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System Reliability Concepts 

The analysis of the reliability of a system must be based on precisely defined 
concepts. Since it is readily accepted that a population of supposedly identical 
systems, operating under similar conditions, fall at different points in time, then a 
failure phenomenon can only be described in probabilistic terms. Thus, the 
fundamental definitions of reliability must depend on concepts from probability 
theory. This chapter describes the concepts of system reliability engineering. These 
concepts provide the basis for quantifying the reliability of a system. They allow 
precise comparisons between systems or provide a logical basis for improvement 
in a failure rate. Various examples reinforce the definitions as presented in Section 
2.1. Section 2.2 examines common distribution functions useful in reliability 
engineering. Several distribution models are discussed and the resulting hazard 
functions are derived. Section 2.3 describes a new concept of systemability. 
Several systemability functions of various system configurations such as series, 
parallel, and k-out-of-n, are presented. Section 2.4 discusses various reliability 
aspects of systems with multiple failure modes. Stochastic processes including 
Markov process, Poisson process, renewal process, quasi-renewal process, and 
nonhomogeneous Poisson process are discussed in Sections 2.5 and 2.6. 

In general, a system may be required to perform various functions, each of 
which may have a different reliability. In addition, at different times, the system 
may have a different probability of successfully performing the required function 
under stated conditions. The term failure means that the system is not capable of 
performing a function when required. The term capable used here is to define if the 
system is capable of performing the required function. However, the term capable 
is unclear and only various degrees of capability can be defined. 
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2.1 Reliability Measures 

The reliability definitions given in the literature vary between different practition- 
ers as well as researchers. The generally accepted definition is as follows. 
 
Definition 2.1: Reliability is the probability of success or the probability that the 
system will perform its intended function under specified design limits.  

More specific, reliability is the probability that a product or part will operate 
properly for a specified period of time (design life) under the design operating 
conditions (such as temperature, volt, etc.) without failure. In other words, 
reliability may be used as a measure of the system’s success in providing its 
function properly. Reliability is one of the quality characteristics that consumers 
require from the manufacturer of products. 
     Mathematically, reliability R(t) is the probability that a system will be 
successful in the interval from time 0 to time t: 

 ( ) ( )                       0= > ≥R t P T t t  (2.1) 

where T is a random variable denoting the time-to-failure or failure time.     
     Unreliability F(t), a measure of failure, is defined as the probability that the sys-
tem will fail by time t: 

 ( ) ( )          for 0= ≤ ≥F t P T t t  

In other words, F(t) is the failure distribution function. If the time-to-failure 
random variable T has a density function f(t), then 

 ( ) ( )
∞

= ∫
t

R t f s ds  

or, equivalently, 

 ( ) [ ( )]= − d
f t R t

dt
 

The density function can be mathematically described in terms of T: 

 
0

lim ( )
Δ →

< ≤ + Δ
t

P t T t t  

This can be interpreted as the probability that the failure time T will occur between 
the operating time t and the next interval of operation, t+Δt. 

Consider a new and successfully tested system that operates well when put 
into service at time t = 0. The system becomes less likely to remain successful as 
the time interval increases. The probability of success for an infinite time interval, 
of course, is zero.  

Thus, the system functions at a probability of one and eventually decreases to 
a probability of zero. Clearly, reliability is a function of mission time. For example, 
one can say that the reliability of the system is 0.995 for a mission time of 24 
hours. However, a statement such as the reliability of the system is 0.995 is 
meaningless because the time interval is unknown. 
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Example 2.1:  A computer system has an exponential failure time density function 

 9,0001
( )            0

9,000

−
= ≥

t

f t e t  

What is the probability that the system will fail after the warranty (six months or 
4380 hours) and before the end of the first year (one year or 8760 hours)? 
 
Solution:  From equation (2.1) we obtain 

 

8760

9000

4380

1
(4380 8760)  

9000

                                   0.237

−
< ≤ =

=

∫
t

P T e dt
 

This indicates that the probability of failure during the interval from six months to 
one year is 23.7%. 

If the time to failure is described by an exponential failure time density 
function, then 

 
1

( )             0,  0θ θ
θ

−
= ≥ >

t

f t e t  (2.2) 

and this will lead to the reliability function 

 
1

( )      0θ θ

θ

∞
− −

= = ≥∫
s t

t

R t e ds e t  (2.3) 

Consider the Weibull distribution where the failure time density function is 
given by 

 
1

( )      0,  0,  0

β

β
θ

β
β θ β
θ

⎛ ⎞⎜− − ⎟⎜ ⎠⎝= ≥ > >
t

t
f t e t  

Then the reliability function is 

 ( )       0

β

θ
⎛ ⎞⎜− ⎟⎜ ⎠⎝= ≥

t

R t e t  

Thus, given a particular failure time density function or failure time distribution 
function, the reliability function can be obtained directly. Section 2.2 provides 
further insight for specific distributions. 
 
System Mean Time to Failure 
Suppose that the reliability function for a system is given by R(t). The expected 
failure time during which a component is expected to perform successfully, or the 
system mean time to failure (MTTF), is given by 

 
0

( )
∞

= ∫MTTF t f t dt  (2.4) 

Substituting 

 ( ) [ ( )]= − d
f t R t

dt
 

into equation (2.4) and performing integration by parts, we obtain 
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 0

0
0

[ ( )]

           [ ( )] | ( )

MTTF td R t

tR t R t dt

∞

∞∞

= −

= − +

∫

∫
 (2.5) 

The first term on the right-hand side of equation (2.5) equals zero at both 
limits, since the system must fail after a finite amount of operating time. Therefore, 
we must have tR(t) → 0 as t → ∞ . This leaves the second term, which equals 

 
0

( )
∞

= ∫MTTF R t dt  (2.6) 

Thus, MTTF is the definite integral evaluation of the reliability function. In 
general, if ( )λ t  is defined as the failure rate function, then, by definition, MTTF is 
not equal to 1/ ( )λ t . 

The MTTF should be used when the failure time distribution function is 
specified because the reliability level implied by the MTTF depends on the 
underlying failure time distribution. Although the MTTF measure is one of the 
most widely used reliability calculations, it is also one of the most misused 
calculations. It has been misinterpreted as “guaranteed minimum lifetime”. 
Consider the results as given in Table 2.1 for a twelve-component life duration test. 

Table 2.1. Results of a twelve-component life duration test 

Component Time to failure 
(hours) 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

4510 
3690 
3550 
5280 
2595 
3690 
  920 
3890 
4320 
4770 
3955 
2750 

 
Using a basic averaging technique, the component MTTF of 3660 hours was 

estimated. However, one of the components failed after 920 hours. Therefore, it is 
important to note that the system MTTF denotes the average time to failure. It is 
neither the failure time that could be expected 50% of the time, nor is it the guaran-
teed minimum time of system failure. 

A careful examination of equation (2.6) will show that two failure distributions 
can have the same MTTF and yet produce different reliability levels. This is 
illustrated in a case where the MTTFs are equal, but with normal and exponential 
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failure distributions. The normal failure distribution is symmetrical about its mean, 
thus 
 ( ) ( 0) 0.5= ≥ =R MTTF P Z  

where Z is a standard normal random variable. When we compute for the 
exponential failure distribution using equation (2.3), recognizing that θ  = MTTF, 
the reliability at the MTTF is 

 ( ) 0.368
−

= =
MTTF

MTTFR MTTF e  

Clearly, the reliability in the case of the exponential distribution is about 74% of 
that for the normal failure distribution with the same MTTF. 
 
Failure Rate Function 
The probability of a system failure in a given time interval [t1, t2] can be expressed 
in terms of the reliability function as 

 

2

1 1 2

1 2

( ) ( ) ( )

             ( ) ( )

∞ ∞

= −

= −

∫ ∫ ∫
t

t t t

f t dt f t dt f t dt

R t R t

 

or in terms of the failure distribution function (or the unreliability function) as 

 

2 2 1

1

2 1

( ) ( ) ( )

             ( ) ( )

−∞ −∞

= −

= −

∫ ∫ ∫
t t t

t

f t dt f t dt f t dt

F t F t

 

The rate at which failures occur in a certain time interval [t1, t2] is called the 
failure rate. It is defined as the probability that a failure per unit time occurs in the 
interval, given that a failure has not occurred prior to t1, the beginning of the 
interval. Thus, the failure rate is 

 1 2

2 1 1

( ) ( )

( ) ( )

−
−

R t R t

t t R t
 

Note that the failure rate is a function of time. If we redefine the interval as 
[ , ],+ Δt t t the above expression becomes 

 
( ) ( )

( )

− + Δ
Δ

R t R t t

tR t
 

The rate in the above definitions is expressed as failures per unit time, when in 
reality, the time units might be in terms of miles, hours, etc. The hazard function is 
defined as the limit of the failure rate as the interval approaches zero. Thus, the 
hazard function h(t) is the instantaneous failure rate, and is defined by 

 

0

( ) ( )
( ) lim

( )

1
      [ ( )]

( )

( )
      

( )

Δ →

− + Δ=
Δ

= −

=

t

R t R t t
h t

tR t

d
R t

R t dt

f t

R t

 (2.7) 
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The quantity h(t)dt represents the probability that a device of age t will fail in the 
small interval of time t to (t+dt). The importance of the hazard function is that it 
indicates the change in the failure rate over the life of a population of components 
by plotting their hazard functions on a single axis. For example, two designs may 
provide the same reliability at a specific point in time, but the failure rates up to 
this point in time can differ. 

The death rate, in statistical theory, is analogous to the failure rate as the force 
of mortality is analogous to the hazard function. Therefore, the hazard function or 
hazard rate or failure rate function is the ratio of the probability density function 
(pdf) to the reliability function.  
 
Maintainability 
When a system fails to perform satisfactorily, repair is normally carried out to 
locate and correct the fault. The system is restored to operational effectiveness by 
making an adjustment or by replacing a component. 

Maintainability is defined as the probability that a failed system will be 
restored to specified conditions within a given period of time when maintenance is 
performed according to prescribed procedures and resources. In other words, 
maintainability is the probability of isolating and repairing a fault in a system 
within a given time. Maintainability engineers must work with system designers to 
ensure that the system product can be maintained by the customer efficiently and 
cost effectively. This function requires the analysis of part removal, replacement, 
tear-down, and build-up of the product in order to determine the required time to 
carry out the operation, the necessary skill, the type of support equipment and the 
documentation. 

Let T denote the random variable of the time to repair or the total downtime. If 
the repair time T has a repair time density function g(t), then the maintainability, 
V(t), is defined as the probability that the failed system will be back in service by 
time t, i.e., 

 
0

( ) ( ) ( )= ≤ = ∫
t

V t P T t g s ds  

For example, if ( ) μμ −= tg t e where μ > 0 is a constant repair rate, then  

 ( ) 1 μ−= − tV t e  

which represents the exponential form of the maintainability function. 
An important measure often used in maintenance studies is the mean time to 

repair (MTTR) or the mean downtime. MTTR is the expected value of the random 
variable repair time, not failure time, and is given by 

 
0

( )
∞

= ∫MTTR tg t dt  

When the distribution has a repair time density given by ( ) μμ −= tg t e , then, from 
the above equation, MTTR = 1/ μ . When the repair time T has the log normal 
density function g(t), and the density function is given by 
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2

2

(ln )

2
1

( )       0
2  

μ
σ

π σ

−−
= >

t

g t e t
t

 

then it can be shown that 

 

2

2

σ

=MTTR m e  

where m denotes the median of the log normal distribution. 
In order to design and manufacture a maintainable system, it is necessary to 

predict the MTTR for various fault conditions that could occur in the system. This 
is generally based on past experiences of designers and the expertise available to 
handle repair work. 

The system repair time consists of two separate intervals: passive repair time 
and active repair time. Passive repair time is mainly determined by the time taken 
by service engineers to travel to the customer site. In many cases, the cost of travel 
time exceeds the cost of the actual repair. Active repair time is directly affected by 
the system design and is listed as follows: 
 

1. The time between the occurrence of a failure and the system user 
becoming aware that it has occurred. 

2. The time needed to detect a fault and isolate the replaceable 
component(s). 

3. The time needed to replace the faulty component(s). 
4. The time needed to verify that the fault has been corrected and the system 

is fully operational. 
The active repair time can be improved significantly by designing the system in 
such a way that faults may be quickly detected and isolated. As more complex 
systems are designed, it becomes more difficult to isolate the faults. 
 
Availability  
Reliability is a measure that requires system success for an entire mission time. No 
failures or repairs are allowed. Space missions and aircraft flights are examples of 
systems where failures or repairs are not allowed. Availability is a measure that 
allows for a system to repair when failure occurs. 

The availability of a system is defined as the probability that the system is 
successful at time t. Mathematically, 

 

System up time
Availability = 

System up time + System down time

MTTF
                   = 

MTTF + MTTR

 

Availability is a measure of success used primarily for repairable systems. For 
non-repairable systems, availability, A(t), equals reliability, R(t). In repairable 
systems, A(t) will be equal to or greater than R(t). 

The mean time between failures (MTBF) is an important measure in repairable 
systems. This implies that the system has failed and has been repaired. Like MTTF 
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and MTTR, MTBF is an expected value of the random variable time between 
failures. Mathematically, 
 MTBF = MTTF + MTTR 

The term MTBF has been widely misused. In practice, MTTR is much smaller 
than MTTF, which is approximately equal to MTBF. MTBF is often incorrectly 
substituted for MTTF, which applies to both repairable systems and non-repairable 
systems. If the MTTR can be reduced, availability will increase, and the system 
will be more economical. 

A system where faults are rapidly diagnosed is more desirable than a system 
that has a lower failure rate but where the cause of a failure takes longer to detect, 
resulting in a lengthy system downtime. When the system being tested is renewed 
through maintenance and repairs, E(T) is also known as MTBF. 

2.2 Common Distribution Functions 

This section presents some of the common distribution functions and several 
hazard models that have applications in reliability engineering (Pham 2000a).  
 
Binomial Distribution 
The binomial distribution is one of the most widely used discrete random variable 
distributions in reliability and quality inspection. It has applications in reliability 
engineering, e.g., when one is dealing with a situation in which an event is either a 
success or a failure. 

The pdf of the distribution is given by 

 
( )

( )
( ) (1 )     0, 1, 2, ..., 

!
          

!( )!

−= = − =

=
−

x n xnP X x p p x nx

nn
x x n x

 

where n = number of trials; x = number of successes; p = single trial probability of 
success. 

The reliability function, R(k), (i.e., at least k out of n items are good) is given by 

 ( )( ) (1 ) −

=

= −∑
n

x n x

x k

nR k p px  

 
Example 2.2:  Suppose in the production of lightbulbs, 90% are good. In a random 
sample of 20 lightbulbs, what is the probability of obtaining at least 18 good 
lightbulbs? 
 
Solution: The probability of obtaining 18 or more good lightbulbs in the sample of 
20 is 
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20
20

18

20
(18)  (0.9) (0.1)

18
         

         0.667

x x

x

R −

=

⎛ ⎞
= ⎜ ⎟

⎝ ⎠

=

∑
 

Poisson Distribution 
Although the Poisson distribution can be used in a manner similar to the binomial 
distribution, it is used to deal with events in which the sample size is unknown. 
This is also a discrete random variable distribution whose pdf is given by 

 

( )
( )    for 0, 1, 2, ....

!

x tt e
P X x x

x

λλ −

= = =
 

where λ = constant failure rate, x = is the number of events. In other words, P(X = x) 
is the probability of exactly x failures occurring in time t. Therefore, the reliability 
Poisson distribution, R(k) (the probability of k or fewer failures) is given by 

 
0

( )
( )

!

λλ −

=

=∑
x tk

x

t e
R k

x
 

This distribution can be used to determine the number of spares required for the 
reliability of standby redundant systems during a given mission. 
 
Exponential Distribution 
Exponential distribution plays an essential role in reliability engineering because it 
has a constant failure rate. This distribution has been used to model the lifetime of 
electronic and electrical components and systems. This distribution is appropriate 
when a used component that has not failed is as good as a new component - a 
rather restrictive assumption. Therefore, it must be used diplomatically since 
numerous applications exist where the restriction of the memoryless property may 
not apply. For this distribution, we have reproduced equations (2.2) and (2.3), 
respectively: 

 
1

( ) ,    0

( ) ,    0

λθ

λθ

λ
θ

− −

− −

= = ≥

= = ≥

t
t

t
t

f t e e t

R t e e t

 

where θ  = 1/λ > 0 is an MTTF’s parameter and λ ≥ 0 is a constant failure rate. 
The hazard function or failure rate for the exponential density function is 

constant, i.e., 

 

1
1

( ) 1
( )

1( )

θ
θ λ

θ
θ

−

= = = =
−

e
f t

h t
R t

e

 

The failure rate for this distribution is λ, a constant, which is the main reason 
for this widely used distribution. Because of its constant failure rate property, the 
exponential is an excellent model for the long flat “intrinsic failure” portion of the 
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bathtub curve. Since most parts and systems spend most of their lifetimes in this 
portion of the bathtub curve, this justifies frequent use of the exponential (when 
early failures or wear out is not a concern). The exponential model works well for 
inter-arrival times. When these events trigger failures, the exponential lifetime 
model can be used. 

We will now discuss some properties of the exponential distribution that are 
useful in understanding its characteristics, when and where it can be applied. 
 
Property 2.1: (Memoryless property) The exponential distribution is the only 
continuous distribution satisfying 

 { } { | }     for 0, 0≥ = ≥ + ≥ > >P T t P T t s T s t s  (2.8) 

This result indicates that the conditional reliability function for the lifetime of 
a component that has survived to time s is identical to that of a new component. 
This term is the so-called "used-as-good-as-new" assumption.  

The lifetime of a fuse in an electrical distribution system may be assumed to 
have an exponential distribution. It will fail when there is a power surge causing 
the fuse to burn out. Assuming that the fuse does not undergo any degradation over 
time and that power surges that cause failure are likely to occur equally over time, 
then use of the exponential lifetime distribution is appropriate, and a used fuse that 
has not failed is as good as new. 
 
Property 2.2: If T1, T2, ..., Tn, are independently and identically distributed 
exponential random variables (RVs) with a constant failure rate λ, then 

 2

1

2  ~ (2 )λ χ
=
∑

n

i
i

T n  

where 2 (2 )χ n  is a chi-squared distribution with degrees of freedom 2n. This result 

is useful for establishing a confidence interval for λ. 
 
Example 2.3: A manufacturer performs an operational life test on ceramic capaci-
tors and finds they exhibit constant failure rate with a value of 3x10-8 failure per 
hour. What is the reliability of a capacitor at 104 hours?  
 
Solution: The reliability of a capacitor at 104 hour is 

 
8 43 10 3 10( ) 0.9997λ − −− − × − ×= = = =t tR t e e e  

The resulting reliability plot is shown in Figure 2.1. 
 
Normal Distribution 
Normal distribution plays an important role in classical statistics owing to the 
Central Limit Theorem. In reliability engineering, the normal distribution primarily 
applies to measurements of product susceptibility and external stress. This two- 
parameter distribution is used to describe systems in which a failure results due to 
some wearout effect for many mechanical systems. 
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Figure 2.1.  Reliability function vs time 
 

The normal distribution takes the well-known bell shape. This distribution is 
symmetrical about the mean and the spread is measured by variance. The larger the 
value, the flatter the distribution. The pdf is given by 

 
21

( )
21

( )       -
2

μ
σ

σ π

−−
= ∞ < < ∞

t

f t e t  

where μ is the mean value and σ  is the standard deviation. The cumulative distri- 
bution function (cdf) is 

 
21

( )
21

( )
2

t s

F t e ds
μ

σ

σ π

−−

−∞

= ∫  

The reliability function is  

 
21

( )
21

( )
2

s

t

R t e ds
μ

σ

σ π

∞ −−
= ∫  

There is no closed form solution for the above equation. However, tables for the 
standard normal density function are readily available (see Table A1.1 in Appendix 
1) and can be used to find probabilities for any normal distribution. If 

 
μ

σ
−= T

Z  

is substituted into the normal pdf, we obtain 

 

2

2
1

( )       -
2π

−
= ∞ < < ∞

z

f z e Z  

This is a so-called standard normal pdf, with a mean value of 0 and a standard 
deviation of 1. The standardized cdf is given by 

 
21

21
( )

2π
−

−∞

Φ = ∫
t

s
t e ds  (2.9) 
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where Φ is a standard normal distribution function. Thus, for a normal random 
variable T, with mean μ and standard deviation σ, 

 ( )
μ μ

σ σ
− −⎛ ⎞ ⎛ ⎞≤ = ≤ = Φ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

t t
P T t P Z  

where Φ yields the relationship necessary if standard normal tables are to be used. 
The hazard function for a normal distribution is a monotonically increasing 
function of t. This can be easily shown by proving that h’(t) ≥ 0 for all t. Since 

 
( )

( )
( )

= f t
h t

R t
 

then (see Problem 15)  

 
2

2

( ) '( ) ( )
'( ) 0

( )

+= ≥R t f t f t
h t

R t
            (2.10) 

One can try this proof by employing the basic definition of a normal density 
function f. 
 
Example 2.4: A component has a normal distribution of failure times with μ = 
2000 hours and σ = 100 hours. Find the reliability of the component and the hazard 
function at 1900 hours. 
 
Solution: The reliability function is related to the standard normal deviate z by 

 ( )
μ

σ
−⎛ ⎞= >⎜ ⎟

⎝ ⎠

t
R t P Z  

where the distribution function for Z is given by equation (2.9). For this particular 
application, 

 

( )

1900 2000
(1900)

100

              1

−⎛ ⎞= >⎜ ⎟
⎝ ⎠

= > −

R P Z

P z

 

From the standard normal table in Table A1.1 in Appendix 1, we obtain    
 (1900) 1 ( 1) 0.8413.= − Φ − =R  

The value of the hazard function is found from the relationship 

 
( )

( )
( ) ( )

μ
σ

σ

−⎛ ⎞Φ =⎜ ⎟
⎝ ⎠= =

t
z

f t
h t

R t R t
 

where φ is a pdf of standard normal density. Here 

 

( 1.0) 0.1587
(1900)

( ) 100(0.8413)

             0.0019 failures/cycle

σ
Φ −= =

=

h
R t  

 
Example 2.5: A part has a normal distribution of failure times with μ = 40000 
cycles and σ = 2000 cycles. Find the reliability of the part at 38000 cycles. 
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Solution:  The reliability at 38000 cycles  

 

38000 40000
(38000)

2000

               ( 1.0)

               (1.0) 0.8413

−⎛ ⎞= >⎜ ⎟
⎝ ⎠

= > −
= Φ =

R P z

P z  

The resulting reliability plot is shown in Figure 2.2. 
 
The normal distribution is flexible enough to make it a very useful empirical 
model. It can be theoretically derived under assumptions matching many failure 
mechanisms. Some of these are corrosion, migration, crack growth, and in general, 
failures resulting from chemical reactions or processes. That does not mean that the 
normal is always the correct model for these mechanisms, but it does perhaps 
explain why it has been empirically successful in so many of these cases.  
 
Log Normal Distribution 
The log normal lifetime distribution is a very flexible model that can empirically fit 
many types of failure data. This distribution, with its applications in 
maintainability engineering, is able to model failure probabilities of repairable 
systems and to model the uncertainty in failure rate information. The log normal 
density function is given by 

 

2
1 ln

21
( )       0

2

μ
σ

σ π

−⎛ ⎞− ⎜ ⎟
⎝ ⎠= ≥

t

f t e t
t

 (2.11) 

where μ and σ are parameters such that -∞ < μ < ∞, and σ > 0. Note that μ and σ 
are not the mean and standard deviations of the distribution. 
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Figure 2.2. Normal reliability plot vs time 
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The relationship to the normal (just take natural logarithms of all the data and 
time points and you have “normal” data) makes it easy to work with many good 
software analysis programs available to treat normal data. 

Mathematically, if a random variable X is defined as X = lnT, then X is 
normally distributed with a mean of μ and a variance of σ 2. That is, 

 E(X) = E(lnT) = μ 
and 

 V(X) = V(lnT) = σ 2. 
Since T = eX, the mean of the log normal distribution can be found by using the 

normal distribution. Consider that 

 

2
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21

( ) ( )
2
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σ

σ π

⎡ ⎤−⎛ ⎞∞ −⎢ ⎥⎜ ⎟
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−∞

= = ∫
x

x
XE T E e e dx  

and by rearrangement of the exponent, this integral becomes 
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σ
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∞ − − ++

−∞

= ∫
x

E T e e dx  

Thus, the mean of the log normal distribution is 

 

2

2( )
σμ +

=E T e  

Proceeding in a similar manner, 

 
22 2 2( )( ) ( ) μ σ+= =XE T E e e  

thus, the variance for the log normal is 

 
2 22( ) ( 1)μ σ σ+= −V T e e  

The cumulative distribution function for the log normal is 

 
21 ln

( )
2

0

1
( )

2

μ
σ

σ π

−−
= ∫

t s

F t e ds
s

 

and this can be related to the standard normal deviate Z by 

 

( ) [ ] (ln ln )

ln
                         

μ
σ

= ≤ = ≤

− ⎤⎡= ≤ ⎥⎢⎣ ⎦

F t P T t P T t

t
P Z

 

Therefore, the reliability function is given by 

 
ln

( )
μ

σ
− ⎤⎡= > ⎥⎢⎣ ⎦

t
R t P Z  (2.12) 

and the hazard function would be 

 
( )ln

( )
( )

( )  ( )

μ
σ

σ

−Φ
= =

t
f t

h t
R t t R t

 

where Φ  is a cdf of standard normal density. 
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Example 2.6: The failure time of a certain component is log normal distributed 
with μ = 5 and σ = 1. Find the reliability of the component and the hazard rate for a 
life of 50 time units. 
 
Solution:  Substituting the numerical values of μ, σ, and t into equation (2.12), we 
compute 

 
ln 50 5

(50) [ 1.09]
1

         0.8621

− ⎤⎡= > = > −⎥⎢⎣ ⎦
=

R P Z P Z
 

Similarly, the hazard function is given by 

 
( )ln 50 5

1(50) 0.032 failures/unit.
50(1)(0.8621)

−Φ
= =h  

Thus, values for the log normal distribution are easily computed by using the 
standard normal tables. 
 
Example 2.7: The failure time of a part is log normal distributed with μ = 6 and σ = 
2. Find the part reliability for a life of 200 time units. 
 
Solution: The reliability for the part of 200 time units is 

 
ln 200 6

(200) ( 0.35)
2

          0.6368

−⎛ ⎞= > = > −⎜ ⎟
⎝ ⎠

=

R P Z P Z
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 Figure 2.3. Log normal reliability plot vs time 
 

The log normal lifetime model, like the normal, is flexible enough to make it a 
very useful empirical model. Figure 2.3 shows the reliability of the log normal vs 
time. It can be theoretically derived under assumptions matching many failure 
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mechanisms. Some of these are: corrosion and crack growth, and in general, 
failures resulting from chemical reactions or processes.  

 
Weibull Distribution  
The exponential distribution is often limited in applicability owing to the 
memoryless property. The Weibull distribution (Weibull 1951) is a generalization 
of the exponential distribution and is commonly used to represent fatigue life, ball 
bearing life, and vacuum tube life. The Weibull distribution is extremely flexible 
and appropriate for modeling component lifetimes with fluctuating hazard rate 
functions and for representing various types of engineering applications. The 
three-parameters probability density function is 

 
1( )

( )      0

βγβ
θ

β
β γ γ

θ

−⎛ ⎞− −⎜ ⎟
⎝ ⎠−= ≥ ≥

t
t

f t e t  

where θ  and β  are known as the scale and shape parameters, respectively, and γ  

is known as the location parameter. These parameters are always positive. By using 
different parameters, this distribution can follow the exponential distribution, the 
normal distribution, etc. It is clear that, for t ≥ γ, the reliability function R(t) is 

 ( )     for 0, 0, 0

βγ
θ γ β θ
−⎛ ⎞−⎜ ⎟

⎝ ⎠= > > > >
t

R t e t  (2.13) 

hence, 

 
1( )

( )        0, 0, 0
β

β
β γ γ β θ

θ

−−= > > > >t
h t t  (2.14) 

It can be shown that the hazard function is decreasing for β < 1, increasing for 
β > 1, and constant when β = 1. 
 
Example 2.8: The failure time of a certain component has a Weibull distribution 
with β = 4, θ = 2000, and γ = 1000. Find the reliability of the component and the 
hazard rate for an operating time of 1500 hours. 
 
Solution:  A direct substitution into equation (2.13) yields 

4
1500 1000

2000(1500) 0.996
−⎛ ⎞

⎜ ⎟
⎝ ⎠

−
= =R e  

Using equation (2.14), the desired hazard function is given by 
4 1

4

-5

4(1500 1000)
(1500)

(2000)

             3.13 x 10  failures/hour

h
−−=

=

 

Note that the Rayleigh and exponential distributions are special cases of the 
Weibull distribution at β = 2, γ = 0, and β = 1, γ = 0, respectively. For example, 
when β = 1 and γ = 0, the reliability of the Weibull distribution function in 
equation (2.13) reduces to 

( ) θ
−

=
t

R t e  
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and the hazard function given in equation (2.14) reduces to 1/θ, a constant. Thus, 
the exponential is a special case of the Weibull distribution. Similarly, when γ = 0 
and β = 2, the Weibull probability density function becomes the Rayleigh density 
function. That is 

2

2
( )      for 0, 0θ θ

θ
−

= > ≥
t

f t te t  

 
Other Forms of Weibull Distributions 
The Weibull distribution again is widely used in engineering applications. It was 
originally proposed for representing the distribution of the breaking strength of 
materials. The Weibull model is very flexible and also has theoretical justification 
in many applications as a purely empirical model. Another form of Weibull 
probability density function is, for example,  

 1( )    
γγ λλ γ − −= tf x x e  (2.15) 

When γ=2, the density function becomes a Rayleigh distribution. 
It can easily be shown that the mean, variance and reliability of the above 

Weibull distribution are, respectively, as follows: 
 

               Mean  = 
1

1
(1 )γλ

γ
Γ +  

         Variance  = 
22

2 1
1 1γλ

γ γ

⎛ ⎞⎛ ⎞⎛ ⎞ ⎛ ⎞⎜ ⎟Γ + − Γ +⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠
             (2.16) 

Reliability  = 
γλ− te  

 

Example 2.9: The time to failure of a part has a Weibull distribution with 
1

λ
=250 

(measured in 105 cycles ) and γ=2. Find the part reliability at 106 cycles. 
 
Solution: The part reliability at 106 cycles is 
 

26 (10) / 250(10 ) 0.6703−= =R e  

The resulting reliability function is shown in Figure 2.4. 
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Figure 2.4. Weibull reliability function vs time 

Gamma Distribution 
Gamma distribution can be used as a failure probability function for components 
whose distribution is skewed. The failure density function for a gamma distribution 
is 

 
1

( )        0,  ,  0
( )

α
β

α α β
β α

− −
= ≥ >

Γ

t
t

f t e t  (2.17) 

where α is the shape parameter and β is the scale parameter. Hence,  

 11
( )  

 ( )
α β

αβ α

∞ −
−=

Γ∫
s

t

R t s e ds  

If α is an integer, it can be shown by successive integration by parts that 

 
1

0

( )   
( )

!

α
ββ

−−

=
= ∑

it t

i

R t e
i

 (2.18) 

and  
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( )

1

0

 ( )
( )

( )
  

 

( )

!

β
α

β

α
β α

α
β

−−
Γ

−−

=

= =

∑

t

t
it

i

f t
h t

R t

t e

e
i

 

The gamma density function has shapes that are very similar to the Weibull 
distribution. At α  = 1, the gamma distribution becomes the exponential distribu- 
tion with the constant failure rate 1/β. The gamma distribution can also be used to 
model the time to the nth failure of a system if the underlying failure distribution is 
exponential. Thus, if Xi is exponentially distributed with parameter θ = 1/β, then  
T = X1 + X2 +…+Xn, is gamma distributed with parameters β and n. 



 System Reliability Concepts     27 

Example 2.10: The time to failure of a component has a gamma distribution with α 
= 3 and β = 5. Determine the reliability of the component and the hazard rate at 10 
time-units. 
 
Solution: Using equation (2.18), we compute 

 
( )10 102

55

0
(10)  0.6767

!

i

i
R e

i

−

=
= =∑  

From equation (2.17), we obtain 

 
(10) 0.054

(10) 0.798  failures/unit time
(10) 0.6767

= = =f
h

R
 

The other form of the gamma probability density function can be written as 
follows: 

 
1 

( )       for >0
( )

tt
f x e t

α α
ββ

α

−
−=

Γ
       (2.19) 

This pdf is characterized by two parameters: shape parameter α and scale 
parameter β. When 0<α<1, the failure rate monotonically decreases; when α>1, 
the failure rate monotonically increase; when α=1 the failure rate is constant. 

The mean, variance and reliability of the density function in equation (2.19) 
are, respectively,  

    Mean( MTTF)  = 
α
β

 

    Variance  = 
2

α
β

 

    Reliability   = 
1 

 

 
 

( )
x

t

x
e dx

α α
ββ

α

−∞ −

Γ∫  

Example 2.11:  A mechanical system time to failure is gamma distribution with 
α=3 and 1/β=120. Find the system reliability at 280 hours. 
 

Solution:  The system reliability at 280 hours is given by 

 

2

280 2
120

0

280
120

(280)  0.85119
!k

R e
k

−

=

⎛ ⎞
⎜ ⎟
⎝ ⎠= =∑  

and the resulting reliability plot is shown in Figure 2.5. 
The gamma model is a flexible lifetime model that may offer a good fit to 

some sets of failure data. It is not, however, widely used as a lifetime distribution 
model for common failure mechanisms. A common use of the gamma lifetime 
model occurs in Bayesian reliability applications. 
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Figure 2.5. Gamma reliability function vs time 

 
Beta Distribution  
The two-parameter Beta density function, f(t), is given by 

 
( )

( ) (1 )    0 1, 0, 0
( ) ( )

α βα β α β
α β

Γ += − < < > >
Γ Γ

f t t t t  

where α and β are the distribution parameters. This two-parameter distribution is 
commonly used in many reliability engineering applications. 
 
Pareto Distribution 
The Pareto distribution was originally developed to model income in a population. 
Phenomena such as city population size, stock price fluctuations, and personal 
incomes have distributions with very long right tails. The probability density 
function of the Pareto distribution is given by 

 
1

( )
α

α
α

+= k
f t

t
 ≤ ≤ ∞k t  

The mean, variance and reliability of the Pareto distribution are, respectively,  
Mean   = /( 1)   for  1α α− >k  

   Variance  = 
2

2
     for   2

( 1) ( 2)

α α
α α

>
− −

K
 

Reliability  = 
α

⎛ ⎞
⎜ ⎟
⎝ ⎠

k

t
 

The Pareto and log normal distributions have been commonly used to model 
the population size and economical incomes. The Pareto is used to fit the tail of the 
distribution, and the log normal is used to fit the rest of the distribution. 
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Rayleigh Distribution 
The Rayleigh function is a flexible lifetime distribution that can apply to many 
degra- dation process failure modes. The Rayleigh probability density function is   

 

2

22

2
( ) σ

σ

⎛ ⎞−
⎜ ⎟⎜ ⎟
⎝ ⎠=

t
t

f t e  (2.20) 

The mean, variance, and reliability of Rayleigh function are, respectively,

 Mean   = 

1

2

2

πσ ⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 Variance  = 22
2

π σ⎛ ⎞−⎜ ⎟
⎝ ⎠

 

             Reliability = 

2

2
σ− t

e  
 
Example 2.12: Rolling resistance is a measure of the energy lost by a tire under 
load when it resists the force opposing its direction of travel. In a typical car, 
traveling at 60 miles per hour, about 20% of the engine power is used to overcome 
the rolling resistance of the tires.  

A tire manufacturer introduces a new material that, when added to the tire 
rubber compound, significantly improves the tire rolling resistance but increases 
the wear rate of the tire tread. Analysis of a laboratory test of 150 tires shows that 
the failure rate of the new tire linearly increases with time (hours). It is expressed 
as 

 8( ) 0.5 10−= ×h t t  

Find the reliability of the tire at one year. 

Solution:  The reliability of the tire after one year (8760 hours) of use is 

 
8 20.5

 10  (8760)
2(1 ) 0.8254

−− × ×
= =yearR e  

 
Figure 2.6 shows the resulting reliability function. 
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Figure 2.6. Rayleigh reliability function vs time 
 
Vtub-shaped Hazard Rate Distribution 
Pham (2002a) recently developed a two-parameter lifetime distribution with a 
Vtub-shaped hazard rate, called Pham distribution - also known as Loglog 
distribution.  

Note that the loglog distribution with Vtub-shaped and Weibull distribution 
with bathtub-shaped failure rates are not the same. As for the bathtub-shaped, after 
the infant mortality period, the useful life of the system begins. During its useful 
life, the system fails as a constant rate. This period is then followed by a wear out 
period during which the system starts slowly and increases with the onset of wear 
out. For the Vtub-shaped, after the infant mortality period, the system starts to 
experience at a relatively low increasing rate, but this is not constant, and then 
increases with failures due to aging. 

The Pham probability density function is given as follows (Pham 2002a): 

 1 1( )  ln    
αααα − −=

tt af t a t a e    for t>0, a>0, α >0. (2.21) 

The Pham distribution and reliability functions are 

 
 

1

 0
( ) ( ) 1

α
−= = −∫

tt
aF t f x dx e  

and  

 1( )
α

−=
taR t e  (2.22) 

respectively. The corresponding failure rate of the Pham distribution is given by       

 1( ) ln( )  
ααα −= th t a t a  (2.23) 

Figures 2.7 and 2.8 describe the density function and failure rate function for 
various values of a and α . 
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Figure 2.8. Probability density function for various values a with 1.5α =  
 
Two-Parameter Hazard Rate Function  
This is a two-parameter function that can have increasing and decreasing hazard 
rates. The hazard rate, h(t), the reliability function, R(t), and the pdf are,  respecti-
vely, given as follows 

 
1

( )     for 1, 0, 0
1

λ λ
λ

−

= ≥ > ≥
+

n

n

n t
h t n t

t
            (2.24) 

 ln( 1)( ) λ− +=
NtR t e                          (2.25) 

and  



32 System Software Reliability 

 
1

ln( 1)( )     1, 0, 0
1

λλ λ
λ

−
− += ≥ > ≥

+
n

n
t

n

n t
f t e n t

t
            (2.26) 

where n = shape parameter; λ = scale parameter 
 
Three-Parameter Hazard Rate Function  
This is a three-parameter distribution that can have increasing and decreasing 
hazard rates. The hazard rate, h(t), is given as 

 
( 1)[ln( )]

( )        0, 0, 0, 0
( )

λ λ α λ α
λ α

+ += ≥ > ≥ ≥
+

bb t
h t b t

t
 (2.27) 

The reliability function R(t) for α = 1 is 

 ( )  1 
ln  (   ) ( ) λ α +− +=

b
tR t e  

The probability density function f(t) is 

 
1[ln( )] ( 1)[ln( )]

( )
( )

λ α λ λ α
λ α

+− + + +=
+

b
b

t b t
f t e

t
            (2.28) 

where b = shape parameter, λ = scale parameter, and α = location parameter. 

2.3 A Generalized Systemability Function 

The traditional reliability definitions and its calculations have commonly been 
carried out through the failure rate function within a controlled laboratory-test 
environment. In other words, such reliability functions are applied to the failure 
testing data and then utilized to make predictions on the reliability of the system 
used in the field. The underlying assumption for such calculation is that the field 
environments and the testing environments are the same. 
     By defintion, a mathematical reliability function is the probability that a system 
will be successful in the interval from time 0 to time t, given by  

 0

( )

( ) ( )
∞ −∫

= =∫
t

h s ds

t

R t f s ds e             (2.29) 

where f(s) and h(s) are, respectively, the failure time density and failure rate 
function. 
     The operating environments are, however, often unknown and yet different due 
to the uncertainties of environments in the field (Pham and Xie 2003). A new look 
at how reliability researchers can take account of the randomness of the field 
environments into mathematical reliability modeling covering system failure in the 
field is great interest. 
     Pham (2005a) recently developed a new mathematical function called system- 
ability, considering the uncertainty of the operational environments in the function 
for predicting the reliability of systems.  
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Notation 
( )ih t  ith component hazard rate function 

( )iR t  ith component reliability function 

λi  Intensity parameter of Weibull distribution for ith component  

λ  ( )1 2 3, , ...,λ λ λ λ λ= n . 

γ i  Shape parameter of Weibull distribution for ith component  

γ  ( )1 2 3, , ...,γ γ γ γ γ= n . 

η  A common environment factor 

( )ηG  Cumulative distribution function of η  

α  Shape parameter of Gamma distribution 
β  Scale parameter of Gamma distribution 

2.3.1 Systemability Definition 

This section discusses a definition of systemability function. 
 
Definition 2.2 (Pham 2005a):  Systemability is defined as the probability that the 
system will perform its intended function for a specified mission time under the 
random operational environments. 

In a mathematical form, the systemabililty function is given by 

 0

( )

( ) ( )
η

η

η
− ∫

= ∫
t

h s ds

sR t e dG             (2.30) 

where η is a random variable that represents the system operational environments 
with a distribution function G. 

This new function captures the uncertainty of complex operational environ- 
ments of systems in terms of the system failure rate. It also would reflect the 
reliability estimation of the system in the field. 

If we assume that η has a gamma distribution with parameters α  and β , i.e., 

~ ( , )η α βgamma  where the pdf of η is given by 

 
1

( )     for ,  >0;  0
( )

α α β

η
β α β

α

− −

= ≥
Γ

xx e
f x x             (2.31) 

then the systemability function of the system in equation (2.30), using the Laplace 
transform (see Appendix 2), is given by  

 

0

( )

( )

α

β

β

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥+
⎢ ⎥⎣ ⎦

∫
s t

R t

h s ds

            (2.32) 
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2.3.2 Systemability Calculations 

This subsection presents several systemability results and variances of some 
system configurations such as series, parallel, and k-out-of-n systems (Pham 
2005a). Consider the following assumptions: 
1. A system consists of n independent components where the system is subject to a 
random operational environment η. 
2. ith component lifetime is assumed to follow the Weibull density function, i.e. 

 Component hazard rate 1( )   γλ γ −= i

i i ih t t               (2.33) 

 Component reliability  ( )
γλ−= i

i t
iR t e     t > 0              (2.34) 

 
Given common environment factor ~ ( , )η α βgamma , the systemability functions 
for different system structures can be obtained as follows. 
 
Series System Configuration 
In a series system, all components must operate successfully if the system is to 
function. The conditional reliability function of series systems subject to an actual 
operational random environment η  is given by 

 1

 

( | , , )
γη λ

η λ γ =

⎛ ⎞
−⎜ ⎟⎜ ⎟
⎝ ⎠
∑

=

n
i

i
i

t

SeriesR t e  (2.35) 

The series systemability is given as follows 
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 (2.36) 

The variance of a general function R(t) is given by 

 [ ] [ ]( )22( ) ( ) ( )⎡ ⎤= −⎣ ⎦Var R t E R t E R t             (2.37) 

Given ~ ( , )η α βgamma , the variance of systemability for any system structure 
can be easily obtained. Therefore, the variance of series systemability is given by 
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 (2.38) 

or 
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Parallel System Configuration 
A parallel system is a system that is not considered to have failed unless all 
components have failed. The conditional reliability function of parallel systems 
subject to the uncertainty operational environment η  is given by  
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 (2.40) 

Hence, the parallel systemability is given by 
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or 
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To simplify the calculation of a general n-component parallel system, we only 
consider here a parallel system consisting of two components. It is easy to see that 
the second-order moments of the systemability function can be written as 
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The variance of series systemability of a two-component parallel system is 
given by 
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 (2.43) 

k-out-of-n System Configuration  
In a k-out-of-n configuration, the system will operate if at least k out of n 
components are operating. To simplify the complexity of the systemability 
function, we assume that all the components in the k-out-of-n systems are identical. 
Therefore, for a given common environment η, the conditional reliability function 
of a component is given by  

 ( | , , ) tR t e
γηλη λ γ −=             (2.44) 

The conditional reliability function of k-out-of-n systems subject to the  uncer-
tainty operational environment η  can be obtained as follows: 
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The conditional reliability function of k-out-of-n systems, from equation (2.45), 
can be rewritten as 

 ( )
 

0

( | , , ) ( 1)
n jn

l j l t
k out of n

j k l

n n j
R t e

j l

γη λη λ γ
−

− +
− − −

= =

−⎛ ⎞ ⎛ ⎞
= −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∑ ∑  (2.46) 

Then if ~ ( , )η α βgamma then the k-out-of-n systemability is given by 
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It can be easily shown that 
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Since  
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we can rewrite equation (2.48), after several simplifications, as follows 
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Therefore, the variance of k-out-of-n system systemability function is given by 
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 (2.51) 

 
Example 2.13: Consider a k-out-of-n system where λ  = 0.0001, 1.5,γ =  n = 5, 

and ~ ( , )η α βgamma . Calculate the systemability of various k-out-of-n system 

configurations. 
 
Solution: The systemability of generalized k-out-of-5 system configurations is 
given  as follows: 
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Figures 2.9 and 2.10 show the reliability function (conventional reliability 
function) and systemability function (equation 2.52) of a series system (here k=5) 
for 2, 3α β= =  and for 2, 1α β= = , respectively. 

     Figures 2.11 and 2.12 show the reliability and systemability functions of a 
parallel system (here k=1) for 2, 3α β= =  and for 2, 1α β= = , respectively. 

Similarly, Figures 2.13 and 2.14 show the reliability and systemability functions of 
a 3-out-of-5 system for 2, 3α β= =  and for 2, 1α β= = , respectively. 
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Figure 2.9. Comparisons of series system reliability vs systemability functions for α = 2 and 
β =3 
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Figure 2.10. Comparisons of series system reliability vs. systemability functions for α = 2 
and β =1 
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Figure 2.11. Comparisons of parallel system reliability vs systemability function for α = 2 
and β =3 
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Figure 2.12. Comparisons of parallel system reliability vs Systemability functions for α = 2 
and β =1 
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Figure 2.13. Comparisons of k-out-of-n system reliability vs. systemability functions for 
α = 2 and β =3 
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Figure 2.14. Comparisons of k-out-of-n system reliability vs. systemability functions for 
α = 2 and β =1 

Variance of Systemability Calculations 
Assume λ  = 0.00001, γ  = 1.5, n = 3, k = 2, and ~ ( , )η α βgamma , Figures 2.15 

and 2.16 shows the systemability and its confidence intervals of a 2-out-of-3 
system (Pham 1993) for 2, 1α β= =  and 2, 2α β= = , respectively.  
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Figure 2.15. A 2-out-of-3 systemability and its 95% confidence interval where α = 2, β = 1 
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Figure 2.16. A 2-out-of-3 systemability and its 95% confidence interval (α = 2, β = 2) 

2.4 System Reliability with Multiple Failure Modes 

This section discusses various reliability and optimization aspects of systems 
subject to multiple types of failure. It is assumed that the system component states 
are statistically independent and identically distributed. Networks of relays, diode 
circuits, fluid flow valves, etc. are a few examples of systems having components 
subject to failure in either open or closed modes.  
     The designations “closed mode” and “short mode” both appear in this section, 
and we will use the two terms interchangeably. Redundancy can be used to en-
hance the reliability of a system without any change in the reliability of the 
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individual components that form the system. However, in a two-failure mode 
problem, redundancy may either increase or decrease the system's reliability. 
Therefore, adding components to the system may not increase the system 
reliability.  
     The reliability of a system subject to two kinds of failure is calculated as 
follows (Malon 1989): 
 
       System reliability  = Pr{system works in both modes}             (2.53)
   = Pr{system works in open mode} - Pr{system fails in 
    closed mode}+ Pr{system fails in both modes) 
 
When the open- and closed-mode failure structures are dual of one another, i.e. 
Pr{system fails in both modes} = 0, then the system reliability given by equation 
(2.53) becomes 
 
System reliability = 1 - Pr{system fails in open mode} 
    - Pr{system fails in closed mode}             (2.54) 
 
Notation 
        q0  The open-mode failure probability of each component (p0 = 1 - q0) 
        qs  The short-mode failure probability of each component (ps = 1 – qs) 
      ⎢ ⎥⎣ ⎦x  The largest integer not exceeding x 

        *  Implies an optimal value 

2.4.1 Reliability Calculations 

The Series System 
Consider a series system consisting of n components. In this series system, any one 
component failing in an open mode causes system failure in open mode whereas all 
components of the system must malfunction in short mode for the system to fail in 
closed mode. 
     The probabilities of system fails in open mode and fails in short mode are 

 0 0( ) 1 (1 )= − − nF n q  

and 

 ( ) = n
s sF n q  

respectively. From equation (2.54), the system reliability is 

 0( ) (1 )= − −n n
s sR n q q  (2.55) 

where n is the number of identical and independent components. In a series 
arrangement, reliability with respect to closed system failure increases with the 
number of components, whereas reliability with respect to open system failure 
decreases.  
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Theorem 2.1: Let q0 and qs be fixed. There exists an optimum number of 
components, say n*, that maximizes the system reliability. If we define 
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then the system reliability, Rs(n*), is maximum for 

 0 0

0 0 0

1             if   is not an integer
*

 or 1        if   is an integer

n n
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n n n
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 (2.56) 

 
Proof: The proof is left as an exercise for the reader (see Problem 2.17). 
 
Example 2.14: A switch has two failure modes: fail-open and fail-short. The 
probability of switch open-circuit failure and short-circuit failure are 0.1 and 0.2 
respectively. A system consists of n switches wired in series. That is, given q0 = 
0.1 and qs = 0.2. Then 

 0

0.1
log

1 0.2
1.4

0.2
log

1 0.1

⎛ ⎞
⎜ ⎟−⎝ ⎠= =
⎛ ⎞
⎜ ⎟−⎝ ⎠

n  

Thus, n* = 1.4⎢ ⎥⎣ ⎦  + 1 = 2. Therefore, when n* = 2 the system reliability Rs(n) = 

0.77 is maximized. 
 
The Parallel System 
Consider a parallel system consisting of n components. For a parallel confi-
guration, all the components must fail in open mode or at least one component 
must malfunction in short mode to cause the system to fail completely. The system 
reliability is given by 

 0( ) (1 )= − −n n
p sR n q q  (2.57) 

where n is the number of components connected in parallel. In this case, (1 – qs)
n 

represents the probability that no components fail in short mode, and q0
n represents 

the probability that all components fail in open mode.  
 
Theorem 2.2: If we define 
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 (2.58) 



44 System Software Reliability 

then the system reliability Rp(n*) is maximum for 

 0 0

0 0 0

1             if   is not an integer
*

 or 1        if   is an integer.
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+⎪⎩

n n
n

n n n
 (2.59) 

 
Proof: The proof is left as an exercise for the reader (see Problem 2.18). 
 
It is observed that, for any range of q0 and qs, the optimal number of parallel 
components that maximizes the system reliability is one, if qs > q0 (see Problem 
2.19). For most other practical values of q0 and qs the optimal number turns out to 
be two. In general, the optimal value of parallel components can be easily obtained 
using equation (2.58). 
 
The Parallel-Series System 
Consider a system of components arranged so that there are m subsystems 
operating in parallel, each subsystem consisting of n identical components in 
series. Such an arrangement is called a parallel-series arrangement. The compo-
nents are subject to two types of failure: failure in open mode and failure in short 
mode.  
 
The systems are characterized by the following properties: 
1. The system consists of m subsystems, each subsystem containing n  i.i.d. compo-    
nents. 
2. A component is  either good,  failed open,  or failed short. Failed  components 
can never  become good, and there are  no transitions  between  the open  and short 
failure modes. 
3. The system can be  (a) good,  (b) failed open  (at least one component in each          
subsystem   fails   open), or (c) failed  short (all the  components   in  any subsys-
tem fail short). 
4.The unconditional probabilities of component failure in open and short modes are 
known and are constrained: qo, qs > 0; qo + qs < 1. 
 
The probabilities of a system failing in open mode and failing in short mode are 
given by 

 0 0( ) [1 (1 ) ]= − − n mF m q             (2.60) 

and ( ) 1 (1 ( ) )= − − n m
s sF m q             (2.61) 

respectively. The system reliability is 

 0( , ) (1 ) [1 (1 ) ]= − − − −n m n m
ps sR n m q q             (2.62) 

An interesting example in Barlow and Proschan (1965) shows that there exists 
no pair n, m maximizing system reliability, since Rps is made arbitrarily close to 
one by appropriate choice of m and n. To see this, let 
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For given n, take m = mn; then one can rewrite equation (2.62) as: 

 0( , ) (1 ) [1 (1 ) ]= − − − −n nm mn n
ps n sR n m q q  

A straightforward computation yields 

 0lim ( , ) lim{(1 ) [1 (1 ) ] } 1
→∞ →∞

= − − − − =n nm mn n
ps n s

n n
R n m q q  

For fixed n, q0, and qs, one can determine the value of m that maximizes Rps. 
 
Theorem 2.3 (Barlow and Proschan 1965): Let n, q0, and qs be fixed. The 
maximum value of Rps(m) is attained at 0* 1= +⎢ ⎥⎣ ⎦m m , where 

 0
0
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(log log )

log(1 log(1 )

−
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− + −
s

n n
s

n p q
m

q p
            (2.63) 

 
If mo is an integer, then mo and mo+1 both maximize Rps(m). 
 
Proof:  The proof is left as an exercise for the reader (see Problem 20). 
 
The Series-Parallel System 
The series-parallel structure is the dual of the parallel-series structure. We consider 
a system of components arranged so that there are m subsystems operating in 
series, each subsystem consisting of n identical components in parallel. Such an 
arrangement is called a series-parallel arrangement.  
     Failure in open mode of all the components in any subsystem makes the system 
unresponsive. Failure in closed (short) mode of a single component in each 
subsystem also makes the system unresponsive. The probabilities of system failure 
in open and short mode are given by 

 0 0( ) 1 (1 )= − − n mF m q             (2.64) 

and 

 ( ) [1 (1 ) ]= − − n m
s sF m q             (2.65) 

respectively. The system reliability is 

 0( ) (1 ) [1 (1 ) ]= − − − −n m n m
sR m q q             (2.66) 

where m is the number of identical subsystems in series and n is the number of 
identical components in each parallel subsystem. 
     Barlow and Proschan (1965) show that there exists no pair (m, n) maximizing 
system reliability. For fixed m, q0, and qs however, one can determine the value of 
n that maximizes the system reliability. 
 
Theorem 2.4 (Barlow and Proschan 1965): Let n, q0, and qs be fixed. The 
maximum value of R(m) is attained at 0* 1= +⎢ ⎥⎣ ⎦m m , where 
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            (2.67) 

If mo is an integer, then mo and mo + 1 both maximize R(m). 
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Proof:  (see Problem 21). 
 
The k-out-of-n Systems 
Consider a k-out-of-n system consisting of n identical and independent components 
that can be either good or failed. The components are subject to two types of 
failure: failure in open mode and failure in closed mode. The k out of n system can 
fail when k or more components fail in closed mode or when (n - k + 1) or more 
components fail in open mode.  
     Applications of k-out-of-n systems can be found in the areas of target detection, 
communication, and safety monitoring systems, and, particularly, in the area of 
human organizations. The following is an example in the area of human 
organizations (Nordmann and Pham 1999).  
     Consider a committee with n members who must decide to accept or reject 
innovation-oriented projects. The projects are of two types: "good" and "bad". It is 
assumed that the communication among the members is limited, and each member 
will make a yes-no decision on each project. A committee member can make two 
types of error: the error of accepting a bad project and the error of rejecting a good 
project. The committee will accept a project when k or more members accept it, 
and will reject a project when (n - k + 1) or more members reject it.  
     Thus, the two types of potential error of the committee are: (1) the acceptance 
of a bad project (which occurs when k or more members make the error of 
accepting a bad project); (2) the rejection of a good project (which occurs when (n 
- k + 1) or more members make the error of rejecting a good project).  
     This section determines the optimal k or n that maximizes the system reliability.  
We also study the effect of the system's parameters on the optimal k or n. The 
system fails in closed mode if and only if at least k of its n components fail in 
closed mode, and we obtain 
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The system fails in open mode if and only if at least (n - k +1) of its n components 
fail in open mode, that is: 

 
1

0 0 0 0 0
1 0

( , )
−

− −

= − + =

⎛ ⎞ ⎛ ⎞
= =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∑ ∑

n k
i n i i n i

i n k i

n n
F k n q p p q

i i
 (2.69) 

The system reliability is given by 
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For a given k, we can find the optimum value of n, say n*, that maximizes the 
system reliability. 
 
Theorem 2.5 (Pham 1989a):  For fixed k, q0, and qs, the maximum value of R(k, 
n) is attained at n* = 0⎢ ⎥⎣ ⎦n where 
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            (2.71) 

If n0 is an integer, both n0 and n0 + 1 maximize R(k, n). 
 
Proof: The proof is left as an exercise for the reader (see Problem 22). 
 
This result shows that when n0 is an integer, both n*-1 and n* maximize the system 
reliability R(k, n). In such cases, the lower value will provide the more economical 
optimal configuration for the system. If q0 = qs the system reliability R(k, n) is 
maximized when n = 2k or 2k-1. In this case, the optimum value of n does not 
depend on the value of q0 and qs and the best choice for a decision voter is a 
majority voter; this system is also called a majority system (Pham,1989a). 

From Theorem 2.5, we understand that the optimal system size n* depends on 
the various parameters q0 and qs. It can be shown the optimal value n* is an 
increasing function of q0 and a decreasing function of qs (see Problem 23). 
Intuitively, these results state that when qs increases it is desirable to reduce the 
number of components in the system as close to the value of threshold level k as 
possible. On the other hand, when q0 increases, the system reliability will be 
improved if the number of components increases. 
 
Theorem 2.6 (Ben-Dov 1980): For fixed n, q0, and qs, it is straightforward to see 
that the maximum value of R(k, n) is attained at k* = 0⎢ ⎥⎣ ⎦k +1, where 
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 (2.72) 

If k0 is an integer, both k0 and k0 + 1 maximize R(k, n). 
 
Proof: The proof is left as an exercise for the reader (see Problem 24). 
 

We now discuss how these two values, k* and n*, are related to one another. 
Define α by 
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            (2.73) 

then, for a given n, the optimal threshold k is given by k* = nα⎡ ⎤⎢ ⎥  and for a given k 
the optimal n is n* = /α⎢ ⎥⎣ ⎦k . For any given q0 and qs, we can easily show that (see 
Problem 25) 



48 System Software Reliability 

 0α< <sq p             (2.74) 

Therefore, we can obtain the following bounds for the optimal value of the 
threshold k: 

 0*< <snq k np             (2.75) 

This result shows that for given values of q0 and qs, an upper bound for the optimal 
threshold k* is the expected number of components working in open mode, and a 
lower bound for the optimal threshold k* is the expected number of components 
failing in closed mode. 

2.4.2 An Application of Systems with Multiple Failure Modes 

In many critical applications of digital systems, fault tolerance has been an 
essential architectural attribute for achieving high reliability. Several techniques 
can achieve fault tolerance using redundant hardware (Mathur and De Sousa 1975) 
or software (Pham 1985).  
     Typical forms of redundant hardware structures for fault-tolerant systems are of 
two types: fault masking and standby. Masking redundancy is achieved by 
implementing the functions so that they are inherently error correcting, e.g. 
triple-modular redundancy (TMR), N-modular redundancy (NMR), and self-
purging redundancy. In standby redundancy, spare units are switched into the 
system when working units break down. Mathur and De Sousa (1975) have 
analyzed, in detail, hardware redundancy in the design of fault-tolerant digital 
systems. Redundant software structures for fault-tolerant systems based on the 
acceptance tests have been proposed by Homing et al. (1974). 

This section presents a fault-tolerant architecture to increase the reliability of a 
special class of digital systems in communication (Pham and Upadhyaya 1989b). 
In this system, a monitor and a switch are associated with each redundant unit. The 
switches and monitors can fail. The monitors have two failure modes: failure to 
accept a correct result, and failure to reject an incorrect result. The scheme can be 
used in communication systems to improve their reliability. 

Consider a digital circuit module designed to process the incoming messages 
in a communication system. This module consists of two units: a converter to 
process the messages, and a monitor to analyze the messages for their accuracy. 
For example, the converter could be decoding or unpacking circuitry, whereas the 
monitor could be checker circuitry (Lala 1985).  

To guarantee a high reliability of operation at the receiver end, n converters 
are arranged in "parallel". All, except converter n, have a monitor to determine if 
the output of the converter is correct. If the output of a converter is not correct, the 
output is cancelled and a switch is changed so that the original input message is 
sent to the next converter. The architecture of such a system has been proposed by 
Pham and Upadhyaya (1989b). Systems of this kind have useful applications in 
communication and network control systems and in the analysis of fault-tolerant 
software systems. 

We assume that a switch is never connected to the next converter without a 
signal from the monitor, and the probability that it is connected when a signal 
arrives is ps. We next present a general expression for the reliability of the system 
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consisting of n non-identical converters arranged in "parallel". Let us define the 
following notation, events, and assumptions. 
 
Notation 

c
ip  Pr{converter i works} 
s
ip  Pr{switch i is connected to converter (i + 1) when a signal arrives} 

1m
ip  Pr{monitor i works when converter i works} = Pr{not sending a signal to  

the switch when converter i works} 
2m

ip  Pr{i monitor works when converter i has failed} = Pr{sending a signal to 

the switch when converter i has failed} 

−
k
n kR  Reliability of the remaining system of size (n-k) given that the first k swit-

 ches work 

nR  Reliability of the system consisting of n converters 

 
The events are: 

,w f
i iC C  Converter i works, fails 

,w f
i iM M  Monitor i works, fails 

,w f
i iS S   Switch i works, fails 

W  System works 
 
The assumptions are: 
1.  The system, the switches, and the converters are two-state: good or failed. 
2.  The module  (converter, monitor, or switch) states are mutually statistically  in-     
     dependent. 
3.  The monitors have three states: good, failed in mode 1, failed in mode 2. 
4.  The modules are not identical. 
      

The reliability of the system is defined as the probability of obtaining the 
correctly processed message at the output. To derive a general expression for the 
reliability of the system, we use an adapted form of the total probability theorem as 
translated into the language of reliability.  
     Let A denote the event that a system performs as desired. Let Xi and Xj be the 
event that a component X (e.g. converter, monitor, or switch) is good or failed 
respectively. Then 
Pr{system works} = Pr{system works when unit X is good} x Pr{unit X is good} 

+ Pr{system works when unit X fails} x Pr{unit X is failed} 
 
The above equation provides a convenient way of calculating the reliability of 

complex systems. Notice that R1 = c
ip  and for n ≥ 2, the reliability of the system 

can be calculated as follows: 

     Rn =   Pr{W | 1
wC  and 1

wM } Pr{ 1
wC  and 1

wM }  + Pr{W | 1
wC  and 1

fM }    

              Pr{ 1
wC and 1

fM } +  Pr{W | 1
fC  and 1

wM } Pr{ 1
fC  and 1

wM }  
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 + Pr{W | 1
fC  and 1

fM } Pr{ 1
fC  and 1

fM } 

In order for the system to operate when the first converter works and the first 
monitor fails, the first switch must work and the remaining system of size n-1 must 
work: 

 1
1 1 1 1Pr{ |  and  } −=w f s

nW C M p R  

Similarly, 

 1
1 1 1 1Pr{ |  and  } −=f w s

nW C M p R  

then 

 1 1 2 1
1 1 1 1 1 1 1 1[ (1 ) (1 ) ] −= + − + −m m mc c c s

n nR p p p p p p p R  

The reliability of the system consisting of n non-identical converters can be 
rewritten as: 
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1 1
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and 1 1= cR p  where 
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and 

 1 2[ (1 ) (1 ) ]   for all  1, 2,....,≡ − + − =c m c m
i i i i iA p p p p i n  

Assume that all the converters, monitors, and switches have the same reliability, 
that is 

 1 1 2 2,    ,    ,       for all = = = =c c m m m m s s
i i i ip p p p p p p p i  

then we obtain a closed form expression for the reliability of system as follows: 

 
1

1 1(1 )
1

− −= − +
−

c m
n c n

n

p p
R A p A

A
  (2.77) 

where 

 1 2[ (1 ) (1 ) ]= − + −c m c m sA p p p p p  

2.5 Markov Processes 

Stochastic processes are used for the description of a systems operation over time. 
There are two main types of stochastic processes: continuous and discrete. The 
complex continuous process is a process describing a system transition from state 
to state. The simplest process that will be discussed here is a Markov process. 
Given the current state of the process, its future behavior does not depend on the 
past. In Section 2.6 we will discuss the discrete stochastic process. As an intro-
duction to the Markov process, let us examine the following example. 
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Example 2.15: Consider a parallel system consisting of two components. From a 
reliability point of view, the states of the system can be described by 

State 1: Full operation (both components operating)  
State 2: One component operating - one component failed  
State 3: Both components failed 

Define 

 ( ) [ ( ) ] [system is in state  at time ]= = =iP t P X t i P i t  

and 

 ( ) [ ( ) ]  [system is in state  at time ].+ = + = = +iP t dt P X t dt i P i t dt  

Define a random variable X(t) which can assume the values 1, 2, or 3 
corresponding to the above-mentioned states. Since X(t) is a random variable, one 
can discuss P[X(t) = 1], P[X(t) = 2] or conditional probability, P[X(t1)= 2 | X(t0)= 
1]. Again, X(t) is defined as a function of time t, the last stated conditional 
probability, P[X(t1)= 2 | X(t0)= 1], can be interpreted as the probability of being in 
state 2 at time t1, given that the system was in state 1 at time t0. In this example, the 
"stage space" is discrete, i.e., 1, 2, 3, etc., and the parameter space (time) is 
continuous. The simple process described above is called a stochastic process, i.e., 
a process which develops in time (or space) in accordance with some probabilistic 
(stochastic) laws. There are many types of stochastic processes. In this section, the 
emphasis will be on Markov processes which are a special type of stochastic 
process. 
 
Definition 2.3:  Let t0 < t1 < ... < tn. If 

 1 1 2 2 0 0

1 1

[ ( ) | ( ) , ( ) ,...., ( ) ]

             [ ( ) | ( ) ]
− − − −

− −

= = = =
= = =

n n n n n n

n n n n

P X t A X t A X t A X t A

P X t A X t A
 

then the process is called a Markov process.  
Given the present state of the process, its future behavior does not depend on past 
information of the process. 
     The essential characteristic of a Markov process is that it is a process that has no 
memory; its future is determined by the present and not the past. If, in addition to 
having no memory, the process is such that it depends only on the difference 
(t+dt)-t = dt and not the value of t, i.e., P[X(t + dt) = j | X(t) = i] is independent of t, 
then the process is Markov with stationary transition probabilities or homogeneous 
in time. This is the same property noted in exponential event times, and referring 
back to the graphical representation of X(t), the times between state changes would 
in fact be exponential if the process has stationary transition probabilities. 
     Thus, a Markov process which is time homogeneous can be described as a 
process where events have exponential occurrence times. The random variable of 
the process is X(t), the state variable rather than the time to failure as in the 
exponential failure density. To see the types of processes that can be described, a 
review of the exponential distribution and its properties will be made. Recall that, 
if X1, X2,.…, Xn, are independent random variables, each with exponential density 
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and a mean equal to 1/λi then min { X1, X2, … , Xn} has an exponential density with 

mean ( ) 1
λ

−

∑ i . 

The significance of the property is as follows: 
  1. The failure behavior of the simultaneous operation of components can be 

characterized by an exponential density with a mean equal to the reciprocal of 
the sum of the failure rates. 

  2.  The joint failure/repair behavior of a system where components are operating 
and/or undergoing repair can be characterized by an exponential density with a 
mean equal to the reciprocal of the sum of the failure and repair rates. 

  3. The failure/repair behavior of a system such as 2 above, but further 
complicated by active and dormant operating states and sensing and switching, 
can be characterized by an exponential density. 

 
The above property means that almost all reliability and availability models can be 
characterized by a time homogeneous Markov process if the various failure times 
and repair times are exponential. The notation for the Markov process is {X(t), 
t>0}, where X(t) is discrete (state space) and t is continuous (parameter space). By 
convention, this type of Markov process is called a continuous parameter Markov 
chain. 
From a reliability/availability viewpoint, there are two types of Markov processes. 
These are defined as follows: 
   1. Absorbing Process: Contains what is called an "absorbing state" which is a 

state from which the system can never leave once it has entered, e.g., a failure 
which aborts a flight or a mission. 

   2. Ergodic Process Contains no absorbing states such that X(t) can move around 
indefinitely, e.g., the operation of a ground power plant where failure only 
temporarily disrupts the operation. 
Pham (2000a) page 265, presents a summary of the processes to be considered 

broken down by absorbing and ergodic categories. Both reliability and availability 
can be described in terms of the probability of the process or system being in 
defined "up" states, e.g., states 1 and 2 in the initial example. Likewise, the mean 
time between failures (MTBF) can be described as the total time in the “up” states 
before proceeding to the absorbing state or failure state. 
 
Define the incremental transition probability as 

 ( ) [ ( ) | ( ) ]= + = =ijP dt P X t dt j X t i  

This is the probability that the process (random variable X(t)) will go to state i 
during the increment t to (t+dt), given that it was in state i at time t. Since we are 
dealing with time homogeneous Markov processes, i.e., exponential failure and 
repair times, the incremental transition probabilities can be derived from an analy-
sis of the exponential hazard function. In Section 2.1, it was shown that the hazard 
function for the exponential with mean 1/λ was just λ. This means that the limiting 
(as 0→dt ) conditional probability of an event occurrence between t and t + dt, 
given that an event had not occurred at time t, is just λ, i.e., 
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0

[ | ]
( ) lim λ

→

< < + >= =
dt

P t X t dt X t
h t

dt
 

The equivalent statement for the random variable X(t) is 

 ( ) [ ( ) | ( ) ] λ= + = = =h t dt P X t dt j X t i dt  

Now, h(t)dt is in fact the incremental transition probability, thus the Pij(dt) can be 
stated in terms of the basic failure and/or repair rates. 

Returning to Example 2.15, a state transition can be easily constructed showing 
the incremental transition probabilities for process between all possible states (see 
Figure.B.4, Pham 2000a) 

State 1: Both components operating  
State 2: One component up - one component down  
State 3: Both components down (absorbing state) 

The loops indicate the probability of remaining in the present state during the dt 
increment 
 P11(dt) = 1 - 2λdt   P12(dt) = 2λdt   P13(dt) = 0 
 P21(dt) = 0   P22(dt) = 1 - λdt  P23(dt) = λdt 
 P31(dt) = 0   P32(dt) = 0   P33(dt) = 1 
 
The zeros on Pij, i > j, denote that the process cannot go backwards, i.e., this is not 
a repair process. The zero on P13 denotes that in a process of this type, the 
probability of more than one event (e.g., failure, repair, etc.) in the incremental 
time period dt approaches zero as dt approaches zero. 
     Except for the initial conditions of the process, i.e., the state in which the 
process starts, the process is completely specified by the incremental transition 
probabilities. The reason for the latter is that the assumption of exponential event 
(failure or repair) times allows the process to be characterized at any time t since it 
depends only on what happens between t and (t+dt). The incremental transition 
probabilities can be arranged into a matrix in a way which depicts all possible 
statewide movements. Thus, for the parallel configurations, 

 

    1           2           3

1 2     2       0
[ ( )]

   0        1       

    0           0           1

λ λ
λ λ

⎡ ⎤
⎢ ⎥−⎢ ⎥=
⎢ ⎥−
⎢ ⎥
⎣ ⎦

ij

dt dt
p dt

dt dt
 

for i, j = 1, 2, or 3. The matrix [Pij(dt)] is called the incremental, one-step transition 
matrix. It is a stochastic matrix, i.e., the rows sum to 1.0. As mentioned earlier, this 
matrix along with the initial conditions completely describes the process. 
     Now, [Pij(dt)] gives the probabilities for either remaining or moving to all the 
various states during the interval t to t + dt, hence, 

P1(t + dt) = (1 - 2λdt)P1(t) 
P2(t + dt) = 2λdt P1(t)(1 - λdt)P2(t) 
P3(t + dt) = λdtP2(t) + P3(t) 

 
By algebraic manipulation, we have 
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1 1
1

2 2
1 2

3 3
2

[ (   ) ( )]
2 ( )

[ (   ) ( )]
2 ( ) ( )

[ (   ) ( )]
( )

λ

λ λ

λ

+ −
= −

+ −
= −

+ −
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P t dt P t
P t

dt
P t dt P t

P t P t
dt

P t dt P t
P t

dt

 

Taking limits of both sides as 0→dt , we obtain 

   P1’(t) = - 2λP1(t) 
   P2’(t)  = 2λP1(t) - 2λP2(t) 

             P3’(t)  = λP2(t) 
The above system of linear first-order differential equations can be easily solved 
for P1(t) and P2(t), and therefore, the reliability of the configuration can be 
obtained: 

 
2

1

( ) ( )
=

=∑ i
i

R t P t  

Actually, there is no need to solve all three equations, but only the first two as P3(t) 
does not appear and also P3(t) = 1 – P1(t) – P2(t). The system of linear, first-order 
differential equations can be solved by various means including both manual and 
machine methods. For purposes here, the manual methods employing the Laplace 
transform (see Appendix 2) will be used. 

 
 

 0
[ ( )] ( ) ( )

∞ −= =∫ st
i i iL P t e P t dt f s  

 
 

' '

 0
[ ( )] ( )  ( ) (0)

∞ −= = −∫ st
ii i iL P t e P t dt s f s P  

The use of the Laplace transform will allow transformation of the system of linear, 
first-order differential equations into a system of linear algebraic equations which 
can easily be solved, and by means of the inverse transforms, solutions of Pi(t) can 
be determined. 
     Returning to the example, the initial condition of the parallel configuration is 
assumed to be “full-up” such that 
 P1(t = 0) = 1,  P2(t = 0) = 0,  P3(t = 0) = 0 
transforming the equations for P’1(t) and P’2(t) gives 

 1 1 0 1

2 2 0 1 2

( ) ( ) | 2 ( )

( ) ( ) | 2 ( ) ( )

λ
λ λ

=

=

− = −
− = −

t

t

sf s P t f s

sf s P t f s f s
 

Evaluating P1(t) and P2(t) at t = 0 gives 

 1 1

2 1 2

( ) 1 2 ( )

( ) 0 2 ( ) ( )

λ
λ λ

− = −
− = −

sf s f s

sf s f s f s
 

from which we obtain 

 1

1 2

( 2 ) ( ) 1

2 ( ) ( ) ( ) 0

λ
λ λ
+ =

− + + =
s f s

f s s f s
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Solving the above equations for f1(s) and f2(s), we have 

 
1

2

1
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From Appendix 2 of the inverse Laplace transforms, 
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The example given above is that of a simple absorbing process where we are 
concerned about reliability If repair capability in the form of a repair rate μ were 
added to the model, the methodology would remain the same with only the final 
result changing. With a repair rate μ added to the parallel configuration, the 
incremental transition matrix would be 

 

 1 2     2           0

[ ( )]       1 ( )     

   0               0               1

λ λ
μ λ μ λ

−⎡ ⎤
⎢ ⎥= − +⎢ ⎥
⎢ ⎥⎣ ⎦

ij

dt dt

P dt dt dt dt  

The differential equations would become 

P1’(t) = - 2λP1(t) + μP2(t) 
P2’(t) = 2λP1(t) – (λ +μ )P2(t) 

and the transformed equations would become 

 1 2

1 2

( 2 ) ( ) ( ) 1

2 ( ) ( ) ( ) 0

λ μ
λ λ μ
+ − =

− + + + =
s f s f s

f s s f s
 

Hence, we obtain 
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where 
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From Appendix 2, we obtain 
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Thus, the reliability of two-component in a parallel system is given by 

 1 2

1 2

1 2

1 2

( ) ( ) ( )

( 3 ) ( 3 )
       

( )

λ μ λ μ− −

= +

+ + − + +
=

−

s t s t

R t P t P t

s e s e

s s

 (2.78) 

 
System Mean Time Between Failures 
Another parameter of interest in absorbing Markov processes is the mean time 
between failures (MTBF). Recalling the previous example of a parallel configura-
tion with repair, the differential equations P1'(t) and P2'(t) describing the process 
were 

P1’(t) = - 2λP1(t) + μP2(t) 
P2’(t) = 2λP1(t) – (λ +μ )P2(t) 

Integrating both sides of the above equations yields 

 1 1 2

0 0 0

' ( ) 2 ( ) ( )λ μ
∞ ∞ ∞

= − +∫ ∫ ∫P t dt P t dt P t dt  

 '
2 1 2

0 0 0

( ) 2 ( ) ( ) ( )λ λ μ
∞ ∞ ∞

= − +∫ ∫ ∫P t dt P t dt P t dt  

From Section 2.1, 

 
0

( )
∞

=∫ R t dt MTBF  

Similarly, 

 

1

0

2

0

( )  mean time spent in state 1,  and

( )  mean time spent in state 2

∞

∞

=

=

∫

∫

P t dt

P t dt

 

Designating these mean times as T1 and T2, respectively, we have 

 1 0 1 2

2 0 1 2

( ) | 2

( ) | 2 ( )

λ μ
λ λ μ

∞

∞

= − +

= − +

P t dt T T

P t dt T T
 

But P1(t) = 0 as → ∞t and P1(t) = 1 for t = 0. Likewise, P2(t) = 0 as → ∞t  and 
P2(t) = 0 for t = 0. Thus, 
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 1 2

1 2

1 2

 0 2 ( )
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or, equivalently,  
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Therefore, 
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The MTBF for non-maintenance processes is developed exactly the same way 
as just shown. What remains under absorbing processes is the case for availability 
for maintained systems. The difference between reliability and availability for 
absorbing processes is somewhat subtle. A good example is that of a  communica-
tion system where, if such a system failed temporarily, the mission would continue, 
but, if it failed permanently, the mission would be aborted. Consider the following 
cold-standby configuration consisting of two units: one main unit and one spare 
unit (Pham 2000a): 

State 1: Main unit operating - spare OK  
State 2: Main unit out - restoration underway  
State 3: Spare unit installed and operating  
State 4: Permanent failure (no spare available) 

 
The incremental transition matrix is given by (see Figure B.8 in Pham 2000a, for a 
detailed state transition diagram) 
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We obtain 

P1’(t) = - λP1(t) 
P2’(t) = λP1(t) - μP2(t) 

        P3’(t) = μP2(t) - λP3(t) 

Using the Laplace transform, we obtain 
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After simplifications, 
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Therefore, the probability of full-up performance, P1(t), is given by 

 1( ) λ−= tP t e  

Similarly, the probability of the system being down and under repair, P2(t), is 

 ( )2 ( )
( )

μ λλ
λ μ

− −⎡ ⎤
= −⎢ ⎥−⎣ ⎦

t tP t e e  

and the probability of the system being full-up but no spare available, P3(t), is 

 3 2
( ) [ ( ) ]

( )
μ λ λλμ λ μ

λ μ
− − −⎡ ⎤

= − − −⎢ ⎥−⎣ ⎦
t t tP t e e te  

Hence, the point availability, A(t), is given by 

 1 3( ) ( ) ( )= +A t P t P t  

If average or interval availability is required, this is achieved by 

 
  

1 3
 0  0

1 1
( ) [ ( ) ( )]

⎛ ⎞ ⎛ ⎞= +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠∫ ∫

T T
A t dt P t P t dt

t t
 (2.79) 

where T is the interval of concern. 
With the above example, cases of the absorbing process (both maintained and 

non-maintained) have been covered insofar as "manual" methods are concerned. In 
general, the methodology for treatment of absorbing Markov processes can be 
“packaged” in a fairly simplified form by utilizing matrix notation. Thus, for exam-
ple, if the incremental transition matrix is defined as follows: 

 

1- 2        2            0

[ ( )]       1 ( )     

   0               0               1

λ λ
μ λ μ λ

⎡ ⎤
⎢ ⎥= − +⎢ ⎥
⎢ ⎥⎣ ⎦

ij

dt dt

P dt dt dt dt  

then if the dts are dropped and the last row and the last column are deleted, the 
remainder is designated as the matrix T: 

 
1- 2              2

[ ]
           1 ( )

λ λ
μ λ μ

⎡ ⎤
= ⎢ ⎥− +⎣ ⎦

T  

Define [Q] = [T]' - [I], where [T]' is the transposition of [T] and [I] is the unity 
matrix: 
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1 2               1       0
[ ]

  2           1 ( ) 0       1

2                  
     

  2          ( )

λ μ
λ λ μ
λ μ
λ λ μ

−⎡ ⎤ ⎡ ⎤
= −⎢ ⎥ ⎢ ⎥− +⎣ ⎦ ⎣ ⎦

−⎡ ⎤
= ⎢ ⎥− +⎣ ⎦

Q

 

Further define [P(t)] and [P’(t)] as column vectors such that 

 1 1
1

2 2

( ) '( )
[ ( )] ,     [ '( )]

( ) '( )

⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

P t P t
P t P t

P t P t
 

then 

 [ ] [ ][ ]'( ) ( )=P t Q P t  

At the above point, solution of the system of differential equations will produce 
solutions to P1(t) and P2(t). If the MTBF is desired, integration of both sides of the 
system produces 
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where [Q]-1 is the inverse of [Q] and the MTBF is given by 

 1 2 2

3
MTBF

(2 )

λ μ
λ
+= + =T T  

In the more general MTBF case, 
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and (n - 1) is the number of non-absorbing states.  
 
For the reliability/availability case, utilizing the Laplace transform, the system of 
linear, first-order differential equations is transformed to 
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Generalization of the latter to the case of (n-1) non-absorbing states is 
straightforward. 

Ergodic processes, as opposed to absorbing processes, do not have any 
absorbing states, and hence, movement between states can go on indefinitely For 
the latter reason, availability (point, steady-state, or interval) is the only meaningful 
measure. As an example for ergodic processes, a ground-based power unit config-
ured in parallel will be selected. 
     The parallel units are identical, each with exponential failure and repair times 
with means 1/λ and 1/μ, respectively (Pham 2000a). Assume a two-repairmen 
capability if required (both units down), then 

State 1: Full-up (both units operating)  
State 2: One unit down and under repair (other unit up)  
State 3: Both units down and under repair 
 

     It should be noted that, as in the case of failure events, two or more repairs 
cannot be made in the dt interval. 

 

   1 2        2              0

[ ( )]           1 ( )        

        0             2        1 2

λ λ
μ λ μ λ

μ μ

−⎡ ⎤
⎢ ⎥= − +⎢ ⎥
⎢ ⎥−⎣ ⎦

ij

dt dt

P dt dt dt dt

dt dt

 

 
Case I: Point Availability - Ergodic Process. For an ergodic process, as → ∞t  the 
availability settles down to a constant level. Point availability gives a measure of 
things before the "settling down” and reflects the initial conditions on the process. 
Solution of the point availability is similar to the case for absorbing processes 
except that the last row and column of the transition matrix must be retained and 
entered into the system of equations. For example, the system of differential 
equations becomes 
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2 2

3 3

'( ) ( )2                           0

'( )   2     ( )        2  ( )

   0                       2'( ) ( )

λ μ
λ λ μ μ

λ μ

−⎡ ⎤ ⎡ ⎤⎡ ⎤
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P t P t

P t P t

 

Similar to the absorbing case, the method of the Laplace transform can be used to 
solve for P1(t), P2(t), and P3(t), with the point availability, A(t), given by 

 1 2( ) ( ) ( )= +A t P t P t  

 
Case II: Interval Availability - Ergodic Process. This is the same as the absorbing 
case with integration over time period T of interest. The interval availability, A(T), is 

 
0

1
( ) ( )= ∫

T

A T A t dt
T

  (2.80) 

 
Case III:  Steady State Availability - Ergodic Process. Here the process is 
examined as → ∞t  with complete “washout” of the initial conditions. Letting 

→ ∞t  the system of differential equations can be transformed to linear algebraic 
equations. Thus, 
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As → ∞t , ( ) →iP t constant and '( ) 0→iP t . This leads to an unsolvable sys-tem, 

namely 
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To avoid the above difficulty, an additional equation is introduced: 
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1

( ) 1
=

=∑ i
i

P t  

With the introduction of the new equation, one of the original equations is deleted 
and a new system is formed: 
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or, equivalently, 
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We now obtain the following results: 
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Therefore, the steady state availability, A(∞), is given by 

 
3 1 2
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( ) ( ) ( )
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μ μ λ
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∞ = +
+=

+
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Note that Markov methods can also be employed where failure or repair times 
are not exponential, but can be represented as the sum of exponential times with 
identical means (Erlang distribution or Gamma distribution with integer valued 
shape parameters). Basically, the method involves the introduction of "dummy" 
states which are of no particular interest in themselves, but serve the purpose of 
changing the hazard function from constant to increasing. 

2.6 Counting Processes 

Among discrete stochastic processes, counting processes in reliability engineering 
are widely used to describe the appearance of events in time, e.g., failures, number 
of perfect repairs, etc. The simplest counting process is a Poisson process. The 
Poisson process plays a special role to many applications in reliability (Pham 
2000a). A classic example of such an application is the decay of uranium. 
Radioactive particles from nuclear material strike a certain target in accordance 
with a Poisson process of some fixed intensity. A well-known counting process is 
the so-called renewal process. This process is described as a sequence of events, 
the intervals between which are independent and identically distributed random 
variables. In reliability theory, this type of mathematical model is used to describe 
the number of occurrences of an event in the time interval. In this section we also 
discuss the quasi-renewal process and the non-homogeneous Poisson process. 
     A non-negative, integer-valued stochastic process, N(t), is called a counting 
process if N(t) represents the total number of occurrences of the event in the time 
interval [0, t] and satisfies these two properties: 
     1. If t1 < t2, then N(t1) ≤ N(t2) 
     2.  If t1 < t2, then N(t2) - N(t1) is the number of  occurrences of the  event in the  
  interval [t1 , t2] 
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For example, if N(t) equals the number of persons who have entered a restaurant at 
or prior to time t, then N(t) is a counting process in which an event occurs 
whenever a person enters the restaurant. 

2.6.1 Poisson Processes 

One of the most important counting processes is the Poisson process. 
 
Definition 2.4: A counting process, N(t), is said to be a Poisson process with 
intensity λ if 
    1. The failure process, N(t), has stationary independent increments 
    2.  The number of failures in any time interval of length s has a Poisson   
         distribution with mean λs, that is, 

 
( )

{ ( ) ( ) }      0,1, 2,...
!

λ λ−

+ − = = =
s ne s

P N t s N t n n
n

 (2.81) 

    3.  The initial condition is N(0) = 0 
This model is also called a homogeneous Poisson process indicating that the failure 
rate λ does not depend on time t. In other words, the number of failures occurring 
during the time interval (t, t + s] does not depend on the current time t but only the 
length of time interval s. A counting process is said to possess independent incre-
ments if the number of events in disjoint time intervals are independent. 
     For a stochastic process with independent increments, the auto-covariance 
function is 

 1 2 2 1
1 2

[ ( ) ( )]   for  0
[ ( ), ( )]

0                                    otherwise

+ − < − <⎧
= ⎨
⎩

Var N t s N t t t s
Cov X t X t  

where 

 ( ) ( ) ( ).= + −X t N t s N t  

If X(t) is Poisson distributed, then the variance of the Poisson distribution is 

 2 1 2 1
1 2

[ ( )]     for  0
[ ( ), ( )]

0                         otherwise

λ − − < − <⎧
= ⎨
⎩

s t t t t s
Cov X t X t  

This result shows that the Poisson increment process is covariance stationary. We 
now present several properties of the Poisson process. 
 
Property 2.3:  The sum of independent Poisson processes, N1(t), N2(t), …., Nk(t), 
with mean values λ1t, λ2t, …., λkt respectively, is also a Poisson process with mean 

1

λ
=

⎛ ⎞
⎜ ⎟
⎝ ⎠
∑

k

i
i

t . In other words, the sum of the independent Poisson processes is also a 

Poisson process with a mean that is equal to the sum of the individual Poisson 
process' mean. 
 
Proof: The proof is left as an exercise for the reader (see Problem 26). 
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Property 2.4: The difference of two independent Poisson processes, N1(t), and 
N2(t), with mean λ1t and λ2t, respectively, is not a Poisson process. Instead, it has 
the probability mass function 

 1 2

2
( ) 1

1 2 1 2
2

[ ( ) ( ) ] (2 )λ λ λ λ λ
λ

− + ⎛ ⎞
− = = ⎜ ⎟

⎝ ⎠

k

t
kP N t N t k e I t  (2.82) 

where Ik(.) is a modified Bessel function of order k (Handbook 1980). 
 
Proof: The proof is left as an exercise for the reader (see Problem 27). 
 
Property 2.5:  If the Poisson process, N(t), with mean λt, is filtered such that every 
occurrence of the event is not completely counted, then the process has a constant 
probability p of being counted. The result of this process is a Poisson process with 
mean λpt [ ]. 
 
Property 2.6:  Let N(t) be a Poisson process and Yn a family of independent and 
identically distributed random variables which are also independent of N(t). A 
stochastic process X(t) is said to be a compound Poisson process if it can be 
represented as 

 
( )

1

( )
=

= ∑
N t

i
i

X t Y  

2.6.2 Renewal Processes 

A renewal process is a more general case of the Poisson process in which the 
inter-arrival times of the process or the time between failures do not necessarily 
follow the exponential distribution. For convenience, we will call the occurrence of 
an event a renewal, the inter-arrival time the renewal period, and the waiting time 
the renewal time. 
 
Definition 2.5: A counting process N(t) that represents the total number of 
occurrences of an event in the time interval (0, t] is called a renewal process, if the 
time between failures are independent and identically distributed random variables. 
 
The probability that there are exactly n failures occurring by time t can be written 
as 

 { ( ) } { ( ) } { ( ) }= = ≥ − >P N t n P N t n P N t n  (2.83) 

Note that the times between the failures are T1, T2, …, Tn so the failures occurring 
at time Wk are 

 
1=

=∑
k

k i
i

W T  

and 

 1−= −k k kT W W  
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Thus, 

 1
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F t F t

 

where Fn(t) is the cumulative distribution function for the time of the nth failure 
and n = 0,1,2, ... . 
 
Example 2.16: Consider a software testing model for which the time to find an 
error during the testing phase has an exponential distribution with a failure rate of 
X. It can be shown that the time of the nth failure follows the gamma distribution 
with parameters k and n with probability density function. From equation (2.83) we 
obtain 
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Several important properties of the renewal function are given below. 
 
Property 2.7:  The mean value function of the renewal process, denoted by m(t), is 
equal to the sum of the distribution function of all renewal times, that is, 
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Proof:  The renewal function can be obtained as 
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The mean value function of the renewal process is also called the renewal function. 
 
Property 2.8:  The renewal function, m(t), satisfies the following equation: 
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0

( ) ( ) ( ) ( )= + −∫
t

a am t F t m t s dF s  (2.84) 

where Fa(t) is the distribution function of the inter-arrival time or the renewal 
period. The proof is left as an exercise for the reader (see Problem 28). 
 

In general, let y(t) be an unknown function to be evaluated and x(t) be any 
non-negative and integrable function associated with the renewal process. Assume 
that Fa(t) is the distribution function of the renewal period. We can then obtain the 
following result. 
 
Property 2.9:  Let the renewal equation be 

 
0

( ) ( ) ( ) ( )= + −∫
t

ay t x t y t s dF s  (2.85) 

then its solution is given by 

 
0

( ) ( ) ( ) ( )= + −∫
t

y t x t x t s dm s  

where m(t) is the mean value function of the renewal process. 
The proof of the above property can be easily derived using the Laplace 

transform. It is also noted that the integral equation given in Property 2.8 is a 
special case of Property 2.9. 
 
Example 2.17:  Let x(t) = a. Thus, in Property 2.9, the solution y(t) is given by 

 

0

0
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       ( )

      (1 [ ( )])

= + −

= +

= +

∫

∫
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t

y t x t x t s dm s
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2.6.3 Quasi-renewal Processes 

In this section, a general renewal process, namely, the quasi-renewal process, is 
discussed. Let {N(t), t > 0} be a counting process and let Xn be the time between 
the (n-1)th and the nth event of this process, n ≥ 1. 
 
Definition 2.6 (Wang and Pham 1996a):  If the sequence of non-negative random 
variables {X1, X2, ....} is independent and 

 1−=i iX aX  (2.86) 

for i ≥ 2 where α > 0 is a constant, then the counting process {N(t), t ≥ 0} is said to 
be a quasi-renewal process with parameter and the first inter-arrival time X1.  
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When α = 1, this process becomes the ordinary renewal process as discussed 
in Section 2.6.2. This quasi-renewal process can be used to model reliability 
growth processes in software testing phases and hardware burn-in stages for α > 1, 
and in hardware maintenance processes when α ≤ 1. 
     Assume that the probability density function, cumulative distribution function, 
survival function, and failure rate of random variable X1 are f1(x), F1(x), s1(x), and 
r1(x), respectively. Then the pfd, cdf, survival function, failure rate of Xn for n = 1, 
2, 3,... is respectively given below (Wang and Pham 1996a): 
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Similarly, the mean and variance of Xn is given as 
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Because of the non-negativity of X1 and the fact that X1 is not identically 0, we 
obtain 

 1 1( ) 0μ= ≠E X  

 
Proposition 2.1 (Wang and Pham 1996a): The shape parameters of Xn are the 
same for n = 1, 2, 3, ...  for a quasi-renewal process if X1 follows the gamma, 
Weibull, or log normal distribution. 
 

This means that after "renewal", the shape parameters of the inter-arrival time 
will not change. In software reliability, the assumption that the software debugging 
process does not change the error-free distribution type seems reasonable. Thus, 
the error-free times of software during the debugging phase modeled by a 
quasi-renewal process will have the same shape parameters. In this sense, a 
quasi-renewal process is suitable to model the software reliability growth. It is 
worthwhile to note that 
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     Therefore, if the inter-arrival time represents the error-free time of a software 
system, then the average error-free time approaches infinity when its debugging 
process is occurring for a long debugging time. 
 
Distribution of N(t)   
Consider a quasi-renewal process with parameter α and the first inter-arrival time 
X1. Clearly, the total number of renewals, N(t), that has occurred up to time t and 
the arrival time of the nth renewal, SSn, has the following relationship: 

 N(t) ≥ n if and only if SSn ≤ t 

that is, N(t) is at least n if and only if the nth renewal occurs prior to time t. It is 
easily seen that 
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1 1
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i i

SS X X n  (2.87) 

Here, SS0 = 0. Thus, we have 
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where Gn(t) is the convolution of the inter-arrival times F1, F2, F3, …, Fn. In other 
words, 

 1 2( ) { .... }= + + + ≤n nG t P F F F t  

If the mean value of N(t) is defined as the renewal function m(t), then, 
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The derivative of m(t) is known as the renewal density 

 ( ) '( )λ =t m t  

In renewal theory, random variables representing the inter-arrival distributions 
only assume non-negative values, and the Laplace transform of its distribution 
F1(t) is defined by 

 1 1
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{ ( )} ( )
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−= ∫ sxF s e dF xL  

Therefore, 
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and 
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Since there is a one-to-one correspondence between distribution functions and its 
Laplace transform, it follows that 
 
Proposition 2.2 (Wang and Pham 1996a): The first inter-arrival distribution of a 
quasi-renewal process uniquely determines its renewal function. 
 

If the inter-arrival time represents the error-free time (time to first failure), a 
quasi-renewal process can be used to model reliability growth for both software 
and hardware.  

Suppose that all faults of software have the same chance of being detected. If 
the inter-arrival time of a quasi-renewal process represents the error-free time of a 
software system, then the expected number of software faults in the time interval 
[0, t] can be defined by the renewal function, m(t), with parameter α > 1. Denoted 
by mr(t), the number of remaining software faults at time t, it follows that 

 ( ) ( ) ( )= −r cm t m T m t  

where m(Tc) is the number of faults that will eventually be detected through a 
software lifecycle Tc. 

2.6.4 Non-homogeneous Poisson Processes 

The non-homogeneous Poisson process model (NHPP) that represents the number 
of failures experienced up to time t is a non-homogeneous Poisson process {N(t), t 
≥ 0}. The main issue in the NHPP model is to determine an appropriate mean value 
function to denote the expected number of failures experienced up to a certain 
time.  
     With different assumptions, the model will end up with different functional 
forms of the mean value function. Note that in a renewal process, the exponential 
assumption for the inter-arrival time between failures is relaxed, and in the NHPP, 
the stationary assumption is relaxed. 

The NHPP model is based on the following assumptions: 
• The failure process has an independent increment, i.e., the number of failures 

during the time interval (t, t + s) depends on the current time t and the length 
of time interval s, and does not depend on the past history of the process. 

• The failure rate of the process is given by 

 
{exactly one failure in ( , )} { ( ) ( ) 1}

                                                  ( ) ( )λ
+ Δ = + Δ − =

= Δ + Δ
P t t t P N t t N t

t t o t
 

where λ(t) is the intensity function. 
• During a small interval Δt, the probability of more than one failure is 

negligible, that is, 
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      {two or more failure in ( , )} ( )+ Δ = ΔP t t t o t  

•   The initial condition is N(0) = 0. 
 
On the basis of these assumptions, the probability of exactly n failures occurring 
during the time interval (0, t) for the NHPP is given by 

 ( )[ ( )]
Pr{ ( ) }       0,1, 2,...

!
−= = =

n
m tm t

N t n e n
n

 (2.88) 

where 
0

( ) [ ( )] ( )λ= = ∫
t

m t E N t s ds  and λ(t) is the intensity function. It can be easily 

shown that the mean value function m(t) is non-decreasing. 
 
Reliability Function 
The reliability R(t), defined as the probability that there are no failures in the time 
interval (0, t), is given by 
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In general, the reliability R(x|t), the probability that there are no failures in the 
interval (t, t + x), is given by 
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and its density is given by 

 [ ( ) ( )]( ) ( )λ − + −= + m t x m tf x t x e  

where 

 ( ) [ ( )]λ ∂=
∂

x m x
x

 

The variance of the NHPP can be obtained as follows: 
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and the auto-correlation function is given by 
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Example 2.18:  Assume that the intensity λ is a random variable with the pdf f(λ). 
Then the probability of exactly n failures occurring during the time interval (0, t) is 
given by 
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λ λ λ λ
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n
t t
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n

 

It can be shown that if the pdf f(λ) is given as the following gamma density 
function with parameters k and m, 

 11
( )     for 0
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λλ λ λ− −= ≥

Γ
m m kf k e
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then 
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is also called a negative binomial density function, where 

     and    1= = = −
+ +
k t

p q p
t k t k

 

2.7 Further Reading 

The reader interested in a deeper understanding of advanced probability theory and 
stochastic processes should note the following highly recommended books: 
 
Devore, J.L., Probability and Statistics for Engineering and the Sciences, 3rd 
edition, Brooks/Cole Pub. Co., Pacific Grove, 1991. 
Gnedenko, BV and I.A. Ushakov, Probabilistic Reliability Engineering, Wiley, 
New York, 1995. 
Feller, W., An Introduction to Probability Theory and Its Applications, 3rd edition,  
Wiley, New York, 1994. 

2.8 Problems 

1.  Assume that the hazard rate, h(t), has a positive derivative. Show that the 
hazard distribution 

 
0

( ) ( )= ∫
t

H t h x dx  

is strictly convex. 
 
2. An operating unit is supported by (n-1) identical units on cold standby. When 

it fails, a unit from standby takes its place. The system fails if all n units fail. 
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Assume that units on standby cannot fail and the lifetime of each unit follows 
the exponential distribution with failure rate λ . 
(a) What is the distribution of the system lifetime? 
(b) Determine the reliability of the standby system for a mission of 100 

hours when λ  = 0.0001 per hour and n = 5. 
 
3. Assume that there is some latent deterioration process occurring in the 

system. During the interval [0, a-h] the deterioration is comparatively small 
so that the shocks do not cause system failure. During a relatively short time 
interval [a-h, a], the deterioration progresses rapidly and makes the system 
susceptible to shocks. Assume that the appearance of each shock follows the 
exponential distribution with failure rate λ . What is the distribution of the 
system lifetime? 

 
4. Consider a series system of n Weibull components. The corresponding 

lifetimes T1, T2,..., Tn are assumed to be independent with pdf 

 
( )1   for 0

( )
0                       otherwise

βλβ βλ β −−⎧ ≥⎪= ⎨
⎪⎩

i t
i t e t

f t  

   where λ  > 0 and β  > 0 are the scale and shape parameters, respectively. 

 
(a) Show that the lifetime of a series system has the Weibull distribution 

with pdf 
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(b) Find the reliability of this series system. 
 
5. Consider the pdf of a random variable that is equally likely to take on any 
 value only in the interval from a to b. 
 (a) Show that this pdf is given by 

 
1

     for 0
( )

0            otherwise

⎧ < <⎪= −⎨
⎪⎩

a t
f t b a  

(b) Derive the corresponding reliability function R(t) and failure rate h(t). 
(c) Think of an example where such a distribution function would be of 

interest in reliability application. 
 
6. The failure rate function, denoted by h(t), is defined as 

 ( ) ln[ ( )]= − d
h t R t

dt
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Show that the constant failure rate function implies an exponential 
distribution. 

 
7. One thousand new streetlights are installed in Saigon city. Assume that the 

lifetimes of these streetlights follow the normal distribution. The average life 
of these lamps is estimated at 980 burning-hours with a standard deviation of 
100 hours. 
(a) What is the expected number of lights that will fail during the first 800 

burning-hours? 
(b) What is the expected number of lights that will fail between 900 and 

1100 burning-hours? 
(c) After how many burning-hours would 10% of the lamps be expected to 

fail? 
 
8. A fax machine with constant failure rate λ  will survive for a period of 720 

hours without failure, with probability 0.80. 
(a) Determine the failure rate λ . 
(b) Determine the probability that the machine, which is functioning after 

600 hours, will still function after 800 hours. 
(c) Find the probability that the machine will fail within 900 hours, given 

that the machine was functioning at 720 hours. 
 
9.  The time to failure T of a unit is assumed to have a log normal distribution 

with pdf 
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Show that the failure rate function is unimodal. 
 
10.   A diode may fail due to either open or short failure modes. Assume that the 

time to failure T0 caused by open mode is exponentially distributed with pdf 

 0

0 0( )        0λλ −= ≥tf t e t  

 and the time to failure T1 caused by short mode has the pdf 

 ( )        0λλ −= ≥st
s sf t e t  

  The pdf for the time to failure T of the diode is given by 

 0( )  ( ) (1 ) ( )       0= + − ≥sf t p f t p f t t  

(a) Explain the meaning of p in the above pdf function. 
(b) Derive the reliability function R(t) and failure rate function h(t) for the 

time to failure T of the diode. 
(c) Show that the diode with pdf f(t) has a decreasing failure rate (DFR). 

 
11.   A diesel is known to have an  operating life (in hours)  that  fits  the following   
         pdf: 
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  The average operating life of the diesel has been estimated to be 8760 hours. 
(a) Determine a and b. 
(b) Determine the probability that the diesel will not fail during the first 

6000 operating-hours. 
(c) If the manufacturer wants no more than 10% of the diesels returned for 

warranty service, how long should the warranty be? 
 
12.   The failure rate for a hydraulic component 

 ( )          0
1

= >
+
t

h t t
t

 

where t is in years. 
(a) Determine the reliability function R(t). 
(b) Determine the MTTF of the component.  

13.   A 18-month guarantee is given based on the assumption that no more than 5%  
        of new cars will be returned. 

(a) The time to failure T of a car has a constant failure rate. What is the 
maximum failure rate that can be tolerated? 

(b) Determine the probability that a new car will fail within three years 
assuming that the car was functioning at 18 months. 

 
14.  Show that if 

 1 2( ) ( )    for all ≥R t R t t  

       where Ri(t) is the system reliability of the structure i, then MTTF of the system    
       structure 1 is always ≥ MTTF of the system structure 2. 

 
15.  Prove equation (2.10) 
 
16. Show that the reliability function of Pham distribution (see equation 2.21) is 

given as in equation (2.22). 
 
17.  Prove Theorem 2.1. 
 
18.  Prove Theorem 2.2. 
 
19.  Show  that for any range of q0 and qs, if qs > q0, the optimal number of parallel 
       components that maximizes the system reliability is one. 
 
20.  Prove Theorem 2.3. 
 
21.  Prove Theorem 2.4. 
 
22.  Prove Theorem 2.5. 
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23.  Show that the optimal value n* in Theorem 2.5 is an increasing function of q0 
and a decreasing function of qs. 

 
24.  Prove Theorem 2.6. 
 
25.  For any given q0 and qs, show that 0α< <sq p whereα  is given in equation  

       (2.73). 
 
26.  Prove Property 2.3. 
 
27.  Prove Property 2.4. 
 
28.  Prove Property 2.8. 
 
29.  Events occur according to an NHPP in which the mean value function is 

 m(t) = t3 + 3t2 + 6t   t > 0. 

       What is the probability that n events occur between times t = 10 and t = 15?  


