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Black-Scholes

In this chapter, we will study the value of European digital and share dig-
ital options and standard European puts and calls under the Black-Scholes
assumptions. We will also explain how to calculate implied volatilities and
the option “Greeks.” The Black-Scholes assumptions are that the underlying
asset pays a constant dividend yield q and has price S satisfying

dS

S
= µdt + σ dB (3.1)

for a Brownian motion B. Here σ is assumed to be constant (though we will
allow it to vary in a non-random way at the end of the chapter) and µ can
be a quite general random process. It is also assumed that there is a constant
continuously-compounded risk-free rate r.

Under these assumptions, we will complete the discussion of Sect. 1.5 to
derive option pricing formulas. Recall that, to price a European call option, all
that remains to be done is to calculate the probabilities of the option finishing
in the money when we use the risk-free asset and the underlying asset as
numeraires. We will do this using the results of Sect. 2.9. As in Sect. 1.5, we
will approach the pricing of call and put options by first considering their
basic building blocks: digitals and share digitals.

3.1 Digital Options

A digital (or “binary”) option pays a fixed amount in a certain event and zero
otherwise. Consider a digital that pays $1 at date T if S(T ) > K, where K
is a number that is fixed by the contract. This means that the digital pays x
dollars at date T where x is defined as

x =

{
1 if S(T ) > K ,

0 otherwise .
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Using the risk-neutral pricing formula (1.18), the value of the digital at date 0
is e−rT ER[x]. Note that

ER[x] = 1 × probR(x = 1) + 0 × probR(x=0)

= probR(x = 1)

= probR
(
S(T ) > K

)
.

So we need to calculate this probability of the digital finishing in the money.
In Sect. 2.9—see (2.27)—we learned that under the Black-Scholes assump-

tion (3.1) we have
dS

S
= (r − q) dt + σ dB∗ ,

where B∗ is a Brownian motion under the risk-neutral measure.1 In Sect. 2.8,
we observed that this is equivalent to

d log S =
(

r − q − 1
2
σ2

)
dt + σ dB∗ .

Now using the formulas (2.34)–(2.35), with α = r − q − σ2/2, we have
probR

(
S(T ) > K

)
= N(d2) where

d2 =
log

(
S(0)
K

)
+
(
r − q − 1

2σ2
)
T

σ
√

T
. (3.2)

The notation d2 is standard notation from the Black-Scholes formula, and we
use it—rather than a simple d—to distinguish the number (3.2) from a similar
number—to be called d1 of course—that we will see in the next section. We
conclude:

The value of a digital option that pays $1 when S(T ) > K is e−rT N(d2),
where d2 is defined in (3.2).

Consider now a digital that pays when the underlying asset price is low;
i.e., consider a security that pays y dollars at date T where

y =

{
1 if S(T ) < K ,

0 otherwise .

Using risk-neutral pricing again, the value of this digital at date 0 is
1 There is no other risky asset price Y in this model, so the subscripts we used in

Sect. 2.9 on the volatility coefficients and on B and B∗ to distinguish the Brownian
motion driving S from the Brownian motion driving Y and to distinguish their
volatilities are not needed here.



3.2 Share Digitals 51

e−rT ER[y] = e−rT probR(y = 1) = e−rT probR
(
S(T ) < K

)
.

From this fact and the formula (2.36), we conclude:

The value of a digital option that pays $1 when S(T ) < K is e−rT N(−d2),
where d2 is defined in (3.2).

3.2 Share Digitals

Consider a derivative security that pays one share of the underlying asset at
date T if S(T ) > K and pays zero otherwise. This is called a “share digital.”
As before, let

x =

{
1 if S(T ) > K ,

0 otherwise .

Then the payoff of the share digital at date T is xS(T ). Let Y (t) denote the
value of this claim for 0 ≤ t ≤ T . We have Y (T ) = xS(T ) and we want to
find Y (0).

From Sect. 2.7, we know that V (t) = eqtS(t) is the price of a non-dividend-
paying portfolio. From our fundamental pricing formula (1.17), using V as the
numeraire, we have

Y (0) = S(0)EV

[
Y (T )

eqT S(T )

]

= e−qT S(0)EV [x] .

As in the previous section, EV [x] = probV(x = 1), so we need to compute this
probability of the option finishing in the money.

We follow the same steps as in the previous section. From (2.28) we have

dS

S
= (r − q + σ2) dt + σ dB∗,

where now B∗ denotes a Brownian motion when V is the numeraire. This is
equivalent to

d log S =
(

r − q +
1
2
σ2

)
dt + σ dB∗ . (3.3)

Thus, from the formulas (2.34)–(2.35), with α = r − q + σ2/2, we have

probV
(
S(T ) > K

)
= N(d1) ,

where
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d1 =
log

(
S(0)
K

)
+
(
r − q + 1

2σ2
)
T

σ
√

T
. (3.4)

This implies:

The value of a share digital that pays one share when S(T ) > K is
e−qT S(0)N(d1), where d1 is defined in (3.4).

Consider now a share digital that pays one share of the stock at date T if
S(T ) < K. Letting

y =

{
1 if S(T ) < K ,

0 otherwise ,

the payoff of this option is yS(T ). Its value at date 0 is

e−qT S(0)EV [y] = e−qT S(0) × probV(y = 1)

= e−qT S(0) × probV
(
S(T ) < K

)
,

and from the formula (2.36) we have

probV
(
S(T ) < K

)
= N(−d1) .

We conclude:

The value of a share digital that pays one share when S(T ) < K is
e−qT S(0)N(−d1), where d1 is defined in (3.4).

3.3 Puts and Calls

A European call option pays S(T )−K at date T if S(T ) > K and 0 otherwise.
Again letting

x =

{
1 if S(T ) > K ,

0 otherwise ,

the payoff of the call can be written as xS(T ) − xK. This is equivalent to
one share digital minus K digitals, with the digitals paying in the event that
S(T ) > K. The share digital is worth e−qT S(0)N(d1) at date 0 and each
digital is worth e−rT N(d2). Note that equations (3.2) and (3.4) for d1 and d2

imply d2 = d1 − σ
√

T . Therefore, combining the results of the previous two
sections yields the Black-Scholes formula:
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The value of a European call option at date 0 is

e−qT S(0)N(d1) − e−rT K N(d2) , (3.5)

where d1 is defined in (3.4) and d2 = d1 − σ
√

T .

A European put option pays K − S(T ) at date T if S(T ) < K and 0
otherwise. As before, let

y =

{
1 if S(T ) < K ,

0 otherwise .

The payoff of the put option is yK − yS(T ). This is equivalent to K digitals
minus one share digital, all of the digitals paying when S(T ) < K. Thus, we
have:

The value of a European put option at date 0 is

e−rT K N(−d2) − e−qT S(0)N(−d1) , (3.6)

where d1 is defined in (3.4) and d2 = d1 − σ
√

T .

Again, this is the Black-Scholes formula.
The values of the European put and call satisfy put-call parity, and we

can also find one from the other by2

e−rT K + Call Price = e−qT S(0) + Put Price . (3.7)

3.4 Greeks

The derivatives (calculus derivatives, not financial derivatives!) of an option
pricing formula with respect to the inputs are commonly called “Greeks.” The
most important Greek is the option “delta.” This measures the sensitivity of
the option value to changes in the value of the underlying asset. The following
table shows the standard Greeks, with reference to the Black-Scholes pricing
formula.
2 The put-call parity relation follows from the fact that both the left and the right-

hand sides are the prices of portfolios that have value max(S(T ), K) at the matu-
rity of the option. To see this for the left-hand side, note that e−rT K is sufficient
cash to accumulate to K at date T , allowing exercise of the call when it is in
the money and retention of the cash K otherwise. For the right-hand side, note
that e−qT S(0) is enough cash to buy e−qT shares of the stock at date 0 which,
with reinvestment of dividends, will accumulate to one share at date T , enabling
exercise of the put if it is in the money or retention of the share otherwise.
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Table 3.1. Black-Scholes Greeks

Input Input Symbol Greek Greek Symbol

Stock price S delta δ

delta δ gamma Γ

- Time to maturity −T theta Θ

Volatility σ vega V
Interest rate r rho ρ

The second line of the above shows δ as an input.3 Of course, it is not
an input but instead is calculated. Gamma, the derivative of δ, is the second
derivative of the option price with respect to the underlying asset price. The
reason for calculating Θ as the derivative with respect to −T instead of T is
that the time-to-maturity T decreasing (−T increasing) is equivalent to time
passing, so Θ measures the change in the option value when time passes.

We can calculate these from the Black-Scholes formula using the chain rule
from differential calculus. The derivative of the normal distribution function N
is the normal density function n defined as

n(d) =
1√
2π

e−d2/2 .

One can easily verify directly that

e−qT S n(d1) = e−rT K n(d2) , (3.8)

which simplifies the calculations for the Black-Scholes call option pricing for-
mula. For this formula, the Greeks are as follows:

δ = e−qT N(d1) + e−qT S n(d1)
∂d1

∂S
− e−rT K n(d2)

∂d2

∂S

= e−qT N(d1) + e−qT S n(d1)
(

∂d1

∂S
− ∂d2

∂S

)

= e−qT N(d1) ,

Γ = e−qT n(d1)
∂d1

∂S
= e−qT n(d1)

1
Sσ

√
T

,

3 The delta is frequently denoted by the upper case ∆, but we will use the lower
case, reserving the upper case for discrete changes, e.g., ∆t. One may have noticed
also that the symbol for vega is a little different from the others; this reflects the
fact that vega is not actually a Greek letter.
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Θ = −e−qT S n(d1)
∂d1

∂T
+ qe−qT S N(d1)

+ e−rT K n(d2)
∂d2

∂T
− re−rT K N(d2)

= e−qT S n(d1)
(

∂d2

∂T
− ∂d1

∂T

)

+ qe−qT S N(d1) − re−rT K N(d2)

= −e−qT S n(d1)
σ

2
√

T
+ qe−qT S N(d1) − re−rT K N(d2) ,

V = e−qT S n(d1)
∂d1

∂σ
− e−rT K n(d2)

∂d2

∂σ

= e−qT S n(d1)
(

∂d1

∂σ
− ∂d2

∂σ

)

= e−qT S n(d1)
√

T ,

ρ = e−qT S n(d1)
∂d1

∂r
− e−rT K n(d2)

∂d2

∂r
+ T e−rT K N(d2)

= e−qT S n(d1)
(

∂d1

∂r
− ∂d2

∂r

)
+ T e−rT K N(d2)

= T e−rT K N(d2) .

We can calculate the Greeks of a European put option from the call option
Greeks and put-call parity:

Put Price = Call Price + e−rT K − e−qT S(0) .

For example, the delta of a put is the delta of a call (with the same strike and
maturity) minus e−qT , and the gamma of a put is the same as the gamma of
the corresponding call.

3.5 Delta Hedging

The ability to create a fully hedged (risk-free) portfolio of the stock and an
option is the essence of the arbitrage argument underlying the Black-Scholes
formula, as we saw in Chap. 1 for the binomial model. For a call option, such
a portfolio consists of delta shares of the underlying asset and a short call
option, or a short position of delta shares of the underlying and a long call
option. These portfolios have no instantaneous exposure to the price of the
underlying. To create a perfect hedge, the portfolio must be adjusted contin-
uously, because the delta changes when the price of the underlying changes
and when time passes. In practice, any hedge will therefore be imperfect, even
if the assumptions of the model are satisfied.

We first consider the continuous-time hedging argument. Consider a Eu-
ropean call option with maturity T , and let C(S, t) denote the value of the
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option at date t < T when the stock price is S at date t. Consider a portfolio
that is short one call option and long δ shares of the underlying asset and that
has a (short) cash position equal to C − δS. This portfolio has zero value at
date t.

The change in the value of the portfolio in an instant dt is

−dC + δ dS + qδS dt + (C − δS)r dt . (3.9)

The first term reflects the change in the value of the option, the second term
is the capital gain or loss on δ shares of stock, the third term is the dividends
received on δ shares of stock, and the fourth term is the interest expense on
the short cash position.

On the other hand, we know from Itô’s formula that

dC =
∂C

∂S
dS +

∂C

∂t
dt +

1
2

∂2C

∂S2
(dS)2

= δ dS + Θ dt +
1
2
Γσ2S2 dt . (3.10)

Substituting (3.10) into (3.9) shows that the change in the value of the port-
folio is

−Θ dt − 1
2
Γσ2S2 dt + qδS dt + (C − δS)r dt . (3.11)

Several aspects of this are noteworthy. First, as noted earlier, the delta hedge
(being long δ shares of the underlying) eliminates the exposure to changes
in the price of the underlying—there is no dS term in (3.11). Second, Θ will
be negative, because it captures the time decay in the option value; being
short the option means the portfolio will profit from time decay at rate −Θ.
Third, this portfolio is “short gamma.” We can also say it is “short convexity,”
the term “convexity” referring to the convex shape of the option value as
a function of the price of the underlying, which translates mathematically
to a positive second derivative (gamma). The volatility in the stock makes
convexity valuable, and a portfolio that is short convexity will suffer losses.
Finally, the portfolio is earning dividends but paying interest.

It is straightforward to check, from the definitions of Θ, Γ and δ in the
preceding section, that the sum of the terms in (3.11) is zero. The time decay
in the option value and dividends received on the shares of the underlying
exactly offset the losses due to convexity and interest. Therefore, the delta
hedge is a perfect hedge. The portfolio, which has a zero cost, neither earns
nor loses money. This is true not only on average but for every possible change
in the stock price.

To see how well this works with only discrete adjustments to the hedge,
one can simulate the changes in S over time and sum the gains and losses over
discrete rebalancing periods. One should input the actual (not risk-neutral)
expected rate of return on the asset to compute the actual distribution of
gains and losses. This is discussed further in Sect. 3.10.
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3.6 Gamma Hedging

To attempt to improve the performance of a discretely rebalanced delta hedge,
one can use another option to create a portfolio that is both delta and gamma
neutral. Being delta neutral means hedged as in the previous section—the
portfolio value has no exposure to changes in the underlying asset price. In
other words, it means that the derivative of the portfolio value with respect
to the price of the underlying (the portfolio delta) is zero. Being gamma neu-
tral means that the delta of the portfolio has no exposure to changes in the
underlying price, which is equivalent to the second derivative of the portfolio
value with respect to the price of the underlying (the portfolio gamma) being
zero. If the delta truly did not change, then there would be no need to rebal-
ance continuously, and hence no hedging error introduced by only adjusting
the portfolio at discrete times rather than continuously. However, there is
certainly no guarantee that a discretely-rebalanced delta/gamma hedge will
perform better than a discretely rebalanced delta hedge.

A delta/gamma hedge can be constructed as follows. Suppose we have
written (shorted) a call option and we want to hedge both the delta and
gamma using the underlying asset and another option, for example, another
call option with a different strike. In practice, one would want to use a liquid
option for this purpose, which typically means that the strike of the option
will be near the current value of the underlying (i.e., the option used to hedge
would be approximately at the money).

Let δ and Γ denote the delta and gamma of the written option and let δ′

and Γ ′ denote the delta and gamma of the option used to hedge. Consider
holding a shares of the stock and b units of the option used to hedge in
conjunction with the short option. The delta of the stock is one (dS/dS = 1),
so to obtain a zero portfolio delta we need

0 = −δ + a + bδ′. (3.12)

The gamma of the stock is zero (d2S/dS2 = d 1/dS = 0), so to obtain a zero
portfolio gamma we need

0 = −Γ + bΓ ′ . (3.13)

Equation (3.13) shows that we should hold enough of the second option to
neutralize the gamma of the option we have shorted; i.e.,

b =
Γ

Γ ′

Equation (3.12) shows that we should use the stock to delta hedge the portfolio
of options; i.e.,

a = δ − Γ

Γ ′ δ
′ .
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3.7 Implied Volatilities

All of the inputs into the option pricing formulas are in theory observable,
except for the volatility coefficient σ. We can estimate σ from historical data
(see Chap. 4), or estimate it from the prices of other options. The latter
method exploits the fact that there is a one-to-one relationship between the
price given by the Black-Scholes formula and the σ that is input, so one can
take the price as given and infer σ from the formula. The σ computed in this
way is called the “implied volatility.” The implied volatility from one option
can be used to price another (perhaps non-traded or less actively traded)
option. The calculation of implied volatilities is discussed in Sect. 3.10.

Even if we acknowledge that the model is not correct, the computation
of implied volatilities is still useful for characterizing market prices, because
we can quickly describe an option as “expensive” or “cheap” depending on
whether its implied volatility is large or small. Somewhat paradoxically, it
is less easy to see if an option is expensive or cheap by looking at its price,
because one must consider the price in the context of the exercise price and
maturity. To some extent, the implied volatility normalizes the price relative
to the exercise price and maturity. Of course, it does not always pay to sell
expensive options or buy cheap options, unless they are expensive or cheap
relative to an accurate model!

3.8 Term Structure of Volatility

The option pricing formulas in this chapter are derived from the fact that the
natural logarithm of the stock price at maturity is normally distributed with
a certain mean (depending on the numeraire) and variance equal to σ2T . It is
not actually necessary that the volatility be constant. The formulas are still
valid if

dS(t)
S(t)

= µ(t) dt + σ(t) dB(t)

where σ(t) is some non-random function of time (and again µ can be a quite
general random process). In this case, the variance of log S(T ) will be

∫ T

0

σ2(t) dt , (3.14)

which is essentially the sum of the instantaneous variances σ2(t) dt. In the d1’s
and d2’s in the option pricing formulas, σ2T should be replaced by (3.14). A
convenient way of expressing this is as follows. Let σavg be the positive number
such that

σ2
avg =

1
T

∫ T

0

σ2(t) dt . (3.15)
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Then we simply need to input σavg as sigma in our option pricing functions.
We will call σavg the “average volatility,” though note that it is not really the
average of σ(t) but instead is the square root of the average of σ2(t).

It is important to recognize that, throughout this chapter, date 0 means
the date at which the option is being valued. It is not necessarily the date at
which the option was first bought or sold. So σavg is the average (in a sense)
volatility during the remaining lifetime of the option, which need not be the
same as the average during the option’s entire lifetime. It is this remaining
volatility that is important for pricing and hedging. Moreover, it is a mistake
at date 0 to use σ(0) as the volatility to compute prices and hedges. Instead,
prices and hedges should be based on σavg.

These considerations provide a way to address the following situation. If
we compute implied volatilities for options with different maturities, we will
normally get different numbers. For example, consider two at-the-money op-
tions with maturities T1 and T2 where T2 > T1. Denote the implied volatilities
by σ̂1 and σ̂2. We want to interpret these as average volatilities for the time
periods [0, T1] and [0, T2] respectively. This requires the existence of a function
σ(t) such that

σ̂2
1 =

1
T1

∫ T1

0

σ2(t) dt and σ̂2
2 =

1
T2

∫ T2

0

σ2(t) dt .

This would imply

σ̂2
2T2 − σ̂2

1T1 =
∫ T2

T1

σ2(t) dt ,

which requires
σ̂2

2T2 − σ̂2
1T1 ≥ 0 .

Equivalently,

σ̂2 ≥
√

T1

T2
σ̂1 .

Provided this last inequality is satisfied, we can easily construct the function
σ(t) as

σ(t) =

{
σ̂1 for t ≤ T1√

σ̂2
2T2−σ̂2

1T1

T2−T1
for T1 < t ≤ T2.

More generally, given a sequence of at-the-money options with maturities
T1 < T2 < · · ·TN and implied volatilities σ̂1, . . . , σ̂N , we define

σ(t) =

√
σ̂2

i+1Ti+1 − σ̂2
i Ti

Ti+1 − Ti

for Ti < t ≤ Ti+1, provided the expression inside the square root symbol is
positive. This σ(t) is often called the “term structure of (implied) volatilities.”
Generally, we may expect σ(t) to be a decreasing function of time t when the
current market is especially volatile and to be an increasing function when
the current market is especially quiet.
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3.9 Smiles and Smirks

If we compute implied volatilities for options with the same maturity but dif-
ferent strikes, we will again obtain different implied volatilities for different
options. If we plot implied volatility against the strike, the pattern one nor-
mally sees for equities and equity indices is the implied volatility declining
as the strike increases until the strike is somewhere near the current value
of the underlying (so the option is at the money). The implied volatility will
then generally flatten out or increase slightly at higher strikes. The graph
looks like a twisted smile (smirk). This pattern has been very pronounced
in equity index option prices since the crash of 1987. In contrast to the term
structure of implied volatilities, this “moneyness” structure of implied volatil-
ities is simply inconsistent with the model. It suggests that the risk-neutral
return distribution is not lognormal but instead exhibits a higher likelihood of
extreme returns than the lognormal distribution (i.e., it has “fat tails”) with
the likelihood of extreme negative returns being higher than the likelihood of
extreme positive returns (i.e., it is “skewed”). We will return to this subject
in Sect. 4.6.

3.10 Calculations in VBA

The Black-Scholes call and put formulas and Greeks can easily be calculated
in an Excel worksheet, using the standard functions Exp, Ln and the cumula-
tive normal distribution function, which is provided in Excel as NormSDist.
However, if these are to be used repeatedly, it is useful to create func-
tions in VBA. In VBA, the cumulative normal distribution function is called
Application.NormSDist. Also, the natural logarithm function in VBA is Log
rather than Ln and the square root function in VBA is Sqr rather than Sqrt.

Black-Scholes Call and Put Formulas

The following function implements the Black-Scholes call pricing formula. For
the sake of completeness, the function returns a value even when a volatility
of zero is input, in which case the formula (3.5) is invalid (it involves division
by zero in the calculation of d1 and d2). If the volatility is zero, then the stock
is riskless and should appreciate at rate r − q. Moreover the option is riskless
and its date–0 value should be the date–T value discounted at the risk-free
rate. This implies that the call value at date 0 is4

4 This result can be verified by a simple arbitrage argument. For example, if the
call value were less than this formula, then put-call parity would show that the
put price is negative, which is impossible. On the other hand, if the call price is
greater than this formula (and hence positive), then put-call parity shows that
the put price is positive, and it is impossible that both the put and call will finish
in the money (so, given that they are riskless, only one should have a positive
value).
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e−rT max
(
0, e(r−q)T S(0) − K

)
= max

(
0, e−qT S(0) − e−rT K

)
.

Function Black_Scholes_Call(S, K, r, sigma, q, T)

’

’ Inputs are S = initial stock price

’ K = strike price

’ r = risk-free rate

’ sigma = volatility

’ q = dividend yield

’ T = time to maturity

’

Dim d1, d2, N1, N2

If sigma = 0 Then

Black_Scholes_Call = Application.Max(0,Exp(-q*T)*S-Exp(-r*T)*K)

Else

d1 = (Log(S/K) + (r-q+0.5*sigma*sigma)*T) / (sigma*Sqr(T))

d2 = d1 - sigma * Sqr(T)

N1 = Application.NormSDist(d1)

N2 = Application.NormSDist(d2)

Black_Scholes_Call = Exp(-q*T)*S*N1 - Exp(-r*T)*K*N2

End If

End Function

It is useful to note that

Black_Scholes_Call(S,K,r,sigma,q,T)

gives the same result as

Black_Scholes_Call(exp(-q*T)*S,K,r,sigma,0,T).

In the latter formulation, we view the underlying asset as the portfolio which
starts with e−qT shares of the asset and reinvests dividends until date T . This
portfolio has value S(T ) at date T , so a European call option on this non-
dividend-paying portfolio is equivalent to a European call option on the stock.
The initial value of the portfolio is e−qT S(0), which is input as the asset price
in the latter formulation.

The Black-Scholes formula for the value of a European put option can be
implemented as follows.

Function Black_Scholes_Put(S, K, r, sigma, q, T)

’

’ Inputs are S = initial stock price

’ K = strike price

’ r = risk-free rate

’ sigma = volatility

’ q = dividend yield

’ T = time to maturity

’

Dim d1, d2, N1, N2
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If sigma = 0 Then

Black_Scholes_Put = Application.Max(0,Exp(-r*T)*K-Exp(-q*T)*S)

Else

d1 = (Log(S/K) + (r-q+0.5*sigma*sigma)*T) / (sigma*Sqr(T))

d2 = d1 - sigma * Sqr(T)

N1 = Application.NormSDist(-d1)

N2 = Application.NormSDist(-d2)

Black_Scholes_Put = Exp(-r*T)*K*N2 - Exp(-q*T)*S*N1

End If

End Function

Black-Scholes Greeks

The delta and gamma of a European call option can be computed with the
following functions. The other Greeks are obviously calculated in a similar
manner. Note that the constant π = 3.14159... is provided in Excel as the
“function” Pi() and can be accessed in Excel VBA as Application.Pi.

Function Black_Scholes_Call_Delta(S, K, r, sigma, q, T)

’

’ Inputs are S = initial stock price

’ K = strike price

’ r = risk-free rate

’ sigma = volatility

’ q = dividend yield

’ T = time to maturity

’

Dim d1, d2, N1, N2

d1 = (Log(S/K) + (r-q+0.5*sigma*sigma)*T) / (sigma*Sqr(T))

d2 = d1 - sigma * Sqr(T)

N1 = Application.NormSDist(d1)

N2 = Application.NormSDist(d2)

Black_Scholes_Call_Delta = Exp(-q*T)*N1

End Function

Function Black_Scholes_Call_Gamma(S, K, r, sigma, q, T)

’

’ Inputs are S = initial stock price

’ K = strike price

’ r = risk-free rate

’ sigma = volatility

’ q = dividend yield

’ T = time to maturity

’

Dim d1, d2, N1, N2, nd1

d1 = (Log(S/K) + (r-q+0.5*sigma*sigma)*T) / (sigma*Sqr(T))

d2 = d1 - sigma * Sqr(T)

N1 = Application.NormSDist(d1)

N2 = Application.NormSDist(d2)
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nd1 = Exp(-d1 * d1 / 2) / Sqr(2 * Application.Pi)

Black_Scholes_Call_Gamma = Exp(-q*T)*nd1/(S*sigma*Sqr(T))

End Function

Implied Volatilities

We could find an implied volatility using the Solver tool, but then we would
have to re-run Solver each time we changed one of the input values. We will
need to solve similar problems on several occasions, so it seems worthwhile to
program a Solver-like function in VBA. We will write this in such a way that
it can easily be applied in other contexts. We will assume there is a single
variable for which we want to solve, solving for multiple variables being more
difficult.

Letting C denote the market price of a European call option, the implied
volatility is sigma satisfying

Black_Scholes_Call(S,K,r,sigma,q,T) - C = 0.

The solution of this equation is called a “root” of the function

Black_Scholes_Call(S,K,r,sigma,q,T) - C,

and the problem of finding roots of functions is a standard numerical problem.
Roots are found by what are essentially sophisticated trial-and-error methods.
The simplest method is to start with upper and lower bounds for σ and
repeatedly bisect the interval containing σ, each time finding a new upper or
lower bound. The program below is a standard bisection routine.

For there to be a volatility that equates the market price to the Black-
Scholes price, it is necessary for the call option price to satisfy the arbitrage
bound5 C +e−rT K ≥ e−qT S. We check this condition at the beginning of the
program and supply an error message if it is violated.

We need to input all of the inputs of Black_Scholes_Call other than σ,
and we need to input the call option price. The following uses an error tol-
erance of 10−6. Therefore, the value that is returned will equal the exact
implied volatility to at least five decimal places. The bisection is begun with a
lower bound of σ = 0. An iterative procedure is used to find an upper bound,
starting with σ = 100%.

5 Note that by put-call parity—equation (3.7)—the difference between the left and
right-hand sides of this inequality is the value of the put with the same strike and
maturity as the call. Thus, the inequality is equivalent to the statement that the
put value is nonnegative, which must be the case.
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This same algorithm can be used to find a real number x such that f(x) = 0
for any (continuous) function f . The only changes necessary are in the right
hand sides of the assignment statements for flower, fupper, and fguess and
in finding lower and upper bounds (and obviously one would not check the
arbitrage bound in general).6 We will use this algorithm on several occasions
to find roots of functions.

Function Black_Scholes_Call_Implied_Vol(S, K, r, q, T, CallPrice)

’

’ Inputs are S = initial stock price

’ K = strike price

’ r = risk-free rate

’ q = dividend yield

’ T = time to maturity

’ CallPrice = call price

’

Dim tol, lower, flower, upper, fupper, guess, fguess

If CallPrice < Exp(-q * T) * S - Exp(-r * T) * K Then

MsgBox ("Option price violates the arbitrage bound.")

Exit Function

End If

tol = 10 ^ -6

lower = 0

flower = Black_Scholes_Call(S, K, r, lower, q, T) - CallPrice

upper = 1

fupper = Black_Scholes_Call(S, K, r, upper, q, T) - CallPrice

Do While fupper < 0 ’ double upper until it is an upper bound

upper = 2 * upper

fupper = Black_Scholes_Call(S, K, r, upper, q, T) - CallPrice

Loop

guess = 0.5 * lower + 0.5 * upper

fguess = Black_Scholes_Call(S, K, r, guess, q, T) - CallPrice

Do While upper - lower > tol ’ until root is bracketed within tol

If fupper * fguess < 0 Then ’ root is between guess and upper

lower = guess ’ make guess the new lower bound

flower = fguess

guess = 0.5 * lower + 0.5 * upper ’ new guess = bi-section

fguess = Black_Scholes_Call(S,K,r,guess,q,T) - CallPrice

Else ’ root is between lower and guess

upper = guess ’ make guess the new upper bound

fupper = fguess

guess = 0.5 * lower + 0.5 * upper ’ new guess = bi-section

6 The key to the function is checking each time whether the root is between the
guess and the upper bound or between the guess and the lower bound. If fupper×
fguess < 0, then there is a root between the guess and the upper bound. In this
case, we define the new lower bound to be the old guess and define the new guess
to be the midpoint of this new lower bound and the old upper bound. We do the
opposite if we find the root is between the guess and the lower bound.
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fguess = Black_Scholes_Call(S,K,r,guess,q,T) - CallPrice

End If

Loop

Black_Scholes_Call_Implied_Vol = guess

End Function

To compute an implied volatility from a put option price, one can first
compute a corresponding call option price from put-call parity and then run
the above program.

There are faster root-finding methods than bisection. These use other
methods to update the guess than just halving the distance between the prior
guess and the upper or lower bound. For example, one can use the vega (the
derivative of the option formula with respect to σ) at the given guess for σ
and replace the bisection with

guess = guess - call/vega .

This amounts to approximating the Black-Scholes formula as being linear in σ
and using the root of the approximation as the updated guess. This is the
essence of the Newton-Raphson method. A similar idea that does not require
the computation of vega is to keep track of the two most recent (guess, call)
pairs and to approximate vega as:

vega = (call - prior_call) / (guess - prior_guess) .

This is the essence of the secant method.

Discretely-Rebalanced Delta Hedges

To compute the real-world distribution of gains and losses from a discretely-
rebalanced delta hedge, we input the expected rate of return µ. We consider
adjusting the hedge at dates 0 = t0 < t1 < · · · < tN = T , with ti − ti−1 =
∆t = T/N for each i. The changes in the natural logarithm of the stock price
between successive dates ti−1 and ti are simulated as

∆ log S =
(

µ − q − 1
2
σ2

)
∆t + σ ∆B ,

where ∆B is normally distributed with mean zero and variance ∆t. The ran-
dom variables ∆B are simulated as standard normals multiplied by

√
∆t. We

begin with the portfolio that is short a call, long δ shares of the underlying,
and short δS −C in cash. After the stock price changes, say from S to S′, we
compute the new delta δ′. The cash flow from adjusting the hedge is (δ−δ′)S′.
Accumulation (or payment) of interest on the cash position is captured by the
factor er∆t. Continuous payment of dividends is modelled similarly: the div-
idends earned during the period ∆t is taken to be δS

(
eq∆t − 1

)
. The cash

position is adjusted due to interest, dividends, and the cash flow from adjust-
ing the hedge. At date T , the value of the portfolio is the cash position less
the intrinsic value of the option.



66 3 Black-Scholes

To describe the distribution of gains and losses, we compute percentiles of
the distribution. You should see that the hedge becomes more nearly perfect
as the number of periods N is increased. Note that this is true regardless of
the µ that is input, which reaffirms the point that option values and hedges do
not depend on the expected rate of return of the underlying. The percentile
is calculated with the Excel Percentile function.7

Function Simulated_Delta_Hedge_Profit(S0,K,r,sigma,q,T,mu,M,N,pct)

’

’ Inputs are S0 = initial stock price

’ K = strike price

’ r = risk-free rate

’ sigma = volatility

’ q = dividend yield

’ T = time to maturity

’ mu = expected rate of return

’ N = number of time periods

’ M = number of simulations

’ pct = percentile to be returned

’

Dim dt, SigSqrdt, drift, LogS0, Call0, Delta0, Cash0, Comp, Div

Dim S, LogS, Cash, NewS, Delta, NewDelta, HedgeValue, i, j

Dim Profit() As Double

ReDim Profit(M)

dt = T / N

SigSqrdt = sigma * Sqr(dt)

drift = (mu - q - 0.5 * sigma * sigma) * dt

Comp = Exp(r * dt)

Div = Exp(q * dt) - 1

LogS0 = Log(S0) ’ store log of initial stock price

Call0 = Black_Scholes_Call(S0, K, r, sigma, q, T)

Delta0 = Black_Scholes_Call_Delta(S0, K, r, sigma, q, T)

Cash0 = Call0 - Delta0 * S0 ’ initial cash position

For i = 0 To M

LogS = LogS0 ’ initialize log of stock price

Cash = Cash0 ’ initialize cash position

S = S0 ’ initialize beginning stock price

Delta = Delta0 ’ initialize beginning stock position

For j = 1 To N - 1

LogS = LogS + drift + SigSqrdt * RandN() ’ new log S

NewS = Exp(LogS) ’ new S

7 If numsims = 11 and pct =0.1, the percentile function returns the second lowest
element in the series. The logic is that 10% of the numbers, excluding the number
returned, are below the number returned—i.e., 1 out of the other 10 are below—
and 90% of the others are above. In particular, if pct = 0.5, the percentile function
returns the median. When necessary, the function interpolates; for example, if
numsims = 10 and pct=0.1, then the number returned is an interpolation between
the lowest and second lowest numbers.
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NewDelta = Black_Scholes_Call_Delta(NewS,K,r,sigma,q,T-j*dt)

Cash = Comp*Cash + Delta*S*Div - (NewDelta-Delta)*NewS

S = NewS ’ update stock price

Delta = NewDelta ’ update stock position

Next j

LogS = LogS+drift+SigSqrdt*RandN() ’ final log of stock price

NewS = Exp(LogS) ’ final stock price

HedgeValue = Comp*Cash + Delta*S*Div + Delta*NewS

Profit(i) = HedgeValue - Application.Max(NewS-K,0)

Next i

Simulated_Delta_Hedge_Profit = Application.Percentile(Profit, pct)

End Function

Problems

3.1. Create an Excel worksheet in which the user inputs K, r, σ, q and T .
Compute the delta of a call option for stock prices S = .01K, .02K, . . . ,
1.99K, 2K (i.e., S = iK/100 for i = 1, . . . 200) and plot the delta against the
stock price.

3.2. The delta of a digital option that pays $1 when S(T ) > K is

e−rT n(d2)
σS

√
T

.

Repeat the previous problem for the delta of this digital. Given that in reality
it is costly to trade (due to commissions, the bid-ask spread and possible
adverse price impacts for large trades), do you see any problems with delta
hedging a short digital near maturity if it is close to being at the money?

3.3. Repeat Prob. 3.1 for the gamma of a call option.

3.4. Use put-call parity to derive the Greeks of a put option, and write a VBA
function that computes the value and Greeks.

3.5. Consider delta and gamma hedging a short call option, using the under-
lying and a put with the same strike and maturity as the call. Calculate the
position in the underlying and the put that you should take, using the analysis
in Sect. 3.6. Will you ever need to adjust this hedge? Relate your result to
put-call parity.

3.6. The delta of a share digital that pays one share when S(T ) > K is

e−qT N(d1) +
e−qT n(d1)

σ
√

T
.

Repeat Prob. 3.1 for the delta of this share digital.
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3.7. Create an Excel worksheet in which the user inputs K, r, q and T .
Compute the value of an at-the-money call option (S = K) using the function
Black_Scholes_Call for volatilities σ = .01, .02, . . . , 1.0. Plot the call value
against the volatility.

3.8. Repeat the previous problem for S = 1.2K (an example of an in-the-
money call option).

3.9. The file CBOEQuotes.txt (available at www.kerryback.net) contains
price data for call options on the S&P 500 index. The options expired in
February, 2003, and the prices were obtained on January 22, 2003. The first
column lists various exercise prices. The second column gives the bid price and
the third column the ask price. Import this data into an Excel worksheet and
compute and plot the implied volatility against the exercise price using this
data. Use the ask price as the market price for the option. The options have 30
days to maturity (so T = 30/365). At the time the quotes were downloaded,
the S&P 500 was at 884.25. According to the CBOE, the dividend yield on
the S&P 500 was 1.76%. Use 1.25% for the risk-free interest rate.

3.10. Attempt to repeat the previous problem using the bid price as the
market price of the option. If this doesn’t work, what is wrong? Does this
indicate there is an arbitrage opportunity?

3.11. Suppose an investor invests in a portfolio with price S and constant
dividend yield q. Assume the investor is charged a constant expense ratio α
(which acts as a negative dividend) and at date T receives either his portfolio
value or his initial investment, whichever is higher. This is similar to a popular
type of variable annuity. Letting D denote the number of dollars invested in
the contract, the contract pays

max
(

D,
De(q−α)T S(T )

S(0)

)
(3.16)

at date T . We can rearrange the expression (3.16) as

max
(

D,
De(q−α)T S(T )

S(0)

)
= D + max

(
0,

De(q−α)T S(T )
S(0)

− D

)

= D + e−αT D max
(

0,
eqT S(T )

S(0)
− eαT

)
. (3.17)

Thus, the contract payoff is equivalent to the amount invested plus a cer-
tain number of call options written on the gross holding period return
eqT S(T )/S(0). Note that Z(t) = eqtS(t)/S(0) is the date–t value of the port-
folio that starts with 1/S(0) units of the asset (i.e., with a $1 investment) and
reinvests dividends. Thus, the call options are call options on a non-dividend
paying portfolio with the same volatility as S and initial price of $1. This
implies that the date–0 value of the contract to the investor is e−rT D plus
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Exp(-alpha*T)*D*Black_Scholes_Call(1,Exp(alpha*T),r,sigma,0,T)

(a) Create a VBA function to compute the fair expense ratio; i.e., find α such
that the date–0 value of the contract is equal to D. Hint: Modify the

Black_Scholes_Call_Implied_Vol

function. You can use α = 0 as a lower bound. Because the value of the
contract is decreasing as α increases, you can find an upper bound by
iterating until the value of the contract is less than D.

(b) How does the fair expense ratio vary with the maturity T? Why?

3.12. Modify the function Simulated_Delta_Hedge_Profit to compute per-
centiles of gains and losses for an investor who writes a call option and con-
structs a delta and gamma hedge using the underlying asset and another call
option. Include the exercise price of the call option used to hedge as an input,
and assume it has the same time to maturity as the option that is written.
Hint: In each period j = 1 to N-1, the updated cash position can be calcu-
lated as

Cash = exp(r*dt)*Cash + a*S*(exp(q*dt)-1) - (Newa-a)*NewS _

- (Newb-b)*PriceHedge ,

where a denotes the number of shares of the stock held, b denotes the number
of units held of the option that is used for hedging, and PriceHedge denotes
the price of the option used for hedging (computed from the Black-Scholes
formula each period). This expression embodies the interest earned (paid) on
the cash position, the dividends received on the shares of stock and the cash
inflows (outflows) from adjusting the hedge. At the final date N, the value of
the hedge is

exp(r*dt)*Cash + a*S*(exp(q*dt)-1) + a*NewS _

+ b*Application.Max(NewS-KHedge,0) ,

and the value of the overall portfolio is the value of the hedge less

Application.Max(NewS-KWritten,0) ,

where KHedge denotes the strike price of the option used to hedge and
KWritten denotes the strike of the option that was written.






