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Setting the Stage for Structured Populations

The aim of this initial chapter is to introduce some concepts related to struc-
tured populations in such a way that they are seen in the more general context
of graphs or networks. With only a small cost in mathematical notation, this
will allow us to discuss many apparently distinct features of populations under
the umbrella of an existing and well-established mathematical notation.
Structured populations are just populations in which any given individual
has its own neighborhood, which is smaller, sometimes much smaller, than the
size of the population. In other words, instead of all the other individuals in the
population being consirered as potential mates as in panmictic populations,
only those that are in the same neighborhood can interact. Although this
“isolation by distance” is often associated with geographical separation, this
is not strictly required in evolutionary-algorithm (EA) models, where only
the “relational aspect” matters. In fact, there are many examples of biological
niches and isolated or semi-isolated populations in biology in which physical
distance is the key factor keeping these demes nearly independent of each
other. And many such biologically inspired models have been proposed for
EAs. However, what counts is the neighborhood relationship, and this can
be of any type, as long as it makes algorithmic sense. We shall see many
examples of this in the following chapters. Thus, we are led to the conclusion
that the important idea is the ensemble of relations among individuals, be
they truly spatial or not. The mathematical objects that are required for
describing this state of affairs are graphs. This means that we do not always
need the concept of a metric space and an associated distance, such as the
Euclidean distance. More often, distances between individuals will be given by
the network itself, as measured along the path that links the two individuals
in the graph. In these relational graphs the rules governing the construction
of the graph do not depend upon any external metric between the vertices.
For example, the electrical supply network of a given region would be a kind
of spatial graph, since the distances between the graph nodes (generators,
transformers and so on) are relevant, while the network of acquaintances in
a society conveys only relationships, although other kinds of non-Euclidean
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distances can be associated with such networks. In the realm of population
graphs, and with a slight abuse of language, I shall often call these population
structures topologies, be they truly spatial or not.

Since graphs are a suitable mathematical description for structured pop-
ulations, I shall give here a short introduction to the relevant concepts and
definitions that will be used in the rest of the book. Graph theory is a well-
developed branch of discrete mathematics and it would be impossible, and
also useless, to try to give an account of it here, however brief. Instead, I shall
limit myself to the introduction of the concepts that are really useful to us. In
Chap. 6, we shall need a few more ideas about graphs. Since these concepts
are not needed yet, I shall defer their presentation to the relevant place.

1.1 Useful Definitions for Graphs

For ease of reference, I collect here a few definitions and some nomenclature
for graphs that will be used throughout this work. The treatment is necessarily
brief: a more detailed account can be found, for example, in [22].

Let V be a nonempty set called the set of vertices or nodes, and let E be
a symmetric binary relation on V', i.e. a set of unordered pairs of vertices.
G = (E,V) is called an undirected graph, and E is the set of edges or links
of G. In a directed graph edges have a direction, i.e. they go from one vertex
to another, and the pairs of vertices are ordered pairs. Figure 1.1 shows an
undirected and a directed graph.

(a) (b)

Fig. 1.1. (a) An undirected graph. (b) A directed graph

A subgraph of G is a subset of a graph’s edges and associated vertices that
constitutes a graph. That is, G = (Vl,El) is a subgraph of G = (E,V) if
V' CV and E' C E. For example, the set of vertices 1,2,4,5 in the graph G
shown in Fig. 1.1 a induces a subgraph of G.
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When vertices (u, v) of an undirected graph G form an edge, they are said to
be adjacent or neighbors. The neighborhood of a vertex v is the set of vertices
that are adjacent to v in G, not including v. For example, the neighbors of
vertex 4 in Fig. 1.1 (a) are 2, 3, and 5. The degree k of a vertex is the number of
edges impinging on it (or, equivalently, the number of neighbors). For directed
graphs, one can correspondingly define the outdegree of a vertex v, which is the
number of edges that leave v, and the indegree, which is the number of edges
that enter the vertex v. The adjacency relation is not symmetric for directed
graphs. For example, vertex 1 in the graph in Fig. 1.1 b has an outdegree of
2 and an indegree of 0.

A path from vertex u to vertex v in a graph G is a sequence of edges that
are traversed when going from u to v with no edge traversed more than once.
The length of a path is the number of edges in it. For example, the sequence
(1,2,3,5,4) is a path from vertex 1 to vertex 4. The shortest path between
two vertices v and v is the path with the smallest length joining u to v. Thus,
in Fig. 1.1 a, the sequences (1,5,4) and (1,2,4) are the two shortest paths
from node 1 to node 4. Edges can have weights associated with them in some
applications, and these weights are used in the calculation of the path lengths.
If nothing is stated, each edge has a unit weight.

Cyclic paths are particular paths in a graph whose first and last vertices
are the same. A tour is a particular cycle that contains every vertex. Again
referring to Fig. 1.1 a, (1,2,4,5,1) is a cycle, while (1,2,3,4,5,1) is a tour.

O

Fig. 1.2. An unconnected graph with two connected components

The maximum distance (path length) between any two connected vertices
of a graph is called the diameter of the graph.

A graph is connected if there is a path between any two vertices. A graph
that is not connected consists of a set of connected components, as illustrated
in Fig. 1.2.

A completely connected undirected graph G with |V| = N vertices has an
edge between any two vertices. The total number of edges is thus N(N —1)/2.
Figure 1.3 shows an example of such a graph with V = 5.
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A cligue in an undirected graph G is a completely connected subgraph of
G.

A sparse graph has a number of edges |E| < N(N —1)/2. A dense graph
has a number of edges oc N2.

A star graph is a network in which there is a particular node (the cen-
ter) that is connected to all the other nodes, while the rest of the nodes are
connected only to the center (Fig. 1.4).

Fig. 1.3. A complete graph with five vertices

Fig. 1.4. A star graph

Finally, an hypergraph is like an undirected graph, but each edge connects
an arbitrary subset of vertices and is called a hyperedge.

A graph G in which all the vertices have the same degree k is called k-
regular. Complete graphs are obviously regular. Another important class of
regular graphs for us is the family of lattice graphs. A d-lattice (or d-dimen-
sional lattice) is an unweighted, undirected graph in which each vertex has
the same degree k, with £ > 2 and k > 2d. For example, with d =1 and k = 2
and with d =1 and k = 4, one obtains the ring structures shown in Fig. 1.5.
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(a) (b)

Fig. 1.5. (a) one-dimensional lattice with k = 2. (b) one-dimensional lattice with
k = 4. Periodic boundary conditions are assumed

With d = 2 and £ = 4 we have a torus, which is a topological entity with
periodic boundaries (see Fig. 1.6).

Fig. 1.6. A torus topology. This is obtained by wrapping the rows and columns of
a two-dimensional grid around on themselves

Some of these graph types have been often used in evolutionary computa-
tion, and the dynamical properties of populations structured in these ways
will be studied in detail in Chaps. 4 and 5.

1.2 Main Graph Structures of Populations

I shall now introduce the principal structures of populations that have been
used in EAs, and these will be the base types for our analysis. Here I shall
discuss only their graph-like properties. The dynamical evolutionary processes
taking place in the populations will form the main theme of the book and will
be dealt with in detail in the following chapters. Networks can be considered
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as the backbone on which dynamical processes take place. Therefore, networks
are a prerequisite for describing the behavior of complex systems. Of course,
the static and dynamic views are not divorced in reality, since there are mu-
tual interactions between them. Think, for instance, of the communication
processes taking place on a network that is itself continually changing, such
as the Internet. However, our artificial structures are simpler, and it is useful
to single out and consider their static structure first.

1.2.1 Island or Multipopulation Models

Here the idea is simply to divide a large panmictic population into several
smaller ones. This model is usually called the island model or multipopulation
model, and is schematically illustrated in Fig. 1.7. Each subpopulation runs
a standard sequential EA, and individuals are allowed to migrate between
populations with a given frequency. The migration directions are represented
in the figure by arrows.

Fig. 1.7. A multipopulation structured model. Each “blob” represents a panmictic
subpopulation. Subpopulations are loosely connected by periodically sending and
receiving individuals according to the pattern shown by the arrows

In graph theory terms, each subpopulation is a vertex of the graph, and the
edges are given by the migration links between islands. Note that the graph is
usually a directed one. At a lower level, each island could be seen virtually, in
turn, as containing a population structured as a complete graph. Several pat-
terns of connection have traditionally been used. The most common ones are
rings, two-dimensional and three-dimensional lattices, stars, and hypercubes.
We shall deal with these models at length in Chaps. 2 and 3.
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(a) (b)

Fig. 1.8. (a) A one-dimensional-ring cellular population structure. (b) A two-di-
mensional-grid cellular population structure. In both cases each node is a single
individual, and the edges wrap around in the grid case

1.2.2 Cellular Models

In cellular models, also called diffusion models, the individuals making up
the population are usually disposed according to a regular lattice topology,
i.e. a lattice graph (see Sect. 1.1). Two examples in one dimension and two
dimensions, respectively, can be seen in Fig. 1.8, where the different shapes
of the nodes represent potentially distinct individuals. In graph theory terms,
each individual is a vertex of the graph, and edges link adjacent individuals, i.e.
neighbors. In these cellular populations, each individual interacts only with a
few other individuals in its neighborhood, and all genetic operations are local.
Lattice-graph cellular populations will be examined in detail in Chap. 4. Of
course, we are by no means limited to cellular models that are mapped onto
regular lattices, although this has been the rule in the EA world. We shall see
in Chap. 6 that many other graph topologies are possible and useful, including
random and irregular structures.

Finally, it is worthwhile to make a comment on an interesting proposal
of Sprave [141], who suggested using the hypergraph formalism to describe
structured EA populations. Hypergraphs (see Sect. 1.1) are a generalization
of simple graphs in which edges may span a subset of vertices. Hypergraphs
can thus model any population structure, including the limiting panmictic
case. Sprave’s suggestion is attractive because it allows an elegant unified
description of structured populations. However, for the sake of simplicity, and
also because some new graph structures (see Chap. 6) are rather clumsy to
represent with hypergraphs, I have chosen to stick with the more standard
view of simple graphs.
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1.2.3 Other Topologies

It is of course possible to design and implement population topologies more
complex than the “basic” types described above. For example, one could have
a multipopulation structure in which each subpopulation has a cellular topol-
ogy. Alternatively, it would be possible to have a hierarchical island system,
in which each island at an upper level contains a number of islands at a lower
level. Exchanges would then be limited to taking place between islands at the
same level.

Fig. 1.9. A hierarchical EA model in which the populations in the loosely connected
islands have a lattice structure.

Several other possibilities spring to mind as well. Figures 1.9 and 1.10 pro-
vide a schematic view of two hierarchical, or hybrid, population structures
such as those described above.

Fig. 1.10. A hierarchical EA model in which each island at the outer level contains
a multipopulation EA. The communications between islands at the inner level are
more frequent than the migrations at the outer-island level
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Some of these structures, or analogous ones, have indeed been used in empir-
ical work with good results. It would be tempting to try to extend the analysis
that we shall do for the simpler cases to these more complex situations. How-
ever, I feel that our tools are not yet sharp enough to successfully deal with
these more difficult cases (note than an analysis of a hierarchical master—slave
EA model has been presented by Canti-Paz in Chap. 8 of his book [24]). On
the other hand, the simpler topologies already offer an extremely rich behavior
and constitute a large field of investigation in themselves. As a consequence,
I shall limit myself in the following to the description and analysis of “pure”
island and cellularly structured population models.





