Phenomenology, Logic, and the Philosophy of Mathematics

This book is a collection of fifteen essays that deal with issues at the intersection of phenomenology, logic, and the philosophy of mathematics. The first of the three parts, “Reason, Science, and Mathematics,” contains a general essay on Husserl’s conception of science and logic, an essay on mathematics and transcendental phenomenology, and an essay on phenomenology and modern pure geometry. Part II is focused on Kurt Gödel’s interest in phenomenology. It explores Gödel’s ideas and also some work of Quine, Penelope Maddy, and Roger Penrose. Part III deals with elementary, constructive areas of mathematics – areas of mathematics that are closer to their origins in simple cognitive activities and in everyday experience. This part of the book contains essays on intuitionism, Hermann Weyl, the notion of constructive proof, Poincaré, and Frege.

Richard Tieszen is Professor of Philosophy at San Jose State University.
To my parents,

James D. and Beverly J. Tieszen
Phenomenology, Logic, and the Philosophy of Mathematics

RICHARD TIESZEN
San Jose State University
Contents

Acknowledgments

Introduction: Themes and Issues

PART I. REASON, SCIENCE, AND MATHEMATICS

1 Science as a Triumph of the Human Spirit and Science in Crisis: Husserl and the Fortunes of Reason
2 Mathematics and Transcendental Phenomenology
3 Free Variation and the Intuition of Geometric Essences: Some Reflections on Phenomenology and Modern Geometry

PART II. KURT GÖDEL, PHENOMENOLOGY, AND THE PHILOSOPHY OF MATHEMATICS

4 Kurt Gödel and Phenomenology
5 Gödel’s Philosophical Remarks on Logic and Mathematics
6 Gödel’s Path from the Incompleteness Theorems (1931) to Phenomenology (1961)
7 Gödel and the Intuition of Concepts
8 Gödel and Quine on Meaning and Mathematics
9 Maddy on Realism in Mathematics
10 Penrose on Minds and Machines
Contents

Part III. Constructivism, Fulfillable Intentions, and Origins

11 Intuitionism, Meaning Theory, and Cognition | 227
12 The Philosophical Background of Weyl’s Mathematical Constructivism | 248
13 Proofs and Fulfillable Mathematical Intentions | 276
14 Logicism, Impredicativity, Formalism: Some Remarks on Poincaré and Husserl | 294
15 The Philosophy of Arithmetic: Frege and Husserl | 314

Bibliography | 337
Index | 349
Acknowledgments

The essays collected here were written over a period of fifteen years. In preparing them for publication in this volume I have modified them in a few places, mostly for clarity and for continuity with other chapters in the collection. I have also cut some material from a few of the essays. Some overlap or repetition remains here and there, but the trade-off is that such overlapping allows the essays to be read independently of one another. In any case, I think that a little repetition is not onerous. It may even be helpful to some readers. The Bibliography has been standardized, and in the case of Husserl’s work in particular I have provided references to the original publications, the relevant Husserliana editions, and the English translations. Since Husserl’s works are usually composed in short sections I have adopted the convention in the essays of referring to quotations from Husserl’s works by providing the title of the work and the section number. This method puts the reader in touch with the relevant texts but allows for choice in consulting the different editions and languages. In the case of Gödel’s writings I have followed the citation style used in Kurt Godel: Collected Works. The Bibliography for the present volume includes very few works that were not cited in the original essays. I have included a few new references where there has been some clear line of development of an argument or point in the essays.

Chapter 1 was written for the volume Continental Philosophy of Science, edited by Gary Gutting (Oxford: Blackwell, 2004). It appears here with the permission of Blackwell Publishing.

Chapter 2 originally appeared under the title “Mathematics” in The Cambridge Companion to Husserls, B. Smith and D. Smith (eds.) (Cambridge:
Acknowledgments

Chapter 9 was originally published as “Review of Mathematical Realism, by Penelope Maddy,” Philosophia Mathematica 3, 2 (1994), pp. 69–81. It is reprinted here with the permission of the editor, Robert S. D. Thomas.

Chapter 12 was published as “The Philosophical Background of Weyl’s Mathematical Constructivism,” Philosophia Mathematica 3, 8 (2000),
Over the years I have discussed ideas about phenomenology, logic, and mathematics with many friends and colleagues. I have included the original acknowledgments in the chapters themselves, but there have been many other people who also deserve to be thanked for discussion, comments, and suggestions.

My interest in the relationship of phenomenology to the exact sciences goes back to my days in graduate school and college. During this period I benefited most from interactions with Charles Parsons, Wilfried Sieg, Howard Stein, Shaughan Levine, and Isaac Levi at Columbia University; Robert Tragesser at Barnard; and J. N. Mohanty and Izhak Miller at the Graduate Faculty of the New School for Social Research. Soon after I arrived at Columbia, Charles Parsons gave a seminar on Husserl’s *Logical Investigations*. This allowed me to deepen the study of Husserl’s works that I had already begun at the New School and in college. At the New School, J. N. Mohanty gave a year-long seminar on Husserl’s logical works. It was this kind of in-depth seminar that made the Graduate Faculty unique. As an undergraduate I benefited from studies of phenomenology with Robert Welsh Jordan and of modal logic and other systems of logic with Fred Johnson. It was during my time at Columbia that I met and began the first of many discussions with Hao Wang about Gödel’s philosophical views. Wang was one of the people I knew who most encouraged thinking about mathematics from a phenomenological standpoint. I also met Dagfinn Føllesdal while I was a graduate student, and although he was
Acknowledgments

never formally my teacher I have been discussing Husserl’s work with him since that time. Several other people were especially helpful and encouraging early on: Michael Resnik, Gian-Carlo Rota, Bill Tait, and Bill McKenna come to mind. I am indebted to Mike Resnik in particular.

As I began to focus even more on constructive mathematics I benefited from discussions with Dirk van Dalen, Per Martin-Löf, Anne Troelstra, Dag Prawitz, and Göran Sundholm. Van Dalen has been especially helpful. After I arrived in California I began to attend many of the logic events at Stanford. These were often organized by Sol Feferman, and I have profited from many exchanges with him over the years.

In addition to all of those mentioned, I would like to thank many other people with whom I have discussed my work: Mark van Atten, Michael Friedman, David Smith, Barry Smith, Ed Zalta, John Corcoran, Albert Visser, Karl Schuhmann, Robin Rollinger, Paolo Mancosu, Thomas Ryckman, Karl Ameriks, Guglielmo Tamburrini, Ernan McMullin, Gary Gutting, Charles Chihara, Jerrold Katz, Paul Cortois, Grisha Mints, Dieter Lohmar, Claire Hill, Jairo da Silva, Peter Hadreas, and Kai Hauser. (It is possible that as I write this I have not remembered everyone who deserves to be mentioned.)

Finally, I thank my wife, Nancy, for her patience and her meditative ways. Nam Mô A Di Đa Phật. I dedicate this book to my parents, James D. and Beverly J. Tieszen.