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What Does “Control of Robots” Involve?

The present textbook focuses on the interaction between robotics and electri-
cal engineering and more specifically, in the area of automatic control. From
this interaction emerges what we call robot control.

Loosely speaking (in this textbook), robot control consists in studying how
to make a robot manipulator perform a task and in materializing the results
of this study in a lab prototype.

In spite of the numerous existing commercial robots, robot control design
is still a field of intensive study among robot constructors and research cen-
ters. Some specialists in automatic control might argue that today’s industrial
robots are already able to perform a variety of complex tasks and therefore,
at first sight, the research on robot control is not justified anymore. Never-
theless, not only is research on robot control an interesting topic by itself but
it also offers important theoretical challenges and more significantly, its study
is indispensable in specific tasks which cannot be performed by the present
commercial robots.

As a general rule, control design may be divided roughly into the following
steps:

• familiarization with the physical system under consideration;
• modeling;
• control specifications.

In the sequel we develop further on these stages, emphasizing specifically
their application in robot control.
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1.1 Familiarization with the Physical System under
Consideration

On a general basis, during this stage one must determine the physical variables
of the system whose behavior is desired to control. These may be temperature,
pressure, displacement, velocity, etc. These variables are commonly referred to
as the system’s outputs. In addition to this, we must also clearly identify those
variables that are available and that have an influence on the behavior of the
system and more particularly, on its outputs. These variables are referred to
as inputs and may correspond for instance, to the opening of a valve, voltage,
torque, force, etc.

Figure 1.1. Freely moving robot

Figure 1.2. Robot interacting with its environment

In the particular case of robot manipulators, there is a wide variety of
outputs – temporarily denoted by y – whose behavior one may wish to control.
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For robots moving freely in their workspace, i.e. without interacting with
their environment (cf. Figure 1.1) as for instance robots used for painting,
“pick and place”, laser cutting, etc., the output y to be controlled, may cor-
respond to the joint positions q and joint velocities q̇ or alternatively, to the
position and orientation of the end-effector (also called end-tool).

For robots such as the one depicted in Figure 1.2 that have physical contact
with their environment, e.g. to perform tasks involving polishing, deburring of
materials, high quality assembling, etc., the output y may include the torques
and forces f exerted by the end-tool over its environment.

Figure 1.3 shows a manipulator holding a marked tray, and a camera which
provides an image of the tray with marks. The output y in this system may
correspond to the coordinates associated to each of the marks with reference
to a screen on a monitor. Figure 1.4 depicts a manipulator whose end-effector
has a camera attached to capture the scenery of its environment. In this case,
the output y may correspond to the coordinates of the dots representing the
marks on the screen and which represent visible objects from the environment
of the robot.

Image

Camera

Figure 1.3. Robotic system: fixed camera

From these examples we conclude that the corresponding output y of a
robot system – involved in a specific class of tasks – may in general, be of the
form

y = y(q, q̇,f) .

On the other hand, the input variables, that is, those that may be modified
to affect the evolution of the output, are basically the torques and forces
τ applied by the actuators over the robot’s joints. In Figure 1.5 we show
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Camera

Image

Figure 1.4. Robotic system: camera in hand

the block-diagram corresponding to the case when the outputs are the joint
positions and velocities, that is,

y = y(q, q̇,f) =
[
q
q̇

]

while τ is the input. In this case notice that for robots with n joints one has,
in general, 2n outputs and n inputs.
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Figure 1.5. Input–output representation of a robot

1.2 Dynamic Model

At this stage, one determines the mathematical model which relates the input
variables to the output variables. In general, such mathematical representa-
tion of the system is realized by ordinary differential equations. The system’s
mathematical model is obtained typically via one of the two following tech-
niques.
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• Analytical: this procedure is based on physical laws of the system’s motion.
This methodology has the advantage of yielding a mathematical model as
precise as is wanted.

• Experimental: this procedure requires a certain amount of experimental
data collected from the system itself. Typically one examines the system’s
behavior under specific input signals. The model so obtained is in gen-
eral more imprecise than the analytic model since it largely depends on
the inputs and the operating point1. However, in many cases it has the
advantage of being much easier and quicker to obtain.

On certain occasions, at this stage one proceeds to a simplification of the
system model to be controlled in order to design a relatively simple con-
troller. Nevertheless, depending on the degree of simplification, this may yield
malfunctioning of the overall controlled system due to potentially neglected
physical phenomena. The ability of a control system to cope with errors due to
neglected dynamics is commonly referred to as robustness. Thus, one typically
is interested in designing robust controllers.

In other situations, after the modeling stage one performs the parametric
identification. The objective of this task is to obtain the numerical values of
different physical parameters or quantities involved in the dynamic model. The
identification may be performed via techniques that require the measurement
of inputs and outputs to the controlled system.

The dynamic model of robot manipulators is typically derived in the an-
alytic form, that is, using the laws of physics. Due to the mechanical nature
of robot manipulators, the laws of physics involved are basically the laws of
mechanics.

On the other hand, from a dynamical systems viewpoint, an n-DOF system
may be considered as a multivariable nonlinear system. The term “multivari-
able” denotes the fact that the system has multiple (e.g. n) inputs (the forces
and torques τ applied to the joints by the electromechanical, hydraulic or
pneumatic actuators) and, multiple (2n) state variables typically associated
to the n positions q, and n joint velocities q̇ . In Figure 1.5 we depict the cor-
responding block-diagram assuming that the state variables also correspond
to the outputs. The topic of robot dynamics is presented in Chapter 3. In
Chapter 5 we provide the specific dynamic model of a two-DOF prototype of
a robot manipulator that we use to illustrate through examples, the perfor-
mance of the controllers studied in the succeeding chapters. Readers interested
in the aspects of dynamics are invited to see the references listed on page 16.

As was mentioned earlier, the dynamic models of robot manipulators are
in general characterized by ordinary nonlinear and nonautonomous2 differ-
ential equations. This fact limits considerably the use of control techniques
1 That is the working regime.
2 That is, they depend on the state variables and time. See Chapter 2.
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tailored for linear systems, in robot control. In view of this and the present
requirements of precision and rapidity of robot motion it has become neces-
sary to use increasingly sophisticated control techniques. This class of control
systems may include nonlinear and adaptive controllers.

1.3 Control Specifications

During this last stage one proceeds to dictate the desired characteristics for
the control system through the definition of control objectives such as:

• stability;
• regulation (position control);
• trajectory tracking (motion control);
• optimization.

The most important property in a control system, in general, is stabil-
ity. This fundamental concept from control theory basically consists in the
property of a system to go on working at a regime or closely to it for ever.

Two techniques of analysis are typically used in the analytical study of the
stability of controlled robots. The first is based on the so-called Lyapunov sta-
bility theory. The second is the so-called input–output stability theory. Both
techniques are complementary in the sense that the interest in Lyapunov the-
ory is the study of stability of the system using a state variables description,
while in the second one, we are interested in the stability of the system from
an input–output perspective. In this text we concentrate our attention on
Lyapunov stability in the development and analysis of controllers. The foun-
dations of Lyapunov theory are presented in the Chapter 2.

In accordance with the adopted definition of a robot manipulator’s output
y, the control objectives related to regulation and trajectory tracking receive
special names. In particular, in the case when the output y corresponds to the
joint position q and velocity q̇, we refer to the control objectives as “position
control in joint coordinates” and “motion control in joint coordinates” respec-
tively. Or we may simply say “position” and “motion” control respectively.
The relevance of these problems motivates a more detailed discussion which
is presented next.

1.4 Motion Control of Robot Manipulators

The simplest way to specify the movement of a manipulator is the so-called
“point-to-point” method. This methodology consists in determining a series
of points in the manipulator’s workspace, which the end-effector is required
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to pass through (cf. Figure 1.6). Thus, the position control problem consists
in making the end-effector go to a specified point regardless of the trajectory
followed from its initial configuration.

Figure 1.6. Point-to-point motion specification

A more general way to specify a robot’s motion is via the so-called (con-
tinuous) trajectory. In this case, a (continuous) curve, or path in the state
space and parameterized in time, is available to achieve a desired task. Then,
the motion control problem consists in making the end-effector follow this
trajectory as closely as possible (cf. Figure 1.7). This control problem, whose
study is our central objective, is also referred to as trajectory tracking control.

Let us briefly recapitulate a simple formulation of robot control which, as
a matter of fact, is a particular case of motion control; that is, the position
control problem. In this formulation the specified trajectory is simply a point
in the workspace (which may be translated under appropriate conditions into
a point in the joint space). The position control problem consists in driving the
manipulator’s end-effector (resp. the joint variables) to the desired position,
regardless of the initial posture.

The topic of motion control may in its turn, be fitted in the more general
framework of the so-called robot navigation. The robot navigation problem
consists in solving, in one single step, the following subproblems:

• path planning;
• trajectory generation;
• control design.
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Figure 1.7. Trajectory motion specification

Path planning consists in determining a curve in the state space, connect-
ing the initial and final desired posture of the end-effector, while avoiding
any obstacle. Trajectory generation consists in parameterizing in time the so-
obtained curve during the path planning. The resulting time-parameterized
trajectory which is commonly called the reference trajectory, is obtained pri-
marily in terms of the coordinates in the workspace. Then, following the so-
called method of inverse kinematics one may obtain a time-parameterized
trajectory for the joint coordinates. The control design consists in solving the
control problem mentioned above.

The main interest of this textbook is the study of motion controllers and
more particularly, the analysis of their inherent stability in the sense of Lya-
punov. Therefore, we assume that the problems of path planning and trajec-
tory generation are previously solved.

The dynamic models of robot manipulators possess parameters which de-
pend on physical quantities such as the mass of the objects possibly held by
the end-effector. This mass is typically unknown, which means that the values
of these parameters are unknown. The problem of controlling systems with
unknown parameters is the main objective of the adaptive controllers. These
owe their name to the addition of an adaptation law which updates on-line,
an estimate of the unknown parameters to be used in the control law. This
motivates the study of adaptive control techniques applied to robot control.
In the past two decades a large body of literature has been devoted to the
adaptive control of manipulators. This problem is examined in Chapters 15
and 16.

We must mention that in view of the scope and audience of the present
textbook, we have excluded some control techniques whose use in robot mo-
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tion control is supported by a large number of publications contributing both
theoretical and experimental achievements. Among such strategies we men-
tion the so-called passivity-based control, variable-structure control, learning
control, fuzzy control and neural-networks-based. These topics, which demand
a deeper knowledge of control and stability theory, may make part of a second
course on robot control.
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Case Study: The Pelican Prototype Robot

The purpose of this chapter is twofold: first, to present in detail the model of
the experimental robot arm of the Robotics lab. from the CICESE Research
Center, Mexico. Second, to review the topics studied in the previous chapters
and to discuss, through this case study, the topics of direct kinematics and
inverse kinematics, which are fundamental in determining robot models.

For the Pelican, we derive the full dynamic model of the prototype; in par-
ticular, we present the numerical values of all the parameters such as mass,
inertias, lengths to centers of mass, etc. This is used throughout the rest of the
book in numerous examples to illustrate the performance of the controllers
that we study. We emphasize that all of these examples contain experimen-
tation results.

Thus, the chapter is organized in the following sections:

• direct kinematics;
• inverse kinematics;
• dynamic model;
• properties of the dynamic model;
• reference trajectories.

For analytical purposes, further on, we refer to Figure 5.2, which represents
the prototype schematically. As is obvious from this figure, the prototype is a
planar arm with two links connected through revolute joints, i.e. it possesses
2 DOF. The links are driven by two electrical motors located at the “shoulder”
(base) and at the “elbow”. This is a direct-drive mechanism, i.e. the axes of
the motors are connected directly to the links without gears or belts.

The manipulator arm consists of two rigid links of lengths l1 and l2, masses
m1 and m2 respectively. The robot moves about on the plane x–y as is illus-
trated in Figure 5.2. The distances from the rotating axes to the centers of
mass are denoted by lc1 and lc2 for links 1 and 2, respectively. Finally, I1 and
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Figure 5.1. Pelican: experimental robot arm at CICESE, Robotics lab.
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Figure 5.2. Diagram of the 2-DOF Pelican prototype robot

I2 denote the moments of inertia of the links with respect to the axes that
pass through the respective centers of mass and are parallel to the axis x.
The degrees of freedom are associated with the angle q1, which is measured
from the vertical position, and q2, which is measured relative to the extension
of the first link toward the second link, both being positive counterclockwise.
The vector of joint positions q is defined as

q = [q1 q2]T .
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The meaning of the diverse constant parameters involved as well as their
numerical values are summarized in Table 5.1.

Table 5.1. Physical parameters of Pelican robot arm

Description Notation Value Units

Length of Link 1 l1 0.26 m

Length of Link 2 l2 0.26 m

Distance to the center of mass (Link 1) lc1 0.0983 m

Distance to the center of mass (Link 2) lc2 0.0229 m

Mass of Link 1 m1 6.5225 kg

Mass of Link 2 m2 2.0458 kg

Inertia rel. to center of mass (Link 1) I1 0.1213 kg m2

Inertia rel. to center of mass (Link 2) I2 0.0116 kg m2

Gravity acceleration g 9.81 m/s2

5.1 Direct Kinematics

The problem of direct kinematics for robot manipulators is formulated as
follows. Consider a robot manipulator of n degrees-of-freedom placed on a
fixed surface. Define a reference frame also fixed at some point on this sur-
face. This reference frame is commonly referred to as ‘base reference frame’.
The problem of deriving the direct kinematic model of the robot consists in
expressing the position and orientation (when the latter makes sense) of a ref-
erence frame fixed to the end of the last link of the robot, referred to the base
reference frame in terms of the joint coordinates of the robot. The solution to
the so-formulated problem from a mathematical viewpoint, reduces to solving
a geometrical problem which always has a closed-form solution.

Regarding the Pelican robot, we start by defining the reference frame of
base as a Cartesian coordinated system in two dimensions with its origin
located exactly on the first joint of the robot, as is illustrated in Figure 5.2. The
Cartesian coordinates x and y determine the position of the tip of the second
link with respect to the base reference frame. Notice that for the present case
study of a 2-DOF system, the orientation of the end-effector of the arm makes
no sense. One can clearly appreciate that both Cartesian coordinates, x and
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y, depend on the joint coordinates q1 and q2. Precisely it is this correlation
that defines the direct kinematic model,

[
x
y

]
= ϕ(q1, q2) ,

where ϕ : IR2 → IR2.
For the case of this robot with 2 DOF, it is immediate to verify that the

direct kinematic model is given by

x = l1sin(q1) + l2sin(q1 + q2)
y = −l1cos(q1)− l2cos(q1 + q2) .

From this model is obtained: the following relation between the velocities
[
ẋ
ẏ

]
=
[
l1cos(q1) + l2cos(q1 + q2) l2cos(q1 + q2)
l1sin(q1) + l2sin(q1 + q2) l2sin(q1 + q2)

] [
q̇1

q̇2

]

= J(q)
[
q̇1

q̇2

]

where J(q) =
∂ϕ(q)
∂q

∈ IR2×2 is called the analytical Jacobian matrix or

simply, the Jacobian of the robot. Clearly, the following relationship between
accelerations also holds,

[
ẍ
ÿ

]
=
[
d

dt
J(q)

] [
q̇1

q̇2

]
+ J(q)

[
q̈1

q̈2

]
.

The procedure by which one computes the derivatives of the Jacobian
and thereby obtains expressions for the velocities in Cartesian coordinates, is
called differential kinematics. This topic is not studied in more detail in this
textbook since we do not use it for control.

5.2 Inverse Kinematics

The inverse kinematic model of robot manipulators is of great importance
from a practical viewpoint. This model allows us to obtain the joint positions
q in terms of the position and orientation of the end-effector of the last link
referred to the base reference frame. For the case of the Pelican prototype
robot, the inverse kinematic model has the form

[
q1

q2

]
= ϕ−1(x, y)
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where ϕ−1 : Θ → IR2 and Θ ⊆ IR2.
The derivation of the inverse kinematic model is in general rather complex

and, in contrast to the direct kinematics problem, it may have multiple solu-
tions or no solution at all! The first case is illustrated in Figure 5.3. Notice
that for the same position (in Cartesian coordinates x, y) of the arm tip there
exist two possible configurations of the links, i.e. two possible values for q.

qd2

qd1

y

x

Figure 5.3. Two solutions to the inverse kinematics problem

So we see that even for this relatively simple robot configuration there
exist more than one solution to the inverse kinematics problem.

The practical interest of the inverse kinematic model relies on its utility
to define desired joint positions qd = [qd1 qd2 ]T from specified desired posi-
tions xd and yd for the robot’s end-effector. Indeed, note that physically, it
is more intuitive to specify a task for a robot in end-effector coordinates so
that interest in the inverse kinematics problem increases with the complexity
of the manipulator (number of degrees of freedom).

Thus, let us now make our this discussion more precise by analytically

computing the solutions
[
qd1

qd2

]
= ϕ−1(xd, yd). The desired joint positions qd

can be computed using tedious but simple trigonometric manipulations to
obtain

qd1 = tan−1

(
xd
−yd

)
− tan−1

(
l2sin(qd2)

l1 + l2cos(qd2)

)

qd2 = cos−1

(
x2
d + y2

d − l21 − l22
2l1l2

)
.
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The desired joint velocities and accelerations may be obtained via the
differential kinematics1 and its time derivative. In doing this one must keep
in mind that the expressions obtained are valid only as long as the robot does
not “fall” into a singular configuration, that is, as long as the Jacobian J(qd)
is square and nonsingular. These expressions are

[
q̇d1

q̇d2

]
= J−1(qd)

[
ẋd
ẏd

]

[
q̈d1

q̈d2

]
= −J−1(qd)

[
d

dt
J(qd)

]
J−1(qd)

︸ ︷︷ ︸
d

dt

[
J−1(qd)

]

[
ẋd
ẏd

]
+ J−1(qd)

[
ẍd
ÿd

]

where J−1(qd) and d
dt [J(qd)] denote the inverse of the Jacobian matrix and

its time derivative respectively, evaluated at q = qd. These are given by

J−1(qd) =




S12

l1S2
−C12

l1S2

−l1S1 − l2S12

l1l2S2

l1C1 + l2C12

l1l2S2


 ,

and

d

dt
[J(qd)] =



−l1S1q̇d1 − l2S12(q̇d1 + q̇d2) −l2S12(q̇d1 + q̇d2)

l1C1q̇d1 + l2C12(q̇d1 + q̇d2) l2C12(q̇d1 + q̇d2)


 ,

where, for simplicity, we have used the notation S1 = sin(qd1), S2 = sin(qd2),
C1 = cos(qd1), S12 = sin(qd1 + qd2), C12 = cos(qd1 + qd2) .

Notice that the term S2 appears in the denominator of all terms in J(q)−1

hence, qd2 = nπ, with n ∈ {0, 1, 2, . . .} and any qd1 also correspond to singular
configurations. Physically, these configurations (for any valid n) represent the
second link being completely extended or bent over the first, as is illustrated
in Figure 5.4. Typically, singular configurations are those in which the end-
effector of the robot is located at the physical boundary of the workspace
(that is, the physical space that the end-effector can reach). For instance, the
singular configuration corresponding to being stretched out corresponds to
the end-effector being placed anywhere on the circumference of radius l1 + l2,
which is the boundary of the robot’s workspace. As for Figure 5.4 the origin
of the coordinates frame constitute another point of this boundary.

Having illustrated the inverse kinematics problem through the planar ma-
nipulator of Figure 5.2 we stop our study of inverse kinematics since it is
1 For a definition and a detailed treatment of differential kinematics see the book

(Sciavicco, Siciliano 2000) —cf. Bibliography at the end of Chapter 1.
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qd1

x

y qd2

Figure 5.4. “Bent-over” singular configuration

beyond the scope of this text. However, we stress that what we have seen in
the previous paragraphs extends in general.

In summary, we can say that if the control is based on the Cartesian coor-
dinates of the end-effector, when designing the desired task for a manipulator’s
end-effector one must take special care that the configurations for the latter
do not yield singular configurations. Concerning the controllers studied in this
textbook, the reader should not worry about singular configurations since the
Jacobian is not used at all: the reference trajectories are given in joint coor-
dinates and we measure joint coordinates. This is what is called “control in
joint space”.

Thus, we leave the topic of kinematics to pass to the stage of modeling
that is more relevant for control, from the viewpoint of this textbook, i.e.
dynamics.

5.3 Dynamic Model

In this section we derive the Lagrangian equations for the CICESE proto-
type shown in Figure 5.1 and then we present in detail, useful bounds on
the matrices of inertia, centrifugal and Coriolis forces, and on the vector of
gravitational torques. Certainly, the model that we derive here applies to any
planar manipulator following the same convention of coordinates as for our
prototype.

5.3.1 Lagrangian Equations

Consider the 2-DOF robot manipulator shown in Figure 5.2. As we have
learned from Chapter 3, to derive the Lagrangian dynamics we start by writing
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the kinetic energy function, K(q, q̇), defined in (3.15). For this manipulator,
it may be decomposed into the sum of the two parts:

• the product of half the mass times the square of the speed of the center of
mass; plus

• the product of half its moment of inertia (referred to the center of mass)
times the square of its angular velocity (referred to the center of mass).

That is, we have K(q, q̇) = K1(q, q̇)+K2(q, q̇) where K1(q, q̇) and K2(q, q̇) are
the kinetic energies associated with the masses m1 and m2 respectively. Let
us now develop in more detail, the corresponding mathematical expressions.
To that end, we first observe that the coordinates of the center of mass of link
1, expressed on the plane x–y, are

x1 = lc1 sin(q1)
y1 = −lc1 cos(q1) .

The velocity vector v1 of the center of mass of such a link is then,

v1 =
[
ẋ1

ẏ1

]
=
[
lc1 cos(q1)q̇1

lc1 sin(q1)q̇1

]
.

Therefore, the speed squared, ‖v1‖2 = vT1v1, of the center of mass becomes

vT1v1 = l2c1q̇
2
1 .

Finally, the kinetic energy corresponding to the motion of link 1 can be ob-
tained as

K1(q, q̇) =
1
2
m1v

T
1v1 +

1
2
I1q̇

2
1

=
1
2
m1l

2
c1q̇

2
1 +

1
2
I1q̇

2
1 . (5.1)

On the other hand, the coordinates of the center of mass of link 2, expressed
on the plane x–y are

x2 = l1 sin(q1) + lc2 sin(q1 + q2)
y2 = −l1cos(q1)− lc2 cos(q1 + q2) .

Consequently, the velocity vector v2 of the center of mass of such a link is

v2 =
[
ẋ2

ẏ2

]

=
[
l1 cos(q1)q̇1 + lc2 cos(q1 + q2)[q̇1 + q̇2]
l1 sin(q1)q̇1 + lc2 sin(q1 + q2)[q̇1 + q̇2]

]
.
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Therefore, using the trigonometric identities cos(θ)2 + sin(θ)2 = 1 and
sin(q1)sin(q1 + q2) + cos(q1)cos(q1 + q2) = cos(q2) we conclude that the speed
squared, ‖v2‖2 = vT2v2, of the center of mass of link 2 satisfies

vT2v2 = l21 q̇
2
1 + l2c2

[
q̇2
1 + 2q̇1q̇2 + q̇2

2

]
+ 2l1lc2

[
q̇2
1 + q̇1q̇2

]
cos(q2)

which implies that

K2(q, q̇) =
1
2
m2v

T
2v2 +

1
2
I2[q̇1 + q̇2]2

=
m2

2
l21 q̇

2
1 +

m2

2
l2c2
[
q̇2
1 + 2q̇1q̇2 + q̇2

2

]

+m2l1lc2
[
q̇2
1 + q̇1q̇2

]
cos(q2)

+
1
2
I2[q̇1 + q̇2]2.

Similarly, the potential energy may be decomposed as the sum of the
terms U(q) = U1(q)+U2(q), where U1(q) and U2(q) are the potential energies
associated with the masses m1 and m2 respectively. Thus, assuming that the
potential energy is zero at y = 0, we obtain

U1(q) = −m1lc1g cos(q1)

and
U2(q) = −m2l1g cos(q1)−m2lc2g cos(q1 + q2) . (5.2)

From Equations (5.1)–(5.2) we obtain the Lagrangian as

L(q, q̇) = K(q, q̇)− U(q)
= K1(q, q̇) +K2(q, q̇)− U1(q)− U2(q)

=
1
2

[m1l
2
c1 +m2l

2
1]q̇2

1 +
1
2
m2l

2
c2

[
q̇2
1 + 2q̇1q̇2 + q̇2

2

]

+m2l1lc2 cos(q2)
[
q̇2
1 + q̇1q̇2

]

+ [m1lc1 +m2l1]g cos(q1)
+m2glc2 cos(q1 + q2)

+
1
2
I1q̇

2
1 +

1
2
I2[q̇1 + q̇2]2.

From this last equation we obtain the following expression:

∂L
∂q̇1

= [m1l
2
c1 +m2l

2
1]q̇1 +m2l

2
c2q̇1 +m2l

2
c2q̇2

+ 2m2l1lc2 cos(q2)q̇1 +m2l1lc2 cos(q2)q̇2

+ I1q̇1 + I2[q̇1 + q̇2].
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d

dt

[
∂L
∂q̇1

]
=
[
m1l

2
c1 +m2l

2
1 +m2l

2
c2 + 2m2l1lc2 cos(q2)

]
q̈1

+
[
m2l

2
c2 +m2l1lc2 cos(q2)

]
q̈2

− 2m2l1lc2sin(q2)q̇1q̇2 −m2l1lc2 sin(q2)q̇2
2

+ I1q̈1 + I2[q̈1 + q̈2].

∂L
∂q1

= −[m1lc1 +m2l1]g sin(q1)−m2glc2 sin(q1 + q2).

∂L
∂q̇2

= m2l
2
c2q̇1 +m2l

2
c2q̇2 +m2l1lc2 cos(q2)q̇1 + I2[q̇1 + q̇2].

d

dt

[
∂L
∂q̇2

]
= m2l

2
c2q̈1 +m2l

2
c2q̈2

+m2l1lc2 cos(q2)q̈1 −m2l1lc2 sin(q2)q̇1q̇2

+ I2[q̈1 + q̈2].

∂L
∂q2

= −m2l1lc2 sin(q2)
[
q̇1q̇2 + q̇2

1

]−m2glc2 sin(q1 + q2).

The dynamic equations that model the robot arm are obtained by applying
Lagrange’s Equations (3.4),

d

dt

[
∂L
∂q̇i

]
− ∂L
∂qi

= τi i = 1, 2

from which we finally get

τ1 =
[
m1l

2
c1 +m2l

2
1 +m2l

2
c2 + 2m2l1lc2 cos(q2) + I1 + I2

]
q̈1

+
[
m2l

2
c2 +m2l1lc2 cos(q2) + I2

]
q̈2

− 2m2l1lc2 sin(q2)q̇1q̇2 −m2l1lc2 sin(q2)q̇2
2

+ [m1lc1 +m2l1]g sin(q1)
+m2glc2 sin(q1 + q2) (5.3)

and

τ2 =
[
m2l

2
c2 +m2l1lc2 cos(q2) + I2

]
q̈1 + [m2l

2
c2 + I2]q̈2

+m2l1lc2 sin(q2)q̇2
1 +m2glc2 sin(q1 + q2) , (5.4)

where τ1 and τ2, are the external torques delivered by the actuators at joints
1 and 2.

Thus, the dynamic equations of the robot (5.3)-(5.4) constitute a set of
two nonlinear differential equations of the state variables x = [qT q̇T ]T , that
is, of the form (3.1) .
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5.3.2 Model in Compact Form

For control purposes, it is more practical to rewrite the Lagrangian dynamic
model of the robot, that is, Equations (5.3) and (5.4), in the compact form
(3.18), i.e.

[
M11(q) M12(q)
M21(q) M22(q)

]

︸ ︷︷ ︸
M(q)

q̈ +
[
C11(q, q̇) C12(q, q̇)
C21(q, q̇) C22(q, q̇)

]

︸ ︷︷ ︸
C(q, q̇)

q̇ +
[
g1(q)
g2(q)

]

︸ ︷︷ ︸
g(q)

= τ ,

where

M11(q) = m1l
2
c1 +m2

[
l21 + l2c2 + 2l1lc2 cos(q2)

]
+ I1 + I2

M12(q) = m2

[
l2c2 + l1lc2 cos(q2)

]
+ I2

M21(q) = m2

[
l2c2 + l1lc2 cos(q2)

]
+ I2

M22(q) = m2l
2
c2 + I2

C11(q, q̇) = −m2l1lc2 sin(q2)q̇2

C12(q, q̇) = −m2l1lc2 sin(q2) [q̇1 + q̇2]
C21(q, q̇) = m2l1lc2 sin(q2)q̇1

C22(q, q̇) = 0

g1(q) = [m1lc1 +m2l1] g sin(q1) +m2lc2g sin(q1 + q2)
g2(q) = m2lc2g sin(q1 + q2) .

We emphasize that the appropriate state variables to describe the dynamic
model of the robot are the positions q1 and q2 and the velocities q̇1 and q̇2. In
terms of these state variables, the dynamic model of the robot may be written
as

d

dt



q1

q2

q̇1

q̇2


 =




q̇1

q̇2

M(q)−1 [τ (t)− C(q, q̇)q̇ − g(q)]


 .

Properties of the Dynamic Model

We present now the derivation of certain bounds on the inertia matrix, the ma-
trix of centrifugal and Coriolis forces and the vector of gravitational torques.
The bounds that we derive are fundamental to properly tune the gains of the
controllers studied in the succeeding chapters. We emphasize that, as stud-
ied in Chapter 4, some bounds exist for any manipulator with only revolute
rigid joints. Here, we show how they can be computed for CICESE’s Pelican
prototype illustrated in Figure 5.2.
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Derivation of λmin{M}

We start with the property of positive definiteness of the inertia matrix. For
a symmetric 2×2 matrix

[
M11(q) M21(q)
M21(q) M22(q)

]

to be positive definite for all q ∈ IRn, it is necessary and sufficient that2

M11(q) > 0 and its determinant

M11(q)M22(q)−M21(q)2

also be positive for all q ∈ IRn.
In the worst-case scenario M11(q) = m1l

2
c1 + I1 + I2 + m2(l1 − lc2)2 > 0,

we only need to compute the determinant of M(q), that is,

det[M(q)] = I1I2 + I2[l2c1m1 + l21m2] + l2c2m2I1 + l2c1l
2
c2m1m2

+ l21l
2
c2m

2
2[1− cos2(q2)] .

Notice that only the last term depends on q and is positive or zero. Hence,
we conclude that M(q) is positive definite for all q ∈ IRn, that is3

xTM(q)x ≥ λmin{M}‖x‖2 (5.5)

for all q ∈ IRn, where λmin{M} > 0.
Inequality (5.5) constitutes an important property for control purposes

since for instance, it guarantees that M(q)−1 is positive definite and bounded
for all q ∈ IRn.

Let us continue with the computation of the constants β, kM , kC1 , kC2

and kg from the properties presented in Chapter 4.

Derivation of λMax{M}

Consider the inertia matrix M(q). From its components it may be verified
that
2 Consider the partitioned matrix

[
A B
BT C

]
.

If A = AT > 0, C = CT > 0 and C − BTA−1B ≥ 0 (resp. C − BTA−1B > 0 ),
then this matrix is positive semidefinite (resp. positive definite). See Horn R. A.,
Johnson C. R., 1985, Matrix analysis, p. 473.

3 See also Remark 2.1 on page 25.



5.3 Dynamic Model 125

max
i,j,q
|Mij(q)| = m1l

2
c1 +m2

[
l21 + l2c2 + 2l1lc2

]
+ I1 + I2 .

According to Table 4.1, the constant β may be obtained as a value larger or
equal to n times the previous expression, i.e.

β ≥ n [m1l
2
c1 +m2

[
l21 + l2c2 + 2l1lc2

]
+ I1 + I2

]
.

Hence, defining, λMax{M} = β we see that

xTM(q)x ≤ λMax{M}‖x‖2

for all q ∈ IRn. Moreover, using the numerical values presented in Table 5.1,
we get β = 0.7193 kg m2, that is, λMax{M} = 0.7193 kg m2.

Derivation of kM

Consider the inertia matrix M(q). From its components it may be verified
that

∂M11(q)
∂q1

= 0,
∂M11(q)
∂q2

= −2m2l1lc2sin(q2)

∂M12(q)
∂q1

= 0,
∂M12(q)
∂q2

= −m2l1lc2sin(q2)

∂M21(q)
∂q1

= 0,
∂M21(q)
∂q2

= −m2l1lc2sin(q2)

∂M22(q)
∂q1

= 0,
∂M22(q)
∂q2

= 0 .

According to Table 4.1, the constant kM may be determined as

kM ≥ n2

(
max
i,j,k,q

∣∣∣∣
∂Mij(q)
∂qk

∣∣∣∣
)
,

hence, this constant may be chosen to satisfy

kM ≥ n22m2l1lc2 .

Using the numerical values presented in Table 5.1 we get kM = 0.0974 kg m2 .

Derivation of kC1

Consider the vector of centrifugal and Coriolis forces C(q, q̇)q̇ written as

C(q, q̇)q̇ =



−m2l1lc2 sin(q2)

(
2q̇1q̇2 + q̇2

2

)

m2l1lc2 sin(q2)q̇2
1
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=




[
q̇1

q̇2

]T
C1(q)︷ ︸︸ ︷[

0 −m2l1lc2 sin(q2)
−m2l1lc2 sin(q2) −m2l1lc2 sin(q2)

] [
q̇1

q̇2

]

[
q̇1

q̇2

]T[
m2l1lc2 sin(q2) 0

0 0

]

︸ ︷︷ ︸
C2(q)

[
q̇1

q̇2

]




. (5.6)

According to Table 4.1, the constant kC1 may be derived as

kC1 ≥ n2

(
max
i,j,k,q

∣∣Ckij (q)
∣∣
)

hence, this constant may be chosen so that

kC1 ≥ n2m2l1lc2

Consequently, in view of the numerical values from Table 5.1 we find that
kC1 = 0.0487 kg m2.

Derivation of kC2

Consider again the vector of centrifugal and Coriolis forces C(q, q̇)q̇ written
as in (5.6). From the matrices C1(q) and C2(q) it may easily be verified that

∂C111(q)
∂q1

= 0,
∂C111(q)
∂q2

= 0

∂C112(q)
∂q1

= 0,
∂C112(q)
∂q2

= −m2l1lc2cos(q2)

∂C121(q)
∂q1

= 0,
∂C121(q)
∂q2

= −m2l1lc2cos(q2)

∂C122(q)
∂q1

= 0,
∂C122(q)
∂q2

= −m2l1lc2cos(q2)

∂C211(q)
∂q1

= 0,
∂C211(q)
∂q2

= m2l1lc2cos(q2)

∂C212(q)
∂q1

= 0,
∂C212(q)
∂q2

= 0

∂C221(q)
∂q1

= 0,
∂C221(q)
∂q2

= 0
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∂C222(q)
∂q1

= 0,
∂C222(q)
∂q2

= 0 .

Furthermore, according to Table 4.1 the constant kC2 may be taken to satisfy

kC2 ≥ n3

(
max
i,j,k,l,q

∣∣∣∣
∂Ckij (q)
∂ql

∣∣∣∣
)
.

Therefore, we may choose kC2 as

kC2 ≥ n3m2l1lc2 ,

which, in view of the numerical values from Table 5.1, takes the numerical
value kC2 = 0.0974 kg m2:

Derivation of kg

According to the components of the gravitational torques vector g(q) we have

∂g1(q)
∂q1

= (m1lc1 +m2l1) g cos(q1) +m2lc2g cos(q1 + q2)

∂g1(q)
∂q2

= m2lc2g cos(q1 + q2)

∂g2(q)
∂q1

= m2lc2g cos(q1 + q2)

∂g2(q)
∂q2

= m2lc2g cos(q1 + q2) .

Notice that the Jacobian matrix ∂g(q)
∂q

corresponds in fact, to the Hessian

matrix (i.e. the second partial derivative) of the potential energy function
U(q), and is a symmetric matrix even though not necessarily positive definite.

The positive constant kg may be derived from the information given in
Table 4.1 as

kg ≥ n max
i,j,q

∣∣∣∣
∂gi(q)
∂qj

∣∣∣∣ .

That is,
kg ≥ n [m1lc1 +m2l1 +m2lc2] g

and using the numerical values from Table 5.1 may be given the numerical
value kg = 23.94 kg m2/s2.



128 5 Case Study: The Pelican Prototype Robot

Table 5.2. Numeric values of the parameters for the CICESE prototype

Parameter Value Units

λMax{M} 0.7193 kg m2

kM 0.0974 kg m2

kC1 0.0487 kg m2

kC2 0.0974 kg m2

kg 23.94 kg m2/s2

Summary

The numerical values of the constants λMax{M}, kM , kC1 , kC2 and kg obtained
above are summarized in Table 5.2.

5.4 Desired Reference Trajectories

With the aim of testing in experiments the performance of the controllers
presented in this book, on the Pelican robot, we have selected the following
reference trajectories in joint space:



qd1

qd2


 =



b1[1− e−2.0 t3 ] + c1[1− e−2.0 t3 ] sin(ω1t)

b2[1− e−2.0 t3 ] + c2[1− e−2.0 t3 ] sin(ω2t)


 [rad] (5.7)

where b1 = π/4 [rad], c1 = π/9 [rad] and ω1 = 4 [rad/s], are parameters
for the desired position reference for the first joint and b2 = π/3 [rad], c2 =
π/6 [rad] and ω2 = 3 [rad/s] correspond to parameters that determine the
desired position reference for the second joint. Figure 5.5 shows graphs of
these reference trajectories against time.

Note the following important features in these reference trajectories:

• the trajectory contains a sinusoidal term to evaluate the performance of the
controller following relatively fast periodic motions. This test is significant
since such motions excite nonlinearities in the system.

• It also contains a slowly increasing term to bring the robot to the operating
point without driving the actuators into saturation.

The module and frequency of the periodic signal must be chosen with
care to avoid both torque and speed saturation in the actuators. In other
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Figure 5.5. Desired reference trajectories

words, the reference trajectories must be such that the evolution of the robot
dynamics along these trajectories gives admissible velocities and torques for
the actuators. Otherwise, the desired reference is physically unfeasible.

Using the expressions of the desired position trajectories, (5.7), we may
obtain analytically expressions for the desired velocity reference trajectories.
These are obtained by direct differentiation, i.e.

q̇d1 = 6b1t2e−2.0 t3 + 6c1t2e−2.0 t3sin(ω1t) + [c1 − c1e−2.0 t3 ] cos (ω1t)ω1,

q̇d2 = 6b2t2e−2.0 t3 + 6c2t2e−2.0 t3sin(ω2t) + [c2 − c2e−2.0 t3 ] cos (ω2t)ω2 ,

(5.8)

in [ rad/s ]. In the same way we may proceed to compute the reference accel-
erations to obtain

q̈d1 = 12b1te−2.0 t3 − 36b1t4e−2.0 t3 + 12c1te−2.0 t3sin(ω1t)

− 36c1t4e−2.0 t3sin(ω1t) + 12c1t2e−2.0 t3 cos (ω1t)ω1

− [c1 − c1e−2.0 t3 ]sin(ω1t)ω2
1

[
rad/s2

]
,

q̈d2 = 12b2te−2.0 t3 − 36b2t4e−2.0 t3 + 12c2te−2.0 t3 sin (ω2t)

− 36c2t4e−2.0 t3 sin (ω2t) + 12c2t2e−2.0 t3 cos (ω2t)ω2

− [c2 − c2e−2.0 t3 ] sin (ω2t)ω2
2

[
rad/s2

]
.

(5.9)
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Figure 5.6. Norm of the desired positions
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Figure 5.7. Norm of the desired velocities vector

Figures 5.6, 5.7 and 5.8 show the evolution in time of the norms corresponding
to the desired joint positions, velocities and accelerations respectively. From
these figures we deduce the following upper-bounds on the norms

‖qd‖Max ≤ 1.92 [rad]
‖q̇d‖Max ≤ 2.33 [rad/s]
‖q̈d‖Max ≤ 9.52 [rad/s2] .
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Figure 5.8. Norm of the desired accelerations vector
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Problems

1. Consider the matrices M(q) and C(q, q̇) from Section 5.3.2. Show that
the matrix

[
1
2Ṁ(q)− C(q, q̇)

]
is skew-symmetric.

2. According to Property 4.2, the centrifugal and Coriolis forces matrix
C(q, q̇), of the dynamic model of an n-DOF robot is not unique. In Sec-
tion 5.3.2 we computed the elements of the matrix C(q, q̇) of the Pelican

4 “Centro de Investigación Cient́ıfica y de Educación Superior de Ensenada”.



132 5 Case Study: The Pelican Prototype Robot

robot presented in this chapter. Prove also that the matrix C(q, q̇) whose
elements are given by

C11(q, q̇) = −2m2l1lc2 sin(q2)q̇2

C12(q, q̇) = −m2l1lc2 sin(q2)q̇2

C21(q, q̇) = m2l1lc2 sin(q2)q̇1

C22(q, q̇) = 0

characterizes the centrifugal and Coriolis forces, C(q, q̇)q̇. With this def-
inition of C(q, q̇), is 1

2Ṁ(q)− C(q, q̇) skew-symmetric?

Does it hold that q̇T
[

1
2Ṁ(q)− C(q, q̇)

]
q̇ = 0 ? Explain.


