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Euclid’s approach to geometry

PREVIEW

Length is the fundamental concept of Euclid’s geometry, but several
important theorems seem to be “really” about angle or area—for
example, the theorem on the sum of angles in a triangle and the
Pythagorean theorem on the sum of squares. Also, Euclid often uses
area to prove theorems about length, such as the Thales theorem.
In this chapter, we retrace some of Euclid’s steps in the theory of
angle and area to show how they lead to the Pythagorean theorem
and the Thales theorem. We begin with his theory of angle, which
shows most clearly the influence of his parallel axiom, the defining
axiom of what is now called Euclidean geometry.
Angle is linked with length from the beginning by the so-called SAS
(“side angle side”) criterion for equal triangles (or “congruent trian-
gles,” as we now call them). We observe the implications of SAS
for isosceles triangles and the properties of angles in a circle, and
we note the related criterion, ASA (“angle side angle”).
The theory of area depends on ASA, and it leads directly to a proof
of the Pythagorean theorem. It leads more subtly to the Thales the-
orem and its consequences that we saw in Chapter 1. The theory of
angle then combines nicely with the Thales theorem to give a second
proof of the Pythagorean theorem.
In following these deductive threads, we learn more about the scope
of straightedge and compass constructions, partly in the exercises.
Interesting spinoffs from these investigations include a process for
cutting any polygon into pieces that form a square, a construction
for the square root of any length, and a construction of the regular
pentagon.
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2.1 The parallel axiom

In Chapter 1, we saw how useful it is to have rectangles: four-sided poly-
gons whose angles are all right angles. Rectangles owe their existence to
parallel lines—lines that do not meet—and fundamentally to the parallel
axiom that Euclid stated as follows.

Euclid’s parallel axiom. If a straight line crossing two straight lines
makes the interior angles on one side together less than two right angles,
then the two straight lines will meet on that side.

Figure 2.1 illustrates the situation described by Euclid’s parallel axiom,
which is what happens when the two lines are not parallel. If α +β is less
than two right angles, then L and M meet somewhere on the right.

N

M

Lα

β

Figure 2.1: When lines are not parallel

It follows that if L and M do not meet on either side, then α +β = π .
In other words, if L and M are parallel, then α and β together make a
straight angle and the angles made by L , M , and N are as shown in
Figure 2.2.
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Figure 2.2: When lines are parallel
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It also follows that any line through the intersection of N and M , not
meeting L , makes the angle π −α with N . Hence, this line equals M .
That is, if a parallel to L through a given point exists, it is unique.

It is a little more subtle to show the existence of a parallel to L through
a given point P, but one way is to appeal to a principle called ASA (“angle
side angle”), which will be discussed in Section 2.2.

Suppose that the lines L , M , and N make angles as shown in Fig-
ure 2.2, and that L and M are not parallel. Then, on at least one side
of N , there is a triangle whose sides are the segment of N between L
and M and the segments of L and M between N and the point where
they meet. According to ASA, this triangle is completely determined by
the angles α , π −α and the segment of N between them. But then an
identical triangle is determined on the other side of N , and hence L and
M also meet on the other side. This result contradicts Euclid’s assumption
(implicit in the construction axioms discussed in Section 1.1) that there is
a unique line through any two points. Hence, the lines L and M are in
fact parallel when the angles are as shown in Figure 2.2.

Thus, both the existence and the uniqueness of parallels follow from
Euclid’s parallel axiom (existence “follows trivially,” because Euclid’s par-
allel axiom is not required). It turns out that they also imply it, so the
parallel axiom can be stated equivalently as follows.

Modern parallel axiom. For any line L and point P outside L , there is
exactly one line through P that does not meet L .

This form of the parallel axiom is often called “Playfair’s axiom,” af-
ter the Scottish mathematician John Playfair who used it in a textbook in
1795. Playfair’s axiom is simpler in form than Euclid’s, because it does
not involve angles, and this is often convenient. However, we often need
parallel lines and the equal angles they create, the so-called alternate in-
terior angles (for example, the angles marked α in Figure 2.2). In such
situations, we prefer to use Euclid’s parallel axiom.

Angles in a triangle

The existence of parallels and the equality of alternate interior angles imply
a beautiful property of triangles.

Angle sum of a triangle. If α , β , and γ are the angles of any triangle,
then α +β + γ = π .
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To prove this property, draw a line L through one vertex of the trian-
gle, parallel to the opposite side, as shown in Figure 2.3.

L

α

α
β

γ

γ

Figure 2.3: The angle sum of a triangle

Then the angle on the left beneath L is alternate to the angle α in the
triangle, so it is equal to α . Similarly, the angle on the right beneath L is
equal to γ . But then the straight angle π beneath L equals α +β + γ , the
angle sum of the triangle. �

Exercises

The triangle is the most important polygon, because any polygon can be built
from triangles. For example, the angle sum of any quadrilateral (polygon with
four sides) can be worked out by cutting the quadrilateral into two triangles.

2.1.1 Show that the angle sum of any quadrilateral is 2π .

A polygon P is called convex if the line segment between any two points in
P lies entirely in P . For these polygons, it is also easy to find the angle sum.

2.1.2 Explain why a convex n-gon can be cut into n−2 triangles.

2.1.3 Use the dissection of the n-gon into triangles to show that the angle sum of
a convex n-gon is (n−2)π .

2.1.4 Use Exercise 2.1.3 to find the angle at each vertex of a regular n-gon (an
n-gon with equal sides and equal angles).

2.1.5 Deduce from Exercise 2.1.4 that copies of a regular n-gon can tile the plane
only for n = 3,4,6.
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2.2 Congruence axioms

Euclid says that two geometric figures coincide when one of them can be
moved to fit exactly on the other. He uses the idea of moving one figure
to coincide with another in the proof of Proposition 4 of Book I: If two tri-
angles have two corresponding sides equal, and the angles between these
sides equal, then their third sides and the corresponding two angles are
also equal.

His proof consists of moving one triangle so that the equal angles of
the two triangles coincide, and the equal sides as well. But then the third
sides necessarily coincide, because their endpoints do, and hence, so do the
other two angles.

Today we say that two triangles are congruent when their correspond-
ing angles and side lengths are equal, and we no longer attempt to prove
the proposition above. Instead, we take it as an axiom (that is, an unproved
assumption), because it seems simpler to assume it than to introduce the
concept of motion into geometry. The axiom is often called SAS (for “side
angle side”).

SAS axiom. If triangles ABC and A′B′C′ are such that

|AB| = |A′B′|, angle ABC = angle A′B′C′, |BC| = |B′C′|

then also

|AC| = |A′C′|, angle BCA = angle B′C′A′, angle CAB = angle C′A′B′.

For brevity, one often expresses SAS by saying that two triangles are
congruent if two sides and the included angle are equal. There are similar
conditions, ASA and SSS, which also imply congruence (but SSA does
not—can you see why?). They can be deduced from SAS, so it is not
necessary to take them as axioms. However, we will assume ASA here to
save time, because it seems just as natural as SAS.

One of the most important consequences of SAS is Euclid’s Proposi-
tion 5 of Book I. It says that a triangle with two equal sides has two equal
angles. Such a triangle is called isosceles, from the Greek for “equal sides.”
The spectacular proof below is not from Euclid, but from the Greek math-
ematician Pappus, who lived around 300 CE.

Isosceles triangle theorem. If a triangle has two equal sides, then the
angles opposite to these sides are also equal.
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Suppose that triangle ABC has |AB| = |AC|. Then triangles ABC and
ACB, which of course are the same triangle, are congruent by SAS (Figure
2.4). Their left sides are equal, their right sides are equal, and so are the
angles between their left and right sides, because they are the same angle
(the angle at A).

A

B C

A

C B

Figure 2.4: Two views of an isosceles triangle

But then it follows from SAS that all corresponding angles of these
triangles are equal: for example, the bottom left angles. In other words, the
angle at B equals the angle at C, so the angles opposite to the equal sides
are equal. �

A useful consequence of ASA is the following theorem about parallel-
ograms, which enables us to determine the area of triangles. (Remember,
a parallelogram is defined as a figure bounded by two pairs of parallel
lines—the definition does not say anything about the lengths of its sides.)

Parallelogram side theorem. Opposite sides of a parallelogram are equal.

To prove this theorem we divide the parallelogram into triangles by a
diagonal (Figure 2.5), and try to prove that these triangles are congruent.
They are, because

• they have the common side AC,

• their corresponding angles α are equal, being alternate interior an-
gles for the parallels AD and BC,

• their corresponding angles β are equal, being alternate interior an-
gles for the parallels AB and DC.
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A B

CD

α

α

β

β

Figure 2.5: Dividing a parallelogram into triangles

Therefore, the triangles are congruent by ASA, and in particular we
have the equalities |AB| = |DC| and |AD| = |BC| between corresponding
sides. But these are also the opposite sides of the parallelogram. �

Exercises
2.2.1 Using the parallelogram side theorem and ASA, find congruent triangles in

Figure 2.6. Hence, show that the diagonals of a parallelogram bisect each
other.

Figure 2.6: A parallelogram and its diagonals

2.2.2 Deduce that the diagonals of a rhombus—a parallelogram whose sides are
all equal—meet at right angles. (Hint: You may find it convenient to
use SSS, which says that triangles are congruent when their correspond-
ing sides are equal.)

2.2.3 Prove the isosceles triangle theorem differently by bisecting the angle at A.

2.3 Area and equality

The principle of logic used in Section 1.2—that things equal to the same
thing are equal to each other—is one of five principles that Euclid calls
common notions. The common notions he states are particularly important
for his theory of area, and they are as follows:
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1. Things equal to the same thing are also equal to one another.

2. If equals are added to equals, the wholes are equal.

3. If equals are subtracted from equals, the remainders are equal.

4. Things that coincide with one another are equal to one another.

5. The whole is greater than the part.

The word “equal” here means “equal in some specific respect.” In most
cases, it means “equal in length” or “equal in area,” although Euclid’s idea
of “equal in area” is not exactly the same as ours, as I will explain below.
Likewise, “addition” can mean addition of lengths or addition of areas, but
Euclid never adds a length to an area because this has no meaning in his
system.

A simple but important example that illustrates the use of “equals” is
Euclid’s Proposition 15 of Book I: Vertically opposite angles are equal.
Vertically opposite angles are the angles α shown in Figure 2.7.

α α
β

Figure 2.7: Vertically opposite angles

They are equal because each of them equals a straight angle minus β .

The square of a sum

Proposition 4 of Book II is another interesting example. It states a property
of squares and rectangles that we express by the algebraic formula

(a+b)2 = a2 +2ab+b2.

Euclid does not have algebraic notation, so he has to state this equation in
words: If a line is cut at random, the square on the whole is equal to the
squares on the segments and twice the rectangle contained by the segments.
Whichever way you say it, Figure 2.8 explains why it is true.

The line is a + b because it is cut into the two segments a and b, and
hence
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a2

b2

ab

ab

a b

a

b

Figure 2.8: The square of a sum of line segments

• The square on the line is what we write as (a+b)2.

• The squares on the two segments a and b are a2 and b2, respectively.

• The rectangle “contained” by the segments a and b is ab.

• The square (a+b)2 equals (in area) the sum of a2, b2, and two copies
of ab.

It should be emphasized that, in Greek mathematics, the only inter-
pretation of ab, the “product” of line segments a and b, is the rectangle
with perpendicular sides a and b (or “contained in” a and b, as Euclid used
to say). This rectangle could be shown “equal” to certain other regions,
but only by cutting the regions into identical pieces by straight lines. The
Greeks did not realize that this “equality of regions” was the same as equal-
ity of numbers—the numbers we call the areas of the regions—partly be-
cause they did not regard irrational lengths as numbers, and partly because
they did not think the product of lengths should be a length.

As mentioned in Section 1.5, this belief was not necessarily an obstacle
to the development of geometry. To find the area of nonrectangular regions,
such as triangles or parallelograms, one has to think about cutting regions
into pieces in any case. For such simple regions, there is no particular
advantage in thinking of the area as a number, as we will see in Section
2.4. But first we need to investigate the concept mentioned in Euclid’s
Common Notion number 4. What does it mean for one figure to “coincide”
with another?
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Exercises

In Figure 2.8, the large square is subdivided by two lines: one of them perpendic-
ular to the bottom side of the square and the other perpendicular to the left side of
the square.

2.3.1 Use the parallel axiom to explain why all other angles in the figure are
necessarily right angles.

Figure 2.8 presents the algebraic identity (a + b)2 = a2 + 2ab + b2 in geo-
metric form. Other well-known algebraic identities can also be given a geometric
presentation.

2.3.2 Give a diagram for the identity a(b+ c) = ab+ac.

2.3.3 Give a diagram for the identity a2 −b2 = (a+b)(a−b).

Euclid does not give a geometric theorem that explains the identity (a + b)3 =
a3 +3a2b+3ab2 +b3. But it is not hard to do so by interpreting (a+b)3 as a cube
with edge length a+b, a3 as a cube with edge a, a2b as a box with perpendicular
edges a, a, and b, and so on.

2.3.4 Draw a picture of a cube with edges a+b, and show it cut by planes (parallel
to its faces) that divide each edge into a segment of length a and a segment
of length b.

2.3.5 Explain why these planes cut the original cube into eight pieces:

• a cube with edges a,

• a cube with edges b,

• three boxes with edges a,a,b,

• three boxes with edges a,b,b.

2.4 Area of parallelograms and triangles

The first nonrectangular region that can be shown “equal” to a rectangle
in Euclid’s sense is a parallelogram. Figure 2.9 shows how to use straight
lines to cut a parallelogram into pieces that can be reassembled to form a
rectangle.

= =

Figure 2.9: Assembling parallelogram and rectangle from the same pieces
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Only one cut is needed in the example of Figure 2.9, but more cuts are
needed if the parallelogram is more sheared, as in Figure 2.10.

1

2
3

=
1

2
3

Figure 2.10: A case in which more cuts are required

In Figure 2.10 we need two cuts, which produce the pieces labeled 1, 2,
3. The number of cuts can become arbitrarily large as the parallelogram is
sheared further. We can avoid large numbers of cuts by allowing subtrac-
tion of pieces as well as addition. Figure 2.11 shows how to convert any
rectangle to any parallelogram with the same base OR and the same height
OP. We need only add a triangle, and then subtract an equal triangle.

O

P Q

R

S T

Figure 2.11: Rectangle and parallelogram with the same base and height

To be precise, if we start with rectangle OPQR and add triangle RQT ,
then subtract triangle OPS (which equals triangle RQT by the parallelo-
gram side theorem of Section 2.2), the result is parallelogram OST R. Thus,
the parallelogram is equal (in area) to a rectangle with the same base and
height. We write this fact as

area of parallelogram = base×height.

To find the area of a triangle ABC, we notice that it can be viewed as “half”
of a parallelogram by adding to it the congruent triangle ACD as shown in
Figure 2.5, and again in Figure 2.12.

A B

CD

Figure 2.12: A triangle as half a parallelogram
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Clearly,

area of triangle ABC+area of triangle ACD = area of parallelogram ABCD,

and the two triangles “coincide” (because they are congruent) and so they
have equal area by Euclid’s Common Notion 4. Thus,

area of triangle =
1
2

base×height.

This formula is important in two ways:

• As a statement about area. From a modern viewpoint, the formula
gives the area of the triangle as a product of numbers. From the an-
cient viewpoint, it gives a rectangle “equal” to the triangle, namely,
the rectangle with the same base and half the height of the triangle.

• As a statement about proportionality. For triangles with the same
height, the formula shows that their areas are proportional to their
bases. This statement turns out to be crucial for the proof of the
Thales theorem (Section 2.6).

The proportionality statement follows from the assumption that each
line segment has a real number length, which depends on the acceptance
of irrational numbers. As mentioned in the previous section, the Greeks
did not accept this assumption. Euclid got the proportionality statement by
a lengthy and subtle “theory of proportion” in Book V of the Elements.

Exercises
To back up the claim that the formula 1

2 base×height gives a way to find the area
of the triangle, we should explain how to find the height.

2.4.1 Given a triangle with a particular side specified as the “base,” show how to
find the height by straightedge and compass construction.

The equality of triangles OPS and RQT follows from the parallelogram side the-
orem, as claimed above, but a careful proof would explain what other axioms are
involved.

2.4.2 By what Common Notion does |PQ| = |ST |?
2.4.3 By what Common Notion does |PS| = |QT |?
2.4.4 By what congruence axiom is triangle OPS congruent to triangle RQT ?
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2.5 The Pythagorean theorem

The Pythagorean theorem is about areas, and indeed Euclid proves it im-
mediately after he has developed the theory of area for parallelograms and
triangles in Book I of the Elements. First let us recall the statement of the
theorem.

Pythagorean theorem. For any right-angled triangle, the sum of the
squares on the two shorter sides equals the square on the hypotenuse.

We follow Euclid’s proof, in which he divides the square on the hy-
potenuse into the two rectangles shown in Figure 2.13. He then shows that
the light gray square equals the light gray rectangle and that the dark gray
square equals the dark gray rectangle, so the sum of the light and dark
squares is the square on the hypotenuse, as required.

Figure 2.13: Dividing the square for Euclid’s proof

First we show equality for the light gray regions in Figure 2.13, and in
fact we show that half of the light gray square equals half of the light gray
rectangle. We start with a light gray triangle that is obviously half of the
light gray square, and we successively replace it with triangles of the same
base or height, ending with a triangle that is obviously half of the light gray
rectangle (Figure 2.14).
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Start with half of the light gray square

Same base (side of light gray square) and height

Congruent triangle, by SAS
(the included angle is the sum of the same parts)

Same base (side of square on hypotenuse) and height;
new triangle is half the light gray rectangle

Figure 2.14: Changing the triangle without changing its area

The same argument applies to the dark gray regions, and thus, the
Pythagorean theorem is proved. �

Figure 2.13 suggests a natural way to construct a square equal in area
to a given rectangle. Given the light gray rectangle, say, the problem is to
reconstruct the rest of Figure 2.13.
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We can certainly extend a given rectangle to a square and hence recon-
struct the square on the hypotenuse. The main problem is to reconstruct
the right-angled triangle, from the hypotenuse, so that the other vertex lies
on the dashed line. See whether you can think of a way to do this; a really
elegant solution is given in Section 2.7. Once we have the right-angled
triangle, we can certainly construct the squares on its other two sides—in
particular, the gray square equal in area to the gray rectangle.

Exercises

It follows from the Pythagorean theorem that a right-angled triangle with sides 3
and 4 has hypotenuse

√
32 +42 =

√
25 = 5. But there is only one triangle with

sides 3, 4, and 5 (by the SSS criterion mentioned in Exercise 2.2.2), so putting
together lengths 3, 4, and 5 always makes a right-angled triangle. This triangle is
known as the (3,4,5) triangle.

2.5.1 Verify that the (5,12,13), (8,15,17), and (7,24,25) triangles are right-
angled.

2.5.2 Prove the converse Pythagorean theorem: If a,b,c > 0 and a2 + b2 = c2,
then the triangle with sides a,b,c is right-angled.

2.5.3 How can we be sure that lengths a,b,c > 0 with a2 + b2 = c2 actually fit
together to make a triangle? (Hint: Show that a+b > c.)

Right-angled triangles can be used to construct certain irrational lengths. For
example, we saw in Section 1.5 that the right-angled triangle with sides 1, 1 has
hypotenuse

√
2.

2.5.4 Starting from the triangle with sides 1, 1, and
√

2, find a straightedge and
compass construction of

√
3.

2.5.5 Hence, obtain constructions of
√

n for n = 2,3,4,5,6, . . ..

2.6 Proof of the Thales theorem

We mentioned this theorem in Chapter 1 as a fact with many interesting
consequences, such as the proportionality of similar triangles. We are now
in a position to prove the theorem as Euclid did in his Proposition 2 of
Book VI. Here again is a statement of the theorem.

The Thales theorem. A line drawn parallel to one side of a triangle cuts
the other two sides proportionally.
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The proof begins by considering triangle ABC, with its sides AB and AC
cut by the parallel PQ to side BC (Figure 2.15). Because PQ is parallel to
BC, the triangles PQB and PQC on base PQ have the same height, namely
the distance between the parallels. They therefore have the same area.

A

B C

P Q

Figure 2.15: Triangle sides cut by a parallel

If we add triangle APQ to each of the equal-area triangles PQB and
PQC, we get the triangles AQB and APC, respectively. Hence, the latter
triangles are also equal in area.

Now consider the two triangles—APQ and PQB—that make up trian-
gle AQB as triangles with bases on the line AB. They have the same height
relative to this base (namely, the perpendicular distance of Q from AB).
Hence, their bases are in the ratio of their areas:

|AP|
|PB| =

area APQ
area PQB

.

Similarly, considering the triangles APQ and PQC that make up the triangle
APC, we find that

|AQ|
|QC| =

area APQ
area PQC

.

Because area PQB equals area PQC, the right sides of these two equations
are equal, and so are their left sides. That is,

|AP|
|PB| =

|AQ|
|QC| .

In other words, the line PQ cuts the sides AB and AC proportionally. �
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Exercises
As seen in Exercise 1.3.6, |AP|/|PB| = |AQ|/|QC| is equivalent to |AP|/|AB| =
|AQ|/|AC|. This equation is a more convenient formulation of the Thales theorem
if you want to prove the following generalization:

2.6.1 Suppose that there are several parallels P1Q1,P2Q2,P3Q3 . . . to the side BC
of triangle ABC. Show that

|AP1|
|AQ1| =

|AP2|
|AQ2| =

|AP3|
|AQ3| = · · · = |AB|

|AC| .

We can also drop the assumption that the parallels P1Q1,P2Q2,P3Q3 . . . fall
across a triangle ABC.

2.6.2 If parallels P1Q1,P2Q2,P3Q3 . . . fall across a pair of parallel lines L and
M , what can we say about the lengths they cut from L and M ?

2.7 Angles in a circle

The isosceles triangle theorem of Section 2.2, simple though it is, has a
remarkable consequence.

Invariance of angles in a circle. If A and B are two points on a circle,
then, for all points C on one of the arcs connecting them, the angle ACB is
constant.

To prove invariance we draw lines from A,B,C to the center of the
circle, O, along with the lines making the angle ACB (Figure 2.16).

Because all radii of the circle are equal, |OA| = |OC|. Thus triangle
AOC is isosceles, and the angles α in it are equal by the isosceles triangle
theorem. The angles β in triangle BOC are equal for the same reason.

Because the angle sum of any triangle is π (Section 2.1), it follows
that the angle at O in triangle AOC is π −2α and the angle at O in triangle
BOC is π−2β . It follows that the third angle at O, angle AOB, is 2(α +β ),
because the total angle around any point is 2π . But angle AOB is constant,
so α +β is also constant, and α +β is precisely the angle at C. �

An important special case of this theorem is when A, O, and B lie in a
straight line, so 2(α +β ) = π . In this case, α +β = π/2, and thus we have
the following theorem (which is also attributed to Thales).

Angle in a semicircle theorem. If A and B are the ends of a diameter of
a circle, and C is any other point on the circle, then angle ACB is a right
angle. �
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O

A

B

C

2(α +β )

π −2βπ −2α

α

α
β

β

Figure 2.16: Angle α +β in a circle

This theorem enables us to solve the problem left open at the end of
Section 2.5: Given a hypotenuse AB, how do we construct the right-angled
triangle whose other vertex C lies on a given line? Figure 2.17 shows how.

A B

C

Figure 2.17: Constructing a right-angled triangle with given hypotenuse
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The trick is to draw the semicircle on diameter AB, which can be done
by first bisecting AB to obtain the center of the circle. Then the point where
the semicircle meets the given line (shown dashed) is necessarily the other
vertex C, because the angle at C is a right angle.

This construction completes the solution of the problem raised at the
end of Section 2.5: finding a square equal in area to a given rectangle.
In Section 2.8 we will show that Figure 2.17 also enables us to construct
the square root of an arbitrary length, and it gives a new proof of the
Pythagorean theorem.

Exercises
2.7.1 Explain how the angle in a semicircle theorem enables us to construct a

right-angled triangle with a given hypotenuse AB.

2.7.2 Then, by looking at Figure 2.13 from the bottom up, find a way to construct
a square equal in area to a given rectangle.

2.7.3 Given any two squares, we can construct a square that equals (in area) the
sum of the two given squares. Why?

2.7.4 Deduce from the previous exercises that any polygon may be “squared”;
that is, there is a straightedge and compass construction of a square equal
in area to the given polygon. (You may assume that the given polygon can
be cut into triangles.)

The possibility of “squaring” any polygon was apparently known to Greek
mathematicians, and this may be what tempted them to try “squaring the circle”:
constructing a square equal in area to a given circle. There is no straightedge and
compass solution of the latter problem, but this was not known until 1882.

Coming back to angles in the circle, here is another theorem about invariance
of angles:

2.7.5 If a quadrilateral has its vertices on a circle, show that its opposite angles
sum to π .

2.8 The Pythagorean theorem revisited

In Book VI, Proposition 31 of the Elements, Euclid proves a generalization
of the Pythagorean theorem. From it, we get a new proof of the ordinary
Pythagorean theorem, based on the proportionality of similar triangles.

Given a right-angled triangle with sides a, b, and hypotenuse c, we
divide it into two smaller right-angled triangles by the perpendicular to the
hypotenuse through the opposite vertex (the dashed line in Figure 2.18).
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Figure 2.18: Subdividing a right-angled triangle into similar triangles

All three triangles are similar because they have the same angles α and
β . If we look first at the angle α at A and the angle β at B, then

α +β =
π
2

because the angle sum of triangle ABC is π and the angle at C is π/2. But
then it follows that angle ACD = β in triangle ACD (to make its angle sum
= π) and angle DCB = α in triangle DCB (to make its angle sum = π).

Now we use the proportionality of these triangles, calling the side op-
posite α in each triangle “short” and the side opposite β “long” for conve-
nience. Comparing triangle ABC with triangle ADC, we get

long side
hypotenuse

=
b
c

=
c1

b
, hence b2 = cc1.

Comparing triangle ABC with triangle DCB, we get

short side
hypotenuse

=
a
c

=
c2

a
, hence a2 = cc2.

Adding the values of a2 and b2 just obtained, we finally get

a2 +b2 = cc2 + cc1 = c(c1 + c2) = c2 because c1 + c2 = c,

and this is the Pythagorean theorem. �
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This second proof is not really shorter than Euclid’s first (given in Sec-
tion 2.5) when one takes into account the work needed to prove the pro-
portionality of similar triangles. However, we often need similar triangles,
so they are a standard tool, and a proof that uses standard tools is generally
preferable to one that uses special machinery. Moreover, the splitting of a
right-angled triangle into similar triangles is itself a useful tool—it enables
us to construct the square root of any line segment.

Straightedge and compass construction of square roots

Given any line segment l, construct the semicircle with diameter l +1, and
the perpendicular to the diameter where the segments 1 and l meet (Figure
2.19). Then the length h of this perpendicular is

√
l.

l 1

h

Figure 2.19: Construction of the square root

To see why, construct the right-angled triangle with hypotenuse l + 1
and third vertex where the perpendicular meets the semicircle. We know
that the perpendicular splits this triangle into two similar, and hence pro-
portional, triangles. In the triangle on the left,

long side
short side

=
l
h
.

In the triangle on the right,

long side
short side

=
h
1
.

Because these ratios are equal by proportionality of the triangles, we have

l
h

=
h
1
,

hence h2 = l; that is, h =
√

l. �
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This result complements the constructions for the rational operations
+,−,×, and ÷ we gave in Chapter 1. The constructibility of these and

√
was first pointed out by Descartes in his book Géométrie of 1637. Rational
operations and

√
are in fact precisely what can be done with straightedge

and compass. When we introduce coordinates in Chapter 3 we will see that
any “constructible point” has coordinates obtainable from the unit length 1
by +,−,×,÷, and

√
.

Exercises
Now that we know how to construct the +,−,×,÷, and

√
of given lengths, we

can use algebra as a shortcut to decide whether certain figures are constructible by
straightedge and compass. If we know that a certain figure is constructible from
the length (1+

√
5)/2, for example, then we know that the figure is constructible—

period—because the length (1+
√

5)/2 is built from the unit length by the opera-
tions +,×,÷, and

√
.

This is precisely the case for the regular pentagon, which was constructed
by Euclid in Book IV, Proposition 11, using virtually all of the geometry he had
developed up to that point. We also need nearly everything we have developed up
to this point, but it fills less space than four books of the Elements!

The following exercises refer to the regular pentagon of side 1 shown in Figure
2.20 and its diagonals of length x.

1
x

Figure 2.20: The regular pentagon

2.8.1 Use the symmetry of the regular pentagon to find similar triangles implying

x
1

=
1

x−1
,

that is, x2 − x−1 = 0.

2.8.2 By finding the positive root of this quadratic equation, show that each diag-
onal has length x = (1+

√
5)/2.

2.8.3 Now show that the regular pentagon is constructible.
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2.9 Discussion

Euclid found the most important axiom of geometry—the parallel axiom—
and he also identified the basic theorems and traced the logical connections
between them. However, his approach misses certain fine points and is not
logically complete. For example, in his very first proof (the construction
of the equilateral triangle), he assumes that certain circles have a point in
common, but none of his axioms guarantee the existence of such a point.
There are many such situations, in which Euclid assumes something is true
because it looks true in the diagram.

Euclid’s theory of area is a whole section of his geometry that seems
to have no geometric support. Its concepts seem more like arithmetic—
addition, subtraction, and proportion—but its concept of multiplication is
not the usual one, because multiplication of more than three lengths is not
allowed.

These gaps in Euclid’s approach to geometry were first noticed in the
19th century, and the task of filling them was completed by David Hilbert
in his Grundlagen der Geometrie (Foundations of Geometry) of 1899. On
the one hand, Hilbert introduced axioms of incidence and order, giving the
conditions under which lines (and circles) meet. These justify the belief
that “geometric objects behave as the pictures suggest.” On the other hand,
Hilbert replaced Euclid’s theory of area with a genuine arithmetic, which
he called segment arithmetic. He defined the sum and product of segments
as we did in Section 1.4 and proved that these operations on segments have
the same properties as ordinary sum and product. For example,

a+b = b+a, ab = ba, a(b+ c) = ab+ac, and so on.

In the process, Hilbert discovered that the Pappus and Desargues theorems
(Exercises 1.4.3 and 1.4.4) play a decisive role.

The downside of Hilbert’s completion of Euclid is that it is lengthy
and difficult. Nearly 20 axioms are required, and some key theorems are
hard to prove. To some extent, this hardship occurs because Hilbert insists
on geometric definitions of + and ×. He wants numbers to come from
“inside” geometry rather than from “outside”. Thus, to prove that ab = ba
he needs the theorem of Pappus, and to prove that a(bc) = (ab)c he needs
the theorem of Desargues.

Even today, the construction of segment arithmetic is an admirable feat.
As Hilbert pointed out, it shows that Euclid was right to believe that the
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theory of proportion could be developed without new geometric axioms.
Still, it is somewhat quixotic to build numbers “inside” Euclid’s geometry
when they are brought from “outside” into nearly every other branch of
geometry. It is generally easier to build geometry on numbers than the
reverse, and Euclidean geometry is no exception, as I hope to show in
Chapters 3 and 4.

This is one reason for bypassing Hilbert’s approach, so I will merely
list his axioms here. They are thoroughly investigated in Hartshorne’s Ge-
ometry: Euclid and Beyond or Hilbert’s own book, which is available in
English translation. Hartshorne’s book has the clearest available derivation
of ordinary geometry and segment arithmetic from the Hilbert axioms, so
it should be consulted by anyone who wants to see Euclid’s approach taken
to its logical conclusion.

There is another reason to bypass Hilbert’s axioms, apart from their
difficulty. In my opinion, Hilbert’s greatest geometric achievement was to
build arithmetic, not in Euclidean geometry, but in projective geometry.
As just mentioned, Hilbert found that the keys to segment arithmetic are
the Pappus and Desargues theorems. These two theorems do not involve
the concept of length, and so they really belong to a more primitive kind
of geometry. This primitive geometry (projective geometry) has only a
handful of axioms—fewer than the usual axioms for arithmetic—so it is
more interesting to build arithmetic inside it. It is also less trouble, because
we do not have to prove the Pappus and Desargues theorems. We will
explain how projective geometry contains arithmetic in Chapters 5 and 6.

Hilbert’s axioms

The axioms concern undefined objects called “points” and “lines,” the re-
lated concepts of “line segment,” “ray,” and “angle,” and the relations
of “betweenness” and “congruence.” Following Hartshorne, we simplify
Hilbert’s axioms slightly by stating some of them in a stronger form than
necessary.

The first group of axioms is about incidence: conditions for points to
lie on lines or for lines to pass through points.

I1. For any two points A, B, a unique line passes through A, B.

I2. Every line contains at least two points.

I3. There exist three points not all on the same line.
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I4. For each line L and point P not on L there is a unique line through
P not meeting L (parallel axiom).

The next group is about betweenness or order: a concept overlooked
by Euclid, probably because it is too “obvious.” The first to draw attention
to betweenness was the German mathematician Moritz Pasch, in the 1880s.
We write A∗B∗C to denote that B is between A and C.

B1. If A∗B∗C, then A,B,C are three points on a line and C ∗B∗A.

B2. For any two points A and B, there is a point C with A∗B∗C.

B3. Of three points on a line, exactly one is between the other two.

B4. Suppose A,B,C are three points not in a line and that L is a line not
passing through any of A,B,C. If L contains a point D between A
and B, then L contains either a point between A and C or a point
between B and C, but not both (Pasch’s axiom).

The next group is about congruence of line segments and congruence
of angles, both denoted by ∼=. Thus, AB ∼= CD means that AB and CD
have equal length and ∠ABC ∼= ∠DEF means that ∠ABC and ∠DEF are
equal angles. Notice that C2 and C5 contain versions of Euclid’s Common
Notion 1: “Things equal to the same thing are equal to each other.”

C1. For any line segment AB, and any ray R originating at a point C,
there is a unique point D on R with AB ∼= CD.

C2. If AB ∼= CD and AB ∼= EF , then CD ∼= EF . For any AB, AB ∼= AB.

C3. Suppose A ∗B ∗C and D ∗E ∗F . If AB ∼= DE and BC ∼= EF , then
AC ∼= DF . (Addition of lengths is well-defined.)

C4. For any angle ∠BAC, and any ray
−→
DF , there is a unique ray

−→
DE on a

given side of
−→
DF with ∠BAC ∼= ∠EDF .

C5. For any angles α,β ,γ , if α ∼= β and α ∼= γ , then β ∼= γ . Also, α ∼= α .

C6. Suppose that ABC and DEF are triangles with AB ∼= DE, AC ∼= DF ,
and ∠BAC ∼= ∠EDF . Then, the two triangles are congruent, namely
BC ∼= EF , ∠ABC ∼= ∠DEF , and ∠ACB ∼= ∠DFE. (This is SAS.)
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Then there is an axiom about the intersection of circles. It involves the
concept of points inside the circle, which are those points whose distance
from the center is less than the radius.

E. Two circles meet if one of them contains points both inside and out-
side the other.

Next there is the so-called Archimedean axiom, which says that no
length can be “infinitely large” relative to another.

A. For any line segments AB and CD, there is a natural number n such
that n copies of AB are together greater than CD.

Finally, there is the so-called Dedekind axiom, which says that the line
is complete, or has no gaps. It implies that its points correspond to real
numbers. Hilbert wanted an axiom like this to force the plane of Euclidean
geometry to be the same as the plane R2 of pairs of real numbers.

D. Suppose the points of a line L are divided into two nonempty sub-
sets A and B in such a way that no point of A is between two
points of B and no point of B is between two points of A . Then, a
unique point P, either in A or B, lies between any other two points,
of which one is in A and the other is in B.

Axiom D is not needed to derive any of Euclid’s theorems. They do
not involve all real numbers but only the so-called constructible numbers
originating from straightedge and compass constructions. However, who
can be sure that we will never need nonconstructible points? One of the
most important numbers in geometry, π , is nonconstructible! (Because the
circle cannot be squared.) Thus, it seems prudent to use Axiom D so that
the line is complete from the beginning.

In Chapter 3, we will take the real numbers as the starting point of
geometry, and see what advantages this may have over the Euclid–Hilbert
approach. One clear advantage is access to algebra, which reduces many
geometric problems to simple calculations. Algebra also offers some con-
ceptual advantages, as we will see.




