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Mathematical Background

In this chapter, we briefly review some mathematical background needed in
this book, including linear algebra, mathematical analysis, and optimization
theory. Through this review, most notation to be used in subsequent chapters
is introduced. We then present the well-known least-squares method as an
application of linear algebra and optimization theory.

2.1 Linear Algebra

We start with a review of vectors, vector spaces and matrices, and then intro-
duce two powerful tools for matrix decomposition, namely eigendecomposition
and singular value decomposition. The usefulness of matrix decomposition will
become evident in the remaining parts of this book.

2.1.1 Vectors and Vector Spaces

Vectors

In this book, vectors are denoted by bold lowercase letters. For example, we
denote an N × 1 vector

x =




x1

x2

...

xN




= (x1, x2, ..., xN )T

where xn is a real or complex scalar representing the nth entry (component)
of x and the superscript ‘T ’ represents vector transposition. The complex-
conjugate transposition, or Hermitian, of x is given by
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xH = (xT )∗ = (x∗1, x
∗
2, ..., x

∗
N )

where the superscript ‘H’ denotes the Hermitian operator and the superscript
‘∗’ complex conjugation.

Let x = (x1, x2, ..., xN )T and y = (y1, y2, ..., yN )T be two N × 1 vectors.
The inner product of x and y is defined as

〈x,y〉 =

N∑

n=1

xny
∗
n = yHx, (2.1)

which is also referred to as the Euclidean inner product of x and y. The length,
or norm, of the vector x is defined as

‖x‖ =

(
N∑

n=1

|xn|2
)1/2

=
√

xHx, (2.2)

which is also referred to as the Euclidean norm of x. Other types of norms will
be defined later and, for convenience, we will always use the definition (2.2)
for the norm of x unless specified otherwise. A vector whose norm equals unity
is called a unit vector. Furthermore, the geometrical relationship between two
vectors x and y is given as follows: [1, p. 15]

cosφ =





|〈x,y〉|
‖x‖ · ‖y‖ =

|yHx|
‖x‖ · ‖y‖, 0 ≤ φ ≤ π/2 (complex)

〈x,y〉
‖x‖ · ‖y‖ =

yT x

‖x‖ · ‖y‖, 0 ≤ φ ≤ π (real)

(2.3)

where φ is the angle between x and y. As depicted in Fig. 2.1, the relationship
can be interpreted by viewing the inner product 〈x,y/‖y‖〉 as the projection
of x onto the unit vector y/‖y‖. With the geometrical interpretation, x and
y are said to be orthogonal if xHy = yHx = 0. Furthermore, if x and y are
orthogonal and have the unit norm, then they are said to be orthonormal.

The geometrical relationship given by (2.3) is closely related to the follow-
ing Cauchy–Schwartz inequality or Schwartz inequality.1

Theorem 2.1 (Cauchy–Schwartz Inequality). Let x = (x1, x2, ..., xN )T

and y = (y1, y2, ..., yN)T be real or complex nonzero vectors. Then

|yHx| ≤ ‖x‖ · ‖y‖ (2.4)

and the equality holds if and only if x = αy where α 6= 0 is an arbitrary real
or complex scalar.

The Cauchy–Schwartz inequality further leads to the following inequality:

1 The Russians also refer to the Cauchy–Schwartz inequality as the Cauchy–
Schwartz–Buniakowsky inequality [2].
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Fig. 2.1 The geometrical relationship between two vectors x and y

Theorem 2.2 (Triangle Inequality). Let x = (x1, x2, ..., xN )T and y =
(y1, y2, ..., yN )T be real or complex nonzero vectors. Then

‖x + y‖ ≤ ‖x‖ + ‖y‖. (2.5)

The proofs of the two theorems are left as exercises (Problems 2.1 and 2.2).

Vector Spaces

A vector space is a non-empty set of elements along with several rules for the
operations of addition and scalar multiplication of elements. The elements
can be vectors, sequences, functions, etc., and are also referred to as vectors
without confusion. Let V denote a vector space and the vectors (elements) in
V be also denoted by bold lowercase letters. Then for each pair of vectors x
and y in V there is a unique vector x+y in V (the operation of addition) and
for each scalar α there is a unique vector αx in V (the operation of scalar mul-
tiplication). Furthermore, the operations of addition and scalar multiplication
must satisfy the following axioms [3–5].

(VS1) For all x, y ∈ V , x + y = y + x.
(VS2) For all x, y, z ∈ V , (x + y) + z = x + (y + z).
(VS3) For all x ∈ V , there exists a zero vector 0 ∈ V such that x + 0 = x.
(VS4) For each x ∈ V , there exists a vector y ∈ V such that x + y = 0.
(VS5) For all x, y ∈ V and for every scalar α, α(x + y) = αx + αy.
(VS6) For all x ∈ V and for all scalars α and β, (α+ β)x = αx + βx.
(VS7) For all x ∈ V and for all scalars α and β, (αβ)x = α(βx).
(VS8) For all x ∈ V , there exists a scalar 1 such that 1 · x = x.

A subset of a vector space V , denoted by W , is called a subspace of V if W itself
is a vector space under the operations of addition and scalar multiplication
defined on V . An example is as follows.
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Example 2.3
Under the operations of componentwise addition and scalar multiplication,
the set of all real vectors x = (x1, x2, ..., xN )T (whose entries are real) forms
a real vector space, commonly denoted by RN . In addition, the set of all real
x whose nth entry is zero (i.e. xn = 0) is an example of a subspace of RN .

�

A vector space V is called an inner product space if it has a legitimate
inner product 〈x,y〉 defined for all x, y ∈ V . Note that an inner product is
said to be legitimate if it satisfies the following axioms [3, 5].

(IPS1) For all x, y ∈ V and for every scalar α, 〈αx,y〉 = α〈x,y〉.
(IPS2) For all x, y, z ∈ V , 〈x + y, z〉 = 〈x, z〉 + 〈y, z〉.
(IPS3) For all x ∈ V , 〈x,x〉 ≥ 0, and 〈x,x〉 = 0 if and only if x = 0.
(IPS4) For all x, y ∈ V , 〈x,y〉 = (〈y,x〉)∗.

Similarly, a vector space V is called a normed vector space if it has a legitimate
norm ‖x‖ defined for all x ∈ V . A norm is said to be legitimate if it satisfies
the following axioms [3, 5].

(NVS1) For all x ∈ V and for every scalar α, ‖αx‖ = |α| · ‖x‖.
(NVS2) For all x, y ∈ V , ‖x + y‖ ≤ ‖x‖ + ‖y‖.
(NVS3) For all x ∈ V , ‖x‖ ≥ 0, and ‖x‖ = 0 if and only if x = 0.

It is important to note [5, pp. 14–15] that a legitimate inner product for a
vector space V always induces a legitimate norm for V via the relation

‖x‖ =
√
〈x,x〉 for all x ∈ V.

Such a norm is referred to as an induced norm. An example is as follows.

Example 2.4 (Euclidean Space)
It can be easily shown that for the real vector space RN (see Example 2.3),
the Euclidean inner product defined as (2.1) is legitimate and induces the
Euclidean norm defined as (2.2). Accordingly, RN along with the Euclidean
inner product is an inner product space, while RN along with the Euclidean
norm is a normed vector space. The former is known as the Euclidean space [4].

�

Let q1, q2, ..., qN be the vectors in a vector space V . Then they are said
to span the subspace W if W consists of all linear combinations of q1, q2, ...,
qN . Specifically, every vector w in W can be expressed as

w = α1q1 + α2q2 + · · · + αNqN

where αk are scalars. For vectors q1, q2, ..., qN in V , one can determine their
linear interdependence via the following equation:

c1q1 + c2q2 + · · · + cNqN = 0
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where ck are scalars and 0 is a zero vector defined by (VS3). If this equation
holds true only when c1 = c2 = · · · = cN = 0, then q1, q2, ..., qN are said
to be linearly independent; otherwise, they are linearly dependent. If q1, q2,
..., qN are linearly independent and span the vector space V , they are called
a basis for V . A vector space V is said to be finite-dimensional if the number
of linearly independent vectors in its basis is finite; otherwise, it is said to be
infinite-dimensional.

A set S in an inner product space V is called an orthogonal set if every pair
of vectors qk, qm ∈ S is orthogonal, i.e. 〈qk,qm〉 = 0 for k 6= m. Furthermore,
if every vector qk ∈ S has the unit norm, i.e. ‖qk‖ = 1, then the orthogonal
set S is said to be orthonormal. In other words, an orthonormal set does not
contain the zero vector 0. A basis for an inner product space V is said to be
an orthonormal basis if it is an orthonormal set. For example, the set

{η1 = (1, 0, 0, ..., 0)T , η2 = (0, 1, 0, ..., 0)T , ..., ηN = (0, 0, ..., 0, 1)T} (2.6)

is an orthonormal basis, referred to as the standard basis, for the Euclidean
space RN (see Example 2.4) where ηk denotes a unit vector whose kth entry
equals unity and the remaining entries equal zero. Note that any basis can
be transformed into an orthonormal basis via the process of Gram–Schmidt
orthogonalization [1–3, 5].

2.1.2 Matrices

In this book, matrices are denoted by bold uppercase letters. For example,

A =




a11 a12 · · · a1K

a21 a22 · · · a2K

...
...

. . .
...

aM1 aM2 · · · aMK




(2.7)

denotes an M ×K matrix whose (m, k)th entry (component) is amk, a real
or complex scalar. We also use the shorthand representation

[A]m,k = amk

to specify the matrix A. The transposition of A is

[AT ]m,k = [A]k,m = akm (2.8)

and (AT )T = A where the superscript ‘T ’ stands for matrix transposition.
The complex-conjugate transposition, or Hermitian, of A is

[AH ]m,k = [A∗]k,m = a∗km (2.9)
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and (AH)H = A where the superscript ‘H’ stands for the Hermitian operation.
The matrix A is said to be square if M = K. It is further said to be symmetric
if AT = A for A real, and Hermitian if AH = A for A complex. Note
that AH = AT as A is real. For matrices A and B, (AB)T = BTAT ,
(AB)H = BHAH , (A + B)T = AT + BT , and (A + B)H = AH + BH .

Let us further represent the M ×K matrix A given in (2.7) by

A = (a1,a2, ...,aK) =




bT
1

bT
2

...

bT
M




where ak = (a1k, a2k, ..., aMk)T , k = 1, 2, ...,K, are called the column vectors
of A and bT

m = (am1, am2, ..., amK), m = 1, 2, ...,M , the row vectors of A.
The subspace spanned by the column vectors is called the column space of
A, while the subspace spanned by the row vectors is called the row space of
A. The number of linearly independent column vectors of A is equal to the
number of linearly independent row vectors of A, that is defined as the rank
of A, denoted by rank{A}. Note that rank{A} = rank{AH} ≤ min{M,K}
and rank{AHA} = rank{AAH} = rank{A}. When rank{A} = min{M,K},
the matrix A is said to be of full rank; otherwise, it is rank deficient.

The inverse of an M×M square matrix A is also an M×M square matrix,
denoted by A−1, which satisfies

AA−1 = A−1A = I (2.10)

where

I =




1 0 · · · 0

0 1 · · · 0
...

...
. . .

...

0 0 · · · 1




(2.11)

is the M ×M identity matrix. If A is of full rank, then A−1 exists and A is
said to be invertible or nonsingular. On the other hand, if A is rank deficient,
then it does not have an inverse and is accordingly said to be noninvertible or
singular. For nonsingular matrices A and B, (AT )−1 = (A−1)T , (AH)−1 =
(A−1)H , and (AB)−1 = B−1A−1.

Consider an M×M square matrix A with [A]m,k = amk. The determinant
of A is commonly denoted by det{A} or |A|. For M = 1, the matrix A reduces
to a scalar a11 and its determinant is defined as det{a11} = a11. For M ≥ 2,
the determinant det{A} can be defined in terms of the determinants of the
associated (M − 1) × (M − 1) matrices as follows:
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det{A} =

M∑

m=1

(−1)m+k · amk · det{Amk} for any k ∈ {1, 2..,M}

=
M∑

k=1

(−1)m+k · amk · det{Amk} for any m ∈ {1, 2..,M} (2.12)

where Amk is an (M − 1)× (M − 1) matrix obtained by deleting the mth row
and kth column of A. For example, if M = 2, det{A} is given by

det

{(
a11 a12

a21 a22

)}
= (−1)1+1 · a11 · det{a22} + (−1)2+1 · a21 · det{a12}

= a11a22 − a21a12.

Note that det{AT } = det{A}, det{AH} = [det{A}]∗, and det{αA} =
αM · det{A} for a scalar α. For square matrices A and B, det{AB} =
det{A}det{B}. If A is nonsingular, then det{A} 6= 0 and det{A−1} =
1/det{A}. On the other hand, the trace of A, denoted by tr{A}, is defined as

tr{A} =

M∑

m=1

amm, (2.13)

i.e. the sum of the diagonal elements of A. As M = 1, the matrix A reduces
to a scalar a11 and its trace tr{a11} = a11. If A is an M ×K matrix and B
is a K ×M matrix, then tr{AB} = tr{BA}. As a special case, for column
vectors x and y, the trace tr{xyH} = tr{yHx} = yHx.

Let A be an M ×M Hermitian matrix and x be an M × 1 vector, then
the quadratic function

Q(x) , xHAx (2.14)

is called the Hermitian form of A. The Hermitian matrix A is said to be
positive semidefinite or nonnegative definite if Q(x) ≥ 0 for all x 6= 0, and is
said to be positive definite if Q(x) > 0 for all x 6= 0. In the same fashion, A
is negative semidefinite or nonpositive definite if Q(x) ≤ 0 for all x 6= 0, and
negative definite if Q(x) < 0 for all x 6= 0.

An eigenvector of an M ×M square matrix A is an M ×1 nonzero vector,
denoted by q, which satisfies

Aq = λq (2.15)

where λ is a scalar.2 The scalar λ is an eigenvalue of A corresponding to
the eigenvector q. One can see from (2.15) that for any nonzero constant α,

2 More precisely, the vector q is a right eigenvector of A if Aq = λq, and a left
eigenvector of A if qHA = λqH . In this book, “eigenvector” implies “right eigen-
vector” [6].
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A(αq) = λ(αq). This implies that any scaled version of q is also an eigen-
vector of A corresponding to the same eigenvalue λ. Eigenvectors which are
orthogonal (i.e. qH

mqn = 0 for eigenvectors qm and qn) and have the unit
norm are referred to as orthonormal eigenvectors.

Special Forms of Matrices

A complex square matrix U is called a unitary matrix if it satisfies

UUH = UHU = I, (2.16)

i.e. UH = U−1 and |det{U}| = 1. Similarly, a real square matrix V is called
an orthogonal matrix if it satisfies

VVT = VTV = I, (2.17)

i.e. VT = V−1 and det{V} = 1. Obviously, the identity matrix I is an or-
thogonal matrix.

A diagonal matrix is an M ×M square matrix defined as

D = diag{d1, d2, ..., dM} =




d1 0 · · · 0

0 d2 · · · 0
...

...
. . .

...

0 0 · · · dM



. (2.18)

If the diagonal matrix D is nonsingular, i.e. det{D} = d1d2 · · · dM 6= 0, then
its inverse

D−1 = diag

{
1

d1
,

1

d2
, ...,

1

dM

}
. (2.19)

An upper triangular matrix is an M ×M square matrix defined as

U =




u11 u12 · · · u1M

0 u22 · · · u2M

...
...

. . .
...

0 0 · · · uMM



, (2.20)

and a lower triangular matrix defined as

L =




l11 0 · · · 0

l21 l22 · · · 0
...

...
. . .

...

lM1 lM2 · · · lMM



. (2.21)
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From (2.12), it follows that det{U} = u11u22 · · ·uMM and det{L} = l11l22
· · · lMM .

A Toeplitz matrix is an M ×M square matrix defined as

R =




r0 r1 · · · rM−2 rM−1

r−1 r0
. . . rM−2

...
. . .

. . .
. . .

...

r−M+2
. . . r0 r1

r−M+1 r−M+2 · · · r−1 r0




, (2.22)

i.e. the entries on each of the diagonals are equal. Note that a Toeplitz matrix
can be completely specified by its first column and first row.

A matrix A is called a 2 × 2 partitioned matrix if it can be expressed as

A =

(
A11 A12

A21 A22

)
(2.23)

where A11, A12, A21, and A22 are the submatrices of A. Manipulations of
the submatrices for partitioned matrices are similar to those of the entries for
general matrices. In particular, the Hermitian of A can be written as

AH =

(
AH

11 AH
21

AH
12 AH

22

)
. (2.24)

Furthermore, if B is also a 2 × 2 partitioned matrix given by

B =

(
B11 B12

B21 B22

)
,

then

AB =

(
A11B11 + A12B21 A11B12 + A12B22

A21B11 + A22B21 A21B12 + A22B22

)
(2.25)

where B11, B12, B21, and B22 are the submatrices with suitable sizes for the
submatrix multiplications in AB.

Matrix Formulas and Properties

The following theorem provides a useful formula for the derivation of matrix
inverse [7, 8].
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Theorem 2.5 (Matrix Inversion Lemma). Let R be a nonsingular M×M
matrix given by

R = A + BCD (2.26)

where A is a nonsingular M ×M matrix, B is an M × K matrix, C is a
nonsingular K ×K matrix, and D is a K ×M matrix. Then the inverse of
R can be expressed as

R−1 = A−1 − A−1B(C−1 + DA−1B)−1DA−1. (2.27)

A special case of the matrix inversion lemma is given as follows [7].3

Corollary 2.6 (Woodbury’s Identity). Let R be a nonsingular M ×M
matrix given by

R = A + αuuH (2.28)

where A is a nonsingular M ×M matrix, u is an M × 1 vector, and α is a
scalar. Then the inverse of R can be expressed as

R−1 = A−1 − αA−1uuHA−1

1 + αuHA−1u
. (2.29)

The proof of Theorem 2.5 is left as an exercise (Problem 2.3), while Corollary
2.6 can be proved simply by substituting B = u, C = α and D = uH into
(2.27).

Moreover, two theorems regarding partitioned matrices are stated as fol-
lows [7, p. 572], [9, pp. 166–168], and the proofs are left as exercises (Problems
2.4 and 2.5).

Theorem 2.7. Let A be a square matrix given as the partitioned form of
(2.23). Then the determinant of A can be expressed as

det{A} = det{A11} · det{A22 − A21A
−1
11 A12} (2.30)

provided that A11 is a nonsingular square matrix, or equivalently

det{A} = det{A22} · det{A11 − A12A
−1
22 A21} (2.31)

provided that A22 is a nonsingular square matrix.

Theorem 2.8. Let A be a nonsingular square matrix given as the partitioned
form of (2.23) where A11 and A22 are also nonsingular square matrices. Then
the inverse of A can be expressed as

3 For ease of later use, we give a slightly generalized statement of Woodbury’s
identity by including a scalar α. As α = 1, it reduces to the normal statement of
Woodbury’s identity.
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A−1 =

(
B11 B12

B21 B22

)
(2.32)

where

B11 = (A11 − A12A
−1
22 A21)

−1

B12 = −(A11 − A12A
−1
22 A21)

−1A12A
−1
22

B21 = −(A22 − A21A
−1
11 A12)

−1A21A
−1
11

B22 = (A22 − A21A
−1
11 A12)

−1.

In the following, we summarize several matrix properties and leave the
proofs as exercises (Problems 2.6, 2.7 and 2.8).

Property 2.9. A positive definite matrix is nonsingular.

Property 2.10. The eigenvalues of a Hermitian matrix are all real.

Property 2.11. The eigenvalues of a positive definite (positive semidefinite)
matrix are all real positive (nonnegative).

Property 2.12. The inverse of a positive definite matrix is also positive def-
inite.

Property 2.13. For any matrix A, both AHA and AAH are positive semi-
definite.

Property 2.14. The eigenvectors of a Hermitian matrix corresponding to
distinct eigenvalues are orthogonal.

Although Property 2.14 is for the case of distinct eigenvalues, one can always
find a complete set of orthogonal eigenvectors, or equivalently, orthonormal
eigenvectors for any Hermitian matrix, no matter whether its eigenvalues are
distinct or not [2, p. 297].

As a consequence, if A is a positive definite matrix, then its inverse A−1

exists (by Property 2.9) and is also positive definite (by Property 2.12). Fur-
thermore, the eigenvalues of both matrices A and A−1 are all real positive
(by Property 2.11).

2.1.3 Matrix Decomposition

Among the available tools of matrix decomposition, two representatives, eigen-
decomposition and singular value decomposition (SVD), to be presented are
of importance in the area of statistical signal processing. In particular, the
eigendecomposition is useful in developing subspace based algorithms, while
the SVD is powerful in solving least-squares problems as well as in determin-
ing the numerical rank of a real or complex matrix in the presence of roundoff
errors (due to finite precision of computing machines).



24 2 Mathematical Background

Eigendecomposition

According to the foregoing discussion (the paragraph following Property 2.14),
we can always find a complete set ofM orthonormal eigenvectors for anM×M
Hermitian matrix A. As such, let u1, u2, ..., uM be the M orthonormal
eigenvectors of A corresponding to the eigenvalues λ1, λ2, ..., λM . Then, by
definition,

A(u1,u2, ...,uM ) = (λ1u1, λ2u2, ..., λMuM )

or

AU = UΛ (2.33)

where Λ = diag{λ1, λ2, ..., λM} is an M ×M diagonal matrix and U = (u1,
u2, ..., uM ) is an M×M unitary matrix since u1, u2, ..., uM are orthonormal.
From (2.33), it follows that

A = UΛUH =

M∑

m=1

λmumuH
m. (2.34)

Equation (2.34) is called the eigendecomposition or the spectral decomposition
of A. Moreover, when A is nonsingular, (2.34) leads to

A−1 = U−HΛ−1U−1 = UΛ−1UH =

M∑

m=1

1

λm
umuH

m. (2.35)

Singular Value Decomposition

The SVD is stated in the following theorem and, for clarity, is illustrated in
Fig. 2.2. The theorem is called the SVD theorem, or the Autonne–Eckart–
Young theorem in recognition of the originators [10].4

Theorem 2.15 (SVD Theorem). Let A be an M ×K real or complex ma-
trix with rank{A} = r. Then there exist an M ×M unitary matrix

U = (u1,u2, ...,uM ) (2.36)

and a K ×K unitary matrix

V = (v1,v2, ...,vK) (2.37)

such that the matrix A can be decomposed as

4 The SVD was established for real square matrices by Beltrami and Jordan in
the 1870s, for complex square matrices by Autonne in 1902, and for general
rectangular matrices by Eckart and Young in 1939 [10].
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A = UΣVH =
r∑

m=1

λmumvH
m (2.38)

where ui are M × 1 vectors, vi are K × 1 vectors, and

Σ =

(
Λ 0

0 0

)
(2.39)

is an M ×K matrix. The matrix Λ = diag{λ1, λ2, ..., λr} is an r× r diagonal
matrix where λi are real and λ1 ≥ λ2 ≥ · · · ≥ λr > 0.

�
=U

( )1 2, , , Mu u u�

AM

K M K

K

K

� r

r

� �
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� �

� 0
�

0 0

( )1 , ,
H

Kv v�

H =V

Fig. 2.2 Illustration of the SVD for an M × K matrix A with M > K > r =
rank{A} where Λ = diag{λ1, λ2, ..., λr}

As shown in Appendix 2A, the SVD theorem can be proved by either of the
two approaches, Approach I and Approach II, where Approach I starts from
the matrix AHA and Approach II from the matrix AAH . Some important
results regarding both approaches are summarized as follows.

• Results from Approach I. The nonnegative real numbers λ1, λ2, ..., λK are
identical to the positive square roots of the eigenvalues of the K×K matrix
AHA and the column vectors v1, v2, ..., vK of V are the corresponding
orthonormal eigenvectors. The positive real numbers λ1, λ2, ..., λr, together
with λr+1 = · · · = λK = 0 (since rank{A} = r), are called the singular
values of A, while the vectors v1, v2, ..., vK are called the right singular
vectors of A. With λm and vm computed from AHA, the column vectors
u1, u2, ..., ur in U are accordingly determined via (see (2.204))

(u1,u2, ...,ur) =

(
Av1

λ1
,
Av2

λ2
, ...,

Avr

λr

)
, (2.40)

while the remaining column vectors ur+1, ur+2, ..., uM (allowing some
choices) are chosen such that U is unitary. The vectors u1, u2, ..., uM are
called the left singular vectors of A.
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• Results from Approach II. The singular values λ1, λ2, ..., λM of A are
identical to the positive square roots of the eigenvalues of the M×M matrix
AAH and the left singular vectors u1, u2, ..., uM are the corresponding
orthonormal eigenvectors. With λm and um computed from AAH , the right
singular vectors v1, v2, ..., vr are accordingly determined via (see (2.213))

(v1,v2, ...,vr) =

(
AHu1

λ1
,
AHu2

λ2
, ...,

AHur

λr

)
, (2.41)

while the remaining right singular vectors vr+1,vr+2, ...,vK are chosen such
that V is unitary.

As a result, a matrix may have numerous forms of SVD [11, p. 309]. Moreover,
following the above-mentioned results, one can compute (by hand) the SVD
of an M ×K matrix A through the eigenvalues and orthonormal eigenvectors
of AHA or AAH , although it is generally not suggested for finite-precision
computation [10]. It is also important to note that the number of nonzero
singular values determines the rank of A, revealing that the SVD provides a
basis for practically determining the numerical rank of a matrix.

A special case of the SVD theorem is as follows.

Corollary 2.16 (Special Case of the SVD Theorem). Let A be an M ×
M Hermitian matrix with rank{A} = r and A is nonnegative definite. Then
the matrix A can be decomposed as

A = UΣUH =

r∑

m=1

λmumuH
m (2.42)

where Σ = diag{λ1, ..., λr, λr+1, ..., λM} is an M ×M diagonal matrix and
U = (u1,u2, ...,uM ) is an M ×M unitary matrix. The singular values λ1 ≥
· · · ≥ λr > λr+1 = · · · = λM = 0 are the eigenvalues of A and the singular
vectors u1, u2, ..., uM are the corresponding orthonormal eigenvectors.

The proof is left as an exercise (Problem 2.10). Comparing (2.42) with (2.34)
reveals that for a Hermitian matrix A, the SVD of A is equivalent to the
eigendecomposition of A.

2.2 Mathematical Analysis

This section briefly reviews the fundamentals of mathematical analysis, includ-
ing sequences, series, Hilbert spaces, vector spaces of sequences and functions,
and pays attention to the topic of Fourier series. Some of these topics need
the background of functions, provided in Appendix 2B.



2.2 Mathematical Analysis 27

2.2.1 Sequences

A sequence is regarded as a list of real or complex numbers in a definite order:

am, am+1, ..., an−1, an

where ak, k = m,m + 1, ..., n, are called the terms of the sequence. The
sequence is denoted by {ak}n

k=m or, briefly, {ak}. One should not confuse a
sequence {ak}n

k=m with a set {ak, k = m,m + 1, ..., n}; the order of ak is
meaningless for the latter. Moreover, a sequence {ak} is said to be an infinite
sequence if it has infinitely many terms. A natural concern about a one-sided
infinite sequence, {ak}∞k=1, is whether it converges or not, that is the topic to
be dealt with next.

Sequences of Numbers

A real or complex sequence {ak}∞k=1 is said to converge to a real or complex
number a if

lim
k→∞

ak = a, (2.43)

i.e. for every real number ε > 0 there exists an integer N such that

|ak − a| < ε for all k ≥ N (2.44)

where N is, in general, dependent on ε. If {ak} does not converge, it is called
a divergent sequence [12]. A sequence {ak} is said to be bounded if |ak| ≤ A
for all k where A is a positive constant. A real sequence {ak}∞k=1 is said to
be increasing (decreasing) or, briefly, monotonic if ak ≤ ak+1 (ak ≥ ak+1) for
all k, and is said to be strictly increasing (strictly decreasing) if ak < ak+1

(ak > ak+1) for all k. A theorem regarding monotonic sequences is as follows
[13, p. 61].

Theorem 2.17. If {ak}∞k=1 is a monotonic and bounded real sequence, then
{ak}∞k=1 converges.

The proof is left as an exercise (Problem 2.11).
From a sequence {ak}∞k=1, one can obtain another sequence, denoted by

{σn}∞n=1, composed of the arithmetic mean

σn =
a1 + a2 + · · · + an

n
. (2.45)

The arithmetic mean σn is also referred to as the nth Cesàro mean of the
sequence {an} [14]. A related theorem is stated as follows [15, p. 138].

Theorem 2.18. If a real or complex sequence {ak}∞k=1 is bounded and con-
verges to a real or complex number a, then the sequence of arithmetic mean
{σn}∞n=1 also converges to the number a where σn is defined as (2.45).
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The proof, again, is left as an exercise (Problem 2.12). When the sequence of
arithmetic means {σn} converges to a, we say that the original sequence {ak}
is Cesàro summable to a. Since the average operation in (2.45) may smooth
out occasional fluctuations in {ak}, it is expected that {σn}, in general, tends
to converge even if {ak} is divergent. An example is given as follows.

Example 2.19
Consider that ak = (−1)k. The sequence {ak}∞k=1 is bounded by 1, but it
diverges since ak = 1 for k even and ak = −1 for k odd. On the other hand,
the arithmetic mean σn = 0 for n even and σn = −1/n for n odd. This
indicates that limn→∞ σn = 0, namely, {ak} is Cesàro summable to zero.

�

Sequences of Functions

Now consider a sequence of real or complex functions, {ak(x)}∞k=1. Since ak(x)
is a function of x, the convergence of {ak(x)}∞k=1 may further depend on the
value of x.

The sequence {ak(x)}∞k=1 is said to converge pointwise to a real or complex
function a(x) on an interval [xL, xU] if

lim
k→∞

ak(x) = a(x) for every point x ∈ [xL, xU], (2.46)

i.e. for every real number ε > 0 and every point x ∈ [xL, xU] there exists an
integer N such that

|ak(x) − a(x)| < ε for all k ≥ N (2.47)

where N may depend on ε and x. When the integer N is independent of x,
{ak(x)}∞k=1 is said to converge uniformly to a(x) on the interval [xL, xU]. In
other words, a uniformly convergent sequence {ak(x)} exhibits similar local
behaviors of convergence for all x ∈ [xL, xU], as illustrated in Fig. 2.3.

Lx Ux
x

( )a x

( )a x ε−

( )a x ε+

( )ka x

Fig. 2.3 A uniformly convergent sequence {ak(x)}∞k=1 on an interval [xL, xU]
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It is important to emphasize that even if every ak(x) is a continuous func-
tion, a pointwise convergent sequence {ak(x)}∞k=1 may still converge to a dis-
continuous function a(x). The following example demonstrates this fact [13, p.
320], [16, p. 171].

Example 2.20
As shown in Fig. 2.4, the sequence {xk}∞k=1 converges pointwise to the function
a(x) on [0, 1] where

a(x) =

{
0, 0 ≤ x < 1,

1, x = 1.

That is, a(x) has a discontinuity at x = 1, although every function xk is
continuous on [0, 1].

�

x

( )a x

kx

2x

x

0 1

Fig. 2.4 Pointwise convergence of the sequence {xk}∞k=1 to a discontinuous func-
tion a(x) on [0, 1]

Unlike pointwise convergence, uniform convergence ensures continuity, as
the following theorem states [16, p. 174].

Theorem 2.21. If the sequence {ak(x)}∞k=1 converges uniformly to a function
a(x) on an interval [xL, xU] where every ak(x) is continuous on [xL, xU], then
the function a(x) must be continuous on [xL, xU].

We leave the proof as an exercise (Problem 2.13). Theorem 2.21 implies that
if every ak(x) is continuous but a(x) is discontinuous, then it is not possible
for the sequence {ak(x)} to converge uniformly to a(x).
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Example 2.22
Consider, again, the pointwise convergent sequence {xk}∞k=1 in Example 2.20.
According to Theorem 2.21, it is clear that {xk}∞k=1 is not uniformly conver-
gent on [0, 1] since a(x) has a discontinuity at x = 1.

�

2.2.2 Series

Closely related to a real or complex sequence {ak}n
k=m, a series is defined as∑n

k=m ak. The series
∑∞

k=1 ak is called a one-sided infinite sequence with the
nth partial sum defined as

sn =

n∑

k=1

ak, (2.48)

while the series
∑∞

k=−∞ ak is called a two-sided infinite sequence with the nth
partial sum defined as

sn =
n∑

k=−n

ak. (2.49)

Without loss of generality, we will only deal with the convergence of one-sided
infinite series for brevity.

Series of Numbers

A series
∑∞

k=1 ak is said to be convergent if the sequence of its partial sums,
{sn}∞n=1, converges to

s ,

∞∑

k=1

ak, (2.50)

i.e. limn→∞ sn = s where s is called the sum or value of the series. From
(2.48) and (2.50), it follows that if

∑∞
k=1 ak is convergent, then the following

condition always holds:

lim
n→∞

an = lim
n→∞

(sn − sn−1) = s− s = 0. (2.51)

Moreover, a series
∑∞

k=1 ak is said to be absolutely convergent if the series∑∞
k=1 |ak| is convergent.
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Tests for Divergence and Convergence

In using a series
∑∞

k=1 ak, it is important to know whether
∑∞

k=1 ak converges
or diverges. The condition given by (2.51) suggests a test as follows.

Theorem 2.23 (Divergence Test). Suppose
∑∞

k=1 ak is a real or complex
series to be tested. If the condition given by (2.51) is not satisfied, then the
series

∑∞
k=1 ak is divergent.

Since the condition given by (2.51) is only necessary, but not sufficient, for
convergence, it cannot be used for convergence testing. An example using the
divergence test is as follows.

Example 2.24 (Geometric Series)
The partial sum of the geometric series

∑∞
k=1 αr

k can be expressed as

sn =

n∑

k=1

αrk = αr
1 − rn

1 − r
.

If |r| < 1, then the geometric series converges with

lim
n→∞

sn =
αr

1 − r
.

On the other hand, if |r| ≥ 1, then limn→∞ αrn 6= 0 which does not satisfy
the condition given by (2.51), and thus the geometric series diverges.

�

The following test is useful for testing the convergence of a real series.

Theorem 2.25 (Integral Test). Suppose
∑∞

k=1 ak is a real series to be
tested where ak ≥ 0 for all k. Find a continuous, positive, and decreasing
function f(x) on [1,∞) such that f(k) = ak.

• If
∫∞
1 f(x)dx is finite, then the series

∑∞
k=1 ak is convergent.

• If
∫∞
1
f(x)dx is infinite, then the series

∑∞
k=1 ak is divergent.

The proof is left as an exercise (Problem 2.14). An example using the integral
test is as follows.

Example 2.26
To test the convergence of the real series

∑∞
k=1 1/k2, let f(x) = 1/x2. It is clear

that f(x) is continuous, positive, and decreasing on [1,∞) and f(k) = 1/k2.
By the integral test,

∫∞
1
f(x)dx = 1 implies that

∑∞
k=1 1/k2 converges.

�
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Series of Functions

Now consider a series
∑∞

k=1 ak(x) whose nth partial sum is given by

sn(x) =

n∑

k=1

ak(x) (2.52)

where ak(x) is a real or complex function of a real independent variable x. The
series

∑∞
k=1 ak(x) is said to converge pointwise to a real or complex function

s(x) if the sequence of its partial sums, {sn(x)}∞n=1, converges pointwise to
s(x), and is said to converge uniformly to s(x) if the sequence {sn(x)}∞n=1

converges uniformly to s(x).
According to the above-mentioned definitions, the convergence theory for

sequences of functions can similarly apply to series of functions. In partic-
ular, uniform convergence of series also implies pointwise convergence of se-
ries, but the converse may not be true. Moreover, a pointwise convergent se-
ries

∑∞
k=1 ak(x) may converge to a discontinuous function s(x), even if every

function ak(x) is continuous. And the following theorem directly follows from
Theorem 2.21.

Theorem 2.27. If the series
∑∞

k=1 ak(x) converges uniformly to a function
s(x) on an interval [xL, xU] where every ak(x) is continuous on [xL, xU], then
the function s(x) is also continuous on [xL, xU].

As a remark, let us emphasize that there is no connection between uniform
convergence and absolute convergence [4, p. 765].

Test for Uniform Convergence

The following test is most commonly used for testing the uniform convergence
of series.

Theorem 2.28 (Weierstrass M-Test). Suppose
∑∞

k=1 ak(x) is a real or
complex series to be tested on an interval [xL, xU]. If there exists a convergent
series

∑∞
k=1Mk such that each term Mk ≥ |ak(x)| for all x ∈ [xL, xU], then

the series
∑∞

k=1 ak(x) is uniformly and absolutely convergent on [xL, xU].

Since the proof is lengthy and can be found, for instance, in [13], it is omitted
here. An example using the Weierstrass M-test is provided as follows.

Example 2.29
Suppose

∑∞
k=1 e

jkx/k2 is the series to be tested on [−π, π). Because
∣∣ejkx/k2

∣∣ ≤
1/k2 for all x ∈ [−π, π) and

∑∞
k=1 1/k2 converges (see Example 2.26), by the

Weierstrass M-test, the series
∑∞

k=1 e
jkx/k2 is uniformly and absolutely con-

vergent on [−π, π).
�
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2.2.3 Hilbert Spaces, Sequence Spaces and Function Spaces

Hilbert Spaces

Consider a sequence of real or complex vectors, denoted by {an}∞n=1, in a
normed vector space V . The sequence {an}∞n=1 is said to converge in the norm
or, briefly, converge to a real or complex vector a ∈ V if

lim
n→∞

‖a− an‖ = 0. (2.53)

Convergence in the norm is also often referred to as convergence in the mean.
A sequence {an}∞n=1 in V is called a Cauchy sequence if for every real number
ε > 0 there exists an integer N such that

‖an − am‖ < ε for all n > m ≥ N. (2.54)

Regarding Cauchy sequences, we have the following related theorem, whose
proof is left as an exercise (Problem 2.15).

Theorem 2.30. Every convergent sequence in a norm vector space V is a
Cauchy sequence.

The converse of Theorem 2.30, however, may be true for some norm vector
spaces. If every Cauchy sequence in a norm vector space V converges to a
vector in V , then the normed vector space V is said to be complete. A complete
normed vector space is also referred to as a Banach space [17].

Definition 2.31 (Hilbert Space). A vector space V along with a legitimate
norm and a legitimate inner product is said to be a Hilbert space if the normed
vector space (i.e. V along with the legitimate norm) is complete and the inner
product can induce the norm.

As an example, the vector space RN (see Example 2.3) along with the
Euclidean norm and the Euclidean inner product is an N -dimensional Hilbert
space [5,14,18], which we also refer to as the N -dimensional Euclidean space
RN for convenience.

Sequence Spaces

Consider a real or complex sequence {an}∞n=1 which is bounded and satisfies

( ∞∑

n=1

|an|p
)1/p

<∞, for 1 ≤ p <∞. (2.55)

Let V be the set composed of all such sequences. Then, under the operations
of componentwise addition and scalar multiplication of sequences, the set V
can easily be shown to be a vector space (satisfying the axioms (VS1) through
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(VS8)). The vector space V is a sequence space, commonly referred to as the
`p space or, briefly, `p [5, 13, 17, 18].

For notational simplicity, let a = (a1, a2, ..., an, ...)
T denote a vector cor-

responding to {an}∞n=1 ∈ `p. The inner product of sequences {an}∞n=1 and
{bn}∞n=1 ∈ `p is defined as

〈a,b〉 =

∞∑

n=1

anb
∗
n, (2.56)

while the `p norm of {an}∞n=1 ∈ `p is defined as

‖a‖p =





( ∞∑

n=1

|an|p
)1/p

, for 1 ≤ p <∞

sup
n=1,2,...

{|an|} , for p = ∞
(2.57)

where the notation ‘sup’ stands for the least upper bound or the supremum
of a set of real numbers.5 From (2.56) and (2.57), it follows that only the
`2 norm (i.e. p = 2) can be induced from (2.56). Furthermore, the `2 space
along with the inner product defined as (2.56) and the `2 norm is known as
an infinite-dimensional Hilbert space [14, p. 75]. As such, in what follows, the
`2 space always refers to this Hilbert space for convenience.

Moreover, for ease of later use, we restate the Cauchy–Schwartz inequality
in terms of two-sided sequences as follows.

Theorem 2.32 (Cauchy–Schwartz Inequality). Suppose {an}∞n=−∞ and
{bn}∞n=−∞ are real or complex nonzero sequences with

∑∞
n=−∞ |an|2 <∞ and∑∞

n=−∞ |bn|2 <∞. Then

∣∣∣∣∣

∞∑

n=−∞
anb

∗
n

∣∣∣∣∣ ≤
( ∞∑

n=−∞
|an|2

)1/2( ∞∑

n=−∞
|bn|2

)1/2

(2.58)

and the equality holds if and only if an = αbn for all n where α 6= 0 is an
arbitrary real or complex scalar.

Also with regard to two-sided sequences, the following inequality is useful in
development of blind equalization algorithms [19, 20].

Theorem 2.33. Suppose {an}∞n=−∞ is a real or complex nonzero sequence
with

∑∞
n=−∞ |an|s <∞ where s is an integer and 1 ≤ s <∞. Then

5 One should not confuse “supremum” with “maximum.” A set which is bounded
above has a supremum, but may not have a maximum (the largest element of the
set) [12, p. 16]. For instance, the set {1 − (1/n), n = 1 ∼ ∞} has a supremum
equal to one, but does not have any maximum.
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( ∞∑

n=−∞
|an|l

)1/l

≤
( ∞∑

n=−∞
|an|s

)1/s

(2.59)

and the equality holds if and only if an has only one nonzero term where l is
an integer and l > s.

See Appendix 2C for the proof.

Function Spaces

Consider a real or complex functions f(x) which is bounded and satisfies

(∫ xU

xL

|f(x)|pdx
)1/p

, for 1 ≤ p <∞. (2.60)

Then the set of all such functions forms a function space (a vector space) under
the operations of pointwise addition and scalar multiplication of functions.
The function space is commonly referred to as the Lp[xL, xU] space or, briefly,
Lp[xL, xU] [5, 13, 17, 18].

Define the inner product of functions f(x) and g(x) ∈ Lp[xL, xU] as

〈f, g〉 =

∫ xU

xL

f(x)g(x)∗dx (2.61)

and the Lp norm of f(x) ∈ Lp[xL, xU] as

‖f‖p =

(∫ xU

xL

|f(x)|pdx
)1/p

, for 1 ≤ p <∞. (2.62)

Only the L2 norm (p = 2) can be induced from (2.61). More importantly,
due to the operation of integration in (2.62), ‖f‖2 = 0 merely implies that
f(x) = 0 almost everywhere on [xL, xU], that is, f(x) may not be identically
zero on a set of points on which the integration is “negligible.” 6 From this,
it follows that the inner product defined as (2.61) does not satisfy the axiom
(IPS3) and the L2 norm does not satisfy the axiom (NVS3). To get around
this difficulty, we adopt the following convention: ‖f‖2 = 0 implies that f(x)
is a zero function, i.e. f(x) = 0 for all x ∈ [xL, xU]. With this convention,
the L2[xL, xU] space along with the inner product defined as (2.61) and the
L2 norm is also known as an infinite-dimensional Hilbert space [18, p. 193].
In what follows, the L2[xL, xU] space always refers to this Hilbert space for
convenience.

Moreover, the Cauchy–Schwartz inequality described in Theorem 2.1 is
applicable to the L2[xL, xU] space, that is restated here in terms of functions
with the above convention.
6 The set of points on which integration is “negligible” is called a set of measure

zero [13,14].
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Theorem 2.34 (Cauchy–Schwartz Inequality). Suppose f(x) and g(x)
are real or complex nonzero functions on [xL, xU] with

∫ xU

xL
|f(x)|2dx < ∞

and
∫ xU

xL
|g(x)|2dx <∞. Then

∣∣∣∣
∫ xU

xL

f(x)g(x)∗dx

∣∣∣∣ ≤
{∫ xU

xL

|f(x)|2dx
}1/2{∫ xU

xL

|g(x)|2dx
}1/2

(2.63)

and the equality holds if and only if f(x) = αg(x) for all x ∈ [xL, xU] where
α 6= 0 is an arbitrary real or complex scalar.

Approximations in Function Spaces

Let us emphasize that any function in L2[xL, xU] is actually viewed as a
vector in the vector space. As such, convergence for a sequence of functions
in L2[xL, xU] means convergence in the norm for a sequence of vectors, that
is closely related to the problem of minimum mean-square-error (MMSE)
approximation in L2[xL, xU] as revealed below.

Let {φ1(x), φ2(x), ..., φn(x)} be a set of real or complex orthogonal func-
tions in L2[xL, xU] where

∫ xU

xL

φk(x)φ∗m(x)dx =

{
Eφ, k = m,

0, k 6= m.
(2.64)

Given a real or complex function f(x) ∈ L2[xL, xU], let us consider the prob-
lem of approximating the nth partial sum

sn(x) =

n∑

k=−n

θkφk(x) (2.65)

to the function f(x) in the MMSE sense, i.e. finding the optimal parameters
θ−n, θ−n+1, ..., θn such that the following mean-square-error (MSE) is mini-
mum:

JMSE(θk) =

∫ xU

xL

|f(x) − sn(x)|2 dx. (2.66)

By substituting (2.65) into (2.66) and using (2.64), we obtain
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JMSE(θk) =

∫ xU

xL

|f(x)|2dx+ Eφ

n∑

k=−n

|θk|2

−
n∑

k=−n

[
θ∗k

∫ xU

xL

f(x)φ∗k(x)dx + θk

∫ xU

xL

f∗(x)φk(x)dx

]

=

∫ xU

xL

|f(x)|2dx+ Eφ

n∑

k=−n

∣∣∣∣∣θk − 1

Eφ

∫ xU

xL

f(x)φ∗k(x)dx

∣∣∣∣∣

2

− Eφ

n∑

k=−n

∣∣∣∣∣
1

Eφ

∫ xU

xL

f(x)φ∗k(x)dx

∣∣∣∣∣

2

.

This implies that the optimal θk, denoted by θ̂k, is given by

θ̂k =
1

Eφ

∫ xU

xL

f(x)φ∗k(x)dx for k = −n,−n+ 1, ..., n, (2.67)

and the corresponding minimum value of JMSE(θk) is given by

min{JMSE(θk)} =

∫ xU

xL

|f(x)|2dx− Eφ

n∑

k=−n

|θ̂k|2. (2.68)

Since (2.68) holds for any n and JMSE(θk) ≥ 0 (see (2.66)), letting n → ∞
leads to the following inequality.

Theorem 2.35 (Bessel’s Inequality). Suppose {φ1(x), φ2(x), ..., φn(x)} is
a set of real or complex orthogonal functions in L2[xL, xU]. If f(x) is a real
or complex function in L2[xL, xU], then optimal approximation of the series∑∞

k=−∞ θkφk(x) to f(x) in the MMSE sense gives

∞∑

k=−∞
|θ̂k|2 ≤ 1

Eφ

∫ xU

xL

|f(x)|2dx <∞ (2.69)

where θ̂k is the optimal θk and Eφ =
∫ xU

xL
|φk(x)|2dx.

From (2.66) and (2.62), it follows that when the sequence of functions
{sn(x)}∞n=1 converges in the norm to f(x) ∈ L2[xL, xU],

lim
n→∞

‖f − sn‖2 = lim
n→∞

√
JMSE(θ̂k) = 0. (2.70)

Correspondingly, Bessel’s inequality (2.69) becomes the equality

∞∑

k=−∞
|θ̂k|2 =

1

Eφ

∫ xU

xL

|f(x)|2dx, (2.71)

which is known as Parseval’s equality or Parseval’s relation. Owing to (2.70),
convergence in the norm for the L2[xL, xU] space is also referred to as conver-
gence in the mean-square (MS) sense.
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2.2.4 Fourier Series

Fourier series are of great importance in developing the theory of mathemat-
ical analysis, and have widespread applications in the areas of science and
engineering such as signal representation and analysis in signal processing.

Consider that f(x) is a periodic function with period 2π. When f(x) is
real, the Fourier series of f(x) is given by

f(x) =
a0

2
+

∞∑

k=1

(ak cos kx+ bk sin kx) (2.72)

where ak and bk are given by

ak =
1

π

∫ π

−π

f(x) cos(kx)dx, k = 0, 1, 2, ... (2.73)

bk =
1

π

∫ π

−π

f(x) sin(kx)dx, k = 1, 2, ... (2.74)

The real numbers ak and bk are called the Fourier coefficients of f(x). Note
that {1, coskx, sin kx, k = 1 ∼ ∞} is a set of orthogonal functions satisfying
(2.64) (Eφ = π). From (2.73) and (2.74), one can see that if f(x) is odd, then
ak = 0 for all k; whereas if f(x) is even, bk = 0 for all k. On the other hand,
when f(x) is complex, the Fourier series of f(x) is given by

f(x) =

∞∑

k=−∞
cke

jkx (2.75)

where ck, a Fourier coefficient of f(x), is a complex number given by

ck =
1

2π

∫ π

−π

f(x)e−jkxdx. (2.76)

Note that {ejkx, k = −∞ ∼ ∞} is also a set of orthogonal functions satisfying
(2.64) (Eφ = 2π).

Next, let us discuss the existence of Fourier series. In particular, we are
concerned with the sufficient conditions under which the Fourier series given
by (2.75) converges.

Local Behavior of Convergence

With the nth partial sum defined as

sn(x) =
n∑

k=−n

cke
jkx, (2.77)

the convergence problem of the Fourier series given by (2.75) is the same as
that of the sequence {sn(x)}∞n=1.



2.2 Mathematical Analysis 39

Pointwise Convergence

It was believed, for a long time, that if the periodic function f(x) is continuous,
then the Fourier series would converge to f(x) for all x ∈ [−π, π) (i.e. pointwise
convergence). Actually, there do exist continuous periodic functions whose
Fourier series diverge at a given point or even everywhere; see [14, pp. 83–
87] for an example of such functions. This implies that pointwise convergence
requires some additional conditions on f(x) as follows [18].

Theorem 2.36 (Pointwise Convergence Theorem). Suppose f(x) is a
real or complex periodic function of period 2π. Then, under the conditions
that (i) f(x) is piecewise continuous on [−π, π) and (ii) the derivative f ′(x)
is piecewise continuous on [−π, π), the Fourier series of f(x) given by (2.75)
is pointwise convergent and

lim
n→∞

sn(x) =
f(x−) + f(x+)

2
for all x ∈ [−π, π) (2.78)

where sn(x) is the corresponding nth partial sum given by (2.77), and f(x−)
and f(x+) are the left-hand limit and the right-hand limit of f(x), respectively.

See Appendix 2B for a review of terminologies of functions and see Appendix
2D for the proof of this theorem. From this theorem and (2.219), it follows that
the Fourier series converges to f(x) at the points of continuity and converges
to [f(x−)+f(x+)]/2 at the points of discontinuity. Note that Theorem 2.36 is
only a special case of the Dirichlet Theorem, for which the required conditions
are known as the Dirichlet conditions [21, 22].7

Uniform Convergence

By using the Weierstrass M-test, we have the following theorem for uniform
and absolute convergence of the Fourier series (Problem 2.17).

Theorem 2.37. Suppose {ck}∞k=−∞ is any absolutely summable sequence, i.e.∑∞
k=−∞ |ck| < ∞. Then the Fourier series

∑∞
k=−∞ cke

jkx converges uni-
formly and absolutely to a continuous function of x on [−π, π).

Moreover, by using the Weierstrass M-test and the pointwise convergence
theorem with more restrictive conditions on f(x), we have another theorem
regarding the uniform and absolute convergence [18, pp. 216–218].

Theorem 2.38. Suppose f(x) is a real or complex periodic function of period
2π. Then, under the conditions that (i) f(x) is continuous on [−π, π) and (ii)
the derivative f ′(x) is piecewise continuous on [−π, π), the Fourier series of
f(x) given by (2.75) converges uniformly and absolutely to f(x) on [−π, π).

See Appendix 2E for the proof.

7 The Dirichlet theorem due to P. L. Dirichlet (1829) was the first substantial
progress on the convergence problem of Fourier series [13].
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Global Behavior of Convergence

The Fourier series given by (2.75) is said to converge in the mean-square (MS)
sense to f(x) if

lim
n→∞

∫ π

−π

|f(x) − sn(x)|2 dx = 0 (2.79)

where sn(x) is the nth partial sum given by (2.77). Accordingly, with MS
convergence, we can only get an overall picture about the convergence behavior
over the entire interval. It reveals nothing about the detailed behavior of
convergence at any point.

Recall that if f(x) is in the L2[−π, π) space, then MS convergence is equiv-
alent to convergence in the norm. Correspondingly, Parseval’s relation

∞∑

n=−∞
|ck|2 =

1

2π

∫ π

−π

|f(x)|2dx <∞ (2.80)

holds and thus the sequence {ck}∞k=−∞ is square summable. The converse is
stated in the following theorem (Problem 2.18).

Theorem 2.39. Suppose {ck}∞k=−∞ is any square summable sequence, i.e.∑∞
k=−∞ |ck|2 < ∞. Then the Fourier series

∑∞
k=−∞ cke

jkx converges in the
MS sense to a function in the L2[−π, π) space.

Furthermore, a more generalized theorem regarding the MS convergence
is provided as follows. The proof is beyond the scope of this book; the reader
can find it in [13, pp. 411–414] for the real case and [14, pp. 76–80] for the
complex case.

Theorem 2.40. Suppose f(x) is a real or complex periodic function of period
2π. If the function f(x) is bounded and integrable on [−π, π), then the Fourier
series of f(x) given by (2.75) converges in the MS sense to f(x) on [−π, π).

Compared with local convergence (pointwise convergence and uniform conver-
gence), global convergence (MS convergence) requires even weaker conditions
on the function f(x) or the sequence {ck}∞k=−∞ and so the existence of Fourier
series is almost not an issue in practice.

Fourier Series of Generalized Functions

In some cases, we may need to deal with functions which are outside the
ordinary scope of function theory. An important class of such functions is
the one of generalized functions introduced by G. Temple (1953) [23]. Among
this class, a representative is the so-called impulse or Dirac delta function,
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commonly denoted by δ(x).8 It is mathematically defined by the following
relations

{
δ(x) = 0 for x 6= 0,
∫∞
−∞ δ(x)dx = 1,

(2.81)

and possesses the following sifting property:

∫ ∞

−∞
δ(x − τ)f(x)dx = f(τ). (2.82)

Strictly speaking, a periodic function like

f(x) =

∞∑

m=−∞
2πδ(x+ 2πm) (2.83)

does not have a Fourier series. But, using (2.76) and (2.82), we can still math-
ematically define the Fourier series of f(x) as

f(x) =

∞∑

k=−∞
ejkx (i.e. ck = 1 for all k) (2.84)

and make use of this in many applications. In other words, the theory of
Fourier series should be broadened for more extensive applications. The ex-
tended theory of Fourier series is, however, beyond the scope of this book;
refer to [23, 24] for the details.

2.3 Optimization Theory

Consider that J(θ) is a real function of the L× 1 vector

θ = (θ1, θ2, ..., θL)T (2.85)

where θ1, θ2, ..., θL are real or complex unknown parameters to be determined.
An optimization problem is to find (search for) a solution for θ which min-
imizes or maximizes the function J(θ), referred to as the objective function.
There are basically two types of optimization problems, constrained optimiza-
tion problems and unconstrained optimization problems [12, 25, 26]. As the
names indicate, the former type is subject to some constraints (e.g. equal-
ity constraints and inequality constraints), whereas the latter type does not
involve any constraint. In the scope of the book, we are interested in un-
constrained optimization problems, which along with the related theory are
introduced in this section.

8 The notation ‘δ(x)’ for Dirac delta function was first used by G. Kirchhoff, and
then introduced into quantum mechanics by Dirac (1927) [23].
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2.3.1 Vector Derivatives

As we will see, finding the solutions to the minima or maxima of the objective
function J(θ) often involves manipulations of the following first derivative
(with respect to θ∗)

∂f(θ)

∂θ∗ =

(
∂f(θ)

∂θ∗1
,
∂f(θ)

∂θ∗2
, ...,

∂f(θ)

∂θ∗L

)T

(2.86)

where f(θ) is an arbitrary real or complex function of θ and ∂f(θ)/∂θ∗k is the
first partial derivative of f(θ) with respect to the conjugate parameter θ∗k.9

However, the first derivative ∂f(θ)/∂θ∗, or equivalently the operator

∂

∂θ∗ =

(
∂

∂θ∗1
,
∂

∂θ∗2
, ...,

∂

∂θ∗L

)T

, (2.87)

depends on whether θ is real or complex, as discussed below.

Derivatives with Respect to a Real Vector

When θ is real, applying the operator ∂/∂θ∗ to θT yields

∂θT

∂θ∗ =
∂θT

∂θ
=




∂θ1

∂θ1

∂θ2

∂θ1
· · · ∂θL

∂θ1
∂θ1

∂θ2

∂θ2

∂θ2
· · · ∂θL

∂θ2
...

...
. . .

...

∂θ1

∂θL

∂θ2

∂θL
· · · ∂θL

∂θL




= I, (2.88)

which is useful to the derivation of ∂f(θ)/∂θ. In particular, if f(θ) = bT θ =
θT b where the vector b is independent of θ, then

∂f(θ)

∂θ
=

(
∂θT

∂θ

)
b = Ib = b. (2.89)

Moreover, if f(θ) = θT b(θ) where the vector b(θ) = Aθ, then

∂f(θ)

∂θ
=

(
∂θT

∂θ

)
b(θ) +

∂bT (θ)

∂θ
θ =

(
∂θT

∂θ

)
Aθ +

(
∂θT

∂θ

)
AT θ

= IAθ + IAT θ = (A + AT )θ, (2.90)

which reduces to ∂f(θ)/∂θ = 2Aθ when A is symmetric.

9 Although utilization of ∂f(θ)/θ∗ and that of ∂f(θ)/θ both lead to the same
solutions for the optimization problems, Brandwood [27] has pointed out that
the former gives rise to a slightly neater expression and thus is more convenient.
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Derivatives with Respect to a Complex Vector

Now consider the case that θ = (θ1, θ2, ..., θL)T is complex, i.e.

θk = xk + jyk, k = 1, 2, ..., L, (2.91)

where xk = Re{θk} is the real part of θk and yk = Im{θk} is the imaginary
part of θk. Naturally, one can derive ∂f(θ)/∂θ∗k in terms of xk and yk. Al-
ternatively, direct derivation of ∂f(θ)/∂θ∗k (without involving xk and yk) is
more appealing, but special care should be taken for the following reason. In
conventional complex-variable theory, if f(θ) cannot be expressed in terms of
only θk (i.e. it also consists of θ∗k), then it is nowhere differentiable by θk and
we say that f(θ) is not analytic [28]. The analytic problem, however, can be
resolved by simply treating f(θ) ≡ f(θ,θ∗) as a function of 2L independent
variables θ1, θ2, ..., θL, θ

∗
1 , θ

∗
2 , ..., θ

∗
L [27]; see the following illustration.

Example 2.41
Consider the function f(θ) = θ∗ where θ = x + jy, and x and y are real.
According to the conventional complex-variable theory, the first derivative of
f(θ) with respect to θ is given by [28]

df(θ)

dθ
= lim

∆θ→0

f(θ + ∆θ) − f(θ)

∆θ
= lim

∆θ→0

∆θ∗

∆θ
.

As illustrated in Fig. 2.5, if ∆θ approaches zero along the real axis, i.e. ∆θ =
∆x→ 0, then df(θ)/dθ = 1. If ∆θ approaches zero along the imaginary axis,
i.e. ∆θ = j∆y → 0, then df(θ)/dθ = −1. As a result, there is no way to assign
a unique value to df(θ)/dθ, and thus f(θ) is not differentiable. On the other
hand, by treating f(θ) ≡ f(θ, θ∗) as a function of independent variables θ and
θ∗, we obtain ∂f(θ, θ∗)/∂θ = 0 and ∂f(θ, θ∗)/∂θ∗ = 1. That is, f(θ, θ∗) is
differentiable with respect to θ and θ∗ independently.

�

With the treatment of independent variables θk and θ∗k, we now proceed
to derive the partial derivative ∂f(θ)/∂θ∗k. From (2.91), it follows that

xk =
1

2
(θk + θ∗k) and yk =

1

2j
(θk − θ∗k). (2.92)

Differentiating xk and yk given by (2.92) with respect to θk and θ∗k yields

∂xk

∂θk
=

1

2
,

∂xk

∂θ∗k
=

1

2
,

∂yk

∂θk
=

1

2j
, and

∂yk

∂θ∗k
= − 1

2j
. (2.93)

This, together with the chain rule [29], leads to

∂f(θ)

∂θk
=
∂f(θ)

∂xk

∂xk

∂θk
+
∂f(θ)

∂yk

∂yk

∂θk
=

1

2

{
∂f(θ)

∂xk
− j

∂f(θ)

∂yk

}
(2.94)
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Fig. 2.5 Illustration of ∆θ approaching zero along the real and imaginary axes

and

∂f(θ)

∂θ∗k
=
∂f(θ)

∂xk

∂xk

∂θ∗k
+
∂f(θ)

∂yk

∂yk

∂θ∗k
=

1

2

{
∂f(θ)

∂xk
+ j

∂f(θ)

∂yk

}
. (2.95)

From (2.91), (2.94) and (2.95), it is clear that

∂θ∗k
∂θk

=
∂θk

∂θ∗k
= 0 and

∂θk

∂θk
=
∂θ∗k
∂θ∗k

= 1. (2.96)

By (2.96), we have

∂θH

∂θ∗ = I and
∂θT

∂θ∗ = 0, (2.97)

which, again, are useful to the derivation of ∂f(θ)/∂θ∗. In particular, if f(θ) =
bHθ where b is independent of θ, then ∂f(θ)/θ∗ = 0, and if f(θ) = θHb,
then

∂f(θ)

∂θ∗ =

(
∂θH

∂θ∗

)
b = b. (2.98)

If f(θ) = θHAθ, then

∂f(θ)

∂θ∗ =

(
∂θH

∂θ∗

)
Aθ +

(
∂θT

∂θ∗

)(
θHA

)T

= Aθ (by (2.97)). (2.99)

Table 2.1 summarizes the vector derivatives for both real and complex cases.
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Table 2.1 Summary of vector derivatives

Real Case Complex Case

∂θ
T

∂θ
= I

∂θ
H

∂θ
∗

= I and
∂θ

T

∂θ
∗

= 0

f(θ) θT b bT θ θT Aθ f(θ) θHb bHθ θHAθ

∂f(θ)

∂θ
b b (A + AT )θ

∂f(θ)

∂θ
∗

b 0 Aθ

2.3.2 Necessary and Sufficient Conditions for Solutions

From the foregoing discussions, we note that when the unknown parameter
vector θ = (θ1, θ2, ..., θL)T is complex, it is also more convenient to treat the
real objective function J(θ) ≡ J(θ,θ∗) as a function of independent variables
θk and θ∗k. As such, for notational convenience, let us reformulate the above-
mentioned optimization problem into the equivalent problem of minimizing
or maximizing the real objective function J(ϑ) where ϑ is the real or complex
unknown parameter vector defined as

{
ϑ = (ϑ1, ϑ2, ..., ϑL)T = θ for real θ,

ϑ = (ϑ1, ϑ2, ..., ϑ2L)T = (θT ,θH)T for complex θ.
(2.100)

Several terminologies regarding J(ϑ) are introduced as follows.
The objective function J(ϑ) is said to have a local minimum or a relative

minimum at the solution point ϑ̂ if there exists a real number ε > 0 such that

J(ϑ̂) ≤ J(ϑ) for all ϑ satisfying ‖ϑ − ϑ̂‖ < ε. (2.101)

The objective function J(ϑ) is said to have a global minimum or an absolute

minimum at the solution point ϑ̂ if

J(ϑ̂) ≤ J(ϑ) for all ϑ. (2.102)

Similarly, the objective function J(ϑ) is said to have a local maximum or a

relative maximum at the solution point ϑ̂ if there exists a real number ε > 0
such that

J(ϑ̂) ≥ J(ϑ) for all ϑ satisfying ‖ϑ − ϑ̂‖ < ε, (2.103)

and have a global maximum or an absolute maximum at the solution point ϑ̂

if

J(ϑ̂) ≥ J(ϑ) for all ϑ. (2.104)
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Fig. 2.6 Illustration of the solution points for the problem of minimizing J(ϑ)
where ϑ is real

In other words, a global minimum (maximum) of J(ϑ) is also a local minimum
(maximum) of J(ϑ). Figure 2.6 gives an illustration of these definitions.

Define the gradient vector, or simply the gradient, as10

∇J(ϑ) =
∂J(ϑ)

∂ϑ∗ (2.105)

(the physical meaning will be discussed later), where

∂J(ϑ)

∂ϑ∗ =





∂J(θ)

∂θ
for real θ,



[
∂J(θ)

∂θ∗

]T

,

[
∂J(θ)

∂θ

]T



T

for complex θ.

(2.106)

A necessary condition for the local extrema (local minima or maxima) of J(ϑ)
is as follows [26, p. 73].

Theorem 2.42 (Necessary Condition). If the objective function J(ϑ) has

an extremum at ϑ = ϑ̂ and if its first derivative ∂J(ϑ)/∂ϑ∗ exists at ϑ = ϑ̂,
then its gradient

10 The gradient ∇J(ϑ) defined as (2.105) is the same as that defined in [8, p. 894]
except for a scale factor.
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∇J(ϑ̂) , ∇J(ϑ)
∣∣∣
ϑ = ϑ̂

= 0. (2.107)

The proof is left as an exercise (Problem 2.19). When ϑ̂ satisfies (2.107), it is

said to be a stationary point of J(ϑ). Furthermore, a stationary point ϑ̂ is said
to be a saddle point of J(ϑ) if it corresponds to a local minimum of J(ϑ) with
respect to one direction on the hypersurface of J(ϑ) and a local maximum of
J(ϑ) with respect to another direction [12, 26, 30]. In other words, a saddle
point of J(ϑ) corresponds to an unstable equilibrium of J(ϑ), and thus it will
typically not be obtained by optimization methods.

Example 2.43 (Saddle Point)
Consider the objective function J(ϑ) = J(ϑ1, ϑ2) = −ϑ2

1 + ϑ2
2 where ϑ =

(ϑ1, ϑ2)
T , and ϑ1 and ϑ2 are real. Taking the first derivative of J(ϑ) with

respect to ϑ∗ (= ϑ)

∂J(ϑ)

∂ϑ
=

(
∂J(ϑ)/∂ϑ1

∂J(ϑ)/∂ϑ2

)
=

(
−2ϑ1

2ϑ2

)

and setting the result to zero, we obtain the stationary point ϑ̂ = (ϑ̂1, ϑ̂2)
T =

(0, 0)T . Figure 2.7 depicts the objective function J(ϑ1, ϑ2) and the station-

ary point (ϑ̂1, ϑ̂2) = (0, 0). One can see from this figure that the function

J(ϑ1, ϑ̂2) = J(ϑ1, 0) = −ϑ2
1 has a local maximum at ϑ1 = ϑ̂1 = 0, and the

function J(ϑ̂1, ϑ2) = J(0, ϑ2) = ϑ2
2 has a local minimum at ϑ2 = ϑ̂2 = 0. This

reveals that the stationary point (ϑ̂1, ϑ̂2) = (0, 0) is a saddle point.
�

Let us emphasize that a stationary point may correspond to a local mini-
mum point, a local maximum point, a saddle point, or a point of some other
exotic category [12, pp. 217, 218]. Some categories of stationary points may
be recognized by inspecting the Hermitian matrix

J2(ϑ) ,
∂

∂ϑ

[
∂J(ϑ)

∂ϑ

]T

=
∂

∂θ

[
∂J(θ)

∂θ

]T

(2.108)

for real θ, or the Hermitian matrix

J2(ϑ) ,
∂

∂ϑ∗

[
∂J(ϑ)

∂ϑ∗

]H

=




∂

∂θ∗

[
∂J(θ)

∂θ∗

]H
∂

∂θ∗

[
∂J(θ)

∂θ

]H

∂

∂θ

[
∂J(θ)

∂θ∗

]H
∂

∂θ

[
∂J(θ)

∂θ

]H




(2.109)

for complex θ, where the matrix J2(ϑ) is referred to as the Hessian matrix
of J(ϑ). In particular, the local minimum points and local maximum points
can be recognized by virtue of the Hessian matrix, as stated in the following
theorem.
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Fig. 2.7 Illustration of saddle point

Theorem 2.44 (Sufficient Conditions). Suppose ϑ̂ is a stationary point
of the objective function J(ϑ). If the Hessian matrix

J2(ϑ̂) , J2(ϑ)
∣∣∣
ϑ = ϑ̂

(2.110)

is positive definite (negative definite), then ϑ̂ corresponds to a local minimum
(a local maximum) of J(ϑ).

This theorem can be proved by virtue of the following Taylor series for J(ϑ)

at ϑ = ϑ̂: (refer to [26, p. 71] for the real case)

J(ϑ) = J(ϑ̂) + (ϑ − ϑ̂)H∇J(ϑ̂) +
1

2
(ϑ − ϑ̂)HJ2(ϑ̂)(ϑ − ϑ̂) + · · · (2.111)

We leave the proof of this theorem as an exercise (Problem 2.20).

2.3.3 Gradient-Type Optimization Methods

There are numerous types of optimization techniques available for solving
the unconstrained optimization problem, among which we are interested in
gradient-type methods for their efficiency as well as their wide scope of appli-
cations. Without loss of generality, we will introduce gradient-type methods
in terms of the minimization problem of J(ϑ) because maximization of J(ϑ)
is equivalent to minimization of −J(ϑ).
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Iterative Procedure of Gradient-Type Methods

Let ϑ̂ denote a (local) minimum point of J(ϑ). Gradient-type methods are,

in general, based on the following iterative procedure for searching for ϑ̂.

(S1) Set the iteration number i = 0.

(S2) Choose an appropriate initial condition ϑ[0] for ϑ̂ and an appropriate
initial search direction d[0].

(S3) Generate a new approximation to ϑ̂ via

ϑ[i+1] = ϑ[i] − µ[i]d[i] (2.112)

where µ[i] > 0 is the step size which should be determined appropriately
to make sure of the movement along the direction of a (local) minimum
of J(ϑ).

(S4) Check the convergence of the procedure. If the procedure has not yet
converged, then go to Step (S5); otherwise, obtain a (local) minimum

point as ϑ̂ = ϑ[i+1] and stop the procedure.
(S5) Find a new search direction d[i+1] which points towards a (local) mini-

mum of J(ϑ) in general.
(S6) Update the iteration number i by (i+ 1) and go to Step (S3).

This procedure is also depicted in Fig. 2.8 for clarity.
In Step (S3) of the iterative procedure, determination of the step size

µ[i] can be formulated into the problem of finding the parameter µ which
minimizes the objective function f(µ) , J(ϑ[i] − µd[i]) (by (2.112)). Accord-
ingly, this problem can be solved by using the class of one-dimensional (1-D)
minimization methods such as the 1-D Newton method (also known as the
Newton–Raphson method), the 1-D quasi-Newton method, and so on [26]. Al-
ternatively, the step size µ[i] can be simply chosen as the value of µ0/2

k for a
preassigned positive real number µ0 and a certain (positive or negative) inte-

ger k such that J(ϑ[i] − (µ0/2
k)d[i]) < J(ϑ[i]). In Step (S4), the convergence

criterion
∣∣∣∣∣
J(ϑ[i]) − J(ϑ[i+1])

J(ϑ[i])

∣∣∣∣∣ ≤ ζ (2.113)

can be used for testing the convergence of the iterative procedure where ζ is a
small positive constant. Of course, other types of convergence criteria can also
be applied. In Step (S5), the way of finding a new search direction d[i+1] de-
termines substantially the efficiency of gradient-type methods and thus leads
to the main differences between the existing gradient-type methods. As indi-
cated by the name “gradient-type method,” the update of d[i+1] involves the
gradient ∇J(ϑ[i+1]) and in some cases the Hessian matrix J2(ϑ

[i+1]). Note
that the gradient-type methods that require only the gradient are referred
to as first-order methods, while those requiring both the gradient and the
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Fig. 2.8 Flow chart for the iterative procedure of gradient-type methods

Hessian matrix are referred to as second-order methods. As a final remark, all
gradient-type methods are only guaranteed to find local minimum solutions
due to the local property of the gradient nature.

Overview of Existing Gradient-Type Methods

Among the existing gradient-type methods for minimization of J(ϑ), the sim-
plest is the so-called steepest descent method, which belongs to the category of
first-order methods and is extremely important from a theoretical viewpoint.
Convergence of the steepest descent method is more or less insensitive to the
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initial condition ϑ[0], but the convergence rate is excessively slow in the vicin-
ity of minimum solution points [31, p. 91], thereby limiting its application
scope. On the other hand, a well-known second-order method, the Newton
method, exhibits a rather fast convergence rate in the vicinity of minimum
solution points. The Newton method, however, requires the initial condition
ϑ[0] to be sufficiently close to any one of the minimum solution points for con-
vergence, and also requires the inverse Hessian matrix J−1

2 (ϑ), whose compu-
tational complexity is in general quite high. To overcome the initial-condition
problem of the Newton method, the Marquardt method, a combination of the
steepest descent method and the Newton method, tries to share the merits
of both methods. It performs as the steepest descent method at first and
then performs as the Newton method when a minimum solution point is ap-
proached. Obviously, like the Newton method, the Marquardt method is a
second-order method and also suffers from the problem of high computational
complexity.

The motivation for reducing the computational complexity of Newton
method further leads to the family of quasi-Newton methods. The idea behind
quasi-Newton methods is to approximate either the Hessian matrix J2(ϑ) or
its inverse J−1

2 (ϑ) in terms of the gradient ∇J(ϑ). Clearly, quasi-Newton
methods also belong to the category of first-order methods. A representa-
tive which approximates J2(ϑ) iteratively is the Broyden–Fletcher–Goldfarb–
Shanno (BFGS) method, while a representative which approximates J−1

2 (ϑ)
iteratively is the Davidon–Fletcher–Powell (DFP) method. Known as the best
quasi-Newton method, the BFGS method performs initially as the steepest
descent method and then (after a number of iterations) performs as the New-
ton method. Our experience of computer simulation shows that the BFGS
method is very efficient and numerically stable, and thus has been used for
the simulation examples in this book. Next, let us give the detailed descrip-
tions of some selected gradient-type methods, namely, the steepest descent
method, the Newton method and the BFGS method.

Steepest Descent Method

At iteration i, the steepest descent method11 updates the parameter vector ϑ

via

ϑ[i+1] = ϑ[i] − µ[i]∇J(ϑ[i]), (2.114)

i.e. the search direction d[i] = ∇J(ϑ[i]) (see (2.112)). The operation of (2.114)
and the physical meaning of the gradient ∇J(ϑ) are interpreted as follows.

Let ϑ + ∆ϑ be a neighboring point of ϑ and ∆J(ϑ) = J(ϑ + ∆ϑ)− J(ϑ)
be the change in J(ϑ) due to ∆ϑ. Then, by (2.111), we have

11 The steepest descent method is also called the Cauchy method in recognition of
the originator A. L. Cauchy (1847) [26].
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∆J(ϑ) = (∆ϑ)H
∇J(ϑ) as ∆ϑ → 0 (2.115)

where we have ignored the second-order and other higher-order (≥ 3) terms.
From (2.115) and the Cauchy–Schwartz inequality (Theorem 2.1), it follows
that

|∆J(ϑ)| ≤ ‖∆ϑ‖ · ‖∇J(ϑ)‖ as ∆ϑ → 0 (2.116)

and the equality holds only when ∆ϑ = α∇J(ϑ) where α is a real or complex
scalar. This reveals that the change rate of J(ϑ) defined as

lim
∆ϑ→0

|∆J(ϑ)|
‖∆ϑ‖ (2.117)

is upper bounded by ‖∇J(ϑ)‖, and that the gradient ∇J(ϑ) represents the
direction giving the maximum change rate of J(ϑ). Moreover, when ∆ϑ =
−µ∇J(ϑ) for any real positive scalar µ, (2.115) reduces to

∆J(ϑ) = −µ‖∇J(ϑ)‖2 ≤ 0 (2.118)

and thus

J(ϑ − µ∇J(ϑ)) = J(ϑ + ∆ϑ) = J(ϑ) + ∆J(ϑ) ≤ J(ϑ), (2.119)

which accounts for the operation of the update equation (2.114).
As a consequence of the preceding discussions, we come up with the fol-

lowing theorem to explain the physical meaning of the gradient ∇J(ϑ).

Theorem 2.45. The negative of the gradient, −∇J(ϑ), represents the direc-
tion giving the maximum change rate in reducing J(ϑ), i.e. the direction of
steepest descent.

Although the steepest descent method takes advantage of the gradient, the
direction of steepest descent is only a local property (since ∆ϑ → 0) and
thereby may vary from point to point. In fact, the steepest descent method
quite often “zigzags” toward a local minimum, thereby requiring more and
more steps of a smaller and smaller size when the minimum is approached [31,
p. 91]. As such, it usually takes an enormous number of iterations to obtain
an accurate solution.

Regarding the implementation of the update equation (2.114), it follows,
from (2.105) and (2.106), that the update equation can be written as

θ[i+1] = θ[i] − µ[i] · ∂J(θ)

∂θ

∣∣∣∣∣
θ = θ[i]

(2.120)

for real θ, and
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(
θ[i+1]

θ∗[i+1]

)
=

(
θ[i]

θ∗[i]

)
− µ[i] ·




∂J(θ)

∂θ∗

∂J(θ)

∂θ




∣∣∣∣∣∣∣∣
θ = θ[i]

(2.121)

for complex θ. One can easily see, from (2.121), that the update equation

for θ[i+1] is equivalent to that for θ∗[i+1] since µ[i] is real, and thus only the
former is actually needed. Table 2.2 summarizes the steepest descent method.

Table 2.2 Steepest descent method

Update Equation

Generic
form

At iteration i, update the parameter vector ϑ via

ϑ
[i+1] = ϑ

[i] − µ[i]
∇J(ϑ[i])

where µ[i] > 0 is the step size and ∇J(ϑ[i]) is the gradient
at ϑ = ϑ[i].

Real
case

At iteration i, update the real parameter vector θ via

θ
[i+1] = θ

[i] − µ[i] ·
∂J(θ)

∂θ

�����
θ = θ[i]

.

Complex
case

At iteration i, update the complex parameter vector θ via

θ
[i+1] = θ

[i] − µ[i] ·
∂J(θ)

∂θ∗

�����
θ = θ[i]

.

Newton Method

Suppose that ϑ0 is a guess for the parameter vector ϑ and the Hessian ma-
trix J2(ϑ0) is nonsingular. Replacing ϑ̂ in (2.111) by ϑ0 and taking the first
derivative of (2.111) with respect to ϑ∗ yields

∂J(ϑ)

∂ϑ∗ = ∇J(ϑ0) + αJ2(ϑ0)(ϑ − ϑ0) (2.122)

where all the higher-order terms (order ≥ 3) have been ignored and
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α =

{
1 for real θ,

1/2 for complex θ.
(2.123)

Setting (2.122) to zero, we obtain

ϑ = ϑ0 −
1

α
J−1

2 (ϑ0)∇J(ϑ0), (2.124)

which reveals that ϑ can be obtained from ϑ0. However, since the higher-order
terms that we have ignored may induce some errors in (2.124), it is suggested
that (2.124) be used iteratively as follows: [26, pp. 389–391]

ϑ[i+1] = ϑ[i] − µ[i]J−1
2 (ϑ[i])∇J(ϑ[i]) (2.125)

where ϑ[i] denotes the parameter vector ϑ obtained at iteration i and µ[i] > 0
is the step size included to avoid divergence. As a result, the search direction
for the Newton method is d[i] = J−1

2 (ϑ[i])∇J(ϑ[i]).

To further analyze the Newton method, let ϑ[i] = ϑ, ϑ[i+1] = ϑ+∆ϑ and
µ[i] = µ in (2.125). Then we have

∆ϑ = −µJ−1
2 (ϑ)∇J(ϑ), µ > 0. (2.126)

Once again, by using (2.111), we have

J(ϑ + ∆ϑ) = J(ϑ) + (∆ϑ)H
∇J(ϑ) +

1

2
(∆ϑ)H J2(ϑ)∆ϑ + · · · (2.127)

where the higher-order (≥ 3) terms can be neglected as ∆ϑ → 0; this, in turn,
requires that the step size µ be sufficiently small according to (2.126). From
(2.126) and (2.127), it follows that the change ∆J(ϑ) , J(ϑ + ∆ϑ) − J(ϑ)
can be written as

∆J(ϑ) = −µ(1 − µ

2
) [∇J(ϑ)]

H
J−1

2 (ϑ)∇J(ϑ) as ∆ϑ → 0. (2.128)

Accordingly, if J2(ϑ) is positive definite and µ < 2, then the change ∆J(ϑ) ≤
0 and

J(ϑ[i+1]) = J(ϑ + ∆ϑ) = J(ϑ) + ∆J(ϑ) ≤ J(ϑ) = J(ϑ[i]). (2.129)

That is, the search direction always points towards a (local) minimum of J(ϑ)
when the Hessian matrix J2(ϑ) is positive definite, or equivalently J−1

2 (ϑ) is
positive definite (by Property 2.12), and the step size µ is chosen small enough.
However, due to utilization of only the lower-order terms of the Taylor series
in the derivation, the Newton method requires the initial condition ϑ[0] to be
sufficiently close to the solution point. Moreover, it is generally difficult and
sometimes almost impossible to compute J2(ϑ) as well as J−1

2 (ϑ).
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Regarding the implementation of the update equation (2.125), we note,
from (2.105) and (2.106), that for real θ the update equation is given by

θ[i+1] = θ[i] − µ[i]J−1
2 (θ[i]) · ∂J(θ)

∂θ

∣∣∣∣∣
θ = θ[i]

(2.130)

where J2(θ
[i]) ≡ J2(ϑ

[i]), and for complex θ it is given by

(
θ[i+1]

θ∗[i+1]

)
=

(
θ[i]

θ∗[i]

)
− µ[i]

(
A[i] B[i]

(
B[i]

)∗ (
A[i]

)∗

)−1

·




∂J(θ)

∂θ∗

∂J(θ)

∂θ




∣∣∣∣∣∣∣∣
θ = θ[i]

(2.131)

where

A[i] =
(
A[i]

)H

=
∂

∂θ∗

[
∂J(θ)

∂θ∗

]H
∣∣∣∣∣∣
θ = θ[i]

, (2.132)

B[i] =
(
B[i]

)T

=
∂

∂θ∗

[
∂J(θ)

∂θ

]H
∣∣∣∣∣∣
θ = θ[i]

. (2.133)

Similar to the complex case of the steepest descent method, by (2.131),
(2.132), (2.133) and Theorem 2.8, one can show that only the following update
equation is needed for complex θ:

θ[i+1] = θ[i] − µ[i]C[i]

{
∂J(θ)

∂θ∗

∣∣∣∣∣
θ = θ[i]

− D[i] · ∂J(θ)

∂θ

∣∣∣∣∣
θ = θ[i]

}
(2.134)

where

C[i] =

{
A[i] − B[i]

[(
A[i]

)∗]−1 (
B[i]

)∗}−1

, (2.135)

D[i] = B[i]
[(

A[i]
)∗]−1

. (2.136)

Furthermore, one can simplify the update equation (2.134) by forcing
B[i] = 0 for all iterations, and obtain the following “approximate” update
equation for complex θ:

θ[i+1] = θ[i] − µ[i]
(
A[i]

)−1

· ∂J(θ)

∂θ∗

∣∣∣∣∣
θ = θ[i]

. (2.137)

We refer to the Newton method based on (2.137) as the approximate Newton
method. Note that for the approximate Newton method, if the matrix A[i] is
positive definite, then the corresponding Hessian matrix approximated as
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J2(ϑ
[i]) ≈

(
A[i] 0

0
(
A[i]

)∗

)
(2.138)

is positive definite, too. Accordingly, the above-mentioned interpretation for
the operation of Newton method (see explanation of (2.129)) also applies to
the approximate Newton method. Table 2.3 summarizes the Newton method
and the approximate Newton method. Note that the approximate Newton
method exists only for the complex case.

Table 2.3 Newton and approximate Newton methods

Update Equation for the Newton Method

Generic
form

At iteration i, update the parameter vector ϑ via

ϑ
[i+1] = ϑ

[i] − µ[i]J−1
2 (ϑ[i])∇J(ϑ[i])

where µ[i] > 0 is the step size, ∇J(ϑ[i]) is the gradient at ϑ = ϑ[i],
and J2(ϑ

[i]) is the Hessian matrix at ϑ = ϑ[i].

Real
case

At iteration i, update the real parameter vector θ via

θ
[i+1] = θ

[i] − µ[i] · J−1
2 (θ[i]) ·

∂J(θ)

∂θ

�����
θ = θ[i]

where J2(θ
[i]) = J2(ϑ

[i]).

Complex
case

At iteration i, update the complex parameter vector θ via

θ
[i+1] = θ

[i] − µ[i]C[i]

�
∂J(θ)

∂θ∗

�����
θ = θ[i]

− D[i] ·
∂J(θ)

∂θ

�����
θ = θ[i]�

where C[i] and D[i] are given by (2.135) and (2.136), respectively.

Update Equation for the Approximate Newton Method

Complex
case

At iteration i, update the complex parameter vector θ via

θ
[i+1] = θ

[i] − µ[i] �A[i]�−1

·
∂J(θ)

∂θ∗

�����
θ = θ[i]

where A[i] is given by (2.132).
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Broyden–Fletcher–Goldfarb–Shanno Method

Recall that the idea behind the BFGS method is to approximate the inverse
Hessian matrix J−1

2 (ϑ[i]) in (2.125) by virtue of the gradient ∇J(ϑ[i]). Let
Q[i] be a Hermitian matrix, which will be obtained as an approximation to
J−1

2 (ϑ[i]). Then, from (2.125), it follows that the update equation for the
BFGS method is given by

ϑ[i+1] = ϑ[i] − µ[i]Q[i]∇J(ϑ[i]), (2.139)

i.e. the search direction d[i] = Q[i]∇J(ϑ[i]). Next, let us present how to update
Q[i+1] from Q[i], as well as how to choose an appropriate initial condition for
Q[0].

Update Equation for Q[i+1]

Let P[i] =
(
Q[i]

)−1
, that is, P[i] (a Hermitian matrix) is an approximation to

J2(ϑ
[i]). We will first derive the update equation for P[i+1] and then convert

it to the one for Q[i+1]. By substituting ϑ = ϑ[i] and ϑ0 = ϑ[i+1] into (2.122),
we obtain

si+1 = αJ2(ϑ
[i+1])ri+1 (2.140)

where α is given by (2.123) and

ri+1 = ϑ[i+1] − ϑ[i], (2.141)

si+1 = ∇J(ϑ[i+1]) − ∇J(ϑ[i]). (2.142)

It follows that P[i+1] should also satisfy (2.140) as follows:

si+1 = αP[i+1]ri+1. (2.143)

We note, from (2.100), (2.106), (2.141) and (2.142), that ri+1 and si+1 are
both L × 1 vectors for real θ and (2L) × 1 vectors for complex θ. Also note,
from (2.108) and (2.109), that P[i+1] is an L × L symmetric matrix for real
θ and a (2L) × (2L) Hermitian matrix for complex θ. Therefore, the number
of unknowns (to be determined) in P[i+1] is more than the number of linear
equations in (2.143), meaning that the solution satisfying (2.143) is not unique.

The general formula for updating P[i+1] iteratively can be written as

P[i+1] = P[i] + ∆P[i] (2.144)

where, in theory, the matrix ∆P[i] can have rank as high as L for real θ and
2L for complex θ, but rank 1 or rank 2 are more suitable in practice. By
adopting the rank 2 update ∆P[i] = c1z1z

H
1 + c2z2z

H
2 (see [26, p. 398] for the

real case), we have
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P[i+1] = P[i] + c1z1z
H
1 + c2z2z

H
2 (2.145)

where c1 and c2 are real or complex constants, and z1 and z2 are real or
complex vectors to be determined. Substituting (2.145) into (2.143) yields

si+1 = αP[i]ri+1 + αc1(z
H
1 ri+1)z1 + αc2(z

H
2 ri+1)z2. (2.146)

Equation (2.146) can be satisfied by choosing

αc1(z
H
1 ri+1)z1 = si+1 and c2(z

H
2 ri+1)z2 = −P[i]ri+1, (2.147)

which further leads to the following choice:

z1 = si+1 (2.148)

z2 = P[i]ri+1 (2.149)

c1 =
1

αzH
1 ri+1

=
1

αsH
i+1ri+1

(2.150)

c2 = − 1

zH
2 ri+1

= − 1

(P[i]ri+1)Hri+1
. (2.151)

Substituting (2.148) through (2.151) into (2.145) gives rise to the following
update equation for P[i+1]:

P[i+1] = P[i] +
si+1s

H
i+1

αsH
i+1ri+1

− (P[i]ri+1)(P
[i]ri+1)

H

(P[i]ri+1)Hri+1
, (2.152)

which is called the Broyden–Fletcher–Goldfarb–Shanno (BFGS) formula (refer
to [26] for the real case).

To convert the update equation (2.152) into the one for Q[i+1], let us
re-express (2.152) as

P[i+1] = R − (P[i]ri+1)(P
[i]ri+1)

H

(P[i]ri+1)Hri+1
(2.153)

where

R = P[i] +
si+1s

H
i+1

αsH
i+1ri+1

. (2.154)

Applying Woodbury’s identity (Corollary 2.6) to (2.153) and (2.154) yields

Q[i+1] = R−1 +
R−1(P[i]ri+1)(P

[i]ri+1)
HR−1

(P[i]ri+1)Hri+1 − (P[i]ri+1)HR−1(P[i]ri+1)
(2.155)

and
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R−1 = Q[i] − Q[i]si+1s
H
i+1Q

[i]

αsH
i+1ri+1 + sH

i+1Q
[i]si+1

, (2.156)

respectively. By substituting (2.156) into (2.155) and after some algebraic
manipulations, we obtain

Q[i+1] = Q[i] +
1

rH
i+1si+1

{
(α+ βi) ri+1r

H
i+1 − ri+1s

H
i+1Q

[i] − Q[i]si+1r
H
i+1

}

(2.157)

where

βi =
sH
i+1Q

[i]si+1

sH
i+1ri+1

(2.158)

is a real number. In the derivation of (2.157), we have used the facts that P[i] =
(P[i])H and that rH

i+1si+1 = sH
i+1ri+1 is real (by (2.141), (2.142), (2.100), and

(2.106)).
As a consequence, the BFGS method employs the update equation (2.139)

for ϑ[i+1] along with the update equation (2.157) for Q[i+1] to obtain the
(local) minimum solution ϑ without involving any second partial derivatives
of J(ϑ).

Suggestion for the Initial Condition Q[0]

Since J−1
2 (ϑ[i+1]) is required to be positive definite in the Newton method,

the Hermitian matrix Q[i+1], as an approximation to J−1
2 (ϑ[i+1]), should also

maintain the positive definite property. The following theorem reveals the
conditions for maintaining the positive definite property of Q[i+1] (refer to [32]
for the real case).

Theorem 2.46. If the matrix Q[i] is positive definite and the step size µ[i] > 0
used in (2.139) is optimum, then the matrix Q[i+1] generated from (2.157) is
also positive definite where ri+1 and si+1 defined as (2.141) and (2.142) are
both nonzero vectors before convergence.

See Appendix 2F for the proof. Theorem 2.46 suggests that Q[0] be chosen as
a positive definite matrix, in addition to utilization of an appropriate step size
µ[i]. Usually, Q[0] = I is used. As such, the BFGS method performs initially as
the steepest descent method because (2.139) reduces to (2.114) when Q[i] = I.
After a number of iterations, it performs as the Newton method because Q[i+1]

then appears as a good approximation to J−1
2 (ϑ[i+1]). On the other hand,

numerical experience indicates that the BFGS method is less influenced by
the error in determining µ[i] [26, p. 406]. Nevertheless, in case the positive
definite property of Q[i+1] is violated due to this error, one may periodically
reset Q[i+1] via Q[i+1] = I. The corresponding BFGS method then reverts to
the steepest descent method at iteration (i+ 1), but this time it has a much

better initial condition ϑ[i+1].
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Implementation of the BFGS Method

For the case of real θ, the update equation (2.139) can be written as

θ[i+1] = θ[i] − µ[i]Q[i] · ∂J(θ)

∂θ

∣∣∣∣∣
θ = θ[i]

(2.159)

and the update equation (2.157) for Q[i+1] reduces to

Q[i+1] = Q[i] +
(1 + βi) ri+1r

T
i+1 − ri+1s

T
i+1Q

[i] − Q[i]si+1r
T
i+1

rT
i+1si+1

(2.160)

(since α = 1) where the initial condition Q[0] = I is suggested and

βi =
sT
i+1Q

[i]si+1

sT
i+1ri+1

, (2.161)

ri+1 = θ[i+1] − θ[i], (2.162)

si+1 =

{
∂J(θ)

∂θ

∣∣∣∣∣
θ = θ[i+1]

}
−
{
∂J(θ)

∂θ

∣∣∣∣∣
θ = θ[i]

}
. (2.163)

On the other hand, for the case of complex θ, the vectors ri+1 and si+1

defined as (2.141) and (2.142) can be written as

ri+1 =
(
r̃T

i+1, r̃
H
i+1

)T
and si+1 =

(
s̃T
i+1, s̃

H
i+1

)T
(2.164)

where

r̃i+1 = θ[i+1] − θ[i], (2.165)

s̃i+1 =

{
∂J(θ)

∂θ∗

∣∣∣∣∣
θ = θ[i+1]

}
−
{
∂J(θ)

∂θ∗

∣∣∣∣∣
θ = θ[i]

}
. (2.166)

By (2.152), (2.164) and Theorem 2.8, one can show that if the initial condition
Q[0] = I is used, then the matrix Q[i] obtained from the update equation
(2.157) will have the following form:

Q[i] =


 Q

[i]
A Q

[i]
B(

Q
[i]
B

)∗ (
Q

[i]
A

)∗


 (2.167)

where Q
[i]
A =

(
Q

[i]
A

)H

and Q
[i]
B =

(
Q

[i]
B

)T

since Q[i] is Hermitian. From

(2.139), (2.157), (2.164) and (2.167), it follows that we need only the following

update equation for complex θ[i+1]:
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θ[i+1] = θ[i] − µ[i]

{
Q

[i]
A · ∂J(θ)

∂θ∗

∣∣∣∣∣
θ = θ[i]

+ Q
[i]
B · ∂J(θ)

∂θ

∣∣∣∣∣
θ = θ[i]

}
(2.168)

and the following update equations for Q
[i+1]
A and Q

[i+1]
B :

Q
[i+1]
A = Q

[i]
A +

1

2Re
{
r̃H

i+1s̃i+1

}
{

(α+ βi) r̃i+1r̃
H
i+1 − r̃i+1s̃

H
i+1Q

[i]
A

− Q
[i]
A s̃i+1r̃

H
i+1 − r̃i+1s̃

T
i+1

(
Q

[i]
B

)∗
− Q

[i]
B s̃∗i+1r̃

H
i+1

}
, (2.169)

Q
[i+1]
B = Q

[i]
B +

1

2Re
{
r̃H

i+1s̃i+1

}
{

(α+ βi) r̃i+1r̃
T
i+1 − r̃i+1s̃

T
i+1

(
Q

[i]
A

)∗

− Q
[i]
A s̃i+1r̃

T
i+1 − r̃i+1s̃

H
i+1Q

[i]
B − Q

[i]
B s̃∗i+1r̃

T
i+1

}
(2.170)

where Q
[0]
A = I, Q

[0]
B = 0, and

βi =
Re
{
s̃H
i+1Q

[i]
A s̃i+1 + s̃H

i+1Q
[i]
B s̃∗i+1

}

Re
{
s̃H
i+1r̃i+1

} . (2.171)

Furthermore, one can simplify the above update equations by forcing

Q
[i]
B = 0 for all iterations. The corresponding update equation for complex

θ[i+1] is given by

θ[i+1] = θ[i] − µ[i]Q
[i]
A · ∂J(θ)

∂θ∗

∣∣∣∣∣
θ = θ[i]

(2.172)

and the corresponding update equation for Q
[i+1]
A is given by

Q
[i+1]
A = Q

[i]
A +

1

2Re
{
r̃H

i+1s̃i+1

}
{

(α+ βi) r̃i+1r̃
H
i+1

−r̃i+1s̃
H
i+1Q

[i]
A − Q

[i]
A s̃i+1r̃

H
i+1

}
(2.173)

where Q
[0]
A = I and

βi =
Re
{
s̃H
i+1Q

[i]
A s̃i+1

}

Re
{
s̃H
i+1r̃i+1

} . (2.174)

Similarly, we refer to the BFGS method that is based on (2.172), (2.173) and
(2.174) as the approximate BFGS method. As a result of the aforementioned
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discussions, the approximate BFGS method also maintains the positive def-
inite property of the corresponding Q[i], provided that the step size µ[i] is
chosen appropriately. Table 2.4 summarizes the BFGS method and the ap-
proximate BFGS method where the latter is only for the complex case.

2.4 Least-Squares Method

Many science and engineering problems require solving the following set of M
linear equations in K unknowns:

Aθ = b (2.175)

where A is an M ×K matrix, b = (b1, b2, ..., bM )T is an M × 1 vector, and
θ = (θ1, θ2, ..., θK)T is a K × 1 vector of unknown parameters to be solved.
Let A = (a1,a2, ...,aK) where ak, k = 1, 2, ...,K, are the column vectors of
A. Then the set of linear equations (2.175) can be written as

b =

K∑

k=1

θkak. (2.176)

Usually, (2.175) has no exact solution because b is not ordinarily located in
the column space of A [6, p. 221], i.e. b cannot be expressed as a linear
combination of ak, k = 1, 2, ...,K, for any θ (see (2.176)). The column space
of A is often referred to as the range space of A, whose dimension is equal to
rank{A}. On the other hand, when b = 0 (i.e. Aθ = 0), the corresponding
set of solutions spans another subspace, referred to as the null space of A.
The dimension of the nullspace of A, called the nullity of A, is equal to
K − rank{A}.

In practical applications, however, an approximate solution to (2.175) is
still desired. Hence, let us change the original problem into the following
approximation problem:

Aθ = b− ε (2.177)

where

ε = b− Aθ = b −
K∑

k=1

θkak (2.178)

is the M ×1 vector of approximation errors (equation errors). For the approx-
imation problem, a widely used approach is to find θ such that

b̂ = Aθ =
K∑

k=1

θkak (2.179)
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Table 2.4 BFGS and approximate BFGS methods

Update Equation for the BFGS Method

Generic
form

At iteration i, update the parameter vector ϑ via

ϑ
[i+1] = ϑ

[i] − µ[i]Q[i]
∇J(ϑ[i])

and update the Hermitian matrix Q[i] via (2.157) where µ[i] > 0 is
the step size, ∇J(ϑ[i]) is the gradient at ϑ = ϑ[i], and Q[0] = I is
suggested. In the update equation (2.157), the parameters α and βi

are given by (2.123) and (2.158), respectively, and the vectors ri+1

and si+1 are given by (2.141) and (2.142), respectively.

Real
case

At iteration i, update the real parameter vector θ via

θ
[i+1] = θ

[i] − µ[i]Q[i] ·
∂J(θ)

∂θ

�����
θ = θ[i]

and update the symmetric matrix Q[i] via (2.160), in which βi, ri+1

and si+1 are given by (2.161), (2.162) and (2.163), respectively.

Complex
case

At iteration i, update the complex parameter vector θ via

θ
[i+1] = θ

[i] − µ[i]

�
Q

[i]
A ·

∂J(θ)

∂θ∗

�����
θ = θ[i]

+ Q
[i]
B ·

∂J(θ)

∂θ

�����
θ = θ[i]�

and update the Hermitian matrix Q
[i]
A and the matrix Q

[i]
B via (2.169)

and (2.170), in which Q
[0]
A = I, Q

[0]
B = 0, and βi, �ri+1 and �si+1 are

given by (2.171), (2.165) and (2.166), respectively.

Update Equation for the Approximate BFGS Method

Complex
case

At iteration i, update the complex parameter vector θ via

θ
[i+1] = θ

[i] − µ[i]Q
[i]
A ·

∂J(θ)

∂θ∗

�����
θ = θ[i]

and update the matrix Q
[i]
A via (2.173), in which Q

[0]
A = I and βi,�ri+1 and �si+1 are given by (2.174), (2.165) and (2.166), respectively.
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approximates b in the sense of minimizing the objective function

JLS(θ) = ‖ε‖2 =

M∑

m=1

|εm|2 (2.180)

where εm is the mth entry of ε. The problem of minimizing the sum of squared
errors given by (2.180) is called the least-squares (LS) problem and the corre-
sponding solution is called the least-squares (LS) solution.

2.4.1 Full-Rank Overdetermined Least-Squares Problem

Consider that M ≥ K and A is of full rank, i.e. rank{A} = K. The LS
solution is derived as follows. Taking the first derivative of JLS(θ) given by
(2.180) with respect to θ∗ and setting the result to zero yields

∂JLS(θ)

∂θ∗ = −AH (b − Aθ) = −AHε = 0, (2.181)

which gives rise to

AHAθ = AHb. (2.182)

From (2.181), it follows that

aH
k ε = 0 for k = 1, 2, ...,K. (2.183)

That is, the error vector ε is orthogonal to the column vectors ak, thereby
leading to the name “normal equations” for the set of equations (2.182) [2]. As
illustrated in Fig. 2.9 (by (2.178) and (2.179)), ε has the minimum norm only
when it is orthogonal (perpendicular) to the range space of A (the plane). This
observation indicates that the solution obtained from (2.182) corresponds to
the global minimum of JLS(θ).

Since A is of full rank, AHA is a nonsingular K × K matrix and thus
there is only a unique solution to (2.182) as follows:

θ̂LS = (AHA)−1AHb (2.184)

where θ̂LS represents the LS solution for θ. Substituting (2.184) into (2.179)
gives

b̂ = PAb (2.185)

where

PA = A(AHA)−1AH (2.186)

is an M ×M matrix. From Fig. 2.9, one can observe that b̂ corresponds to
the projection of b onto the range space of A. For this reason, PA is called
the projection matrix of A. It has the following properties.
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1 1θ a
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2θ a

b

Fig. 2.9 Geometrical explanation of the LS method for K = 2

• Idempotent property: PAPA = PA.
• Hermitian property: PH

A = PA.

The idempotent property implies that PAb̂ = b̂, i.e. the projection of b̂ onto
the range space is still b̂. This can also be observed from Fig. 2.9 where b̂ is
already in the range space. When M = K, (2.184) reduces to

θ̂LS = A−1b (2.187)

and the corresponding PA = I. That is, there is no need for any projection
because b is already in the range space for this case.

2.4.2 Generic Least-Squares Problem

Now consider the general case that M can be less than K and rank{A} =
r ≤ min{M,K}, i.e. A can be rank deficient. The SVD of A is given by

A = UΣVH = U

(
Λ 0

0 0

)
VH (2.188)

where U = (u1,u2, ...,uM ) and V = (v1,v2, ...,vK) are M ×M and K ×K
unitary matrices, respectively, and Λ = diag{λ1, λ2, ..., λr}. The vectors uk

and vk are the left and right singular vectors of A, respectively, and λ1, λ2,
..., λr are the real positive singular values. By (2.178), (2.180) and (2.188),

JLS(θ) = ‖b− Aθ‖2 = ‖UH(b − Aθ)‖2

= ‖UHb − UHAVVHθ‖2 = ‖UHb − Σθ̃‖2 (2.189)

where

θ̃ = (θ̃1, θ̃2, ..., θ̃K)T , VHθ. (2.190)
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Equation (2.189) can be further expressed as follows:

JLS(θ) =

r∑

k=1

|uH
k b − λkθ̃k|2 +

M∑

k=r+1

|uH
k b|2. (2.191)

Clearly, the minimum value

min{JLS(θ)} =

M∑

k=r+1

|uH
k b|2

is attained when the first r entries of θ̃ satisfy

θ̃k =
uH

k b

λk
for k = 1, 2, ..., r, (2.192)

regardless of what the remaining entries θ̃k, k = r + 1, r + 2, ...,K, are. This
indicates that there are infinitely many solutions to the generic LS problem.

Among these solutions, the LS solution θ̂LS is always chosen as the one
with the minimum norm. It is therefore also referred to as the minimum-norm
solution. Because ‖θ̃‖2 = θHVVHθ = ‖θ‖2, the minimum-norm solution θ̂LS

corresponds to letting θ̃k = 0 for k = r + 1, r + 2, ...,K. This, together with
(2.190) and (2.192), therefore gives

θ̂LS = Vθ̃ =

K∑

k=1

vk θ̃k =

r∑

k=1

vk

(
uH

k b

λk

)
. (2.193)

The solution given by (2.193) is also equivalent to the form

θ̂LS = A+b (2.194)

where

A+ =

r∑

k=1

1

λk
vku

H
k = VΣ+UH (2.195)

is a K ×M matrix in which

Σ+ =

(
Λ−1 0

0 0

)
(2.196)

is also a K ×M matrix. The matrix A+ is called the Moore–Penrose gener-
alized inverse or the pseudoinverse of A. By substituting (2.194) into (2.179),

we also obtain b̂ as given by (2.185) with the generic form of projection matrix

PA = AA+. (2.197)
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Table 2.5 gives a summary of the LS method. When A is of full rank and
M ≥ K (i.e. the full-rank overdetermined LS problem), the pseudoinverse
A+ = (AHA)−1AH (Problem 2.21), and thus the LS solution given by (2.194)
reduces to the one given by (2.184). Nevertheless, if computational complexity
is not of major concern, it is preferred to use (2.194) to obtain the LS solution
due to the better numerical properties of SVD. On the other hand, for the
case of A having a special structure such as the Toeplitz structure, it may be
better to use other algorithms that take advantage of the special structure to
solve the LS problem.

Table 2.5 Least-squares (LS) method

Problem Find a K × 1 vector θ to solve the set of linear
equations

Aθ = b

by minimizing the sum of squared errors

JLS(θ) = ‖ε‖2

where A is an M × K matrix with the SVD A =
UΣVH and ε = b − Aθ is the error vector.

Generic solution The (minimum-norm) LS solution�
θLS = A+b

where A+ is the pseudoinverse of A given by

A+ = VΣ+UH =
r�

k=1

1

λk
vku

H
k .

Special cases (i) M ≥ K and rank{A} = K:�
θLS = (AHA)−1AHb

(ii) M = K and rank{A} = K:�
θLS = A−1b

2.5 Summary

We have reviewed the definitions of vectors, vector spaces, matrices, and some
special forms of matrices. Several useful formulas and properties of matrices as
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well as matrix decomposition including eigendecomposition and the SVD were
described. The SVD was then applied to the derivation of a minimum-norm
solution to the generic LS problem. Regarding the mathematical analysis, we
have dealt with the convergence of sequences and series including the Fourier
series, as well as sequence and function spaces. As for the optimization the-
ory, we have introduced the necessary and sufficient conditions for solutions,
carefully dealt with the first derivative of the objective function with respect
to a complex vector, and provided an overview of gradient-type optimization
methods. Three popular gradient-type methods were introduced in terms of a
complex-valued framework since they are often applied to blind equalization
problems. Vector differentiation was then applied to find the solution to the
full-rank overdetermined LS problem.

Appendix 2A

Proof of Theorem 2.15

The theorem can be proved by either of the following two approaches.

Approach I: Derivation from the Matrix AHA

According to Properties 2.13 and 2.11, the eigenvalues of the K ×K matrix
AHA are all real nonnegative. Therefore, let λ1, λ2, ..., λK be nonnegative
real numbers, and λ2

1, λ
2
2, ..., λ2

K be the eigenvalues of AHA. Furthermore,
let these eigenvalues be arranged in the following order:

λ2
1 ≥ λ2

2 ≥ · · · ≥ λ2
r > 0

and

λ2
r+1 = λ2

r+2 = · · · = λ2
K = 0 (2.198)

where the second equation follows from the fact that rank{AHA} = rank{A}
= r. Let v1, v2, ..., vK be the orthonormal eigenvectors of AHA corresponding
to the eigenvalues λ2

1, λ
2
2, ..., λ2

K , respectively. That is,

AHAvi = λ2
i vi, i = 1, 2, ...,K (2.199)

and

vH
i vj =

{
1, for i = j,

0, for i 6= j.
(2.200)

Let V = (V1 V2) be a K ×K matrix where V1 = (v1,v2, ...,vr) is a K × r
matrix and V2 = (vr+1,vr+2, ...,vK) is a K × (K − r) matrix. Then, from
(2.200), it follows that
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VHV =

(
VH

1

VH
2

)
(V1 V2) =

(
VH

1 V1 VH
1 V2

VH
2 V1 VH

2 V2

)
= I,

i.e. V is a unitary matrix. By (2.198) and (2.199), we have

AHAV2 = (AHAvr+1,A
HAvr+2, ...,A

HAvK)

= (λ2
r+1vr+1, λ

2
r+2vr+2, ..., λ

2
KvK) = 0,

implying that

(AV2)
H(AV2) = VH

2 (AHAV2) = 0

or

AV2 = 0. (2.201)

In the same way, by (2.199), we have

AHAV1 = (λ2
1v1, λ

2
2v2, ..., λ

2
rvr) = V1Λ

2 (2.202)

where Λ2 = diag{λ2
1, λ

2
2, ..., λ

2
r}. Equation (2.202) gives rise to

VH
1 AHAV1 = VH

1 V1Λ
2 = Λ2,

implying that

(AV1Λ
−1)H(AV1Λ

−1) = Λ−1(VH
1 AHAV1)Λ

−1 = I (2.203)

where we have used the fact that Λ−H = Λ−1 since the λi are real. Let the
M × r matrix AV1Λ

−1 = U1, i.e.

U1 = (u1,u2, ...,ur) =

(
Av1

λ1
,
Av2

λ2
, ...,

Avr

λr

)
. (2.204)

From (2.203), we obtain UH
1 U1 = I which gives

UH
1 (AV1Λ

−1) = I

or

AV1 = U1Λ. (2.205)

Choose an M × (M − r) matrix U2 = (ur+1,ur+2, ...,uM ) such that U =
(U1 U2) is an M × M unitary matrix, i.e. UH

2 U2 = I, UH
2 U1 = 0, and

UH
1 U2 = 0. Then
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UHAV =

(
UH

1

UH
2

)
A(V1 V2) =

(
UH

1 AV1 UH
1 AV2

UH
2 AV1 UH

2 AV2

)

=

(
UH

1 U1Λ 0

UH
2 U1Λ 0

)
(by (2.201) and (2.205))

=

(
Λ 0

0 0

)
= Σ. (2.206)

This, together with the fact that both U and V are unitary, therefore proves
the theorem.

Approach II: Derivation from the Matrix AAH

According to Properties 2.13 and 2.11, the eigenvalues of the M ×M matrix
AAH are all real nonnegative. Therefore, let λ1, λ2, ..., λM be nonnegative
real numbers, and λ2

1, λ
2
2, ..., λ2

M be the eigenvalues of AAH . Furthermore,
let these eigenvalues be arranged in the following order:

λ2
1 ≥ λ2

2 ≥ · · · ≥ λ2
r > 0

and

λ2
r+1 = λ2

r+2 = · · · = λ2
M = 0. (2.207)

Let u1, u2, ..., uM be the orthonormal eigenvectors of AAH corresponding
to the eigenvalues λ2

1, λ
2
2, ..., λ2

M , respectively. That is,

AAHui = λ2
i ui, i = 1, 2, ...,M (2.208)

and

uH
i uj =

{
1, for i = j,

0, for i 6= j.
(2.209)

Let U = (U1 U2) be an M ×M matrix where U1 = (u1,u2, ...,ur) is an
M×r matrix and U2 = (ur+1,ur+2, ...,uM ) is an M × (M−r) matrix. Then,
from (2.209), it follows that

UHU =

(
UH

1

UH
2

)
(U1 U2) =

(
UH

1 U1 UH
1 U2

UH
2 U1 UH

2 U2

)
= I,

i.e. U is a unitary matrix. By (2.207) and (2.208), we have

AAHU2 = (λ2
r+1ur+1, λ

2
r+2ur+2, ..., λ

2
MuM ) = 0,
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implying that

(UH
2 A)(UH

2 A)H = UH
2 (AAHU2) = 0

or

UH
2 A = 0. (2.210)

In the same way, by (2.208), we have

AAHU1 = (λ2
1u1, λ

2
2u2, ..., λ

2
rur) = U1Λ

2 (2.211)

or

UH
1 AAHU1 = UH

1 U1Λ
2 = Λ2,

implying that

(AHU1Λ
−1)H(AHU1Λ

−1) = Λ−1(UH
1 AAHU1)Λ

−1 = I. (2.212)

Let the K × r matrix AHU1Λ
−1 = V1, i.e.

V1 = (v1,v2, ...,vr) =

(
AHu1

λ1
,
AHu2

λ2
, ...,

AHur

λr

)
. (2.213)

From (2.212), we obtain VH
1 V1 = I, which gives

(AHU1Λ
−1)HV1 = I

or

UH
1 A = ΛVH

1 . (2.214)

Choose aK×(K−r) matrix V2 = (vr+1,vr+2, ...,vK) such that V = (V1 V2)
is a K×K unitary matrix, i.e. VH

2 V2 = I, VH
2 V1 = 0, and VH

1 V2 = 0. Then

UHAV =

(
UH

1

UH
2

)
A(V1 V2) =

(
UH

1 AV1 UH
1 AV2

UH
2 AV1 UH

2 AV2

)

=

(
ΛVH

1 V1 ΛVH
1 V2

0 0

)
(by (2.210) and (2.214))

=

(
Λ 0

0 0

)
= Σ. (2.215)

This, together with the fact that both U and V are unitary, proves this
theorem, too.

Q.E.D.
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Appendix 2B

Some Terminologies of Functions

A function written as y = f(x) is a rule that assigns to each element x in a
set A one and only one element y in a set B. The set A is called the domain of
f(x), while the set B is called the range of f(x). The symbol x representing an
arbitrary element in A is called an independent variable. Some terminologies
for f(x) defined on an interval [xL, xU] (the domain of f(x)) are as follows.

• A function f(x) is said to be even (odd) if f(−x) = f(x) (f(−x) = −f(x))
for all x ∈ [xL, xU].

• A function f(x) is said to be periodic with period T if f(x+ kT ) = f(x) for
all x ∈ [xL, xU] and any nonzero integer k.

• A function f(x) is said to be bounded if |f(x)| ≤ M for all x ∈ [xL, xU]
where M is a positive constant.

• A function f(x) is said to be increasing (decreasing) or, briefly, monotonic
if f(x0) ≤ f(x1) (f(x0) ≥ f(x1)) for all x0, x1 ∈ [xL, xU] and x0 < x1.

• A function f(x) is said to be strictly increasing (strictly decreasing) if
f(x0) < f(x1) (f(x0) > f(x1)) for all x0, x1 ∈ [xL, xU] and x0 < x1.

Continuity of Functions

A function f(x) is said to be continuous at a point x0 if limx→x0 f(x) = f(x0),
i.e. for every real number ε > 0 there exists a real number ∆x > 0 such that

|f(x) − f(x0)| < ε whenever 0 < |x− x0| < ∆x (2.216)

where ∆x is, in general, dependent on ε and x0. Furthermore, define the left-
hand limit of f(x) at a point x0 as

f(x−0 ) = lim
x→x−

0

f(x) = lim
x→x0
x<x0

f(x) (2.217)

and the right-hand limit of f(x) at x0 as

f(x+
0 ) = lim

x→x+
0

f(x) = lim
x→x0
x>x0

f(x). (2.218)

Then f(x) is continuous at x0 if and only if [29, 33]

f(x−0 ) = f(x+
0 ) = f(x0). (2.219)

On the other hand, a function f(x) is said to be discontinuous at a point x0

if it fails to be continuous at x0.
A function f(x) is said to be continuous on an open interval (xL, xU) if

it is continuous at every point x ∈ (xL, xU). A function f(x) is said to be
continuous on a closed interval [xL, xU] if it is continuous on (xL, xU) and,
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meanwhile, f(x+
L ) = f(xL) and f(x−U) = f(xU). Furthermore, as illustrated

in Fig. 2.10, a function f(x) is said to be piecewise continuous on an interval
[xL, xU] if there are at most a finite number of points xL = x1 < x2 < · · · <
xn = xU such that (i) f(x) is continuous on each subinterval (xk, xk+1) for
k = 1, 2, ..., n − 1 and (ii) both f(x−k ) and f(x+

k ) exist for k = 1, 2, ..., n
[13, 18, 34]. In a word, a piecewise continuous function has a finite number of
finite discontinuities. Moreover, a continuous function is merely a special case
of a piecewise continuous function.

1x 2x 3x 4x 1nx − nx=
Lx

=

U
x

x

( )f x

Fig. 2.10 A piecewise continuous function f(x) on an interval [xL, xU]

Continuity of Derivatives

The derivative of a function f(x) at a point x0 is defined as

f ′(x0) =
df(x)

dx

∣∣∣∣∣
x=x0

= lim
∆x→0

f(x0 + ∆x) − f(x0)

∆x
(2.220)

provided that the limit exists. Define the left-hand derivative of f(x) at x0 as

f ′(x−0 ) = lim
∆x→0−

f(x0 + ∆x) − f(x−0 )

∆x
(2.221)

and the right-hand derivative of f(x) at x0 as

f ′(x+
0 ) = lim

∆x→0+

f(x0 + ∆x) − f(x+
0 )

∆x
. (2.222)

Then the derivative f ′(x) is said to be piecewise continuous on an interval
[xL, xU] if f(x) is piecewise continuous on [xL, xU] and, meanwhile, there are
at most a finite number of points xL = x1 < x2 < · · · < xn = xU such
that (i) f ′(x) exists and is continuous on each subinterval (xk, xk+1) for k =
1, 2, ..., n− 1 and (ii) both f ′(x−k ) and f ′(x+

k ) exist for k = 1, 2, ..., n [13, 18].
Note that if f ′(x) exists at a point x0, then f(x) is continuous at x0.
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Appendix 2C

Proof of Theorem 2.33

From the assumption that
∑∞

n=−∞ |an|s <∞, it follows that |an| is bounded
above. Let β = max{|an|, n = −N ∼ N}. Since max{|an|/β, n = −N ∼ N} =
1 and l > s ≥ 1, one can easily infer that

1 ≤
N∑

n=−N

(
|an|
β

)l

≤
N∑

n=−N

(
|an|
β

)s

, (2.223)

which further leads to





N∑

n=−N

(
|an|
β

)l




1/l

≤
{

N∑

n=−N

(
|an|
β

)s}1/s

. (2.224)

Canceling the common term β on both sides of (2.224) yields

{
N∑

n=−N

|an|l
}1/l

≤
{

N∑

n=−N

|an|s
}1/s

. (2.225)

Since (2.225) holds for any N and
{∑∞

n=−∞ |an|s
}1/s

< ∞, letting N → ∞
therefore gives (2.59). Thus, what remains to prove is the equality condition
of (2.59).

Suppose that there are M terms of the sequence {an} corresponding to
|an| = β, and that |an| < β for n ∈ Ω where Ω is a set of indices. It can be seen
that the equality of (2.59) requires the equality of (2.223) and the equality of
(2.224) for N → ∞. From the equality of (2.223) for N → ∞, we have

M +
∑

n∈Ω

(
|an|
β

)l

= M +
∑

n∈Ω

(
|an|
β

)s

,

implying that |an| = 0 for n ∈ Ω. From this result and the equality of (2.224)
for N → ∞, we have

M1/l = M1/s,

implying that M = 1. This therefore completes the proof.
Q.E.D.
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Appendix 2D

Proof of Theorem 2.36

Since sn(x) is periodic with period 2π, substituting (2.76) into (2.77) yields

sn(x) =
1

2π

∫ π

−π

f(x− t)Dn(t)dt =
1

2π

∫ π

−π

f(x+ t)Dn(t)dt

= gn(x) + g̃n(x) (2.226)

where

Dn(t) =
n∑

k=−n

ejkt =
sin [(2n+ 1)t/2]

sin(t/2)
(2.227)

is the so-called nth Dirichlet kernel [14] and

gn(x) =
1

2π

∫ π

0

f(x+ t)Dn(t)dt, (2.228)

g̃n(x) =
1

2π

∫ 0

−π

f(x+ t)Dn(t)dt. (2.229)

By expressing Dn(t) = 1 + 2
∑n

k=1 cos kt, we obtain the integrations

1

2π

∫ π

0

Dn(t)dt =
1

2
and

1

2π

∫ 0

−π

Dn(t)dt =
1

2
. (2.230)

Further express gn(x) given by (2.228) as

gn(x) =
1

2π

∫ π

0

f(x+)Dn(t)dt+
1

2π

∫ π

0

[f(x+ t) − f(x+)]Dn(t)dt

which, together with (2.227) and (2.230), gives

gn(x) − f(x+)

2
=

1

2π

∫ π

−π

h(t) sin
(2n+ 1)t

2
dt

=
1

2π

∫ π

−π

h1(t) sin(nt)dt+
1

2π

∫ π

−π

h2(t) cos(nt)dt (2.231)

where

h(t) =





f(x+ t) − f(x+)

sin(t/2)
, 0 ≤ t < π,

0, −π ≤ t < 0,

and h1(t) = h(t) cos(t/2), h2(t) = h(t) sin(t/2). By definition, the left-hand
limit h(0−) = limt→0− h(t) = 0, and the right-hand limit



76 2 Mathematical Background

h(0+) = lim
t→0+

h(t) = lim
t→0+

[
f(x+ t) − f(x+)

t

]
·
[

t

sin(t/2)

]
= 2f ′(x+)

exists since f ′(x+) exists. From this and the condition that f(x) is piecewise
continuous on [−π, π), it follows that h(t) is piecewise continuous on [−π, π)
and, thus, square integrable on [−π, π). In other words, h(t) is in L2[−π, π)
and so are h1(t) and h2(t). Accordingly, the two terms in the second line of
(2.231) are identical to zero as n→ ∞ (by Problem 2.16) and therefore

lim
n→∞

gn(x) =
f(x+)

2
. (2.232)

In a similar way, by expressing g̃n(x) given by (2.229) as

g̃n(x) =
1

2π

∫ 0

−π

f(x−)Dn(t)dt+
1

2π

∫ 0

−π

[f(x+ t) − f(x−)]Dn(t)dt

and with the condition that f ′(x−) exists and f(x) is piecewise continuous on
[−π, π), we also have

lim
n→∞

g̃n(x) =
f(x−)

2
. (2.233)

Equation (2.78) then follows from (2.226), (2.232) and (2.233).
Q.E.D.

Appendix 2E

Proof of Theorem 2.38

Since f ′(x) is piecewise continuous on [−π, π), it is integrable on [−π, π) and
has the Fourier series

f ′(x) ∼
∞∑

k=−∞
c̃ke

jkx

where

c̃0 =
1

2π

∫ π

−π

f ′(x)dx =
f(π) − f(−π)

2π
= 0, (2.234)

c̃k =
1

2π

∫ π

−π

f ′(x)e−jkxdx =
f(x)e−jkx

2π

∣∣∣∣∣

π

−π

+
jk

2π

∫ π

−π

f(x)e−jkxdx

= jkck, for |k| = 1 ∼ ∞. (2.235)

By (2.235) and the Cauchy–Schwartz inequality (Theorem 2.32), we have
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n∑

k=−n

|ck| = |c0| +
n∑

k=−n,k 6=0

|k|−1 · |c̃k|

≤ |c0| +





n∑

k=−n,k 6=0

|k|−2





1/2


n∑

k=−n,k 6=0

|c̃k|2




1/2

= |c0| +
√

2

{
n∑

k=1

k−2

}1/2{ n∑

k=1

(
|c̃k|2 + |c̃−k|2

)
}1/2

. (2.236)

As shown in Example 2.26, the series
∑∞

k=1 k
−2 converges, indicating that

∞∑

k=1

k−2 <∞. (2.237)

Moreover, since f ′(x) is piecewise continuous on [−π, π), it is square integrable
on [−π, π) and therefore is in L2[−π, π). Accordingly, by Bessel’s inequality
(2.69) and (2.234),

∞∑

k=−∞,k 6=0

|c̃k|2 ≤ 1

2π

∫ π

−π

|f ′(x)|2 dx <∞. (2.238)

As a consequence of (2.236), (2.237) and (2.238),
∑∞

k=−∞ |ck| < ∞ and, by
Theorem 2.37, the Fourier series given by (2.75) is uniformly and absolutely
convergent on [−π, π). From this and by the pointwise convergence theorem,
it then follows that the Fourier series given by (2.75) converges uniformly and
absolutely to f(x) since f(x) is continuous on [−π, π).

Q.E.D.

Appendix 2F

Proof of Theorem 2.46

According to Property 2.12, the proof is equivalent to showing that P[i+1] is
positive definite under the conditions that (i) both P[i] and Q[i] are positive
definite, (ii) ri+1 6= 0, (iii) si+1 6= 0, and (iv) µ[i] is optimum for iteration i.

By (2.152), we can express the Hermitian form of P[i+1] as follows:

xHP[i+1]x = xHP[i]x +

∣∣sH
i+1x

∣∣2

αsH
i+1ri+1

−
∣∣rH

i+1P
[i]x
∣∣2

rH
i+1P

[i]ri+1

=

(
xHP[i]x

) (
rH

i+1P
[i]ri+1

)
−
∣∣rH

i+1P
[i]x
∣∣2

rH
i+1P

[i]ri+1
+

∣∣sH
i+1x

∣∣2

αsH
i+1ri+1

(2.239)

for any x 6= 0. Let the SVD of the Hermitian matrix P[i] be written as
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P[i] = �L∑
k=1

λkuku
H
k (see (2.42)) (2.240)

where

L̃ =

{
L for real θ,

2L for complex θ
(2.241)

and uk is the orthonormal eigenvector of P[i] associated with the eigenvalue
λk. Since P[i] is positive definite, all the eigenvalues λk are (real) positive.
Then, by the Cauchy–Schwartz inequality (Theorem 2.1), we have

∣∣∣rH
i+1P

[i]x
∣∣∣
2

=

∣∣∣∣∣∣
�L∑

k=1

(√
λkr

H
i+1uk

)(√
λku

H
k x
)
∣∣∣∣∣∣

2

≤



 �L∑

k=1

λk

∣∣rH
i+1uk

∣∣2






 �L∑

k=1

λk

∣∣uH
k x
∣∣2




=



 �L∑

k=1

λkr
H
i+1uku

H
k ri+1







 �L∑

k=1

λkx
Huku

H
k x





=
(
rH

i+1P
[i]ri+1

)(
xHP[i]x

)
. (2.242)

From (2.239), (2.242), and the fact that rH
i+1P

[i]ri+1 > 0 (since P[i] is positive
definite and ri+1 6= 0), it follows that

xHP[i+1]x ≥
∣∣sH

i+1x
∣∣2

αsH
i+1ri+1

for any x 6= 0 (2.243)

and the equality holds only when x = c · ri+1 for any nonzero scalar c.
On the other hand, since

ϑ[i+1] = ϑ[i] − µ[i]d[i] (2.244)

where d[i] = Q[i]∇J(ϑ[i]), the necessary condition for the optimum µ[i] can

be derived by minimizing the objective function f(µ[i]) , J(ϑ[i] − µ[i]d[i]).
More specifically, by using the chain rule, we obtain

df(µ[i])

dµ[i]
=

[
∂J(ϑ)

∂ϑ

]H
∣∣∣∣∣∣
ϑ=ϑ[i+1]

· dϑ
[i+1]

dµ[i]
= −

[
∇J(ϑ[i+1])

]H
d[i] = 0.

(2.245)

This result, together with (2.141), (2.142) and (2.244), therefore leads to
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sH
i+1ri+1 = µ[i]

[
∇J(ϑ[i])

]H
d[i]

= µ[i]
[
∇J(ϑ[i])

]H
Q[i]∇J(ϑ[i]) > 0 (2.246)

since µ[i] > 0, Q[i] is positive definite and ∇J(ϑ[i]) 6= 0 before convergence.
As a consequence of (2.243) and (2.246),

xHP[i+1]x ≥
∣∣sH

i+1x
∣∣2

αsH
i+1ri+1

≥ 0 for any x 6= 0. (2.247)

The first equality of (2.247) holds only when x = c · ri+1 for any c 6= 0, while
the second equality of (2.247) holds only when sH

i+1x = 0. In other words,

for any x 6= 0, xHP[i+1]x = 0 happens only when sH
i+1(c · ri+1) = 0, that

contradicts (2.246). As a result, the Hermitian form xHP[i+1]x > 0 for any
x 6= 0 and accordingly P[i+1] is positive definite.

Q.E.D.

Problems

2.1. Prove Theorem 2.1.

2.2. Prove Theorem 2.2. (Hint: Use the Cauchy–Schwartz inequality.)

2.3. Prove Theorem 2.5.

2.4. Prove Theorem 2.7. (Hint: Express A as a multiplication of a lower
triangular matrix and an upper triangular matrix.)

2.5. Prove Theorem 2.8.

2.6. Prove Properties 2.9 to 2.12.

2.7. Prove Property 2.13.

2.8. Prove Property 2.14. (Hint: Use Property 2.10.)

2.9. (a) Find the eigenvalues and the normalized eigenvectors of the ma-
trix

A =

(
3 1

1 3

)
.

(b) Use part (a) to find the eigendecomposition of the matrix A.

2.10. Prove Corollary 2.16.
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2.11. Prove Theorem 2.17.

2.12. Prove Theorem 2.18.

2.13. Prove Theorem 2.21.

2.14. Prove Theorem 2.25.

2.15. Prove Theorem 2.30.

2.16. Suppose {φn(x), n = −∞ ∼ ∞} is a set of real or complex orthog-
onal functions in L2[xL, xU]. Show that if f(x) is a real or complex
function in L2[xL, xU], then

lim
|n|→∞

∫ xU

xL

f(x)φ∗n(x)dx = 0.

(Hint: Use Bessel’s inequality.)

2.17. Prove Theorem 2.37. (Hint: Use the Weierstrass M-test and Theo-
rem 2.27.)

2.18. Prove Theorem 2.39. (Hint: Use Theorem 2.30 to show that the
sequence {∑n

k=−n cke
jkx}∞n=1 is a Cauchy sequence in L2[−π, π).)

2.19. Prove Theorem 2.42.

2.20. Prove Theorem 2.44.

2.21. Show that if A is a full-rank M ×K matrix and M ≥ K, then its
pseudoinverse A+ = (AHA)−1AH .

2.22. Find the LS solution to the set of linear equations Aθ = b where

A =




1 2

2 −1

5 2

3 −4




and b =




2

−1

1

3



.

2.23. Consider the set of linear equations Aθ = b where

A =




0.6 −1.6 0

0.8 1.2 0

0 0 0

0 0 0




and b =




−0.5

2

0

0



.

(a) Find the SVD of A.
(b) Find the LS solution for θ.



References 81

Computer Assignments

2.1. Suppose f(x) is a periodic function of period 2π and

f(x) =

{
1, |x| ≤ π/2,

0, π/2 < |x| ≤ π.

(a) Let sn(x) denote the nth partial sum of the Fourier series
of f(x). Find the Fourier series of f(x) and the partial sum
limn→∞ sn(x).

(b) Plot the partial sums s1(x), s3(x) and s23(x), and specify what
phenomenon you observe.
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