
Preface

Abstract state machines (ASM) sharpen the Church-Turing thesis by the con-
sideration of bounded resources for computing devices. They view computations
as an evolution of a state. It has been shown that all known models of compu-
tation can be expressed through specific abstract state machines. These models
can be given in a representation-independent way. That is one advantage of
transferring these models to ASM. The main advantage is, however, to provide
a unifying theory to all of these models. At the same time ASM can be refined
to other ASMs. Stepwise refinement supports separation of concern during soft-
ware development and will support component-based construction of systems
thus providing a foundation of new computational paradigms such as industrial
programming, programming-in-the-large, and programming-in-the-world.

ASM 2004 continued the success story of the ASM workshops. Previous
workshops were held in the following European cities: Taormina, Italy (2003);
Dagstuhl, Germany (2002); Las Palmas de Gran Canaria, Spain (2001); Monte
Verita, Switherland (2000); Toulouse, France (1999); Magdeburg, Germany
(1998); Cannes, France (1998, 1997); Paderborn, Germany (1996); and Ham-
burg, Germany (1994). The ASM workshops have had predecessors, e.g., the
famous Lipari Summer School in 1993, whose influential outcome was the fun-
damental Lipari Guide.

The success story of the ASM workshops is based upon a number of ad-
vantages of the ASM method for high-level design, analysis, validation, and
verification of computing systems:
– The specification method improves industrial practice by proper orchestra-

tion of all phases of software development, by supporting high-level modeling
at any level of abstraction, and by providing a scientific and formal foun-
dation for systems engineering. All other specification frameworks known so
far only provide a loose coupling of notions, techniques, and notations used
at various levels of abstraction.
By using the ASM method, a system engineer can derive a general
application-oriented understanding, may base the specification on a uniform
algorithmic view, and may refine the model until the implementation level
is achieved. The three ingredients needed to achieve this generality are the
notion of the ASM itself, the ground-model techniques, and the proper treat-
ment of refinement.
Using this specification method the system architect, the application engi-
neer, the developer, and the programmer obtain a common view of the sys-
tem they are building, changing, maintaining, or documenting. The system
construction process is accompanied by common understanding, by common
theoretical foundations, and by the ability to prove validity of properties
such as satisfaction of quality criteria. By doing so the construction process
supports quality from the very beginning of the process until the implemen-
tation of the system.



VI Preface

At the same time, the ASM method supports software development in chang-
ing environments. The method supports abstraction and extension of models,
stepwise detailing of models, and control through execution of the model for
their experimental validation.

– Abstract state machines entirely capture all four principles of computer sci-
ence: structure, evolution, collaboration, and abstraction.

structure evolution

collaboration

abstraction

�
�
�
�
��

�
�

�
�

��

�
�
�
�
��

�
�

�
�

��

���
���

communication
cooperation

coordination
���
��� agents

interaction
distribution

��
��

state

architecture

��
��

rule-based
state transformation

evolution of systems

���
mapping

refinement
���

conservative abstraction
approximation

This coverage of all principles has not been achieved in any other approach
of any other discipline of computer science. Due to this coverage, the ASM
method underpins computer science as a whole.

– the ASM method is clearly based on a number of postulates restricting evo-
lution of systems. For instance, sequential computation is based on the pos-
tulate of sequential time, the postulate of abstract state, and the postulate
of bounded exploration of the state space. These postulates may be extended
to postulates for parallel and concurrent computation, e.g., by extending the
last postulate to the postulate of finite exploration.

The generality of the model, the deep foundation, the test of the concept by
providing rigorous semantics to a large variety of real-life software and hardware
products, and – at the same time – the development of proper tools supporting
the entire specification process is the work of a community headed by two conge-
nial friends – Yuri Gurevich and Egon Börger – competing at the same time with
their results. The former decided to prove the concept in real industrial praxis
by building up a group at Microsoft Research, whilst simultaneously deepening
the theory of ASM. Beyond further development of the ASM theory, the latter
attracted a number of researchers for a program that will entirely change com-
puter science. It will improve development and implementation of languages by
providing rigorous semantics and by acquiring tools to prove and to maintain
properties of the developed products, and will thus support quality at each level
of software specification. The community is growing. The success story can be
traced at the website http://www.eecs.umich.edu/gasm/.

ASM 2004 contributed to ASM research in several ways:

Extending ASM foundations: ASM research has brought up a good number of
difficult and open problems in computer science. This volume contributes by



Preface VII

providing solutions to slicing ASM, intra-step interaction, theory of monodic
ASMs, and interchange languages for ASM. Abstract state machines have
recently extended to turbo abstract state machines. This abstraction mech-
anism has already been used in theory of computation. Furthermore, tran-
sition theory contributes to foundations of ASM.

Highlighting new application areas: Cryptographic machines, security logics, and
service specification are currently hot research areas. As demonstrated in this
volume, ASM methods may substantially improve understanding in these
areas. Furthermore, the volume shows that even .NET models can be based
on ASM.

Tackling problems in already proven application areas: Programming language se-
mantics is based on ASM methods for C# and SSA. UML needs more foun-
dations and ASM methods can be used to formalize UML diagrams, e.g.
sequence diagrams. Timed systems are one of the areas where ASM meth-
ods have successfully been used. The workshop continues to provide a deeper
insight into embedded systems and their semantics. ASM semantics has al-
ready been used for exploring database behavior. This workshop provides a
deeper view on query processing.

ASM 2004 invited four distinguished researchers to bring other aspects to ASM
research. Yuri Gurevich extended the postulates of sequential computation to in-
teraction. Hans-Michael Hanisch showed how ASM research might contribute to
research on embedded control systems. Hans Langmaack discussed associations
between ALGOL semantics and Turbo ASM introduced recently. Jan Van den
Bussche demonstrated how database processing may be based on finite cursor
machines.

The LNCS proceedings are accompanied with local proceedings demonstrat-
ing recent research in ASM development. These papers demonstrate the devel-
opment of tools, give an insight into ongoing projects, and provide results on
ASM theory that may lead to kernel papers of the next ASM workshop.

We thank the members of the program committee and the additional review-
ers for their support in evaluating the papers submitted to ASM 2004. We thank
both Springer-Verlag for publishing the proceedings with the invited and research
papers in the LNCS series and the Martin-Luther-University Halle-Wittenberg
for publishing the proceedings of the short papers. We appreciate the diligent
service of the organization team: Thomas Kobienia, Michael Schaarschmidt, and
Ramona Vahrenhold. We thank our colleagues and the students of our universi-
ties for their help in workshop organization. We thank Martin-Luther-University
Halle-Wittenberg Microsoft Research, the Stiftung Leucorea, and the Winz-
ervereinigung Freyburg-Unstrut eG for their support of the workshop. Last, but
not least, we thank the participants of ASM 2004 for having made our work
useful.

March 2004 Wolf Zimmermann
Bernhard Thalheim



VIII Preface

Program Co-chairs

Wolf Zimmermann (Martin-Luther-University Halle-Wittenberg, Germany)
Bernhard Thalheim (University of Kiel, Germany)

Program Committee

Egon Börger (University of Pisa, Italy)
Alessandra Cavarra (Oxford University, UK)
John Derrick (University of Kent, UK)
Uwe Glässer (Simon Fraser University, Canada)
Elvinia Riccobene (University of Catania, Italy)
Robert Stärk (ETH Zurüch, Switzerland)
Peter H. Schmitt (Universität Karlsruhe, Germany)
Anatol Slissenko (University of Paris, France)
Bernhard Thalheim (Kiel University, Germany)
Margus Veanes (Microsoft Research, Redmond, USA)
Wolf Zimmermann (Universität Halle-Wittenberg, Germany)

Additional Reviewers

E. Asarin D. Beauquier P. Caspi
P. Cegielski A. Chou A. Cisternino
J. Cohen R. Farahbod N. G. Fruja
A. Gargantini R. Ge S. Graf
T. Gross Y. Gurevich J. Jacky
M. Kardos L. Nachmanson S. Nanchen
A. Prinz H. Rust P. Scandurra
M. Schaarschmidt W. Schulte M. Vajihollahi

Organization Committee

Wolf Zimmermann University Halle-Wittenberg
Ramona Vahrenhold University Halle-Wittenberg
Michael Schaarschmidt University Halle-Wittenberg
Thomas Kobienia Cottbus University of Technology

Sponsoring Institutions of the ASM 2004 Conference

Martin-Luther-University Halle-Wittenberg, Germany
Microsoft Research, Redmond, WA, USA
Stiftung Leucorea, Germany
Winzervereinigung Freyburg-Unstrut eG, Germany



Preface IX

Volume Editors

Wolf Zimmermann
Martin-Luther-University Halle-Wittenberg, Germany
Department of Mathematics and Computer Science
Institute of Computer Science
von-Seckendorff-Platz 1, D-06099 Halle/Saale
E-mail: zimmer@informatik.uni-halle.de

Bernhard Thalheim
Kiel University
Institute of Computer Science and Applied Mathematics
Olshausenstr. 40, D-24098 Kiel, Germany
E-mail: thalheim@is.informatik.uni-kiel.de




