
Chapter 6
Maximal Flows

6.1 Introduction

The last chapter ended with a remark that one might consider the shortest path
problem as the task to send one unit of “flow” from s to t through a network at
minimum cost. In more realistic problems from transportation we usually have to
deal with capacity constraints, limiting the amount of flow across arcs. Hence, the
basic problem in a capacitated network is to send as much flow as possible between
two designated vertices, more precisely from a source vertex to a sink vertex. This
notion of a flow in a capacitated network is made more precise in the following.

Definition 16 Let D = (V, A, cap) be a directed network with a capacity function
cap: A → R+ on the arcs. We call this a capacitated network. An s-t-flow f : A →
R+ for two designated vertices s, t ∈ V is a function satisfying

Flow conservation: the flow out of each vertex v ∈ V \ {s, t} equals the flow into
that vertex, that is:

∑
w∈V

(v,w)∈A

f (v,w) =
∑
w∈V

(w,v)∈A

f (w, v).

Capacity constraints: The flow on each arc (u, v) ∈ A respects the capacity con-
straints. That is,

0 ≤ f (u, v) ≤ cap (u, v).

We define the net flow from s to be

| f | :=
∑
w∈V

(s,w)∈A

f (s, w) −
∑
w∈V

(w,s)∈A

f (w, s).
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70 6 Maximal Flows

The flow conservation rules immediately imply

∀v ∈ V \ {s, t} :
∑
w∈V

(v,w)∈A

f (v,w) −
∑
w∈V

(w,v)∈A

f (w, v) = 0.

Adding all these equations to the net flow from s yields

| f | :=
∑
w∈V

(s,w)∈A

f (s, w) −
∑
w∈V

(w,s)∈A

f (w, s)

=
∑

v∈V \{t}
(v,w)∈A

f (v, w) −
∑

v∈V \{t}
(w,v)∈A

f (w, v)

=
∑
w∈V

(w,t)∈A

f (w, t) −
∑
w∈V

(t,w)∈A

f (t, w),

thus the net flow from s equals the net flow into t . We can state our problem now as:

Problem 8 Let G = (V, A, cap) be a capacitated network, s, t ∈ V . Find an s-t-
flow which maximizes the net flow from s.

It will make our discussion a bit easier if we restrict the capacity function to
integer values for a while, thus we get:

Problem 9 Let G = (V, A, cap) be a capacitated network with an integer capacity
function cap : A → Z+ and s, t ∈ V . Find an s-t-flow, maximizing the net flow
from s.

6.2 The Algorithm of Ford and Fulkerson

Considering shortest path problems we realized that we might consider paths as
flows of unit value. The first algorithm for the maximum flow problem that we will
introduce, successively finds paths from s to t . It takes the already existing flow into
account and augments it by sending flow along that path. Clearly, a flow reduces
the remaining capacity. A priori, it is not clear that we can send flow freely without
making any mistakes.

Software Exercise 41 Start the software and open the graph FordFulkerson4.
cat. If you point on the edges you can check their capacity in the info line at the
bottom of the window. Vertices s and t in these examples are always those with
smallest respectively largest number. The first idea might be to send flow on the
three edges that make up a path from 1 to 8. The bottlenecks of the capacity of these
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edges are the first and the last edge with a capacity of 150. Assume we send 150
units of flow over this path. If we just subtract these numbers from the capacities
the graph becomes disconnected and there no longer exists a path from s to t . Nev-
ertheless, this flow is not maximal. We can achieve a larger flow by sending 141
units of flow on each of the paths 1,3,4,7,8 and 1,2,5,6,8 and 9 units right through
the middle.

This problem of not being able to revert incorrect previous choices is overcome
by the idea of the backward arc. When sending flow through the network we add an
artificial backward arc for each arc of nonzero flow, indicating that this flow “can
be sent back”, thus allowing to reduce the flow on the corresponding forward arc.
Formally we get

Definition 17 Let D = (V, A, cap) be a capacitated network and f : A → R+
an s-t-flow. The residual network RN (D, f ) with respect to f is the network
(V, Ã, rescap). For an arc a ∈ A we denote by −a a copy of a where head and
tail have been interchanged and we write −A := {−a | a ∈ A} for all such arcs.
The residual capacity we define as

rescap (a) =
{

cap (a) − f (a) for a ∈ A
f (−a) for a ∈ −A

and finally Ã := {ã ∈ A ∪ −A | rescap (a) > 0}.
With this definition it is easy to design our first algorithm. We iteratively search

for a path P in the residual network and send as much flow as possible through this
path. For P ⊆ A let χ (P) ∈ {0,±1}A denote the signed characteristic function of
P, i.e. the vector where we have a 1 in the indices of forward arcs from A in P,

a −1 in the A-index if the corresponding arc in −A is used by the P and zeroes
elsewhere, that is

χ (P)a :=
⎧⎨
⎩

1 if a is a forward arc of P
−1 if a is a backward arc of P

0 if a is a not an arc of P
(6.1)

In the algorithm we search for an s-t path in the residual network, compute its
bottleneck delta and update the flow f = f + delta χ (P). The latter is done
by recursively backtracking the path in a for loop and computing flow[(u,v)]=
flow[(u,v)] ± delta where the sign is chosen according to whether the
current arc is an original arc of the network, a ForwardEdge, or an artificial
backward arc.

In our implementation we compute the path by a BFS in ShortestPath(s,t)
and find a path using as few edges as possible. We will see later on that this is a clever
choice, but for the following discussion we allow arbitrary paths.



72 6 Maximal Flows

ALGORITHM FordFulkerson

def UpdateFlow(Path):
delta = MinResCap(Path)
for (u,v) in Edges(Path):

if ForwardEdge(u,v):
5 flow[(u,v)] = flow[(u,v)] + delta

else:
flow[(v,u)] = flow[(v,u)] - delta

s = PickSource()
10 t = PickSink()

while not maximal:
Path = ShortestPath(s,t)
if Path:

15 UpdateFlow(Path)
else:

maximal = true

ShowCut(s)

Software Exercise 42 Continuing our last experiment we recommend you to choose
the “Window Layout” with “Two graph windows”. If you start the software it will
indicate the capacity of the arcs by their thickness in the upper window. If you
choose “1” to be the source and “8” to be the sink, the algorithm will stop at the
first breakpoint where the s-t-path using 3 edges has been found by BFS. Here the
vertices not on the path are displayed in grey, if they have been processed in the
BFS, blue if they are visited and green if they have not been put into the queue.
If we now “Trace” into the “UpdateFlow”-Procedure, first we find the last edge
to be the bottleneck and update the flow backtracking along the path accordingly.
Simultaneously with the flow, we update the residual network, i.e. we introduce
backward arcs and update the capacity if necessary.

The first and the last arc on the path disappear since their capacity has been
completely used. If you point on the forward respectively backward edge of the
middle arc you will find that the capacity of the forward arc has been reduced by
150 which is exactly the capacity of the backward arc.

The second path we find uses the backward edge and UpdateFlow “repairs” the
mistake we made in the first step. The flow on the edge (3, 6) is reduced by the
capacity of the bottleneck (7, 8) on the path, i.e. by 141 and we end with the flow
described in our previous discussion.

After the update there is no longer any directed s-t-path in the residual network,
which is proven by an s-t-cut (to be defined immediately) in the residual network
that contains backward arcs only.

6.3 Max-Flow-Min-Cut

We have a simple argument that this algorithm will terminate as long as the capac-
ities are integers. With every path augmentation the flow is incremented by at least
one and there are natural upper bounds on the maximal value of the flow, which are
called cuts.
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Definition 18 Let D = (V, A) be a digraph, s, t ∈ V and ∅ �= S ⊂ V . The cut
[S, V \ S] induced by S consists of those edges that have one end in each of the two
non-empty sets of the partition S, V \ S:

[S, V \ S] := {(i, j) ∈ A | {i, j} �⊆ S and {i, j} �⊆ V \ S}.

The forward edges (S, V \ S) of a cut are defined as

(S, V \ S) := {(i, j) ∈ A | i ∈ S, j ∈ V \ S}.

The backward arcs of a cut [S, V \ S] are denoted as (V \ S, S). A cut [S, V \ S] is
an s-t-cut, if s ∈ S and t �∈ S.

If cap : A → R+ is a capacity function, the capacity cap [S] of an s-t-cut is
defined as cap [S] := cap (S, V \ S) := ∑

a∈(S,V \S) cap (a), the total capacity of the
forward edges.

The capacity of any cut is an upper bound on the flow value:

Lemma 12 (weak duality) Let D = (V, A, cap) be a capacitated network, f a
flow and [S, V \ S] an s-t-cut. Then | f | ≤ cap [S].

At the end of the proof we use the abbreviation f (Ẽ) := ∑
e∈Ẽ f (e) if Ẽ ⊆ E is

a set of edges (c.f. Theorem 9).

Proof

| f | =
∑
w∈V

(s,w)∈A

f (s, w) −
∑
w∈V

(w,s)∈A

f (w, s)

=
∑
w∈V

(s,w)∈A

f (s, w) −
∑
w∈V

(w,s)∈A

f (w, s)

+
∑

v∈S\s

⎛
⎜⎝
∑
w∈V

(v,w)∈A

f (v,w) −
∑
w∈V

(w,v)∈A

f (w, v)

⎞
⎟⎠

=
∑
v∈S

⎛
⎜⎝
∑
w∈V

(v,w)∈A

f (v,w) −
∑
w∈V

(w,v)∈A

f (w, v)

⎞
⎟⎠

= f ((S, V \ S)) − f ((V \ S, S))

≤ f ((S, V \ S))

≤ cap [S].

�
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This proves finiteness of the above procedure if the capacities are integers. Fur-
thermore, when the algorithm terminates source s and destination t are separated in
the residual network RN (D, f ). Thus if we set

S∗ := {v ∈ V | there is some s−v-path in RN (D, f )},

then [S∗, V \ S∗] is an s-t-cut. We compute | f | = f ((S∗, V \ S∗))− f ((V \ S∗, S∗)).
Since there is no edge emanating from S∗ in RN (D, f ) there cannot be any nonzero
flow on backward edges of the cut and f ((V \ S∗, S∗)) = 0. Thus [S∗, V ∗] is a cut
whose capacity equals the value of the flow. Lemma 12 now implies.

Theorem 15 (Max-flow-Min-cut) Let D = (V, A, cap) be a capacitated network
and s, t ∈ V . Then

max
f is s-t-flow

| f | = min
[S,V \S] is s-t-cut

cap[S].

If, furthermore, the capacities are integer then a maximal flow can be chosen to be
integer on all edges.

Exercise 43 Let G(V, E) be a graph and s, t ∈ V two vertices.

(i) Prove that the number of pairwise edge disjoint s-t-paths equals the minimal
number of edges that must be removed in order to destroy all s-t-paths.

(ii) Prove that the number of pairwise internally vertex disjoint s-t-paths equals
the minimal number of vertices that must be removed in order to destroy all
s-t-paths.

6.4 Pathologies

In this section we will learn that the augmenting path algorithm with a clumsy
implementation can have an exponential running time behavior. Before we do so,
we will present an example with irrational data, where the algorithm not only does
not terminate but also converges towards a non-optimal value.

Example 4 Consider the network in Fig. 6.1. The most important edges are the three
innermost edges, the upper and the lower run from left to right with capacities of 1
respectively

√
2. The edge in the middle runs backwards and has an infinite capacity

as well as all other edges except of the direct arc (s, t) which has a capacity of 1. The
latter edge—as well as several backward arcs—will be omitted in the following pic-
tures since it is not used until the very end. After the first four indicated augmenting
steps we get into a situation where the capacities of all arcs—except for the direct
arc—are a scalar multiple of the data in the beginning. Clearly an infinite repetition
of these steps will thus converge towards a flow of value 1 + √

2, while a flow of
value 2 + √

2 exists.
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Even with integer data a bad implementation of the above procedure may result
in an exponential run time behavior.

Example 5 Consider the network depicted in Fig. 6.1. If each augmentation uses the
“bottleneck edge”, clearly we will need 2k+1 augmentations in order to compute a
maximal flow. The size of the data though is dominated by the coding length of the
numbers and is O(k). Thus the number of augmentations is exponential in the size
of the data.

Software Exercise 44 The interested reader may ask why we did not animate these
examples with our software. While this is quite obvious for the example with irra-
tional data, you may try it yourself. Load the file FordFulkersonWC.cat and
run FordFulkerson.alg on it. Isn’t it disappointing, it terminates in two
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iterations. We consider it difficult to find some reasonable implementation that would
chose the augmenting paths as in the above examples. This does not mean that there
is no problem. The difficulties may occur in larger examples less obviously and
hidden somewhere, but actually not with the implementation in our package. The
reason will become clear in the next section.

6.5 Edmonds-Karp Implementation

The bad example in the last section suggests two possible approaches to designing
a good implementation. Either by shortest paths, i.e., paths using as few edges as
possible, or by paths of maximal capacity. The latter can be implemented, but is
“unlikely to be efficient” [1].

The former is quite natural and it is the way the augmenting paths are chosen in
our implementation of Ford and Fulkerson’s algorithm. We run a BFS in the residual
network, starting at s until we reach t, i.e. we search for a path from s to t that uses
as few edges as possible. The advantage of this implementation is, that we have
additional control over the flow of the algorithm as the length of the shortest paths
from any vertex v to t must be monotonically increasing:

Lemma 13 Let D = (V, A, cap) be a capacitated network (cap not necessarily
rational), f a flow, P a directed s-t-path in RN (D, f ) using as few edges as possi-
ble and f̃ the flow that arises from f by augmentation along P, f̃ = f + Δχ (P).
Let dist(v) denote the distance from v to t in RN (D, f ), with respect to unit
weights, that is the number of edges, and d̃ist(v) the same in v in RN (D, f̃ ),
then

∀v ∈ V : d̃ist(v) ≥ dist(v).

Proof RN (D, f ) and RN (D, f̃ ) differ only along P . Edges of that path which
had the residual capacity of the bottleneck of this path will disappear. Possibly we
will be facing newly introduced backward arcs for edges that had no flow in f . Let
(i, j) be such an edge. Since (i, j) belongs to a shortest s-t-path in RN (D, f ) we
necessarily have dist(i) = dist( j) + 1.

We now show the assertion by induction on d̃ist(v). If d̃ist(v) = 0 then v = t and
there is nothing to prove. Thus, let d̃ist(v) = k and v = v0, . . . , vk = t be a shortest
v-t-path in RN (D, f̃ ). If edge (v, v1) is an edge in RN (D, f ) as well, we have
dist(v) ≤ dist(v1) + 1 ≤ d̃ist(v1) + 1 = d̃ist(v) by inductive assumption. Otherwise,
(v1, v) was on a shortest s-t-path in RN (D, f ) and we get dist(v) = dist(v1) − 1 ≤
d̃ist(v1) − 1 = d̃ist(v) − 2. �

As an immediate corollary we get

Corollary 3 Each edge is saturated at most
|V |
2

times in each direction, i.e. the flow

on that edge is set to maximal capacity, or to zero respectively.
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Proof Whenever an edge (i, j) is saturated then dist(i) = dist( j) + 1. In order
to get saturated again in the same direction, it has to occur in a shortest path in
the other direction, first. The distances d̃ist, valid at that moment, satisfy d̃ist( j) =
d̃ist(i) + 1 ≥ dist(i) + 1 = dist( j) + 2. As the distances are bounded by |V |, the
claim follows. �

Theorem 16 The implementation of Edmonds and Karp computes a maximal flow
in O(|A|2|V |) steps (even if the data is irrational).

Proof According to the last Corollary we need at most O(|A||V |) augmentations.
The bound follows, since we can find a shortest path in RN (D, f ) and update the
residual network in O(|A|). �

Remark 9 A complete recomputation of the distances from scratch in each augmen-
tation is not efficient. By a clever update strategy on the distance it is possible to
achieve an overall complexity of O(|A||V |2) (see again [1] for details).

6.6 Max-flow-Min-cut as Linear Programming Duality

The definition of our network flow problem has a strong algebraic flavor and it is
already quite close to its linear program, which is as follows:

max (−d(s))�x
subject to (−B)x = 0

x ≤ w

x ≥ 0,

where d(s) ∈ {0,±1}A is the directed incidence vector of s, that is

d(s)e =
⎧⎨
⎩

−1 if e = (s, i)
1 if e = (i, s)
0 if e = (i, j), i �= s �= j

.

B is the vertex-arc incidence matrix, where the rows indexed by s and t have been
deleted.

Going over to the dual we derive the following program:

min u�w

subject to u − p� B ≥ −d(s)
u ≥ 0,

where u are edge variables and p vertex variables. We interpret the value of a p-
variable pv as the potential of vertex v. How does such a dually feasible potential
change if we follow its values along an s-t-path s = v0, . . . , vk = t with edge set
U? The inequalities involving variables corresponding to edges from U are
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−pv1 + us,v1 ≥ 1,

pvi − pvi+1 + ui,i+1 ≥ 0,

pvk−1 + uvk−1,t ≥ 0.

Adding these inequalities yields
∑

e∈U ue ≥ 1.
If we introduce a potential ps = −1 for s and pt = 0 for t, then all of the

above inequalities look alike. Each time we have an increase of Δ in potential from
vi to vi+1, then this increase has to be balanced by the edge variable ui,i+1 ≥ Δ.
Since our objective is to minimize

∑
e∈E weue and there has to be a total increase

in potential of 1 along each s-t-path, this is achieved at minimum cost only if we
realize it across a minimum cut:

Lemma 14 Let D = (V, A, cap) be a capacitated network and s, t ∈ V, such that
every vertex v ∈ V lies on some directed s-t-path. Let

MC := {u ∈ R
A | ∃p ∈ R

V : (p, u) is feasible for the dual program}.

Then u ∈ MC if and only if there exist (directed) s-t-cuts Ci = (Si , V \ Si ) and
coefficients λi ∈ [0, 1], i = 1, . . . , k such that

∑k
i=1 λi = 1 and u ≥ ∑k

i=1 λiχ (Ci ).
The latter means that MC is the sum of the convex hull of all s-t-cuts plus the cone
of the positive orthant:

MC = conv {χ (C) | C st s−t−cut} + R
A
+.

Proof Let C = (S, V \ S) be a directed s-t-cut. Setting

pv =
{−1 if v ∈ S

0 if v �∈ S,

we see that (p, χ (C)) is feasible for the dual program. Hence, by Lemma 7
conv {χ (C) | C is s−t−cut} ⊆ MC . Clearly, we can add any positive vector without
leaving MC and thus one inclusion follows.

For the other inclusion let (p, u) be feasible for the dual program. We proceed by
induction on the number of non-zeroes in u. Let S denote the set of vertices that are
reachable from s on a directed path that uses only edges a satisfying ua = 0. Then
t �∈ S and thus C1 = (S, V \ S) is an s-t-cut. Let λ1 := mina∈(S,V \S) ua . If λ1 ≥ 1,

the claim follows and founds our induction. Otherwise, set ũ = 1
1−λ1

(u − λ1χ (C1))
and furthermore

p̃v =
{−1 if v ∈ S

1
1−λ1

pv if v �∈ S.
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We claim that ( p̃, ũ) is feasible for the dual program. Clearly, ũ has at least one
nonzero less than u. Inequalities that correspond to non-cut edges from A \ C are
immediately seen to be satisfied. Consider an edge a = (i, j) ∈ C . Note, that by
definition of S all vertices i ∈ S are reached on paths using only arcs ĩ where uã = 0
and hence, necessarily, pi ≤ −1 must hold. Using this we compute

p̃i − p̃ j + ũa = −1 − 1

1 − λ1
p j + 1

1 − λ1
(ua − λ1)

= 1

1 − λ1
(λ1 − 1 − p j + ua − λ1)

≥ 1

1 − λ1
(pi − p j + ua)

≥ 0.

By inductive assumption there exist directed cuts C2, . . . , Ck and coefficients
μ2, . . . μk such that ũ ≥ ∑k

i=2 μiχ (Ci ) and
∑k

i=2 μi = 1. Putting λi = (1 − λ1)μi

for i = 2, . . . , k yields the desired combination. �
Summarizing, the optimal solution of the dual LP is the incidence vector of a

minimal s-t-cut, or at least a convex combination of minimal cuts, and therefore
MaxFlow-MinCut is an example of LP-duality.

6.7 Preflow Push

In the algorithm of Ford and Fulkerson we have a feasible flow at any time and
thus a feasible solution of the linear program. The minimal cut at the end shows
up at sudden. We could try to approach this problem from a dual point of view. A
disadvantage of the above method is that the computation of an augmenting path
always takes O(|V |) steps, because we compute it from scratch. How bad this may
be is best visualized by an example.

Software Exercise 45 Run our Edmonds Karp implementation of the Ford Fulker-
son algorithm on the graph EdmondsKarpWC.cat. It consists of a path of large
capacity and a mesh of several paths of length two and capacity one. Each time we
increase the flow by a unit we have to recompute the unique path again and again.

The last example illustrates one basic idea of the preflow push algorithms due
to Goldberg and Tarjan: Push as much flow onward as possible. Unfortunately, it is
in general not clear a priori what “onward” means. In order to overcome this, we
interpret it the following way:
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– The (primal) balancing conditions are violated at several vertices, we have an
excess of flow into a vertex and we try to fix this by pushing flow, if possible
towards the sink.

– Simultaneously we keep a “reference cut” of non-increasing capacity that is used
completely by the flow.

The procedure terminates, when the “preflow” becomes a flow, i.e. primally fea-
sible. The main problem is to determine the direction into which the flow shall be
pushed. The idea to solve this problem stems from the following physical model.
Consider a network of pipelines of the given capacity, where the nodes of the net-
work may be lifted. Naturally, flow goes downhill. Our intention is to send as much
flow as possible from s to the sink t . The sink is fixed at ground zero and s at a
height of |V |. In a preprocessing step we determine for each vertex v ∈ V \ {s, t}
its minimum height, namely, dist (v, t), the length of a shortest v-t-path. This is the
minimal descent that is required for any flow passing v to have a chance to arrive
at t . If, now, we let the flow drip from s, due to capacity constraints, an excess
might get stuck at some points. These are lifted in order to diminish the excess by
allowing some flow back towards the source. Note, that this way, some flow may
now go uphill. We will see that, since the height of s and t is fixed, this procedure is
finite and in the end some of the initially sent flow will arrive at t and the remaining
be returned to s.

Putting this idea into an algebraic framework we define:

Definition 19 Let D = (V, A, cap) be a capacitated network and s, t ∈ V . An
s-t-preflow f : A → R+ is a function satisfying

preflow condition: For all vertices v ∈ V \{s} the preflow out of the vertex does not
exceed the preflow into the vertex:

∑
(v,w)∈A f (v,w) ≤ ∑

(w,v)∈A f (w, v),
capacity constraints: For all arcs (u, v) ∈ A: 0 ≤ f (u, v) ≤ cap (u, v).

Let f be a preflow. The residual network RN (D, f ) is defined as in the case of a
flow. If v ∈ V \ {s, t} then the excess ex( f, v) of f in v is defined as

∑
(w,v)∈A

f (w, v) −∑
(v,w)∈A f (v,w). A vertex with positive excess is called active.

We implement the idea described above as follows. The height of vertex v is
stored in the variable pot[v], which we call the potential of v. This potential
should not be confused with the dual variables of the linear program. Now, as
long as some vertex v has a positive excess(v), we try to find a vertex u in
Neighborhood(v) with pot[u]< pot[v] and push as much flow as possi-
ble, namely the minimum of the residual capacity res((v,u)) and the excess
of the vertex, along (v,u). If such a vertex does not exist, we enforce its exis-
tence for the next iteration by updating pot[v]=minResNeighborPot(v)+1
the potential of v to one more than the minimal potential of a neighbor reachable
through a directed arc with a non-vanishing residual capacity.



6.7 Preflow Push 81

ALGORITHM PreflowPush

InitPotential(s,t)
for v in G.Neighborhood(s):

flow[(s,v)] = cap((s,v))

8 feasible = False
while not feasible:

pushed = False
v = FindExcessVertex()
if not v:

13 feasible = True
else:

for u in Neighborhood(v):
if pot[v] > pot[u]:

delta = Min(res((v,u)),excess(v))
18 if ForwardEdge(v,u):

flow[(v,u)] = flow[(v,u)] + delta
else:

flow[(u,v)] = flow[(u,v)] - delta
pushed = True

23 break
if not pushed:

pot[v] = minResNeighborPot(v)+1

ShowCut(s)

The line pot[v]=minResNeighborPot(v)+1 is feasible which can be seen
as follows. If v ∈ V \ {s, t} satisfies ex( f, v) > 0 and hence

∑
(u,v)∈A

f (u, v) >
∑

(v,u)∈A

f (v, u),

then it must have some neighbor w such that f (w, v) > 0 and as a consequence w

is a neighbor in the residual network.
It is not clear a priori, that the algorithm is finite and we have to work on that.

Interestingly, we will not directly prove that the flow must become feasible, but
prove instead that the labels pot are bounded. For that purpose, we first show that
the vertex labels can be considered as lower bounds for the distances in the residual
network. This will be an immediate consequence of the following Proposition:

Proposition 5 During execution of the while-loop at any time we have pot[i] ≤
pot[j]+ 1 for all edges (i, j) ∈ RN (D, f ).

Proof In the beginning this is guaranteed by the preprocessing. Whenever addi-
tional flow is sent on an edge (i, j), by inductive assumption we have pot[i] ≤
pot[j] + 1. Since we send flow along that arc on the other hand we necessar-
ily have pot[i] > pot[j], thus pot[i] = pot[j] + 1. In particular, if
an arc ( j, i) is newly introduced in the residual network it satisfies pot[j] =
pot[i] − 1 ≤ pot[i] + 1. If a label is increased, the assertion directly follows
from the inductive assumption. �

Now, we can bound the minimum length of a path by the difference in potential

Corollary 4 If pot[v] = k and pot[w] = l > k, then any directed w-v-path in
the residual network RN (D, f ) uses at least l − k edges.
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Next, we consider the situation that for some vertex v there no longer exists a
directed v-t-path, but it has a positive excess. What do we do then? We increase its
label, but the backward arcs of the flow, that accumulates in v, bound the labels,
since there always exists an s-v-path in this situation:

Proposition 6 If v ∈ V \{s, t} and ex( f, v) > 0 then there exists a directed v-s-path
in RN (D, f ).

Proof Let S denote the set of vertices v that are connected to s by a directed
v-s-path. Clearly s ∈ S. By definition of RN (D, f ) we cannot have a non-zero flow
on any edge e ∈ (S, V \ S) leaving S. The preflow condition for V \ S implies

0 ≤
∑

v∈V \S

ex( f, v) =
∑

v∈V \S

⎛
⎝ ∑

(u,v)∈A

f (u, v) −
∑

(v,w)∈A

f (v,w)

⎞
⎠

=
∑

e∈(S,V \S)

f (e) −
∑

e∈(V \S,S)

f (e).

As there is no flow on any arc leaving S we get

0 =
∑

e∈(S,V \S)

f (e) ≥
∑

e∈(V \S,S)

f (e) ≥ 0.

Hence all there is no flow on the arcs of (V \ S, S) implying

∑
v∈V \S

ex( f, v) = 0.

As the preflow condition guarantees a non-negative excess, we must have ex( f, v) =
0 for all v ∈ V \ S. �

Since the label of s is fixed to |V |, we get the following Corollary, which implies
finiteness of the algorithm.

Corollary 5 Throughout the algorithm and for all v ∈ V we have: pot[v] ≤
2|V | − 1.

Proof The label of a vertex is increased only if it has a positive excess. But then
there exists a directed path to s in the residual network and the claim follows from
Corollary 4. �

As now the finiteness of the algorithm has become clear, we examine its time
complexity. In each iteration of the while loop we either increase the potential of a
vertex or we perform a push on some edge. By Corollary 5 the number of relabel
operations is of order O(|V |2). The same considerations we made for the Edmonds-
Karp implementation of the Ford-Fulkerson algorithm in Corollary 3 yields an upper
bound of O(|V ||A|) on the number of saturating pushes. In order to bound the num-
ber of non-saturating pushes we use the trick of a “potential function”.
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Lemma 15 The number of non-saturating pushes in a run of the preflow push algo-
rithm is O(|V |2|A|).
Proof We consider the sum of the labels of the active vertices

Φ :=
∑

i is active

pot[i]

as a potential function. By Corollary 5 this number is bounded by 2|V |2. When the
algorithm terminates we have Φ = 0. Consider a non-saturating push along (i, j).
Afterwards i is no longer active but j is active. As pot[j] = pot[i] − 1 this
implies:

A non-saturating push decrements Φ by at least 1.
The claim now follows if we can show that the total increase of Φ is of order
O(|V |2|A|). We consider the two possible cases of an increase of Φ.

Case 1: A saturating push is performed. This may result in a new active vertex.
Therefore the potential function may grow, but at most by 2|V | − 1. As there
are O(|V ||A|) saturating pushes we can bound the total increase of Φ caused
by saturating pushes by O(|V |2|A|).

Case 2: A vertex is relabeled. Since the labels never decrease and are bounded by
2|V |−1, the total increase caused by relabeling operations is of order O(|V |2).

�
Summarizing we have the following bound on the running time of our first ver-

sion of the preflow push algorithm.

Theorem 17 The running time of the preflow push algorithm is of order O(|V |2|A|).
You may have realized that we did not make any comment on the correctness of

the algorithm, yet. All we know by now is that it computes a flow, since there are no
active vertices left at the time of termination. We will conclude correctness directly
from the existence of a cut of the same size using linear programming duality.

6.8 Preflow Push Considered as a Dual Algorithm

As seen above the initial preflow is infeasible. We will show that it is optimal as soon
as it becomes feasible. This is done by providing a saturated cut for the preflow at
each stage. This saturated cut is complementary to the preflow as its variables are
zero if the corresponding inequalities of the capacity constraints are strict; i.e., we
always have ( fa − capa)ua = 0. Furthermore, the potentials as defined in the proof
of Lemma 14 guarantee that (pi − p j + ui j ) fi j = 0. To see this, note that the left
coefficient in that product is nonzero only on backward arcs of the saturated cut
which will have a zero flow.

Recall from Theorem 5 that in general a complementary pair of primally and
dually feasible solutions is optimal for both programs.
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Recall the following equation about “conservation of mass” that holds for any
function f on the arcs if [S, V \ S] is an s-t-cut:

f ((S, V \ S)) − f ((V \ S, S)) =
∑

v∈V \S

ex( f, v). (6.2)

For our dual solution we define the cuts iteratively. First, we set S0 = {s}. Thus,
in the beginning of the while loop of the algorithm PreflowPush on page 81
(S0, V \ S0) is a saturated s-t-cut. Now, if (Si , V \ Si ) is a saturated s-t-cut for
some steps in the algorithm we define Si+1 when it becomes necessary—because
(Si , V \ Si ) is no longer saturated—as follows. As soon as some edge (u, v0) ∈
(Si , V \ Si ) becomes an edge of the residual network RN (D, f ) we set

Si+1 := Si ∪ {v ∈ V | there exists a directed v0−v path in RN (D, f )}.

Then the following holds

Lemma 16 Si is an s-t-cut for all i and

(i) Si ⊆ Si+1,

(ii) cap[Si ] = ∑
v∈V \Si

ex( f, v),
(iii) cap[Si ] ≥ cap[Si+1].

Proof In order to show that t �∈ Si it suffices to show that for all i and all v ∈ Si

at any time pot[v] > |V \ Si |, which implies the assertion as pot[t] = 0. By
definition this holds for S0. We proceed by induction on i . Let u = v0, v = vk and
v0v1 . . . vk be a directed path in RN (D, f ), where u ∈ Si and {v1, . . . , vk}∩ Si = ∅.
If pot[v] ≥ pot[u] we are done. Otherwise by Corollary 4, we have pot[u]−
pot[v] ≤ k and thus pot[v] ≥ pot[u]− k > |V \ Si | − k ≥ |V \ Si+1|. Now,
assertion 1 is clear by definition.

As by construction, when Si+1 is defined, all forward edges of [Si+1, V \ Si+1]
are saturated and all backward edges have zero flow, the second assertion follows
from (6.2). Since the excesses are nonnegative and the sets Si grow monotonically
the third assertion follows from the second. �

Now, we get the correctness of the algorithm as a corollary.

Corollary 6 The preflow push algorithm computes a maximal flow.

Proof As mentioned above the preflow has become a flow when the algorithm
terminates, i.e. t is the only active node and the net flow into t equals the value of
the cut Si . �
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6.9 FIFO-Implementation

We can get an improved bound on the running time by a clever implementation of
the choice of active vertices. Furthermore, it seems quite natural to work on an active
vertex until it is no longer active or has to be relabeled. We say that we examine a
node. If we have to relabel a node we append it to the end of the queue.

The choice of the vertex can be done by maximal label or maximal excess to
achieve the best bounds of O(

√|A||V |2) respectively O(|V ||A| + |V |2 log(U )),
where U denotes an upper bound on the (integer) capacities (see again [1] for
details). For a recent overview on implementations and their complexities we rec-
ommend [38].

Here we will discuss the simpler alternative of a First-In-First-Out queue that we
already met several times during our course. This means that we always choose the
oldest active node, which is at the beginning of the queue. A vertex that becomes
active is added to the end of the queue.

The running time is analyzed as follows: We provide a time stamp for each active
node. The vertices v that become active in the initialization receive a time stamp of
t(v) = 1. If vertex v becomes active because edge (u, v) is pushed it receives the
time stamp t(v) = t(u)+1. Furthermore the time stamp is incremented if the vertex
is relabeled. We will show that using this rule t ≤ 4|V |2 + |V |. Recall that the
number of non-saturating pushes dominated the running time of our naive imple-
mentation and that while examining a node we perform at most one non-saturating
push. Hence, the above inequality improves the result of our running time analysis
in Sect. 6.7 to O(|V |3).

As potential function for our analysis here we consider

Φ = max {0, {pot[i] | i is active}} .

By Corollary 5, the potential of each vertex is bounded by 2|V | − 1 and hence the
total increase the of the potential function caused by relabel operations is bounded
by |V |(2|V | − 1) ≤ 2|V |2.

If during the examination of vertices with time stamp k, we call this a round, no
vertex is relabeled, then the excess of all active vertices has been passed to vertices
with smaller label and Φ has decreased by at least 1. Otherwise, a vertex v has
been relabeled. In this case, the potential function may increase by at most pot[v]
< 2|V | − 1. Since the total increase of the sum of all labels (active or non-active)
caused by relabel operations is bounded by 2|V |2 this can happen in at most 2|V |2
rounds and lead to an increase of Φ of at most 2|V |2.

As Φ < |V | in the beginning and since in all other rounds without a relabeling
operation we decrease the potential by at least one, there can be at most |V |+ 2|V |2
such rounds. We conclude that our algorithms terminates after at most 4|V |2 + |V |
rounds and hence all time stamps have a value of at most 4|V |2+|V |. Since no vertex
will receive the same time stamp twice and while examining a node we perform at
most one non-saturating push the number of non-saturating pushes is bounded by
O(|V |3). Using the analysis of the last section we get the following theorem:
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Theorem 18 The FIFO-implementation of the preflow push computes a maximal
flow in O(|V |3).

A final remark on “real implementation” of the preflow push.

Software Exercise 46 For an efficient implementation of the preflow push it is
mandatory to avoid the clumsy explicit computation of the way that the excess of
the preflow is sent back to s. How costly this may be is illustrated by running the
algorithm on the example graph PreflowPushWC.cat.

One possibility to overcome this problem is to heuristically search for small sat-
urated cuts. The s-side of this cut can be neglected in the following computations.

Exits

The dual pair of problems Max-Flow and Min-Cut is tractable, since in the case
of flows we consider only one kind of flow or good that is distributed through the
network and two vertices which have to be separated. If we have several goods
and pairs of origin and destination, where we want to distinguish the flow we get
a “Multiflow”-Problem which is tractable only in a few special cases (see [38]). If
we want to separate more than two terminals we have a multiterminal-cut problem
which is intractable already for three terminals in general networks [13].

One can generalize the notion of a cut from our definition by dropping the
sources and sinks and rather ask about finding minimum cuts in a graph, mini-
mum edge sets which lead to 2 or k connected components when removed. For
fixed k, Goldschmidt and Hochbaum [22] give a polynomial time algorithm for this
problem, which arises for example in the context of analyzing data by clustering,
that is identifying groups of similar objects. In this context the vertices represent
objects—e.g., web pages, patients, or pixels in an image—and the edge weight cor-
responds to the similarity—shared words, common genetic variations, like color and
intensities—between objects. Sometimes G is then called a similarity graph and the
connected components in the graph without the cut are the clusters. Hence, the k-
way cut problem can be viewed as identifying a minimal set of similarities which we
ignore to arrive at k clusters. More involved cost functions for cuts, normalized and
weighted [8], have been introduced to compensate for artifacts such as unbalanced
cluster sizes. Algorithmically, spectral algorithms which rely on the eigenvectors
and eigenvalues of the Laplacian of the adjacency matrix, are the state of the art in
clustering in similarity graphs [27].

Exercises

Exercise 47 Let D = (V, A, cap) be a capacitated directed network and S, T ⊆ V
two disjoint vertex sets. An S − T -flow is a function that satisfies flow conservation
for all vertices in V \ (S ∪ T ). We define the value of the flow
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| f | :=
∑
s∈S

⎛
⎝ ∑

(s,w)∈A

f (s, w) −
∑

(w,s)∈A

f (w, s)

⎞
⎠

=
∑
t∈T

⎛
⎝ ∑

(w,t)∈A

f (w, t) −
∑

(t,w)∈A

f (t, w)

⎞
⎠ .

Give a reduction from the problem to find a maximal S − T -flow to the task of
maximizing a flow from a single source to a single sink.

Exercise 48 Consider a directed network D(V, A, cap, low) with upper and lower
bounds on the flow of an arc. An s-t-flow is feasible if it respect these bounds at all
arcs and Kirchhoff’s law at all vertices different from s and t .

(i) Give a reduction of the problem of the existence of a feasible flow to an ordinary
MaxFlow-Problem.

(ii) Modify the algorithm of Ford and Fulkerson in order to compute a maximum
flow in a network with upper and lower bounds.

Exercise 49 Write an algorithm to compute an s-t-path of maximum residual capac-
ity in a residual network and analyze its complexity.

Exercise 50 The following is an abstract model of a reload problem where we have
to decide to make a delivery directly or via one of two hubs. Given a graph G =
(V, E), a nonnegative integer weight function w0 : E → Z

+ on the edges and two
nonnegative integer weight functions on the vertices w1, w2 : V → Z

+. We will
say V ′ ⊆ V satisfies an edge e = (u, v) if {u, v} ⊆ V ′. The objective is to find
a set of edges F ⊆ E and 2 subsets of the vertices V1, V2 ⊆ V such that for all
e = (u, v) ∈ E either e ∈ F or V1 or V2 satisfies e, and

∑
e∈F

w0(e) +
∑
v∈V1

w1(v) +
∑
v∈V1

w1(v)

is minimized. Model this problem as a MinCut-Problem in a capacitated network.
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