T (K).
Also, note that cell I2 in the spreadsheet contains the value of the energy parameter
E = 0.4 eV, cell I5 contains the value of the experimental parameter TM = 364
K, and cell I6 contains the value of the experimental maximum height parame-
ter IM = 1.70 × 108. The parameter b = 1.5 is contained in cell I8. The above
spreadsheet expression refers to the values contained in these cells by using the
Excel expressions $I$2, $I$5, $I$6, and $I$8, correspondingly.

The user controls the value of the parameter E by changing the value in cell I2,
and the whole spreadsheet calculation is automatically updated.

The graphs calculated for E = 0.4, 0.5, 0.6, and 0.7 eV are shown in
Figure 2.30.

It can be seen in Figure 2.30 that when the value of E is too low (graph cor-
responding to E = 0.4, and 0.5 eV), the calculated TL points lie well above the
experimental data. This is also evident by inspection of the calculated columns
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Figure 2.30. The experimental data and fitted curves for several values of E .

I (T ) in Table 2.23. On the other hand, when the value of E is too high (graph corre-
sponding to E = 0.7 eV), the calculated TL points lie well below the experimental
data.

Table 2.24 shows the FOM calculation as applied to the previous data. Column
A contains the experimental data points and columns B–E contain the calculated
data points using equation (2.17) for general-order kinetics and for four values of
the energy parameter E (E = 0.4, 0.5, 0.6, and 0.7 eV).

Columns F–I contain the calculation of the quantity |TLexperimental − TLcalculated|,
and the cells in the last row contain the calculated values of the FOM.

The FOM for the value of the parameter E = 0.60 eV is equal to 0.003 = 0.3%,
almost 100 times smaller than the FOM = 0.300 = 30.0% for the case E = 0.4 eV.

The frequency factor s can be calculated by using the value of E = 0.60 eV and
the temperature of maximum TL intensity TM = 364 K in equation (1.10), which
is applicable for general-order kinetics:

s = βE

kT 2
M

(
1 + 2kTM(b − 1)

E

) exp

(
E

kTM

)

s = (1)0.60

(8.617 × 10−5)(364)2

(
1 + 2(8.617 × 10−5)364(1.5 − 1)

0.60

)

× exp

(
0.60

(8.617 × 10−5)364

)
= 1.05 × 1012 s−1. (2.18)
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Table 2.25. Summary of the results of various analysis methods for
general-order data

E (eV) Frequency factor (s or s′′) Comments below

Initial rise method 0.580 ± 0.006 [1,4]
Chen’s τ -method 0.610 [2,4]
Chen’s δ-method 0.653 ± 0.06 [2,4]
Chen’s ω-method 0.609 [2,4]
Whole glow-peak

method
0.568 ± 0.005 s′ = 28.36 [3]

Fitting method using
Kitis et al equation

0.60 ± 0.1 s = 1.05 × 1012 s−1 [4]

Finally, we summarize in Table 2.25 the results of the various methods for
analyzing the given experimental data for general-order kinetics.

Comments

1. The value of E obtained from the IR method is independent of the kinetics of
the TL glow peak.

As in the case of first- and second-order kinetics, the presence of thermal
quenching affects the value of E obtained in the IR method.

A possible correction method for the value of E is given in Chapter 5.
It is best to use the IR and peak shape methods with samples irradiated at

low doses [3].
2. The value of E obtained with peak shape methods can be influenced by the

presence of smaller satellite peaks.
3. The whole glow-curve method yields information on both E and the pre-

exponential factor s′′ = nb−1
0 s ′. Because TL cannot yield a value for the absolute

concentration nb−1
0 , the factor s′′ and the n0 appearing in equation (1.7) repre-

sent two empirical fitting parameters for general-order glow peaks. The value
of n0 can be estimated from the area under the glow curve.

By using the values of E , s ′′, and n0, it is possible to compare directly the
experimental data with the TL intensity obtained using equation (1.7).

4. The pre-exponential factor s can be calculated from the values of TM, E , and
β by using equation (2.18). The estimated uncertainties �s/s from equation
(2.18) can be very large (50–100%), even when the uncertainty �E/E is very
small.

(e) Can it be assumed for this material that this TL peak will always follow
general kinetics of order b = 1.5?

In general, one cannot assume that the studied TL glow curve of this material
will always follow general-order kinetics of the same order found in analyzing one
set of data. The analysis should be carried out for glow peaks measured under
different heating rates, various irradiation doses, powdered and bulk samples,
etc.
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Some of the criteria for general-order kinetics are:

I. Peak shape: first-order peaks have µ = 0.42, second-order peaks have µ =
0.52, and general-order kinetics have values in-between (see Figure 1.14).

II. Peak shift: In most non-first-order TL glow peaks, the location of maximum
TL intensity shifts toward higher temperatures for lower trap filling. One must
be aware that the observed maximum shift can be also due to the presence of
smaller satellite peaks.

III. IM − TM dependence: In general-order peaks a graph of ln

[
I b−1
M

(
T 2

M

β

)b
]

versus 1/kT M will yield a straight line of slope E (equation (1.28)).
IV. Isothermal decay results: These can provide valuable independent informa-

tion about the kinetics of the TL process involved at different temperatures.
General-order kinetics corresponds to decay curves described by a plot of the

quantity

(
It

I0

)1−b
b

versus time, which should be a straight line when a suitable

value of b is found.

Exercise 2.7: Influence of the Background on the Results
of the IR Method

Given the experimental data of Table 2.26, estimate the influence of the background
on the activation energy obtained using the IR method.

Solution

In Exercise 2.1, it was found that the activation energies calculated using the IR
method depend strongly on the number of points chosen, i.e. on the TL intensity
Istart at the starting temperature of the IR region. From a statistical point of view, the
IR region must start from the temperature at which the TL intensity is higher than
the background by at least three times the standard deviation of the background
signal.

Table 2.26. Experimental data-effect of background on IR method

T (K) TL T (K) TL T (K) TL T (K) TL T (K) TL

293.4 5 341 6 353.8 11 357.8 25 379.8 228
297.8 3 345.8 4 354.2 25 358.2 21 382.6 316
302.6 2 350.6 7 354.6 19 360.6 25 385 400
307.4 8 351 8 355 13 363 41 387.4 538
312.2 4 351.4 9 355.4 14 365.4 51 389.8 646
317 4 351.8 10 355.8 11 367.8 46 396.6 1420
321.8 1 352.2 16 356.2 20 370.2 79 401 2152
326.6 7 352.6 15 356.6 25 352.6 110 405.8 3452
331.4 5 353 12 357 15 375 128 410.2 5127
336.2 5 353.4 16 357.4 27 377.4 197 413 6483
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Table 2.27. Data for the two IR lines

1/kT ln(TL) ln(TL − bg) 1/kT ln(TL) ln(TL − bg)

32.58 3.00 2.69 30.95 4.85 4.81
32.54 3.22 2.99 30.75 5.28 5.26
32.51 2.71 2.28 30.56 5.43 5.51
32.47 3.30 3.08 30.33 5.76 5.74
32.43 3.22 2.99 30.14 5.99 5.98
32.40 3.04 2.76 29.96 6.29 6.28
32.18 3.22 2.99 29.77 6.47 6.46
31.97 3.71 3.58 29.26 7.26 7.25
31.76 3.93 3.82 28.94 7.67 7.67
31.55 3.83 3.71 28.60 8.15 8.15
31.35 4.37 4.30 28.29 5.84 8.54
31.15 4.70 4.65 28.10 8.78 8.78

By examining the given data, it is clear that the TL intensity at low temperatures
is due to the background only. Therefore, the first 15 points, i.e. the TL in the
temperature region [293–350 K] can be used to evaluate the mean value of the
background. It is found by averaging these 15 points that the background is equal
to bg = 5.2 ± 2.3 counts.

Once the background is evaluated and in order to show its effect on the activation
energy calculation, the IR linear fit is applied twice. In the first case, the fit is
performed using the TL data as given, by graphing ln(TL) versus 1/kT , and in
the second case, by subtracting the background and graphing ln(TL − bg) versus
1/kT . The corresponding data for the two fits are shown in Table 2.27.

The resulting IR lines are shown in Figure 2.31, where one can see the different
slopes obtained. The activation energy values obtained from each IR line are:

29 31 33
1/kT   eV  −1

2

4

6

8

ln
(T

L
)

a

b
Figure 2.31. IR plots: (a)
without background subtraction
and (b) with background
subtracted.
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(a) Without background subtraction: E = 1.3087 ± 0.022.

(b) With background subtracted: E = 1.3780 ± 0.024.

It is seen that by ignoring the background, the IR method in this exercise leads to
a serious underestimation of the activation energy E by 5%.

Exercise 2.8: Study of the 15% Rule of Thumb
for the IR Technique

A well-known rule of thumb for the IR method is that the method holds only up to
a temperature that corresponds to a TL intensity lower than 10–15% of the peak
maximum intensity, IM.

Calculate a synthetic glow peak with the trapping parameters E = 1 eV, s =
1012 s−1, n0 = 106 m−3 and verify the applicability of the 15% rule by following
these steps:

(a) Express the rule of thumb in a mathematical form by examining the two terms
in the analytical expression for first-order TL glow peaks.

(b) Express the mathematical condition in (a) as a function of the percent ratio
%IIR/IM = (IIR/IM) × 100% where IIR is the maximum TL intensity of the
IR region.

(c) Examine how the activation energy values obtained by the IR method depend
not only on the end of the IR region (i.e. on the %IIR/IM value), but also on
the starting TL intensity Istart of the IR region.

Solution

(a) By substituting the series approximation for the TL integral from
equation (1.52) into equation (1.5) for first-order TL glow peaks, we obtain the
following analytical expression:

I (T ) = n0 · s · exp

(
− E

kT

)
· exp

[
− skT 2

βE
· exp

(
− E

kT

)
·
(

1 − 2kT

E

)]
.

(2.19)

This expression consists of two parts, the increasing IR part n0s exp(−E/kT ) and
the function F2(T ) given by

F2(T ) = exp

[
− skT 2

βE
· exp

(
− E

kT

)
·
(

1 − 2kT

E

)]
. (2.20)

The IR method holds when the condition F2(T ) ∼ 1 is fulfilled.
Using a spreadsheet program, it is straight forward to evaluate a single TL glow

peak with the given parameters, as well as the values of the expression F2(T ) at
various temperatures T . The result is shown in Figure 2.32 where one can identify
the part of the glow peak which must be used for the correct application of the IR
method.
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Figure 2.32. The function
F2(T ) with the respective TL
glow peak, showing the region
where the IR method holds.

(b) The commonly used rule of thumb for the IR method says that the method
holds up to the temperature at which the TL intensity is less than 10–15% of the
peak maximum intensity IM. From the data shown in Figure 2.32, one can extract
the data for a plot of F2(T ) versus the percent ratio %IIR/IM. The result is shown
in Figure 2.33 from which one can conclude that the 15% rule for the IR method
holds when F2(T ) > 0.95.

(c) The IR method is applied to the synthetic glow peak by varying the starting
TL intensity Istart. The upper limit %IIR/IM was left to vary and an IR plot was
accepted if its correlation coefficient was better than 0.999. Figure 2.34 shows the
resulting activation energies E as a function of the percent ratio %IIR/IM. The
values of Istart and %IIR/IM for curves (a)–(e) are shown in Table 2.28.

The data for curve (a) in Figure 2.34 show that the 15% IIR/IIM rule of thumb is
applicable up to about 26% of the maximum TL intensity. Even at this high ratio
of 26%, the activation energy obtained using the IR method is E = 0.9964 eV
which corresponds to a very small error of 0.36% relative to the reference value
of E = 1 eV used for the evaluation of the synthetic peak. The corresponding IR
plot is shown in Figure 2.35.

0 3 6 9 12 15 18 21 24 27 30

 % I / I  Max
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T
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Figure 2.33. The values of the condi-
tion factor F2(T ) at various %IIR/IM.
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Figure 2.34. Activation energy
values E resulting from the IR
method by using the conditions
given in the Table 2.28.

The results of Figure 2.34 show clearly that the commonly used 15% rule of
thumb does not always apply. The correct application of the IR method depends
strongly on the extent of the selected IR region. It also depends critically on the
clear and accurate definition of the beginning of the IR region. In an experimental
situation, this beginning must be defined according to the value of the background
of the data, which also affects the results as was shown in the previous exercise.

Exercise 2.9: Error Analysis for Peak Shape Methods

Using a synthetic general-order glow-peak with E = 1 eV, s = 1012 s−1, and
b = 1.5

(a) Find how the estimated error in the temperatures T1, TM, and T2 is propagated
in the symmetry factor µ, as a function of the error in temperature.

(b) Investigate what the error in temperature �T must be, so that one can dis-
criminate between kinetic orders having a difference �b = 0.1.

(c) Find how the estimated error in the temperatures T1, TM, T2, and µ is propa-
gated in the values of the activation energies E evaluated using general peak
shape methods.

Table 2.28. Istart and Tstart for the
15% rule of thumb study

Curve Tstart (K) Istart/IM

a 273 1.3 × 10−6

b 314 3.13 × 10−4

c 330 2.0 × 10−3

d 346 1.0 × 10−2

e 355 2.3 × 10−2
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Figure 2.35. The open circles are the
points on the glow peak and the solid line
represents the IR line with slop E = 1 eV.

Solution

(a) The symmetry factor µ, is defined by the relation

µ = T2 − TM

T2 − T1
. (2.21)

The errors on T1, T2, and TM are propagated in the value of µ, according to the
expression [5]:

σµ = ±
√(

∂µ

∂T1
· �T1

)2

+
(

∂µ

∂T2
· �T2

)2

+
(

∂µ

∂TM
· �TM

)2

. (2.22)

By evaluating the partial derivatives using equation (2.21) and substituting into
equation (2.22), we find the following expression for the standard deviation
σµ of µ:

σµ = ±
√(

T2 − TM

(T2 − T1)2
· �T1

)2

+
(

TM − T1

(T2 − T1)2
· �T2

)2

+
(

− 1

T2 − T1
· �TM

)2

(2.23)

Using a spreadsheet program, one can easily generate a synthetic glow peak
and evaluate the temperatures T1, T2, and TM by using, for example, the series
approximation from equation (1.52) in the general-order equation (1.7).

In experimental situations, the errors in temperature depend on the temperature
interval used for sampling the TL signal. For example, if one measures the TL
intensity per every 2 K, then the possible error in temperature TM, T1, T2, etc., can
be taken to be half of this interval (1 K).

In this exercise, the experimental situation is simulated by generating the syn-
thetic glow peak using different temperature intervals to evaluate the TL intensity.
This is shown in column 1 of Table 2.29. In the first row of the table, it is shown
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Table 2.29. Data table 1 for error propagation in peak shape methods

Step TM (K) T1 (K) T2 (K) �T (K) µ σµ 3σµ/�µ

0.001 384.301 365.29 401.718 0.0005 0.478121 0.000017 0.005
0.005 384.305 365.29 401.715 0.0025 0.477968 0.000084 0.026
0.01 384.31 365.29 401.71 0.005 0.47759 0.00017 0.053
0.05 384.35 365.25 401.7 0.025 0.475995 0.00084 0.26
0.1 384.4 365.3 401.7 0.05 0.475275 0.00168 0.53
0.2 384.6 365.2 401.6 0.1 0.46033 0.00336 1.05
0.3 384.6 365.4 401.7 0.15 0.471074 0.005 1.57
0.4 384.6 365.4 401.8 0.2 0.472527 0.0067 2.1
0.5 385 365.5 401.5 0.25 0.465753 0.0085 2.67
0.6 384.6 365.4 402 0.3 0.475410 0.01 3.14
0.7 385 365.4 401.8 0.35 0.461538 0.012 3.52
0.8 385 365 401.8 0.4 0.456522 0.013 4.08
0.9 385.5 365.7 401.7 0.45 0.450000 0.015 4.71
1 385 365 402 0.5 0.459459 0.0165 5.18

that the first synthetic glow peak was generated by evaluating the TL every 0.001
K. The error in temperature is given by column 5 and was taken equal to one half
of the step used in measuring TL (�T = 0.0005 K).

For the sake of simplicity in the evaluations, it is assumed that �T1 = �T2 =
�TM = �T . The values of TM, T1, T2, symmetry factor µ, and its standard de-
viation σµ according to equation (2.23) are listed in columns 2, 3, 4, 6, and 7 of
Table 2.29, respectively, for different values of �T .

(b) From the first row of Table 2.29, the symmetry factor for b = 1.5 is equal
to µ = 0.478121. The symmetry factors for the neighboring values of b = 1.4
and b = 1.6 are found in a similar fashion to be equal to µ = 0.468176 and µ =
0.487376, respectively. The difference between these two symmetry factors for
b = 1.5 and b = 1.6 is �µ = 0.00925.

In order for one to be able to discriminate between these two values, the following
condition must be fulfilled.

3σµ > �µ. (2.24)

The data of Table 2.29 show that this condition holds only when �T > 0.1 K.
For all values of µ that satisfy the condition 3σµ < �µ, the respective values of
µg belong to a kinetic order b = 1.5. Therefore, the error in temperature �T must
be less than 0.2 K in order for the evaluated symmetry factor µ to correspond to
the kinetic order b = 1.5, and not to 1.4 or 1.6.

(c) The general peak shape method equation for evaluating the activation energy
E is given by equation (1.48):

E = cα · kTM
2

a
− bα(2kTM), (1.48)
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where α stands for τ , δ, and ω and the coefficients are given by equation (1.49):

cτ = 1.510 + 3.0(µ − 0.42), bτ = 1.58 + 4.2(µ − 0.42)

cδ = 0.976 + 7.3(µ − 0.42), bδ = 0

cω = 2.52 + 10.2(µ − 0.42), bω = 1. (1.49)

The errors on T1, T2, and TM are propagated in the value of E , according to the
expression:

σE = ±
√(

∂ E

∂TM
· �TM

)2

+
(

∂ E

∂a
· �a

)2

+
(

∂ E

∂µ
· �µ

)2

. (2.25)

Taking into account equation (1.49), equation (2.25) becomes for the case of Eτ

σEτ = ±
√((

2cτ kTM
τ

− 2kbτ

)
· �TM

)2 +
(

cτ kT 2
M

τ2 · �τ

)2

+
(

3kT 2
M

τ
− 8.4kTM

)
· �µ)2.4 (2.26)

The corresponding equations for Eδ and Eω are

σEδ =
√(

2cδkTM

δ
· �TM

)2

+
(

cδkT 2
M

δ2
· �δ

)2

+
(

7.3kT 2
M

δ
· �µ

)2

, (2.27)

σEω =
√(

2cωkTM

ω
· �TM

)2

+
(

cωkT 2
M

ω2
· �ω

)2

+
(

10.2kT 2
M

ω
· �µ

)2

. (2.28)

For the sake of simplicity, we assume that �T1 = �T2 = �TM = �T . The quan-
tities τ , δ, and ω are given by the relations:

ω = T2 − T1,

δ = T2 − TM,

τ = TM − T1. (2.29)

The error propagation for ω is

σω = ±
√

�T 2
2 + �T 2

1

σω = ±�T
√

2 (2.30)

with similar expressions for τ and δ. Therefore, in equations (2.26–2.28) one must
use

�τ = �δ = �ω = 1.41 �T .

The results for the error �E are shown in Table 2.30, which continues Table 2.29.
The data in Table 2.30 show that the error in the activation energy depends on the
peak shape quantity used in the evaluation (τ, δ, or ω). However, as in the previous
question of this exercise, the most accurate values of the activation energy (with
the lowest errors of 1% or less) are obtained when the temperature is measured
with an accuracy better than 0.1 K.



78 2. Analysis of Thermoluminescence Data

Table 2.30. Data table 2 for error propagation in peak shape methods

�T Eτ 100 × σEτ Eδ 100 × σEδ Eω 100 × σEω

0.0005 1.00672 0.0051 1.02316 0.0099 1.02125 0.0064
0.0025 1.0062 0.025 1.00624 0.0494 1.0208 0.0318
0.005 1.0056 0.051 1.00224 0.0989 1.02025 0.0635
0.025 1.9981 0.252 1.01598 0.495 1.01328 0.317
0.05 0.9971 0.504 1.01531 0.995 1.01247 0.636
0.1 0.9669 0.97 0.9982 2.02 0.9841 1.27
0.15 0.9852 1.49 1.0054 3.02 1.0015 1.92
0.2 0.9877 1.99 1.00742 4.00 1.00375 2.55
0.25 0.9489 2.4 0.9720 5.24 0.9664 3.25
0.3 1.0113 2.99 1.01125 5.91 1.0081 3.78
0.35 0.9488 3.33 0.9725 7.14 0.9666 4.45
0.4 0.9193 3.65 0.9447 8.05 0.9375 4.97
0.45 0.9214 4.19 0.9446 9.59 0.9388 5.84
0.5 0.924 4.56 0.9497 9.91 0.9425 6.15

References

[1] R. Chen and S.W.S. McKeever, 1997. Theory of Thermoluminescence and Related
Phenomena. Singapore: World Scientific.

[2] G. Kitis, J.M. Gomez-Ros, and J.W.N. Tuyn, J. Phys. D 31 (1998) 2636.
[3] C.M. Sunta, W.E.F. Ayta, T.M. Piters, and S. Watanabe, Radiat. Meas. 30 (1999) 197.
[4] R. Chen, D.J. Huntley, and G.W. Berger. Phys. stat. sol. (a) 79 (1983) 251.
[5] P.R. Bevington, 1969. Data Reduction and Error Analysis for Physical Sciences. New

York: McGraw-Hill.


