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Summary. Many complex pattern classification problems involve high-dimensional
inputs as well as a large number of classes. In this chapter, we present a modular
learning framework called the Binary Hierarchical Classifier (BHC) that takes
a coarse-to-fine approach to dealing with a large number of output classes. BHC de-
composes a C-class problem into a set of C−1 two-(meta)class problems, arranged
in a binary tree with C leaf nodes and C−1 internal nodes. Each internal node
is comprised of a feature extractor and a classifier that discriminates between the
two meta-classes represented by its two children. Both bottom-up and top-down ap-
proaches for building such a BHC are presented in this chapter. The Bottom-up
Binary Hierarchical Classifier (BU-BHC) is built by applying agglomerative
clustering to the set of C classes. The Top-down Binary Hierarchical Classi-
fier (TD-BHC) is built by recursively partitioning a set of classes at any internal
node into two disjoint groups or meta-classes. The coupled problems of finding a
good partition and of searching for a linear feature extractor that best discrimi-
nates the two resulting meta-classes are solved simultaneously at each stage of the
recursive algorithm. The hierarchical, multistage classification approach taken by
the BHC also helps with dealing with high-dimensional data, since simpler feature
spaces are often adequate for solving the two-(meta)class problems. In addition,
it leads to the discovery of useful domain knowledge such as class hierarchies or
ontologies, and results in more interpretable results.

2.1 Introduction

A classification problem involves identifying a set of objects, each represented
in a suitable common input space, using one or more class labels taken from
a pre-determined set of possible labels. Thus it may be described as a four-
tuple: (I,Ω, PX×Ω ,X ), where I is the input space, in which the raw data is
available (e.g. the image of a character), Ω is the output space, comprised of
all the class labels that can be assigned to an input pattern (e.g. the set of
26 alphabetic characters in English), PX×Ω is the unknown joint probability
density function over random variables X ∈ I and Ω ∈ Ω, and X ⊂ I × Ω is
the training set sampled from the distribution PX×Ω . The goal is to determine
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the relationship between the input and output spaces, a full specification of
which is given by modeling the joint probability density function PX×Ω .

Complexity in real-world classification problems can arise from multiple
causes. First, the objects (and their representation) may themselves be com-
plex, e.g. XML trees, protein sequences with 3-D folding geometry, variable
length sequences, etc. [18]. Second, the data may be very noisy, the classes
may have significant overlap and the optimal decision boundaries may be
highly nonlinear. In this chapter we concentrate simultaneously on complex-
ity due to high-dimensional inputs and a large number of class labels that
can be potentially assigned to any input. Recognition of characters from the
English alphabet (C = 26 classes) based on a (say) 64× 64 binary input im-
age and labeling of a piece of land into one of 10–12 land-cover types based
on 100+ dimensional hyperspectral signatures are two examples that exhibit
such complex characteristics.

There are two main approaches to simplifying such problems:

• Feature extraction: A feature extraction process transforms the input
space, I, into a lower-dimensional feature space, F , in which discrimina-
tion among the classes Ω is high. It is particularly helpful given finite
training data in a high-dimensional input space, as it can alleviate fun-
damental problems arising from the curse of dimensionality [2, 15]. Both
domain knowledge and statistical methods can be used for feature extrac-
tion [4, 9, 12, 16, 27, 33]. Feature selection is a specific case of linear
feature extraction [33].

• Modular learning: Based on the divide-and-conquer precept that “learn-
ing a large number of simple local concepts is both easier and more useful
than learning a single complex global concept” [30], a variety of modular
learning architectures have been proposed by the pattern recognition and
computational intelligence communities [28, 36, 47]. In particular, multi-
classifier systems develop a set of M classifiers instead of one, and sub-
sequently combine the individual solutions in a suitable way to address
the overall problem. In several such architectures, each individual classi-
fier addresses a simpler problem. For example, it may specialize in only
part of the feature space as in the mixture of experts framework [26, 41].
Alternatively, a simpler input space may effectively be created per clas-
sifier by sampling/re-weighting (as in bagging and boosting), using one
module for each data source [48]; different feature subsets for different
classes (input decimation) [49], etc. Advantages of modular learning in-
clude the ease and efficiency in learning, scalability, interpretability, and
transparency [1, 21, 36, 38, 42].

This chapter focuses on yet another type of modularity which is possible
for multi-class problems, namely, the decomposition of a C-class problem into
a set of binary problems. Such decompositions have attracted much interest
recently because of the popularity of certain powerful binary classifiers, most
notably the support vector machine (SVM), which was originally formulated
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for binary dichotomies [50]. Although several extensions of SVMs to multi-
class problems have been subsequently suggested (see papers referred to in
[25]), the results of [25] show that such direct approaches are inferior to de-
composing the multiclass problem into several binary classification problems,
each addressed by a binary SVM.

Over the years, several approaches to decomposing the output space have
been proposed. The most popular approaches, described in more detail in Sec-
tion 2.2, are: (i) solving C “one-versus-rest” two-class problems; (ii) examining(
C
2

)
pairwise classifications; (iii) sequentially looking for or eliminating a sin-

gle class at a time and (iv) applying error correcting output codes [10]. These
approaches have been met with varying degrees of success. For the moment,
we note that they typically do not take into account the natural affinities
among the classes, or simultaneously determine simpler feature spaces that
are tailored for specific output decompositions.

In this chapter, we propose an alternative approach to problem decom-
position in output space that involves building a Binary Hierarchical
Classifier (BHC) in which a C-class problem is addressed using a set of
M = C−1 two-(meta)class feature extractor/classifier modules. These mod-
ules are arranged to form the C−1 internal nodes of a binary tree with C
leaf nodes, one for each class. At each internal node, the partitioning of the
parent meta-class into two child meta-classes is done simultaneously with the
identification of an appropriately small but discriminating feature space for
the corresponding classification problem. This is unlike the commonly used
decision trees in which there may be several leaf nodes per class and the par-
titionings are explicitly done only in the input space. Instead the BHC can
be considered as an example of a coarse-to-fine approach to multi-class prob-
lems. In earlier pattern recognition literature, several multistage approaches,
including hierarchical ones were considered in which classes were progressively
eliminated for an unlabelled sample [8, 43]. One of the goals of this work is
to motivate the reader to reconsider such approaches as they often provide
valuable domain information as a side-effect.

In addition to reducing the number of binary classifiers from O(C2) in
the pairwise classifier framework to O(C), the BHC framework also generates
a class taxonomy that often provides useful domain knowledge. Indeed, the
hierarchical problem decomposition viewpoint was motivated by the observa-
tion that many real-world classification problems have inherent taxonomies
associated with them. Examples of such hierarchically structured classes can
be found in domains as diverse as Biology, where all life forms are arranged in
a multilevel taxonomy, and Internet portals such as Yahoo!, where all articles
are arranged in a hierarchical fashion for ease of navigation and organization.

In fact, the BHC was developed by us while attempting to produce ef-
fective solutions to classification of land cover from remotely sensed hyper-
spectral imagery. Land covers have natural hierarchies and inter-class affini-
ties, which the BHC was able to automatically infer and exploit. Figure 2.1
shows an example of a simple two-level hierarchy of various land-cover types
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Scrub
Willow Swamp
Cabbage Palm Hammock
Cabbage Palm/Oak Hammock
Slash Pine
Broadleaf/Oak Hammock
Hardwood Swamp

Graminoid Marsh
Spartin Marsh
Cattail Marsh
Salt Marsh
Mud flats

WATERLAND

Mid-infrared band

UPLANDS WETLANDS

NDVI

Fig. 2.1. A simple two-level hierarchy for a site with one WATER class and 12
LAND classes divided into seven UPLANDS and five WETLANDS meta-classes.
The land versus water distinction is made by the response in the mid-infrared band
while the distinction between uplands and wetlands is made using the Normalized
Difference Vegetation Index (NDVI).

in the Bolivar peninsula [7]. In this example, 13 original (base) classes are
first decomposed into two groups, LAND and WATER. WATER and LAND
“meta-classes” can be readily separated based on the pixel responses in the
mid-infrared frequency bands. WATER is one of the 13 base classes, while the
LAND meta-class comprises 12 classes and is thus further partitioned into
UPLANDS and WETLANDS meta-classes comprised of seven and five base
classes respectively. The distinction between the UPLANDS and WETLANDS
is made using the Normalized Difference Vegetation Index (NDVI) [45]. In-
stead of solving a 13-class problem, the hierarchy shown in Figure 2.1 can
be used to first solve a binary problem (separating WATER from LAND),
and then solve another binary problem to separate UPLANDS from WET-
LANDS. Note that both the feature space as well as the output space of the
two problems are different. The seven-class problem of discriminating among
the UPLANDS classes and the five-class problem of discriminating among the
WETLANDS classes can be further addressed in appropriate feature spaces
using appropriate classifiers. Thus, a 13-class problem is decomposed using an
existing hierarchy into simpler classification problems in terms of their output
spaces.

Section 2.2 summarizes existing approaches to solving multi-class prob-
lems through output space decomposition. The BHC framework is formally
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defined in Section 2.3. The Bottom-up Binary Hierarchical Classifier
(BU-BHC) algorithm for building the BHC using ideas from agglomerative
clustering [11] in a bottom-up fashion is described in Section 2.4. The Top-
down Binary Hierarchical Classifier (TD-BHC) algorithm for building
the BHC using ideas from our GAMLS framework [30] in a top-down approach
is described in Section 2.5. Section 2.6 discusses both hard and soft ways of
combining the results from individual binary classifiers to solve the original
multi-class problem, for both top-down and bottom-up approaches. An ex-
perimental evaluation of the BHC framework over several large classification
tasks follows in Section 2.7, and several class hierarchies extracted from the
data are displayed in Section 2.8.

2.2 Background: Solving Multi-Class Problems

In this section we summarize and compare four main types of approaches
that have been developed over the years to address multi-class problems using
binary classifiers.

2.2.1 One-versus-rest

The traditional approach to multiclass problems is to develop C classifiers,
each focussed on distinguishing one particular class from the rest. Often this
is achieved by developing a discriminant function for each of the C classes.
A new data point is assigned the class label corresponding to the discrimi-
nant function that gives the highest value for that data point. For example,
in Nilsson’s classic linear machine [37], the discriminant functions are linear,
so the decision boundaries are constrained to be hyperplanes that intersect at
a point. This is an example of the discriminant analysis family of algorithms,
that includes Quadratic Discriminant Analysis [22, 34], Regularized Discrim-
inant Analysis [13], and Kernel Discriminant Analysis [6, 20]. The essential
difference among different discriminant analysis methods is the nature and
bias of the discriminant function used.

2.2.2 Pairwise classification

Also known as round robin classification [17], these approaches learn one clas-
sifier for each pair of classes (employing a total of

(
C
2

)
classifiers in the process)

and then combine the outputs of these classifiers in a variety of ways to de-
termine the final class label. This approach has been investigated by several
researchers [14, 23, 39, 46]. Typically the binary classifiers are developed and
examined in parallel, a notable exception being the efficient DAG-structured
ordering given in [39]. A straightforward way of finding the winning class is
through a simple voting scheme used for example in [14], which evaluates



48 Joydeep Ghosh, Shailesh Kumar and Melba M. Crawford

pairwise classification for two versions of CART and for the nearest neighbor
rule. Alternatively, if the individual classifiers provide good estimates of the
two-class posterior probabilities, then these estimates can be combined using
an iterative hill-climbing approach suggested by [23].

Our first attempts at output space decomposition [7, 31] involved applying
a pairwise classifier framework for land-cover prediction problems involving
hyperspectral data. Class-pair-specific feature extraction was used to obtain
superior classification accuracies. It also provided important domain knowl-
edge with regard to what features were more useful for discriminating specific
pairs of classes. While such a modular-learning approach for decomposing a
C-class problem is attractive for a number of reasons including focussed fea-
ture extraction, interpretability of results and automatic discovery of domain
knowledge, the fact that it requires O(C2) pairwise classifiers might make
it less attractive for problems involving a large number of classes. Further,
the combiner that integrates the results of all the

(
C
2

)
classifiers must resolve

the couplings among these outputs that might increase with the number of
classes.

2.2.3 Error correcting output codes (ECOC)

Inspired by distributed output representations in biological systems, as well
as by robust data communication ideas, ECOC is one of the most innovative
and popular approaches to have emerged recently to deal with multi-class
problems [10]. A C-class problem is encoded as C̄ binary problems. For each
binary problem, one subset of the classes serves as the positive class (target
= 1) while the rest form the negative class (target = 0). As a consequence,
each original class is encoded into a C̄-dimensional binary vector. The C × C̄
binary matrix is called the coding matrix. A given test input is labelled as
belonging to the class whose code is closest to the code formed by the outputs
of the C̄ classifiers in response to that input.

2.2.4 Sequential methods

These approaches impose an ordering among the classes, and the classifiers
are developed in sequence rather than in parallel. For example, one can first
discriminate between class “1” and the rest. Then for data classified as “rest”,
a second classifier is designed to separate class “2” from the other remaining
classes, and so on. Problem decomposition in the output space can also be ac-
complished implicitly by having C classifiers, each trying to solve the complete
C-class problem, but with each classifier using input features most correlated
with only one of the classes. This idea was used in [49] for creating an en-
semble of classifiers, each using different input decimations. This method not
only reduces the correlation among individual classifiers in an ensemble, but
also reduces the dimensionality of the input space for classification problems.
Significant improvements in misclassification error together with reductions
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in the number of features used were obtained on various public-domain data
sets using this approach.

2.2.5 Comments and comparisons

A common characteristic of the approaches described above is that they do
not take into account the underlying affinities among the individual classes
(for example, how close or separated they are) while deciding on class se-
lection/grouping for binary classification. Both one-versus-rest and pairwise
methods treat each class the same way while, in ECOC, design of the code
matrix is based on the properties of this matrix rather than the classes they
represent. That is why it is helpful to have a strong base learner when ap-
plying ECOC since some of the groupings may lead to complicated decision
boundaries. In contrast, the groupings in BHC are determined by the proper-
ties of the class distributions. Not being agnostic to class affinities helps us in
determining natural groupings that facilitate both the discrimination process
and the interpretation of results.

Three noteworthy studies have emerged recently that compare the three
major approaches. Furnkranz [17] shows that the

(
C
2

)
learning problems of

pairwise classification can be learned more efficiently than the C problems of
the one-versus-rest technique. His analysis is independent of the base learn-
ing algorithm. He also observes that both these approaches are more efficient
than ECOC. A large number of empirical results are shown using Ripper
and C5.0 as base classifiers. The BHC uses only C−1 classifiers, similar to
one-versus-rest, but since the class groupings are based on affinities, the bi-
nary classifications are simpler in general. Hence BHCs do not compromise
much on efficiency in the process of reducing the number of classifiers needed.
Hsu and Lin [25] did a detailed study comparing one-versus-rest and pairwise
classification, both using the SVM as base classifier, to two approaches for
directly generalizing the SVM algorithm to multi-class problems. The pair-
wise method performed best both in terms of accuracy and training time.
One-versus-rest was second and both methods were better than the direct
generalizations of SVM. Finally, a recent intriguing study [44] shows that no
one of these methods performs significantly better than any other as far as test
errors are concerned. The study is carefully done, but it is not clear whether
the results are affected by the choice of SVMs with Gaussian kernels as the
base classifiers.

2.3 The Binary Hierarchical Classifier Framework

Definition 1 A binary hierarchical classifier for a C-class problem P(I,Ω,
PX×Ω ,X ) is defined as an ensemble of C−1 two-(meta)class problems, ar-
ranged as a binary tree T (Ω1), (Ω1 = Ω) recursively defined as follows:
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T (Ωn) =

{[
P(Fn, Ω̃n, PYn×Ω̃n

,Yn), T (Ω2n), T (Ω2n+1)
]

if |Ωn| > 1
Ωn if |Ωn| = 1,

(2.1)
in which each internal node n (i.e. n : |Ωn| > 1) has an associated two-
(meta)class problem:

P(Fn, Ω̃n, PYn×Ω̃n
,Yn) (2.2)

where n is the index of a node in the tree. For each node n, Ωn is a set of
classes in the associated meta-class. For each internal node n, {2n, 2n+1} are
indices of the left and right children, Ω̃n = {Ω2n,Ω2n+1}, Fn is the feature
space for the binary problem, Yn are random variables in Fn, and Ω̃n are
random variables in Ω̃n. Further, each internal node n is comprised of meta-
class feature extractors ψn : I → Fn, such that discrimination between Ω2n

and Ω2n+1 is high in Fn, and meta-class classifiers φn for classes Ω̃n. Finally,
a tree combiner Ξ integrates the outputs of all the internal node classifiers
{φn} into a single output. The classifiers φn can be hard classifiers defined
by the mapping φH

n : Fn → Ω̃n, or soft classifiers given by the mapping
φS

n : Fn → Pn(Ω̃n = Ω2n|Yn). (Note that Pn(Ω̃n = Ω2n+1|yn(x)) is simply
1 − Pn(Ω̃n = Ω2n|yn(x)).)
Correspondingly the combiner Ξ can be a hard combiner ΞH : {Ω̃n}n:|Ωn|>1 →
Ω, where inputs to ΞH are the C−1 (meta)class labels and output is one of
the C class labels in Ω, or a soft combiner ΞS : {Pn(Ω̃n|Yn)}n:|Ωn|>1 →
{P (ω|X)}ω∈Ω, where inputs to ΞS are the meta-class posterior probabilities
generated by the C−1 classifiers.

Figure 2.2 shows an example of a five-class BHC with four internal nodes
and five leaf nodes. In general, the BHC tree T (Ω) contains C = |Ω| leaf nodes
and C−1 internal nodes. Each internal node n has its own feature extractor
and classifier that discriminates the two meta-classes Ω2n and Ω2n+1. The de-
composition of the set of classes Ωn into two disjoint subsets Ω2n and Ω2n+1 is
an NP problem with O(2|Ωn|) possible alternatives. Further, the feature space
Fn depends on the decomposition of Ωn. Hence the two coupled problems of
finding the best possible decomposition of Ωn and the best feature space that
discriminates the two resulting meta-classes must be solved simultaneously.
The bottom up and top-down approaches of building such binary hierarchical
classifiers are described next.

2.4 Bottom-up BHC

The Bottom-up Binary Hierarchical classifier (BU-BHC) algorithm
is analogous to hierarchical agglomerative clustering [11]. Instead of merging
data points or clusters at each stage, ] classes or meta-classes are merged
in the BU-BHC algorithm. Starting from the set of C meta-classes ΠC =
{Ω(c)}C

c=1, where Ω(c) = {ωc}, a sequence ΠC → ΠC−1 → . . . Π2 → Π1 with
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Fig. 2.2. An example of a Binary Hierarchical Classifier for a C = 5 class
problem with four internal nodes and five leaf nodes. Each internal node n comprises
a feature extractor ψn and a classifier φn. Each node n is associated with a set of
classes Ωn. The left and right children of internal node n are indexed 2n and 2n+1,
respectively.

an associated decreasing number of meta-classes is generated by merging two
meta-classes Ωα and Ωβ in ΠK to obtain the set ΠK−1.

In order to decide which of the K meta-classes in ΠK are to be merged to
obtain ΠK−1, a “distance” between every pair of meta-classes, ϑ(Ωα, Ωβ) is
defined as the separation between the two meta-classes in the most discrimina-
tory feature space F(Ωα, Ωβ). Any suitable family of feature extractors can be
used to quantify the distance between two meta-classes. In this chapter, since
we are largely concerned with numeric data, two variants of the Fisher dis-
criminant based linear feature extractors are proposed: Fisher(1), in which a
one-dimensional projection of the D-dimensional input space is sought for the
two-meta class problem, and Fisher(m), in which an m-dimensional feature
space where m = min{D, |Ωα| + |Ωβ | − 1} is sought.

2.4.1 Fisher(1) Feature Extraction

The dimensionality of the Fisher projection space for a C-class problem with
a D-dimensional input space is min{D, C−1}. At each internal node in the
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BHC, a two-class problem is solved, and hence only a one-dimensional feature
space can be obtained for discriminating these two meta-classes. The distance
function and the feature space obtained by the Fisher(1) feature extractor
for the two meta-classes Ωα and Ωβ are defined in this section.

Let {μρ ∈ �D×1, ρ ∈ {α, β}} and {Σρ ∈ �D×D, ρ ∈ {α, β}} be the means
and covariances of the two meta-classes and let {P (Ωρ), ρ ∈ {α, β}} be their
priors. The statistics of meta-class Ωρ can be defined in terms of the estimated
mean vectors, {μ̂ω ∈ �D×1, ω ∈ Ωρ}, covariance matrices, {Σ̂ω ∈ �D×D, ω ∈
Ωρ} and class priors {P̂ (ω), ω ∈ Ωρ} as follows:

P̂ (Ωρ) =
∑

ω∈Ωρ

P̂ (ω) =

∑
ω∈Ωρ

|Xω|∑
γ∈Ω |Xγ |

, ρ ∈ {α, β}, (2.3)

μ̂ρ =

∑
ω∈Ωρ

∑
x∈Xω

x∑
ω∈Ωρ

|Xω|
=

∑
ω∈Ωρ

P̂ (ω)μ̂ω∑
ω∈Ωρ

P̂ (ω)
, ρ ∈ {α, β}, (2.4)

Σ̂ρ =
∑

ω∈Ωρ

∑
x∈Xω

(x−μ̂ρ)(x−μ̂ρ)T

∑
ω∈Ωρ

|Xω|

=
∑

ω∈Ωρ
P̂ (ω)[Σ̂ω+(μ̂ρ−μ̂ω)(μ̂ρ−μ̂ω)T ]∑

ω∈Ωρ
P̂ (ω)

(2.5)

The Fisher discriminant depends on the D×D symmetric within class covari-
ance matrix Wα,β given by:1

Wα,β = P (Ωα)Σα + P (Ωβ)Σβ , (2.6)

and the D × D, rank 1, between class covariance matrix Bα,β given by:

Bα,β = P (Ωα)P (Ωβ)(μα − μβ)(μα − μβ)T . (2.7)

The corresponding one-dimensional Fisher projection is given by:

vαβ = arg max
v∈�D×1

vT Bα,βv
vT Wα,βv

∝ W−1
α,β

(
μα − μβ

)
. (2.8)

Thus, the Fisher(1) feature extractor ψ
(1)
fisher(X|Ωα, Ωβ) = vT

αβx, where
x ∈ �D×1 and y ∈ � is a one-dimensional feature. The distance between the
two meta-classes Ωα and Ωβ is the Fisher(1) discriminant along the Fisher
projection vαβ of Equation (2.8).

2.4.2 Fisher(m) Feature Extraction

The basic assumption in Fisher’s discriminant is that the two classes are
unimodal. Even if this assumption is true for individual classes, it is not true

1Substituting estimated parameters for expected ones (e.g. P̂ ≡ P , μ̂ ≡ μ, and
Σ̂ ≡ Σ).
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for meta-classes comprised of two or more classes. Moreover, as the number
of classes in the meta-classes Ωα and Ωβ increases, the dimensionality of the
feature space should also increase to compensate for the more complex decision
boundaries between the two meta-classes. In the Fisher(1) feature extractor,
irrespective of the sizes of the two meta-classes (in terms of the number of
original classes), the Fisher projection is always one-dimensional because the
rank of the between-class covariance matrix Bα,β defined in Equation (2.7) is
1.

To alleviate this problem, we replace Bα,β by a pairwise between-class co-
variance matrix B̃α,β that is defined in terms of the between-class covariances
Bω,ω′ = P (ω)P (ω′)(μω − μω′)(μω − μω′)T , ∀(ω, ω′ ∈ Ωα × Ωβ as follows:

B̃α,β =
∑

ω∈Ωα

∑
ω′∈Ωβ

P (ω)P (ω′)(μω − μω′)(μω − μω′)T =
∑

ω∈Ωα

∑
ω′∈Ωβ

Bω,ω′ .

(2.9)
The rank of B̃α,β is mαβ = min{D, |Ωα| + |Ωβ | − 1}. The within-class co-
variance matrix for Fisher(m) is the same as in Equation (2.6). The Fisher
projection matrix Vαβ ∈ �D×mαβ for the Fisher(m) feature extractor is
given by:

Vαβ = arg max
V∈�D×mαβ

tr
{(

VT Wα,βV
)−1 (

VT Bα,βV
)}

. (2.10)

The optimal solution is the first mαβ eigenvectors of
(
W−1

α,βBα,β

)
. Thus, the

Fisher(m) feature extractor ψ
(m)
fisher(X|Ωα, Ωβ) = VT

αβx, where y ∈ �mαβ×1

is an mαβ-dimensional feature vector. The distance between the two meta-
classes Ωα and Ωβ is the Fisher(m) discriminant along the projection Vαβ

of Equation (2.10).
The dimensionality of the feature space using the Fisher(m) feature ex-

tractor depends on the size of the meta-classes that are merged. In terms of
the notation of the BHC introduced in Definition 1, the dimensionality of the
feature space Fn at the internal node n is min{D, |Ωn|−1}. In particular, the
dimensionality at the root node n = 1 is min{D, |Ω1| − 1} = min{D, C − 1}.
This is the same as the dimensionality of the Fisher projection of the origi-
nal C-class problem, the key difference being that in BHC, a two meta-class
problem is solved in this space instead of the C-class problem. The tradeoff
between the reduction in the number of classes from C to two and the in-
crease in the complexity of the two meta-classes determines the utility of such
a feature space.

2.4.3 Merging the Meta-Classes

Let Ωα and Ωβ be the two closest (in terms of the Fisher projected dis-
tances defined in Sections 2.4.1 and 2.4.2) classes that are merged to form the
meta-class Ωαβ = merge(Ωα, Ωβ). The estimated mean vector μ̂αβ ∈ �D×1,
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covariance matrix Σ̂αβ�D×D, and prior probability P̂ (Ωαβ) of the meta-class
Ωαβ are related to the means, covariances, and priors of the two merged meta-
classes as follows:

P̂ (Ωαβ) =
∑

ω∈Ωαβ

P̂ (ω) = P̂ (Ωα) + P̂ (Ωβ), (2.11)

μ̂αβ =

∑
ω∈Ωαβ

∑
x∈Xω

x∑
ω∈Ωαβ

|Xω|
=

P̂ (Ωα)μ̂α + P̂ (Ωβ)μ̂β

P̂ (Ωα) + P̂ (Ωβ)
, (2.12)

Σ̂αβ =
∑

ω∈Ωαβ

∑
x∈Xω (x−μ̂αβ)(x−μ̂αβ)T

∑
ω∈Ωαβ

|Xω|

=
∑

ρ∈{α,β} P̂ (Ωρ)
[
Σ̂ρ+(μ̂ρ−μ̂αβ)(μ̂ρ−μ̂αβ)T

]

P̂ (Ωα)+P̂ (Ωβ)
.

(2.13)

Once the mean and covariance of the new meta-class Ωαβ are obtained, its
distance from the remaining classes Ωγ ∈ ΠK − {Ωα, Ωβ} is computed as
follows. The within-class covariance Wαβ,γ is given by:2,3

Wαβ,γ = P (Ωαβ)Σαβ + P (Ωγ)Σγ

= 1
2 [Wα,γ + Wβ,γ + Wα,β ] + Bα,β

P (Ωα)+P (Ωβ) .
(2.14)

Similarly, the between-class covariance Bαβ,γ for the fisher(1) case is defined
as:

Bαβ,γ = P (Ωαβ)P (Ωγ)
(
μαβ − μγ

) (
μαβ − μγ

)T
Bαβ,γ

= Bα,γ + Bβ,γ − P (Ωγ)
P (Ωα)+P (Ωβ)Bα,β .

(2.15)

Finally, the pairwise between-class covariance B̃αβ,γ for fisher(m) case is
defined as:

B̃αβ,γ =
∑

ω∈Ωαβ

∑
ω′∈Ωγ

P (ω)P (ω′) (μω − μω′) (μω − μω′)T = B̃α,γ + B̃β,γ

(2.16)
The recursive updates of Wαβ,γ , Bαβ,γ and B̃αβ,γ can be used to efficiently

compute the distance ϑ(Ωαβ , Ωγ) and continue to build the tree bottom-up
efficiently.

2.5 Top-down BHC

The bottom-up BHC algorithm is O(C2) as the distance between all pairs
of classes must be computed at the very first stage. Each of the C−1 sub-
sequent stages is O(C). For a large number of classes this might make the

2Substituting estimated parameters for expected ones (e.g. P̂ ≡ P , μ̂ ≡ μ, and
Σ̂ ≡ Σ).

3See [29] for details of simplifications.
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BU-BHC algorithm less attractive. In this section, we propose an alternate
approach to building the BHC, i.e., the Top-down Binary Hierarchi-
cal classifier (TD-BHC) algorithm. This algorithm is motivated by our
GAMLS framework [30]. In TD-BHC, starting from a single meta-class set
Π1 at the root node comprising of all the C classes, an increasing sequence
Π1 → Π2 → . . . ΠC−1 → ΠC of meta-classes is obtained. At each stage,
ΠK , one of the meta-classes is partitioned into two disjoint subsets leading
to ΠK+1. Using the notation introduced in Definition 1, the basic TD-BHC
algorithm, BuildTree(Ωn), can be written as follows:

1. Partition Ωn into two meta-classes (Ω2n,Ω2n+1) ← PartitionNode(Ωn)
2. Recurse on each child:

• if |Ω2n| > 1 then BuildTree(Ω2n)
• if |Ω2n+1| > 1 then BuildTree(Ω2n+1)

The purpose of the PartitionNode function is to find a partition of the
set of classes Ωn into two disjoint subsets such that the discrimination between
the two meta-classes Ω2n and Ω2n+1 is high. The feature space that best
discriminates between the two meta-classes is also discovered simultaneously.
Fisher(1) and Fisher(m) are two examples of such feature extractors. The
two problems of finding a partition, as well as the feature extractor that
maximizes discrimination between the meta-classes obtained as a result of
this partition, are coupled. These coupled problems are solved simultaneously
using association and specialization ideas of the GAMLS framework [30].

2.5.1 The PartitionNode Algorithm

When partitioning a set of classes into two meta-classes, initially each class
is associated with both the meta-classes. The update of these associations
and meta-class parameters is performed alternately while gradually decreas-
ing the temperature, until a hard partitioning is achieved. The complete Par-
titionNode algorithm which forms the basis of the TD-BHC algorithm is
described in this section.

Let Ω = Ωn be some meta-class at internal node n with K = |Ωn| > 2
classes that needs to be partitioned into two meta-classes, Ωα = Ω2n and
Ωβ = Ω2n+1. The “association” A = [aω,ρ] between class ω ∈ Ω and meta-
class Ωρ, (ρ ∈ {α, β}) is interpreted as the posterior probability of ω belong-
ing to Ωρ: P (Ωρ|ω). The completeness constraint of GAMLS [30] implies that
P (Ωα|ω) + P (Ωβ |ω) = 1, ∀ω ∈ Ω.

PartitionNode(Ω)

1. Initialize associations {aω,α = P (Ωα|ω), ω ∈ Ω} (aω,β = 1 − aω,α):

P (Ωα|ω) =
{

1 for some ω = ω(1) ∈ Ω
0.5 ∀ ω ∈ Ω − {ω(1)}

(2.17)
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The association of one of the classes ω(1) ∈ Ω with the meta-class Ωα

is fixed to 1, while all other classes are associated equally with both the
meta-classes. This deterministic, non-symmetric and unbiased association
initialization is possible only because PartitionNode seeks to divide Ω
into two meta-classes only and not more. As a result of this initialization,
the TD-BHC algorithm always yields the same partition for a given data
set and learning parameters, irrespective of the choice of ω(1). The tem-
perature parameter T is initialized to 1 in this chapter, and then decayed
geometrically, as indicated in Step 6 of the algorithm below. Although the
partition is not affected by the choice of the class ω(1), the class that is
“farthest” (in terms of e.g. Bhattacharya distance) from the meta-class Ω
should be chosen for faster convergence.

2. Find the most discriminating feature space F(Ωα, Ωβ): For the
current set of “soft” meta-classes (Ωα, Ωβ) defined in terms of the associ-
ations A, the feature extractor ψ(X|A) : I → F(Ωα, Ωβ) that maximally
discriminates the two meta-classes is sought. This step depends on the
the feature extractor used. Section 2.5.3 describes how the Fisher(1) and
Fisher(m) feature extractors can be extended to soft meta-classes.

3. Compute the mean log-likelihoods of classes ω ∈ Ω in the feature
space F(Ωα, Ωβ):

L(ω|Ωρ) =
1

Nω

∑
x∈Xω

log p(ψ(x|A)|Ωρ), ρ ∈ {α, β}, ∀ ω ∈ Ω, (2.18)

where the pdf p(ψ(x|A)|Ωρ) can be modeled using any distribution func-
tion. A single Gaussian per class is used in this chapter.

4. Update the meta-class posteriors by optimizing Gibb’s free en-
ergy [30]:

aω,α = P (Ωα|ω) =
exp(L(ω|Ωα)/T )

exp(L(ω|Ωα)/T ) + exp(L(ω|Ωβ)/T )
. (2.19)

5. Repeat Steps 2 through 4 until the increase in Gibb’s free energy is in-
significant.

6. If
(

1
|Ω|
∑

ω∈Ω H(aω)
)

< θH (user-defined threshold) stop, otherwise:
• Cool temperature: T ← TθT (θT < 1 is a user-defined cooling param-

eter).
• Go to Step 2.

As the temperature cools sufficiently and the entropy decreases to near
zero (θH = 0.01 in our implementation), the associations or the posterior
probabilities {P (Ωα|ω), ω ∈ Ω} become close to 0 or 1. The meta-class Ω =
Ωn is then split as follows:

Ω2n = {ω ∈ Ωn|aω,α = P (Ωα|ω) > P (Ωβ |ω) = aω,β}
Ω2n+1 = {ω ∈ Ωn|aω,β = P (Ωβ |ω) > P (Ωα|ω) = aω,α}

. (2.20)
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2.5.2 Soft Meta-Class Parameter Updates

For any set of associations A, the estimates of the meta-class mean vectors
{μ̂ρ ∈ �D×1, ρ ∈ {α, β}}, the covariance matrices {Σ̂ρ ∈ �D×D, ρ ∈ {α, β}},
and priors {P̂ (Ωρ), ρ ∈ {α, β}} are updated using the mean vectors {μ̂ω ∈
�D×1, ω ∈ Ω}, covariance matrices {Σ̂ω ∈ �D×D, ω ∈ Ω}, and class priors
{P̂ (ω), ω ∈ Ω}, of the classes in Ω. Let Xω denote the training set compris-
ing Nω = |Xω| examples of class ω. For any given associations or posterior
probabilities A = {aω,ρ = P (Ωρ|ω), ρ ∈ {α, β}, ω ∈ Ω}, the estimate of the
mean is computed by μ̂ρ =

∑
ω∈Ω P (ω|Ωρ)μ̂ω, ρ ∈ {α, β}. The corresponding

covariance is:

Σ̂ρ =
∑

ω∈Ω
P (ω|Ωρ)

Nω

[∑
x∈Xω

(x − μ̂ρ)(x − μ̂ρ)T
]

=
∑

ω∈Ω P (ω|Ωρ)
[
Σ̂ω + (μ̂ω − μ̂ρ)(μ̂ω − μ̂ρ)T

]
, ρ ∈ {α, β}.

(2.21)

Using Bayes theorem, P (ω|Ωρ) = P̂ (ω)P (Ωρ|ω)
P̂ (Ωρ)

, where

P̂ (Ωρ) =
1

P̂ (Ω)

∑
ω∈Ω

P (Ωρ|ω)P̂ (ω) : ρ ∈ {α, β}. (2.22)

2.5.3 Soft Fisher-Based Feature Extractor

The Fisher(1) feature extractor is computed exactly as described in Sec-
tion 2.4.1. The only difference is that in the soft meta-classes case the mean
and covariance of the two meta-classes are estimated as shown in the previous
section. Using these, the within-class covariance Wα,β and the between-class
covariance Bα,β are computed as in Equation (2.6) and Equation (2.7) re-
spectively. The one-dimensional Fisher projection is given by Equation (2.8).
The one-dimensional projection obtained byFisher(1) may not be sufficient
for discriminating meta-classes with a large number of classes. Thus, the
Fisher(m) feature extractor proposed in Section 2.4.2 is also extended to
the soft meta-classes case.

In the BU-BHC algorithm at any merge step, each class belongs to either
of the two meta-classes while in the TD-BHC, at any stage of the Partition-
Node algorithm, a class ω ∈ Ω partially belongs to both the meta-classes.
To reflect this soft assignment of classes to the two meta-classes, the pair-
wise between-class covariance matrix B̃α,β used in Fisher(m) is modified as
follows:

B̃α,β = 1
2

∑
ω∈Ω

∑
ω′∈Ω−{ω} |aω,α − aω′,α|P (ω)P (ω′)(μω − μω′)(μω − μω′)T

= 1
2

∑
ω∈Ω

∑
ω′∈Ω−{ω} |aω,α − aω′,α|Bω,ω′ ,

(2.23)
where |aω,α − aω′,α| is large if the associations of ω and ω′ with the two
meta-classes are different. Thus, the weight corresponding to the between-
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class covariance component is large only when the associations with the re-
spective classes are different. In the limiting case, when the associations be-
come hard i.e. 0 or 1, then Equation (2.23) reduces to Equation (2.9). The
rank of the pairwise between-class covariance matrix is min{D, |Ω| − 1} and
hence the dimensionality of the feature space Fn at internal node n remains
min{D, |Ωn| − 1} as it was in the BU-BHC algorithm. Either Fisher(1) or
Fisher(m) can be used as the feature extractors ψ(X|A) in Step 2 of the
PartitionNode algorithm.

If the original class densities are Gaussian (G(x|μ, Σ)), the class density
functions in Step 3 of the PartitionNode algorithm in Equation (2.18) for
Fisher(1) is:

p(ψ(1)
fisher(x|A)|Ωρ) = G

(
vT

αβx|vT
αβμρ,vT

αβΣρvαβ

)
, ρ ∈ {α, β}, (2.24)

where vαβ is defined in Equation (2.8). Similarly the class density functions
for the Fisher(m) feature extractor can be defined as a multivariate (mαβ-
dimensional) Gaussians,

p(ψ(m)
fisher(x|A)|Ωρ) = G

(
VT

αβx,VT
α,βμρ,VT

αβΣρVαβ

)
, ρ ∈ {α, β}, (2.25)

where Vαβ is defined in Equation (2.10).

2.6 Combining in BHCs

As mentioned in Definition 1, either a hard or a soft classifier can be used at
each internal node in the BHC, leading to two types of combiners: hard and
soft. In this section both the hard and soft combining schemes are presented.
The hard combiner ΞH essentially uses ideas from decision tree classifiers [3]
to propagate a novel example to one of the leaf nodes based on the outputs of
all the internal nodes, while the soft combiner ΞS estimates the true posteriors
of the leaf-node classes from the posteriors of the internal node classifiers.

2.6.1 The Hard Combiner

A novel test example is classified by the hard combiner ΞH of BHC by pushing
it from the root node to a leaf node. The output of the hard classifier at
internal node n, φH

n (ψn(x)), is a class label Ω2n or Ω2n+1. Depending on the
output at node n, x is pushed either to the left child or the right child. The
basic hard combiner is implemented as follows:

1. Initialize n = 1 (start at root node).
2. while node n is an internal node, recursively push point x to the appro-

priate child:

n ←
{

2n if φH
n (ψn(x)) = Ω2n

2n + 1 if φH
n (ψn(x)) = Ω2n+1

(2.26)

3. Assign the (unique) class label Ωn at the leaf node n to x.
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2.6.2 The Soft Combiner

If a soft classifier is used at each internal node, the results of these hierar-
chically arranged classifiers can be combined by first computing the overall
posteriors {P (ω|x), ω ∈ Ω} and then applying the maximum a posteriori
probability (MAP) rule: ω(x) = arg maxω∈Ω P (ω|x), to assign the class la-
bel ω(x) to x. The posteriors P (ω|x) can be computed by multiplying the
posterior probabilities of all the internal node classifiers on the path to the
corresponding leaf node.

Theorem 1. The posterior probability P (ω|x) for any input x is the product
of the posterior probabilities of all the internal classifiers along the unique path
from the root node to the leaf node n(ω) containing the class ω, i.e.

P (ω|x) =
D(ω)−1∏


=0

P (Ω(
+1)
n(ω) |x, Ω

(
)
n(ω)), (2.27)

where D(ω) is the depth of n(ω) (depth of the root node is 0), Ω
(
)
n is the meta-

class at depth � in the path from the root node to n(ω), such that Ω
(D(ω))
n(ω) = {ω}

and Ω
(0)
n(ω) = Ω1 = root node. (See [32] for proof.)

Remark 1 The posterior probabilities Pn(Ωk|x,Ωn), k ∈ {2n, 2n + 1} are
related to the overall posterior probabilities {P (ω|x), ω ∈ Ω} as follows:4

Pn(Ωk|x,Ωn) =

∑
ω∈Ωk

P (ω|x)∑
ω∈Ωn

P (ω|x)
, k ∈ {2n, 2n + 1} (2.28)

2.7 Experiments

Both BU-BHC and TD-BHC algorithms are evaluated in this section on
public-domain data sets available from the UCI repository [35] and National
Institute of Standards and Technology (NIST) and two additional hyperspec-
tral data sets. The classification accuracies of eight different combinations of
the BHC classifiers (bottom-up vs top-down, Fisher(1) vs Fisher(m) fea-
ture extractor and soft vs hard combiners) are compared with multilayered
perceptron-based and maximum likelihood classifiers. The class hierarchy that
is automatically discovered from both the BU-BHC and TD-BHC for these
data sets are shown for some of these data sets to provide concrete examples
of the domain knowledge discovered by the BHC algorithms.

2.7.1 Data Sets Used

The BHC was originally formulated by us to tackle the challenging problem
of labeling land cover based on remotely-sensed hyperspectral images, but it

4This relationship can also be used to indirectly prove Theorem 1.
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Table 2.1. The twelve classes in the AVIRIS/KSC hyperspectral data set

Num Class Name
Upland Classes

1 Scrub
2 Willow Swamp
3 Cabbage palm hammock
4 Cabbage oak hammock
5 Slash pine
6 Broad leaf/oak hammock
7 Hardwood swamp

Wetland Classes
8 Graminoid marsh
9 Spartina marsh
10 Cattail marsh
11 Salt marsh
12 Mud flats

clearly has broader applicability. Therefore in this section we shall evaluate it
on five public-domain data sets in addition to two hyperspectral data sets. The
four public-domain data sets obtained from the UCI repository [35] consist of
two 26-class English letter recognition data sets (LETTER-I and LETTER-II)
with classes A–Z, a 10-class DIGITS data set with classes 0–9 and a six-class
SATIMAGE data set with the following classes: red soil, cotton crop, gray
soil, damp gray soil, soil with vegetation stubble, and very damp gray soil.
See [29] for more details about these data sets.

The two high-dimensional hyperspectral data sets are AVIRIS and HYMAP,
both obtained from NASA. AVIRIS covers 12 classes or land-cover types, and
we used a 183-band subset of the 224 bands (excluding water absorption
bands) acquired by NASA’s Airborne Visible/Infrared Imaging Spectrome-
ter (AVIRIS) sensor over Kennedy Space Center in Florida. The seven upland
and five wetland cover types identified for classification are listed in Table 2.1.
Classes 3–7 are all trees. Class 4 is a mixture of Class 3 and oak hammock.
Class 6 is a mixture of broad leaf trees (maples and laurels) and oak hammock.
Class 7 is also a broad leaf tree. These classes have similar spectral signatures
and are very difficult to discriminate in multispectral, and even hyperspectral,
data using traditional methods.

The HYMAP data set represents a nine-class land-cover prediction prob-
lem, where the input is 126 bands across the reflective solar wavelength region
of 0.441–2.487 μm with contiguous spectral coverage (except in the atmo-
spheric water vapor bands) and bandwidths between 15 and 20 nm. This data
set was obtained over Stover Point (South Texas) in September of 1999. The
vegetation here consists of common high estuarine marsh species including
Spartina spartinae, Borrichia frutescens, Monanthochloa littoralis, and Batis
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Table 2.2. The nine classes in the STOVER/HYMAP data set.

Num Class Name
1 Water
2 Spartina Spartinae
3 Batis maritima
4 Borrichia frutescens + Spartina spartinae + Monanthocloa littoralis
5 Sand flats (bare soil)
6 Pure Borrichia frutescens
7 Trees
8 Dense bushes
9 Borrichia frutescens + Spartina spartinae

maritima. Adjacent to the resaca (which is a generic term that refers to an
old river bed which has been cut off by the meandering of the river resulting
in an ox-bow) is an almost impregnable layer of dense shrubs and trees. The
nine classes determined for Stover Point are listed in Table 2.2.

2.7.2 Classification Results

The eight versions of the BHC framework that are evaluated on the data sets
described in the previous section are generated by the following sets of choices:

• Building the tree: The BHC tree can be built either bottom-up or top-
down. The biases of the BU-BHC and the TD-BHC algorithms are dif-
ferent. The BU-BHC tries to find the most similar meta-classes from the
available set and hence is more greedy at each step than the TD-BHC,
which attempts to partition a meta-class into two subsets with a more
global perspective. As a result of the differences of these biases, different
BHC trees and therefore different classification accuracies can be obtained.

• Feature extractor used: Both the Fisher(1) and Fisher(m) feature
extractors based on Fisher’s discriminant are investigated. While the tree
structure for the two Fisher projections may be different, the discrimina-
tion between classes at any internal node using Fisher(m) projections is
higher than the discrimination with Fisher(1) projection and therefore
Fisher(m)-based BHC performs better in general than the corresponding
BHC with Fisher(1) feature extractor.

• Nature of combiner: Both hard and soft combiners were investigated. In
general, the soft combiner performs slightly better than the hard combiner,
as is expected.

The classification accuracy averaged over 10 experiments on each data set
is reported in Table 2.3. In each experiment, stratified sampling was used to
partition the data set into training and test sets of equal size.5 Eight versions

510-fold cross validation is currently in vogue in some circles but is an overkill
for fairly large data sets.
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of the BHC classifiers were compared to two standard classifiers leading to
the following 10 classifiers for each data set:

• MLP: a finely-tuned multilayered perceptron-based classifier for each data
set;

• MLC: a maximum-likelihood classifier using a full covariance matrix wher-
ever possible and using a diagonal covariance matrix if the full covariance
matrix is ill-conditioned due to high input dimensionality;

• BU-BHC(1,H): BU-BHC with Fisher(1) and hard combiner;
• BU-BHC(1,S): BU-BHC with Fisher(1) and soft combiner;
• BU-BHC(m,H): BU-BHC with Fisher(m) and hard combiner;
• BU-BHC(m,S): BU-BHC with Fisher(m) and soft combiner;
• TD-BHC(1,H): TD-BHC with Fisher(1) and hard combiner;
• TD-BHC(1,S): TD-BHC with Fisher(1) and soft combiner;
• TD-BHC(m,H): TD-BHC with Fisher(m) and hard combiner;
• TD-BHC(m,S): TD-BHC with Fisher(m) and soft combiner.

Table 2.3. Classification accuracies on public-domain data sets from the UCI repos-
itory [35] (satimage, digits, letter-i) and NIST(letter-ii) and remote-sensing
data sets from the Center for Space Research, The University of Texas at Austin
(hymap, aviris). The input dimensions and number of classes are also indicated for
each data set.

satimage digits letter-I letter-II hymap aviris

Dimensions 36 64 16 30 126 183
Classes 6 10 26 26 9 12
MLP 79.77 82.33 79.28 76.24 78.21 74.54
MLC 77.14 74.85 82.73 79.48 82.73 72.66
BU-BHC(1,H) 83.26 88.87 71.29 78.45 95.18 94.97
BU-BHC(1,S) 84.48 89.00 72.81 79.93 95.62 95.31
BU-BHC(m,H) 85.29 91.71 76.55 80.94 95.12 95.51
BU-BHC(m,S) 85.35 91.95 78.41 81.11 95.43 95.83
TD-BHC(1,H) 83.77 90.11 70.45 74.59 95.31 96.33
TD-BHC(1,S) 84.02 90.24 72.71 75.83 95.95 97.09
TD-BHC(m,H) 84.70 91.44 77.85 81.48 96.48 97.15
TD-BHC(m,S) 84.95 91.61 79.13 81.99 96.64 97.93

The finely tuned MLP classifiers and the MLC classifiers are used as bench-
marks for evaluating the BHC algorithms. Almost all the BHC versions per-
formed significantly better than the MLP and MLC classifiers on all data sets
except LETTER-I and LETTER-II. In general the TD-BHC was slightly bet-
ter than the BU-BHC mainly because its global bias leads to less greedy trees
than the BU-BHC algorithm. Further, the Fisher(m) feature extractor con-
sistently yields slightly better results than the Fisher(1) feature extractor,
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as expected. Finally, the soft combiner also performed sightly better than the
hard combiner. This again is an expected result as the hard combiner loses
some information as it thresholds the posteriors at each internal node.

2.7.3 Discussion of Results and Further Comparative Studies

From Table 2.3, we see that the BHC classifiers did not perform as well on
the LETTER-I data set. This turns out to be due to the presence of some
bimodal classes in this data set, which is problematic for the simple Fisher
discriminant. For such data sets it is preferable to use more powerful binary
classifiers at the internal nodes of the BHC, i.e. use the BHC framework only
to obtain the class hierarchy and then use other, more appropriate, feature-
extractors/classifiers for the two-class problems at each internal node. This
intuition is borne out in our recent work [40] where gaussian-kernel based
SVMs were used for the internal nodes, leading to statistically significant per-
formance improvements for all the nine data sets considered. Also of interest
is the comparison of this BHC-SVM architecture with an ECOC-based en-
semble (using well-tuned SVMs as the base classifiers) given in this work. The
outcome of this comparison is not obvious since two very different philoso-
phies are being encountered. While the BHC groups the classes according to
their natural affinities in order to make each binary problem easier, it cannot
exploit the powerful error correcting properties of an ECOC ensemble that
can provide good results even when individual classifiers are weak. This em-
pirical study showed that while is no clear advantage to either technique in
terms of classification accuracy, the BHCs typically achieve this performance
using fewer classifiers. Note that each dichotomy in an ECOC setup can be
addressed using all the training data, while for the BHC the data available de-
creases as one moves away from the root since only a subset of the classes are
involved in lower-level dichotomies. Thus one may expect the ECOC approach
to be less affected by a paucity of training data. However the experiments in
[40] showed that BHC was competitive even for small sample sizes, indicat-
ing that the reduction in data is compensated for by the simpler dichotomies
resulting from affinity-based grouping of classes.

All the results above assume equal penalty for each type of misclassifica-
tion. In many real applications, classification into a nearby class is less costly
than being labeled as a distant class. For example, wet gray soil being clas-
sified as damp gray soil is not as costly as being labeled as red, dry soil.
If such asymmetric costs are considered, the coarse-to-fine approach of the
BHC framework provides an additional advantage over all the other methods
considered.

2.8 Domain Knowledge Discovery

One of the important aspects of the BHC classifiers is the domain knowledge
that is discovered by the automatic BU-BHC and TD-BHC tree construction



64 Joydeep Ghosh, Shailesh Kumar and Melba M. Crawford

algorithms. The trees constructed by the BU-BHC(m) and TD-BHC(m) are
shown in Figures 2.3 to 2.10 for the most common of the trees obtained in the
ten experiments for each data set. The numbers at the internal nodes of the
binary trees represent the mean training and test set classification accuracies
at that internal node over all the experiments for which this tree is obtained.

• IRIS: It is well known that Iris Versicolour and Virginica are “closer” to
each other than Iris Setosa. So, not surprisingly, the first split for both BU-
BHC(m) and TD-BHC(m) algorithms invariably separates Setosa from the
other two classes.

• SATIMAGE: Figures 2.3 and 2.4 show the BU-BHC(m) and TD-BHC(m)
trees generated for the SATIMAGE data set. In the BU-BHC tree, the
Classes 4 (damp gray soil) and 6 (very damp gray soil) merged first. This
was followed by Class 3 (gray soil) merging in the meta-class (4,6). The
right child of the root node contains the remaining three classes out of
which the vegetation classes i.e. Class 2 (cotton crop) and Class 5 (soil
with vegetation stubble) were grouped first. The tree formed in the TD-
BHC is even more informative as it separates the four bare soil classes from
the two vegetation classes at the root node and then separates the four
soil classes into red-soil (Class 1) and gray-soil (Classes 3, 4, and 6) meta-
classes. The gray-soil meta-class is further partitioned into damp-gray-soil
(Classes 4 and 6) and regular-gray-soil (Class 3). Thus reasonable class hi-
erarchies are discovered by the BHC framework for the SATIMAGE data
set.
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Damp
Gray
Soil

Gray
Soil 

Damp
Gray
Soil

Cotton
Crop

Soil with
Vegetation

Stubble

Red
Soil

96.9 – 96.9

93.6 – 91.7 98.0 – 97.6

83.3 – 82.9 95.8 – 94.9

Fig. 2.3. BU-BHC(m) class hierarchy for the satimage data set.
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93.6 – 93.6
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Fig. 2.4. TD-BHC(m) class hierarchy for the satimage data set.

• LETTER: The 26-class LETTER-I data set is only 16-dimensional. Al-
though relatively lower dimensionality makes it an “easier” problem from
the curse of dimensionality perspective, the fact that the number of classes
is more than the dimensionality makes it a “harder” problem from the
problem decomposition perspective. As seen in Table 2.3, the performance
of BHC classifiers actually is poorer than other approaches, the reasons
for which have already been discussed. Nevertheless, it is interesting to see
the trees obtained by the BHC algorithms for such a large (in terms of
output space) classification problem (Figures 2.5 and 2.6). Several inter-
esting groups of characters are merged in the BU-BHC tree. For example
meta-classes like {M,W,N,U} {F,P}, {V,Y,T}, {S,Z,B,E}, {I,J}, {K,R},
and {G,Q,C} are discovered. These conform well with the shapes of the
letters. The TD-BHC tree is different from the BU-BHC tree but also
has several interesting meta-classes like {M,W,U,H,N}, {K,R}, {V,Y,T},
{F,P}, {S,Z}, {C,G,O}, and {B,D,E}. Even for a small dimensional input
space, as compared to the number of classes, the BHC algorithm was able
to discover a meaningful class hierarchy for this 26-class problem. How-
ever, note that one could have obtained other reasonable hierarchies as
well, and it is difficult to quantify the quality of a specific hierarchy other
than through its corresponding classification accuracy.

• LETTER-II: Since the output space is still the same, the BHC trees
for LETTER-II should be similar to the LETTER-I trees. In our experi-
ments, similar interesting meta-classes such as {M,W,N,U}, {F,P}, {V,T},
{S,Z,B,E}, {I,J} and {G,Q,C} were discovered in the BU-BHC tree. The
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Fig. 2.5. BU-BHC(m) class hierarchy for the letter-I data set.
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Fig. 2.6. TD-BHC(m) class hierarchy for the letter-I data set.

TD-BHC classifier for LETTER-II data set resulted in a few new groupings
as well, including {O,Q}, {H,K,A,R} and {P,D}.

• Hyperspectral data: Figures 2.7, 2.8, 2.9 and 2.10 show the bottom-up
and top-down trees obtained for AVIRIS and HYMAP. By considering the
meaning of the class labels it is evident that this domain provided the most
useful knowledge. Invariably, when water was present, it was the first to
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be split off. Subsequent partitions would, for example, distinguish between
marshy wetlands and uplands, as in Figure 2.1. Note that the trees shown
are representative results. While there are sometimes small variations in
the trees obtained by perturbing the data, invariably all the trees produce
hierarchies that are meaningful and reasonable to a domain expert [24].
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Fig. 2.7. BU-BHC(m) class hierarchy for the AVIRIS data set.
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Fig. 2.8. TD-BHC(m) class hierarchy for the AVIRIS data set.
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Fig. 2.9. BU-BHC(m) class hierarchy for the HYMAP data set.
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Fig. 2.10. TD-BHC(m) class hierarchy for the HYMAP data set.
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2.9 Conclusions

This chapter presented a general framework for certain difficult classification
problems in which the complexity is primarily due to having several classes
as well as high-dimensional inputs. The BHC methodology relies on progres-
sively partitioning or grouping the set of classes based on their affinities with
one another. The BHC, as originally conceived, uses a custom Fisher’s dis-
criminant feature extraction for each partition, which is quite fast as it only
involves summary class statistics. Moreover, as a result of the tree building
algorithms, a class taxonomy is automatically discovered from data, which of-
ten leads to useful domain knowledge. This property was particularly helpful
in our analysis of hyperspectral data.

The hierarchical BHC approach is helpful only if some class affinities are
actually present, i.e. it will not be appropriate if all the classes are essen-
tially “equidistant” from one another. In practice, this is not very restrictive
since many applications involving multiple class labels, such as those based
on biological or text data, do have natural class affinities, quite often reflected
in class hierarchies or taxonomies. In fact it has been shown that exploiting
a known hierarchy of text categories substantially improves text classifica-
tion [5]. In contrast, the BHC attempts to induce a hierarchy directly from
the data where no pre-existing hierarchy is available. Another recent approach
with a similar purpose is presented in [19] where Naive Bayes is first used to
quickly generate a confusion matrix for a text corpus. The classes are then
clustered based on this matrix such that classes that are more confused with
one another tend to be placed in the same group. Then SVMs are used in
a “one-versus-all” framework within each group of classes to come up with
the final result. Thus this approach produces a two-level hierarchy of classes.
On text benchmarks, this method was three to six times faster than using
“one-vs-all” SVMs directly, while producing comparable or better classifica-
tion results.

We note that one need not be restricted to our choices of a Fisher dis-
criminant and a simple Bayesian classifier at each internal node of the class-
partitioning tree. In Section 2.7.3, we summarized our related work on using
SVMs as the internal classifiers on a tree obtained via the Fisher discrimi-
nant/Bayesian classifier combination. The feature extraction step itself can
also be customized for different domains such as image or protein sequence
classification. In this context, recollect that the trees obtained for a given
problem can vary somewhat depending on the specific training set or classi-
fier design, indicative of the fact that that there are often multiple reasonable
ways of grouping the classes. The use of more powerful binary classifiers pro-
vides an added advantage in that the overall results are more tolerant to the
quality of the tree that is obtained.

The design space for selecting an appropriate feature extractor–classifier
combination is truly rich and needs to be explored further. A well-known
trade-off exists between these two functions. For example, a complex feature
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extraction technique can compensate for a simple classifier. With this view-
point, let us compare the top-down BHC with decision trees such as C5.0,
CART and CHAID. One can view the action at each internal node of a de-
cision tree as the selection of a specific value of exactly one variable (feature
extraction stage), followed by a simple classifier that just performs a sim-
ple comparison against this value. Thus the BHC node seems more complex.
However, the demands on a single node in a decision tree are not that strong,
since samples from the same class can be routed to different branches of the
tree and still be identified correctly at later stages. In contrast, in the hard
version of BHC, all the examples of a given class have to be routed to the
same child at each internal node visited by them.
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