
IN WHAT SENSE IS THE NASH SOLUTION FAIR?

WALTER TROCKEL∗

Universität Bielefeld

1. Introduction

An abstract two-person bargaining problem is a pair (T, d) where T ⊂ R2 and d ∈ T
with the following properties:

− T closed, convex, comprehensive (i.e. x ∈ T =⇒ {== x} − R2
+ ⊂ T )

− T ∩ R2
++ �=�� ∅

− d ∈ int(T ∩ R2
+).

The interpretation is that two players have to agree on a joint payoff vector in T , the
ith coordinate for the ith player, i = 1, 2 in order to receive these payoffs or, else, to
fall back to the status quo point d.

Assuming, that this scenario results as the image under the two players’ concave
von Neumann-Morgenstern utility functions on an underlying economic or social sce-
nario, this model is determined only up to affine transformations of both players’
payoffs. Accordingly, d is sometimes assumed to be 0 ∈ R2 (0-normalization), some-
times in addition it is assumed that maxx∈T xi = 1, i = 1, 2 (0−1−1-normalization).
Moreover, every part of T not in R2

+ is skipped representing the fact that the interest
focusses only on individually rational payoff vectors. The resulting S ⊂ R2

+ is then
a 0 − 1 − 1-normalized bargaining situation, whose boundary is often assumed to be
smooth.

The Nash bargaining solution has been introduced by John F. Nash (1953) as a
solution for two person bargaining games. Nash already presented three approaches
to the solution that are methodologically and in spirit quite different. One is the
definition of the Nash solution as the maximizer of the Nash product, i.e. the product
of the two players’ payoffs. This might be seen as maximizing some social planners’
preference relation on the set of players’ utility allocations. So whatever fairness is
represented by the Nash solution it should be hidden in this planners’ preferences.
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The second approach of Nash is the one via axioms for the bargaining solution. This
approach became quite popular later on in the literature on cooperative games and, in
particular bargaining games. It turned out that several important alternative bargain-
ing solutions, like the Nash, Kalai-Smorodinsky, Perles-Maschler or Raiffa solution,
coincide on hyperplane bargaining games where they may be characterized by the
three axioms of cardinal invariance, Pareto-efficiency and symmetry (or anonymity)
but differ by specific fourth axioms on general bargaining games. Nash’s fourth axiom,
the Independence of Irrelevant Alternatives (IIA) may be replaced by consistency due
to Lensberg (1988). So any fairness specific to the Nash solution might be hidden in
these alternative axioms.

The third approach of Nash was via his simple demand game and built the first
attempt in the Nash program. The Nash Program is a research agenda whose goal
it is to provide a non-cooperative equilibrium foundation for axiomatically defined
solutions of cooperative games. This program was initiated by John Nash in his
seminal papers Non-cooperative Games in the Annals of Mathematics, 1951, and
Two-Person Cooperative Games in Econometrica, 1953. The term Nash Program was
introduced by Binmore (1987). The original passages due to Nash that built the basis
for this terming are in fact quite short.

The Nash program tries to link two different ways of solving games. The first
one is non-cooperative. No agreements on outcomes are enforceable. Hence players
are totally dependent on their own strategic actions. They try to find out what
is best given, the other players are rational and do the same. In this context the
Nash equilibrium describes a stable strategy profile where nobody would have an
interest to unilaterally deviate. Nevertheless there is an implicit institutional context.
The strategy sets define implicitly what choices are not allowed, those outside the
strategy sets. The payoff functions reflect which strategies in the interplay with others’
strategies are better or worse. It is not said explicitly who grants payoffs and how the
physical process of paying them out is organized. But there is some juridical context
with some enforcement power taken for granted. There is no interpersonal comparison
of payoffs involved in the determination of good strategies. Each player only compares
his different strategies contingent on the other players’ different strategy choices. As
applications in oligopoly show, institutional restrictions of social or economic scenarios
are mapped into strategy sets and payoff functions, thereby lending them an institu-
tional interpretation. Yet, totally different scenarios may considerably be modelled by
the same non-cooperative game, say in strategic form. This demonstrates clearly the
purely payoff based evaluation of games. Payoffs usually are interpreted as reflecting
monetary or utility payments. Associated physical states or allocations occur only in
applications and may be different in distinct applications of the same game.

The second way to solve a game is the cooperative one via axioms as first ad-
vocated by Nash (1953). Again the legal framework is only implicit. Yet, now not
only obedience to the rules is assumed to be enforceable but even contracts. Mutual
gains are in reach now as it becomes possible by signing a contract to commit himself
to certain behavior. In this context it is the specific payoff configuration which is of
interest rather than the strategy profile that would generate it. In this framework it is
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reasonable, therefore, to neglect the strategic options and concentrate on the feasible
payoff configurations or utility allocations on which the players possibly could agree
by signing a contract. Again the formal model does not specify the process by which
physical execution of a contract is performed. Again it is the payoff space rather than
some underlying social scenario on which the interest rests except in applications of
game theory.

In contrast to the non-cooperative approach now players are interested in what
other players receive. Although utilities or payoff units for different players are in
general not considered comparable typically there are tradeoffs that count. The axioms
that are fundamental in this context reflect ideas of fairness, equity, justness that
do not play a role in the non-cooperative model. But a process of negotiation with
the goal to find an agreement makes it necessary for each player to somehow judge
the coplayers’ payoffs. But the axioms are in a purely welfaristic context. If very
different underlying models lead to the same cooperative game in coalitional form it
is only the solution in terms of payoff vectors that is relevant. And this determines in
any application what underlying social or physical state is distinguished. It becomes
irrelevant in the axiomatic cooperative approach which are the institutional details.
Important are only the feasible utility allocations.

Now, why could it be interesting to have a non-cooperative strategic game and a
cooperative game in coalitional form distinguishing via its equilibrium or solution,
respectively, the same payoff vector? According to Nash the answer is that each
approach “helps to justify and clarify the other”.

The equality of payoffs in both approaches seems to indicate that the institutional
specifities represented by the strategic model are not so restrictive as to prevent the
cooperative solution. Also the payoff function appears then to reflect in an adequate
way the different axioms. On the other hand payoff combinations not adequate under
the solution concept cannot be strategically stable. So the equivalence of both ap-
proaches seems to indicate that the strategic model from the point of view of social
desirability is restrictive enough but not too restrictive. This abstract relation has
different consequences if one is in one of the two different enforceability contexts.
If we cannot enforce contracts the equivalence of two approaches means that this is
not a real drawback, as we can reach the same via rational strategic interaction (at
least in situations of games with a unique equilibrium). If, on the other hand, we are
in a world where contracts are enforceable, we may use the equivalence of a suitable
strategic approach as additional arguments for the payoff vectors distinguished by the
solution. Therefore, results in the Nash program give players valuable insights into the
interrelation between institutionally determined non-cooperative strategic interaction
and social desirability based on welfaristic evaluation.

There is not, however, any focus on decentralization in the context of the Nash
program simply because there is no entity like a center or planner. There are just
players.

Nash’s own first contribution to the Nash Program (1953) consists in his analysis of
a game, the demand game and the so called smoothed demand game where he looked at
the limiting behavior of non-cooperative equilibria of a sequence of smoothed versions
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of the demand game. Here the amount of smoothing approaches zero, and, hence the
sequence approximates the demand game. While the original “simple” demand game
has a continuum of equilibria, a fact which makes it useless for a non-cooperative
foundation of the Nash solution, Nash argued that the Nash solution was the only
necessary limit of equilibria of the smoothed games. Rigorous analyzes for his pro-
cedure have been provided much later by Binmore (1987), van Damme (1986) and
Osborne and Rubinstein (1990).

A second quite different approximate non-cooperative support for the Nash solu-
tion is provided by Rubinstein’s (1982) model of sequential alternate offers bargaining.
Binmore, Rubinstein and Wolinsky (1986) showed in two different models with dis-
counted time that the weaker the discounting is the more closely approximates the
subgame perfect Nash equilibrium an asymmetric Nash bargaining solution. Only
if subjective probabilities of breakdown of negotiations or the lengths of reaction
times to the opponents’ proposals are symmetric it is the symmetric Nash solution
which is approximately supported. Again, in the frictionless limit model one does not
get support of the Nash solution by a unique equilibrium. Rather every individually
rational payoff vector corresponds to some subgame perfect equilibrium.

An exact support rather than only an approximate one of the Nash solution is
due to Howard (1992). He proposes a fairly complex 10 stages extensive form game
whose unique subgame perfect equilibrium payoff vector coincides with the bargaining
solution.

Like in Rubinstein’s model and in contrast to Nash framework Howard’s game is
based on underlying outcome space. Here this is a set of lotteries over some finite
set on which players have utility functions. Although the analysis of the game can be
performed without explicit consideration of the outcome space it is this underlying
structure that allows it to look at the outcome associated with a subgame perfect
equilibrium and thereby interpret Howard’s support result as a mechanism theoretic
implementation of some Nash social choice rule in subgame perfect equilibrium. What-
ever non-cooperative support for the Nash solution we take, according to Nash himself
it should provide to our understanding of the Nash solution, and, so we may hope, of
its inherent fairness.

In what follows I shall try to relate Nash’s three approaches to inherent fairness
properties of the Nash solution. I will start with the axiomatic approach, continue
with a related market approach and will derive from the latter one a further non-
cooperative foundation, that allows a conclusion as to specific fairness. In the last
part I shall discuss the fairness hidden in the Nash product.

2. The Axiomatic Approach

Nash’s axiom IIA asserts that if one bargaining problem is contained in another
one and contains the other one’s solution as a feasible point its own solution should
coincide with that point. The IIA is formally closely related to rationality axioms
like the weak or strong axiom of revealed preferences. As such it does not hint to
any underlying fairness concept. One may however weaken IIA in such a way that
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together with the other axioms it still characterizes the Nash solution. This is done
by restricting in the IIA the larger bargaining problem to be always a hyperplane
game, whose boundary, the intersection of R2

+ with a hyperplane, is tangent to the
boundary of the game it contains. In such hyperplane games all bargaining solutions
pick the barycenter, i.e. every player gets the same share of his utopia point or,
put differently, makes the same concession measured in his specific personal utility
units. This also represents a solution of the smaller NTU-game without making use of
transfers offered by the containing hyperplane game. So in this weakened version IIA
has the spirit of a no-trade equilibrium in general equilibrium theory. Once a Walrasian
relation is considered possible one finds immediately that Lensberg’s consistency, the
alternative to IIA, that characterizes the Nash solution is formally almost identical
to the consistency of Walrasian equilibrium (cf. Young, 1994, p.153). The inherent
fairness of the Walrasian equilibrium is known to go beyond its Pareto efficiency
guaranteed by the First Welfare Theorem. It is represented by the Equivalence Prin-
ciple, a group of results assuring the near or exact equality of Walrasian allocations
and those allocations determined by various game theoretical solutions in large pure
exchange economies. The most famous equivalence results, those for the Shapley value,
the Core and the Mas-Colell Bargaining set, guarantee that in large competitive
environments any kind of strategic arbitrage is prevented by the power of perfect
competition. True, this context of pure exchange economies is totally different from
our purely welfaristic bargaining situations. Nevertheless, there are more indications in
the axiomatic approach that underlying fairness of the Nash solution is a “Walrasian”
one.

Shapley (1969) showed that the simultaneous requirements of efficiency (maximal
sum of utilities) and equity (equal amounts of utility) that are in general incompatible
become compatible for a suitable affine transformation of the original bargaining
situation. The preimage under this affine transformation of the efficient and equitable
utility allocation in the transformed problem turns out to be the Nash solution of
the original problem. For the status quo point being zero the affine transformation
becomes linear and is uniquely described by the normal vector λ at the Nash solution.
This λ, that may be interpreted as an efficiency price system, defines endogenously
local rates of utility transfer. Shubik (1985) speculates that this λ reminds very much
of a competitive price system. In fact, this conjecture has been proved in Trockel
(1996), where the bargaining problem has been interpreted as an artificial Arrow-
Debreu economy, whose unique Walrasian equilibrium allocation coincides with the
Nash solution, while the normal vector λ is an equilibrium price system.

So the fairness of the Nash solution seems to be the immunity against undue
exploitation by the opponent as guaranteed by perfect competition.

Interestingly enough, a similar message can be read off Rubinstein’s approximate
foundation of the Nash solution in his alternating offer game. The approximation is
the better the less Rubinstein’s cake shrinks when time passes. That means almost no
shrinking creates arbitrary many future alternative options for finding an adequate
bargaining outcome. These future alternative options correspond to “the many outside
options” represented in a stylized way by the concept of a Walrasian equilibrium. That
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the equivalence principle holds also for our special construct of a bargaining economy
is shown in the next section.

3. An Edgeworth-Debreu-Scarf Type Characterization of the Nash
Solution

In the present section that is based on Trockel (2005) we relate the Nash solution
with the Edgeworthian rather than the Walrasian version of perfect competition. To
do so, we define an artificial coalition production economy (cf. Hildenbrand, 1974)
representing a two person bargaining game.

In a similar way the Nash solution has been applied in Mayberry et al. (1953) to
define a specific solution for a duopoly situation and comparing it with other solutions,
among them the Edgeworth contract curve. The relation between these two solutions
will be the object of our investigation in this paper.

Though it would not be necessary to be so restrictive we define a two person bar-
gaining game as the closed subgraph of a continuously differentiable strictly decreasing
concave function f : [0, 1] −→ [0, 1] with f(0) = 1 and f(1) = 0.

S := subgraphf := {(x1, x2) ∈ [0, 1]2|x2 ≤ f(x1)}
The normalization reflects the fact that bargaining games are usually considered to
be given only up to positive affine transformations. Smoothness makes life easier by
admitting unique tangents.

The model S is general enough for our purpose of representation by a coali-
tion production economy. In particular, S is the intersection of some strictly convex
comprehensive set with the positive orthant of R2.

Define for any S as described above a two person coalition production economy
ES as follows:

ES := ((ei,�i, YiYY )i=1,2, (ϑij)i,j=1,2)

such that

ei = (0, 0), x = (x1, x2) �i x′ = (x′
1, x

′
2) ⇔ xi ≥ x′

i, i = 1, 2 ,

ϑ11 = ϑ22 = 1, ϑ12 = ϑ21 = 0, Y1YY = Y2YY = (
1
2
)S .

The zero initial endowments reflect the idea that all available income in this economy
comes from shares in production profits. Each agent owns fully a production possibility
set that is able to produce for any x ∈ S the bundle ( 1

2 )x without any input. Both
agents are interested in only one of the two goods called “agent i′s utility”, i =
1, 2. Without any exchange agent i would maximize his preference by producing and
consuming one half unit of commodity i and zero units of commodity 3 − i, i = 1, 2.
However, the agents would recognize immediately that they left some joint utility
unused on the table.

Given exchange possibilities for the two commodities they would see that im-
provement would require exchange or, to put it differently, coordinated production
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Figure 1.

(see Figure 1). The point ( 1
2 , 1

2 ) corresponds to the vector of initial endowments, the
set S1 := S ∩ ({( 1

2 , 1
2 )} + R2

+) to the famous lens and the intersection of S1 with
the efficient boundary of S, i.e. S1 ∩ ∂S, to the core in the Edgeworth Box. This is
exactly what Mayberry and al. (1953, p. 144) call the Edgeworth contract curve in
their similar setting.

The according notions of improvement and of the core are analogous to the
ones used for Coalitional Production Economies by Hildenbrand (1974, p. 211). Ỹ :
{{1}, {2}, {1, 2}} =⇒== R2 with Ỹ ({1}) = Y1YY , Ỹ ({2}) = Y2YY , Ỹ ({1, 2}) = S, is the
production correspondence, which is additive, as Y ({1} ∪ {2}) = Y1YY + Y2YY = S. An
allocation xi = ((xi

1, x
i
2))i=1,2 for ES is T -attainable for T ∈ {{1}, {2}, {1, 2}} if∑

i∈T xi ∈ Ỹ (T ); it is called attainable if it is {1, 2}-attainable.
An allocation (x1, x2) can be improved upon by a coalition T ∈ {{1}, {2}, {1, 2}}

if there is a T -attainable allocation (y1, y2) such that ∀i ∈ T : yi i xi. The core
of ES is the set of {1, 2}-attainable allocations that cannot be improved upon. The
analogous definitions hold for all n-replicas ES

n of ES , n ∈ N.
Notice that our choice of YiYY = ( 1

2 )S, i = 1, 2 ensures the utility allocation ( 1
2 , 1

2 )
for the two players in case of non-agreement. This differs from Nash’s status quo or
threat point (0, 0).

Formalizing an n-replica economy ES
n is standard. All characteristics are replaced

by n-tupels of identical copies of these characteristics. In particular ES
n has 2n agents,

n of each of the two types 1 and 2. And the total production possibility set for the
grand coalition of all 2n agents is nS.

Although the use of strict convex preferences as in Debreu and Scarf (1963) is not
available here a short moment of reflection shows that a major part of their arguments
can be used in our case as well.

x2

x1

1
2

1
2

1
2

10

1

S

S

S1

∂S
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Figure 2.

Next we are looking at the core of n-replicas ES
n of the economy ES . It suffices

to look at S. Notice that it does not make any difference whether in an n-replica
economy every agent has the technology Y = 1

2nS and the total production set is S
or wether each agent has Y = ( 1

2 )S and total production is nS. We will assume that
each agent in ES

n owns a production possibility set Y := 1
2S as illustrated in Figure

2.
We assume w.l.o.g. that x ∈ ∂( 1

2S) and x1 < 1
2N1NN ,x2 > 1

2N2NN . By choosing
n,m, k ∈ N, k < m ≤ n sufficiently large we can make the vector m−k

m+k (x1,−x2)
arbitrarily small and, thereby, position the point x̃m,k := (x1, x2) + m−k

m+k (x1,−x2) in
int( 1

2S).
A coalition Cx

nCC in the n-replica economy ES
n of ES consisting of m agents of type

1 and k agents of type 2 can realize the allocation (m + k)x̃m,k = ((m + k)x1 + (m−
k)x1, (m + k)x2 − (m − k)x2) = (2mx1, 2kx2).

This bundle can be reallocated to the members of Cx
n by giving to each of the m

type 1 agents (2x1, 0) and to each of the k type 2 agents (0, 2x2). Clearly, everybody
gets thereby the same as he received in the beginning when everybody produced x.
Therefore, nobody improves! However, for η > 0 sufficiently small x̃m,k ∈ int 1

2S im-
plies that x̃m,k +ηN ∈ int 1

2S. Now reallocation of that bundle among the members of
Cx

nCC can be performed in such a way that each type 1 agent receives (2x1 + m+k
m ηN1NN , 0)

and each type 2 agent gets (0, 2x2 + m+k
k ηN2NN ). Therefore x for every agent can be

improved upon by Cx
nCC via production of x̃m,k + ηN by each of its members. Again,

the only element of ∂( 1
2S) remaining in the core for all n−replications of ES is the

point 1
2N , i.e. the Nash solution for 1

2S.
Notice that any point y ∈ ∂( 1

2S) with y1 < x1 < N1N can be improved upon by the
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Figure 3.

same coalition Cx
nCC via ỹm,n + ηN with the same η by a totally identical construction

of ỹm,n from y. The same is not true for z ∈ ∂( 1
2S) with x1 < z1 < N1NN . Here the

m−k
m+k (z1,−z2) may require a larger m and k to make m−k

m+k (z1,−z2) small enough. We
may for any x ∈ ∂( 1

2S), x1 < N1N choose the m, k in the construction of x̃m,k in such
a way that x̃m,k is on or arbitrary close to the segment [0, 1

2N ].
This section continues the idea of Trockel (1996) to approach cooperative games

with methods from microeconomic theory. Considering sets of feasible utility allo-
cations as production possibility sets representing the possible jointly “producable”
utility allocations and transformation rates as prices goes back to Shapley (cf. Shapley,
1969). See also Mayberry et al. (1953). The identity of the Walrasian equilibrium of
a finite bargaining economy ES with the Nash solution of its underlying bargaining
game S stresses the competitive feature of the Nash solution.

Moreover the Nash solution’s coincidence with the Core of a large bargaining coali-
tional production economy with equal production possibilities for all agents reflects a
different fairness aspect in addition to those represented by the axioms.

4. A Walrasian Demand Game

Consider a two person bargaining situation S as illustrated in Figure 3. The compact
strictly convex set S ⊂ R2 represents all feasible utility allocations for two players.
For simplicity assume that the efficient boundary ∂S of S is the graph of some smooth
decreasing concave function from [0, 1] to [0, 1]. Such a bargaining situation can be
looked at as a two-person NTU-game, where S is the set of payoff vectors feasible
for the grand coalition {1, 2}, while {0} represents the payoffs for the one player
coalitions. The normalization to (0; 1, 1) is standard and reflects the idea that S arose
as the image under the two players’ cardinal utility functions of some underlying set of
outcomes or allocations. Cardinality determines utility functions only up to positive
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affine transformations and therefore justifies our normalization. Now, consider the
following modification of Nash’s simple demand game due to Trockel (2000)

ΓS = (Σ1,Σ2;πS
1 , πS

2 ) .

Σ1 = Σ2 = [0, 1] are the players’ sets of (pure) strategies. The payoff functions are
defined by πS

i (x1, x2) := xi1S(x1, x2)+zS
i (xi)1SC (x1, x2). Here SC is the complement

of S in [0, 1]2 and 1S is the indicator function for the set S. Finally zS
i (xi) is defined

as follows: For each xi ∈ [0, 1] the point yS(xi) is the unique point on ∂S with
yS

i (xi) = xi. By pS(xi) we denote the normal vector to ∂S at yS(xi) normalized by
pS(xi) · yS(xi) = 1. Now zS

i (xi) is defined by zS
i (xi) = min(xi,

1
2pS

i
(xi)

), i = 1, 2.
This game has a unique Nash equilibrium (x∗

1, x
∗
2) that is strict, has the maxmin-

property and coincides with the Nash solution of S, i.e. {(x∗
1, x

∗
2)} = N(S). The idea

behind the payoff functions is it to consider for any efficient utility allocation y its
value under the efficiency price vector p(y). If the utility allocation could be sold
at p(y) on a hypothetical market and the revenue would be split equally among the
players there is only one utility allocation such that both players could buy back
their own utility with their incomes without the need of any transfer of revenue.
This equal split of revenue in the payoff function corresponds to equity in Shapley’s
(1969) cooperative characterization of the λ-transfer value via equity and efficiency.
As for our two-person bargaining games the λ-transfer value just singles out the Nash
solution this result does not come as a big surprise. By supplementing efficiency, which
characterizes the infinitely many equilibria in Nash’s demand game, by the additional
equity, embodied in the payoff functions πS

i , i = 1, 2, one gets the Nash solution as
the unique equilibrium of the modified demand game. This result provides obviously
a non-cooperative foundation of the Nash solution in the sense of the Nash program.

The fairness concept behind the rules of this game is the equity coming from the
Walrasian approach in Trockel (1996) mentioned above, where “equity” means equal
shares in the production possibility set used to produce utility allocations.

5. On the Meaning of the Nash Product

One possible way to try to find out any fairness concept behind the Nash product is
it to derive the Nash product as a social planner’s welfare function based on certain
axioms on his preference relation on the set of feasible utility allocations. This route
had been followed by Trockel (1999). For 0-normalized two-person bargaining situa-
tions it is shown that a preference relation on S is representable by the Nash product
if it is a binary relation on S that satisfies the following properties: lower continuity,
neutrality, monotonicity, unit-invariance and indifference-invariance. Continuity is a
technical assumption, monotonicity reflects the planner’s benevolence by liking higher
utilities of the player’s move. Neutrality is certainly a fairness property. What about
the remaining two properties? Indifference-invariance is defined by:

x  y, x′ ∼ x, y′ ∼ y =⇒== x′  y′ ∀ x, y, x′, y′ ∈ S .
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It says that equivalent utility allocations for the planner are perfectly substitutable
for each other in any strict preference. It is a weak consistency property.

Unit invariance is defined by:

x  y ⇐⇒ z ∗ x  z ∗ y ∀ x, y, z ∈ S, ∗ denoting pairwise multiplication.

This property reflects the fact that the planner’s preference is not influenced by the
choices of units of the players.

Interestingly enough these properties not containing the standard rationality prop-
erties of transitivity and completeness suffice to yield a complete, transitive, contin-
uous preordering on S representable by the Nash product. The only obvious fairness
property is neutrality.

The Nash product itself is not seen in the literature as an easily interpretable
function, not to speak of one reflecting any kind of fairness. This approach to the
Nash solution is based on Trockel (2003). Concerning its direct interpretation the
situation is best described by the quotation of Osborne and Rubinstein (1994, p.
303):

Although the maximization of a product of utilities is a simple mathematical operation it lacks
a straightforward interpretation; we view it simply as a technical device.

It is the purpose of the remaining part of this section to provide one straightfor-
ward, in fact surprising interpretation. Maximizing the Nash product is equivalent
to finding maximal elements of one natural completion of the Pareto ordering. The
maximal elements for the other natural completion are just the Pareto optimal points.

We shall look at the vector ordering and complete preorderings on compact subsets
of Rn but restrict the analysis without loss of generality to the case n = 2. A complete
preordering � on a compact set S is a complete, transitive (hence reflexive) binary
relation on S. The weak vector ordering ≥ in contrast fails to be complete. It is,
however, transitive, too. To make things simple assume � on S to be continuous,
hence representable by a continuous utility function u : S −→ R. The �-maximal
elements are given by the set of maximizers of u on S, i.e. argmaxx∈ S u(x).

Let B�(x) be the set {x′ ∈ S|x′ � x} and W�WW (x) the set {x′ ∈ S|x � x′}. For any
x′, x ∈ S we obviously have:

x′ ∼ x ⇔ λ(B�(x)) = λ(B�(x′)) ⇔ λ(W�WW (x)) = λ(W�WW (x′)) .

Deviating from earlier notation λ now denotes the Lebesgue measure on R2 the
extension of the natural measure of area in R2 to all Lebesgue measurable sets.

The correspondences B� : S =⇒== S and W�WW : S =⇒== S composed with the Lebesgue
measure define alternative utility functions λ ◦B� and λ ◦W�WW representing � as well
as u.

Now consider for the vector ordering ≥ the analogous sets B≥(x), W≥WW (x) for
arbitrary x ∈ S:

B≥(x) = {x′ ∈ S|x′ ≥ x}, W≥WW (x) = {x′ ∈ S|x ≥ x′} .
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Next, introduce the mappings λ ◦ B≥ and λ ◦ W≥WW defined by:

λ ◦ B≥(x) := λ(B≥(x)) and λ ◦ W≥WW (x) := λ(W≥WW (x)) .

Both are mappings from S to R and define therefore preference relations that are
completions of ≥.

We have x ≥ x′ =⇒== λ(B≥(x)) ≤ λ(B≥(x′)) and x ≥ x′ =⇒== λ(W≥WW (x)) ≥
λ(W≥WW (x′)). The two dual completions of ≥ are different in general:

x �1 x′ :⇐⇒ λ(B≥(x)) ≤ λ(B≥(x′)) ,

x �2 x′ :⇐⇒ λ(W≥WW (x)) ≥ λ(W≥WW (x′)) .

They only coincide when the binary relation one starts with is already a complete
preordering. Notice, that B≥(x) and W≥WW (x) are in general proper subsets of B�1

(x)
and W�WW

2
(x), respectively.

Now we apply our gained insight to bargaining games. To keep things simple
we define again a normalized two-person bargaining game S as the subgraph of a
concave strictly decreasing function f from [0, 1] onto [0, 1]. The two axes represent
the players’ utilities, S the feasible set of utility allocations. The vector ordering on
S represents in this framework the Pareto ordering. The efficient boundary graphf
of S is the set of Pareto optimal points or vector maxima. Obviously each point x in
graphf minimizes the value of λ ◦B≥. In fact, for x ∈ graphf we have λ(B≥(x)) = 0
Notice that λ(W≥WW (x)) takes different values when x varies in graphf .

Now, consider the set argmaxx∈S λ(W≥WW (x)) of maximizers of λ ◦ W≥WW . This set
is exactly the set {N(S)} where N(S) is the Nash solution of S. Maximizing the
Nash product x1x2 for x ∈ S means maximizing the measure of points in S Pareto
dominated by x′. Hence the two completions �1,�2 of the Pareto ordering ≥ on S
have as their sets of maximizers the Pareto efficient boundary and the Nash solution,
respectively. Thus we have shown that two different methods of representing complete
preorderings via the measure of better sets versus worse sets may be applied as well
to incomplete binary relations. Here they lead to two different functions inducing two
different complete preorderings.

Applied to the non-complete Pareto ordering on a compact set S representing a
bargaining situation the two completions have as their respective sets of maximizers
the Pareto efficient boundary and the Nash solution of S. This result provides a
straightforward interesting interpretation of the Nash solution as a dual version of
Pareto optimality. In contrast to the latter it has the advantage to single out a unique
point in the efficient boundary.

The idea of defining rankings by counting the less preferred alternatives has an
old tradition in social choice theory as the famous Borda Count (cf. Borda, 1781)
shows. In our context with a continuum of social alternatives counting is replaced by
measuring. The level sets of the Nash product collect those utility allocations Pareto
dominating equally large (in terms of Lebesgue measure) sets of alternatives.
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6. Concluding Remarks

The Nash solution is the most popular and most frequently used bargaining solution in
the economic and game theoretic literature. Authors working on efficient bargaining on
labour markets predominantly use the Nash solution. Experiments on bargaining have
been numerous and in various frameworks. Altogether they do not provide unanimous
support for the Nash solution. But Binmore et al. (1993) provide empirical evidence for
the Nash solution in laboratory experiments. Young (1993) presents an evolutionary
model of bargaining supporting the Nash solution. And Skyrms (1996, p.107) writes:

The evolutionary dynamics of distributive justice in discrete bargaining games is evidently more
complicated than any one axiomatic bargaining theory. But our results reveal the considerable
robustness of the Nash solution.

Despite the popularity of the Nash solution in the economic literature mentioned
above Skyrms continues:

Perhaps philosophers who have spent so much time discussing the utilitarian and Kalai-Smoro-
dinsky schemes should pay a little more attention to the Nash bargaining solution.

Even if not a philosopher, in the present article I followed this advice by trying to
find traces of fairness in different representations of the Nash solution available in the
literature.
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