
xiii

������

The Java platform and language were conceived with networking support as a
core design principle. A measure of its success in this area is how unusual it is
today to find a Java application that does not have at least some measure of net-
work awareness or dependence. Developers today routinely build applications
and services that a decade ago would have been regarded as highly complex and
requiring rare expertise.

Frameworks, containers, and the high-level Java networking APIs have encap-
sulated this complexity, insulating developers from dealing with many tradi-
tional networking issues. However, many developers still make the funamental
error of taking this relative simplicity for granted by assuming that interacting
across a network is no more complex than interaction with local objects. Many of
the poorly performing or scaling applications I have seen are due to naïve deci-
sions taken without considering the ramifications of distribution across a net-
work and without attention to fundamental elements of network programming
or configuration.

I was an early reviewer of this book and I admire its economical and thorough
but eminently readable style, lucidly describing complex issues without ever out-
staying its welcome. This book combines academic rigour with a practical
approach deeply informed by real-world experience and I have no hesitation in
recommending it to developers of all experience levels. Experienced engineers
building network-centric infrastructure or services should not be without this
book. In fact, any Java developer building distributed applications such as J2EE,
Jini, and Web Services should read this book—at least to understand the funda-
mental implications of networking on application design and implementation.

������	�����	�.�&��������/�����

xv

 �!���

���� -

� � � �������� �
 � � �� a long-standing gap in the documenta-
tion and literature of the Java™ programming language and platform, by provid-
ing fundamental and in-depth coverage of ��� $ �� and ��� networking from
the point of view of the Java API, and by discussing advanced networking pro-
gramming techniques.1 The new I/O and networking features introduced in
#�� 1.4 provide further justification for the appearance of this text. Much of the
information in this book is either absent from or incorrectly specified in the Java
documentation and books by other hands, as I have noted throughout.

In writing this book, I have drawn on nearly twenty years’ experience in net-
work programming, over a great variety of protocols, APIs, and languages, on a
number of platforms (many now extinct), and on networks ranging in size from
an Ethernet a few inches in length, to a corporate ��� between cities thousands
of miles apart, to the immense geographic spread of the Internet.

This book covers both ‘traditional’ Java stream-based I/O and so-called ‘new
I/O’ based on buffers and channels, supporting non-blocking I/O and multiplex-
ing, for both ‘plain’ and secure sockets, specfically including non-blocking
��� $ � �� and ��� &�� � .

Server and client architectures, using both blocking and non-blocking I/O
schemes, are discussed and analysed from the point of view of scalability and
with a particular emphasis on performance analysis.

An extensive list of TCP/IP platform dependencies, not documented in Java, is
provided, along with a handy reference to the various states a TCP/IP port can
assume.

1. Sun, Java, and many Java-related terms and acronyms are trademarks of Sun Microsystems
Incorporated, Santa Clara, California. These and all other trademarks referred to in this book
remain property of their respective owners.

xvi ����������	�
����������������

�-
�� ��� -

�

+�������

I have assumed a competent reader familiar with the fundamentals of the Java
programming language, specifically the concepts of �	���.��'����.�����!���.�������.
,������.� �������.� ���	�. and �$��,����0 with the basic principles of object-
oriented programming: ���������� and ,�	/��,����; and with the standard Java
I/O, utility, and exception classes.

I have also assumed a reader who is able to digest short passages of simple Java
code without requiring every line explained, and to turn English prose into Java
code without requiring a code sample at every turn. A very basic knowledge of
��� programming with clients and servers is assumed, although I have provided
a brief review. Finally, I assume that the reader either knows about the Internet,
hosts, and routers, or has the initiative and the resources to look them up.

I have used some of the more standardized vocabulary of design patterns, as
first seen in Gamma ����	�. "������ ���������	��������!������'	��)'����-)������
&�!����, Addison-Wesley, 1995, specifically the terms ���,��, ��	�����, !�����,
and !����/, which are now in such common use as not to require explanation. I
have also used UML sequence diagrams without definition or comment, as these
are fairly self-explanatory.

&��,�

The book covers ��� downwards from the Java ��� , through socket options and
buffers, to the ��� segment level, including the connection and termination
sequences, 	�� segments, and—to a small extent—windowing, but excluding
sequence numbering, pacing, acknowledgements, and retries.

Similarly, it covers ��� downwards from the Java ��� , through socket
options and buffers, to the ��� datagram level, including unicast, broadcast,
and multicast, and including material on reliable ��� , erasure codes, and
higher-level multicasting protocols.

I have paid particular attention to the neglected and widely misunderstood
topic of multi-homed hosts, particularly in relation to ��� unicast, broadcast,
and multicast, where multi-homing presents special difficulties.

The ��� , ��� , and ��� $ � �� protocols are all covered both in blocking and
non-blocking mode, via both traditional Java streams and channel- and buffer-
oriented ‘NIO’ (new I/O). Secure sockets via � � � and ��� are covered in detail,
and the #��� & �� � is discussed as an alternative.

I have devoted an entire chapter to a reduction-to-practice of the #�� 1.5
���	�
���, with sample code for a complete and correct ���	�
�����
���
making this bizarre apparition actually useable for writing non-blocking � ��
servers and clients.

The organization of the book is described in section 1.2.

 �!��� xvii

�$�	������

The book excludes �� at the packet level altogether, as well as associated proto-
cols such as ���� , �	� , 	�	� , ���� , ����, although ���� does appear fleet-
ingly in the discussion of multicasting. These topics are definitively covered in
Stevens & Wright, tcp/ ip �		�������, Volumes I and II, Addison-Wesley, 1994–
5, whose completeness and authoritativeness I have not attempted to duplicate.

I have deliberately omitted any mention of the defunct 7-layer
� � Reference
Model,2 into which ��� $ �� cannot be shoehorned.

I have excluded all higher-level protocols such as ���� , ����� , and ��� . I
have also excluded #��� in its entirety, as well as Java 	�� (Remote Method
Invocation), with the exception of 	�� socket factories which present special,
undocumented difficulties. Kathleen McNiff and I have described Java 	�� in
detail in our book �������: �������������������������������������, Addison-Wes-
ley 2001.3

I have resisted without apology the recent tendency to re-present all of compu-
ter science as design patterns, even in Chapter 12, ’Server and client models’, for
which design patterns do exist. The relevant parts of Java and the Java Class
Library themselves constitute design patterns which subsume many existing pat-
terns for network programming.

This book is about networking, and so is the sample code. Java program code
which is not directly relevant to network programming does not appear. Not a
line of ��� or Swing code is to be found in these pages, nor are screen shots,
console outputs, or examples of streaming audio-visuals or 3� animations. Nor
have I presented the ‘complete source code’ for some arbitrary application of lim-
ited relevance.

����
�����������

I am primarily indebted to the many people who researched and developed the
��� $ �� protocol suite over several decades, and whose names appear in the vari-
ous ���� formal standards and RFCs which define the suite: some of these are
listed in the bibliography.

Any serious writer on ��� and ��� owes practically everything to the late
W. Richard Stevens, with whom I was privileged to exchange a few e-mails. Ste-
vens documented the entire protocol suite, both the specification and the -��
4.4 implementation, in his tcp/ ip ��		�������, 3 volumes, and described the Ber-
keley Sockets API in all its gruesome details in his *��$�
������ ��������, 2
volumes. These are now fundamental references for anyone who really wants to
understand �� network programming in any language.

2. for which see e.g. Piscitello & Chapin,),���&/������
����������o s i �1�t c p / i p .
3. Much of the present chapter on firewalls first appeared there, and is used by permission.

xviii ����������	�
����������������

This book started life in 1993 as a 25-page paper written in collaboration with
my brother and colleague David Pitt: the paper was privately distributed to
employees and clients, and has subsequently turned up in all sorts of surprising
places.

Several anonymous reviewers contributed significantly to the final form and
content of this book. All errors however remain mine.

My thanks go to Sun Microsystems Inc. for producing Java and supplying it
free of charge, and to Sun Microsystems Ltd, Melbourne, Australia, for providing
Solaris and Linux testing facilities.

Thanks also to my long-standing colleague Neil Belford for advice, assistance,
and encouragement. Finally, thanks to Tilly Stoové and all the Pitt family for their
understanding and support during the writing of this book.

������� ���.���	'����.������2334�

9

��������
 ����������	���!���

���� ������	 ���	
����� the �� protocol and its realization in Java. ��
stands for ‘Internet protocol’, and it is the fundamental protocol of the
Internet—the ‘glue’ which holds the Internet together.

� . � ��

As 	�� 791 says, ‘the Internet Protocol is designed for use in interconnected
systems of packet-switched computer communication networks’. The Internet is
nothing more than a very large number of such systems communicating, via the
�� protocol, over various kinds of packet-switched network, including Ethernets
and token-rings, telephone lines, and satellite links.

�� is the most fundamental element of a family of protocols collectively known
as ��� $ �� , consisting of sub-protocols such as �	� —address resolution proto-
col, 	�	� —reverse address resolution protocol, ���� —Internet control mes-
sage protocol, -

�� —bootstrap protocol, ���� —Internet group manage-
ment protocol, ��� —User datagram protocol, and ��� —Transmission
control protocol. This book deals with ��� and ��� ; the other protocols men-
tioned are there to support ��� and ��� in various ways and are not normally
the concern of network programmers.

�� consists of 5�6 an addressing system for hosts, 5��6 the �� packet format
definition, and 5���6 the protocol proper—the rules about transmitting and
receiving packets.

�� presently exists in two versions of interest: ��� , which was the first pub-
licly available version of the protocol, and ���� , which is in limited use at the
time of writing, and which offers a massive expansion of the address space as
well as a number of improvements and new features.

10 ����������	�
����������������

�.� ����
	����	������

2�2�7
����������!����

An Internet host is connected to the network via one or more network interfaces:
these are hardware devices, usually manifested as controller cards (network
interface controllers or NICs). Each physical network interface may have one or
more �� addresses, discussed in the following subsection. In this way, each
Internet host has at least one �� address. This topic is discussed further in
section 2.3.

2�2�2 �� ���������

An Internet host is identified by a fixed-width ‘�� address’. This is a number con-
sists of a ‘network’ or ‘subnet’ part, which uniquely identifies the subnetwork
within the Internet, and a ‘host’ part, which uniquely identifies the host within
the subnetwork.1

In ��� an �� address is a 32-bit number, written as a ‘dotted-quad’ of four 8-
bit segments, ���� 192.168.1.24 or 127.0.0.1.

In ���� an �� address is a 128-bit number, written as colon-separated quads
of 8 bits each, e.g. 0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:1, with the convention that two
adjacent colons indicate as many quads of zero as necessary: the address just
given can be abbreviated to ::1.

2�2�8 "�����������

The numeric �� addressing system is complemented by an alphabetic naming
system known as the Domain Name System or ��� , which partions host names
into ‘domains’ and which provides mappings between �� addresses and host-
names, a process known as ‘resolution’.

2�2�9 ���

Each Internet host supports a large number of �� ‘ports’, which represent indi-
vidual services within the host, and are identified by a 16-bit ‘port number’ in the
range 1–65535. Many of these port numbers are preallocated: the ‘well-known
ports’ in the range 1–1023, and the ‘registered ports’ in the range 1024–49151
(�������������). Servers at the ‘well-known ports’ require special permission in
some operating systems, ���� super-user privilege in Unix-style systems.

1. Readers familiar with ��� —network address translation—will understand that ‘uniquely’
applies only within the subnet(s) controlled by any single ��� device, but I don’t propose to
cover ��� in this book.

����������	���!�� � 11

A specific ��� or ��� service is addressed by the tuple {�� address, port
number}. This tuple is also known as a ‘socket address’.

2�2�4 &������

A communications endpoint in a host is represented by an abstraction called a
socket. A socket is associated in its local host with an �� �address and a port
number. In Java, a socket is represented by an instance of one of the � !���
classes ���"��, ��� �����"��� ��
�����"��, or �����������"��.

2�2�:
��������������	�����

In Java, an �� address is represented by a � !���!#���$������. An �� port is rep-
resented in Java by an integer in the range 1–65535, most usually 1024 or above.
An �� socket address is represented in Java either by an {�� address, port
number} tuple or by the #�� 1.4 ���"��$������ class which encapsulates the
tuple.

The purposes and uses of the various Java network address classes are
explained in Table 2.1.

From #�� 1.4, the #���$������ class is abstract and has two derived classes:
#����$������ for ��� and #���%$������ for ���� . You really don’t need to be
aware of the existence of these derived classes. You can’t construct them: you
obtain instances of them via static methods of #���$������, and you are generally
better off just assuming that they are instances of #���$������. The only differ-

��-���.� Network address classes

���� �����	
�	�

#���$������ Represents an � � address or a ���	��� hostname: used for
remote addresses. The object cannot be constructed if
hostname resolution fails.

#������"��$������
�������
���"��$������

Represents an � � socket address, ���� a pair {�� address, port}
or {hostname, port}. In the latter case an attempt is made to
resolve the hostname when constructing the object, but the
object is still usable ‘in some circumstances like connecting
through a proxy’ if resolution fails. Can be constructed with
just a {port}, in which case the ‘wildcard’ local �� address is
used, meaning ‘all local interfaces’.

&��'��"#������� Represents a local network interface, made up of an interface
name (e.g. ‘le0’) and a list of � � addresses associated with the
interface. Used for identifying local interfaces in
multicasting.

12 ����������	�
����������������

ence between the derived classes from the point of view of the programmer is the
#���%$������!��#�(����������$������ method, which returns true if ‘the
address is an ��� compatible ���� address; or false if address is an ���
address’.2 It is a rare Java program which needs to be concerned with this.

2�2�; &,����	��� ���������

In addition to the �� addresses belonging to its network interface(s), an Internet
host has two extra �� addresses, which are both usable only within the host, as
shown in Table 2.2.

The #���$������ class exports a number of methods which enquire about the
attributes of an address. These methods are summarized in Table 2.3.

2. #�� 1.4 online documentation.

��-���.� Special � � addresses

���� ��� ���� �����	
�	�

loopback 127.0.0.1 ::1 This is used to identify services the local host in
situations where the host’s external ��� name or
�� address are unavailable or uninteresting, ���� in a
system which is only intended to communicate
within a single host.

wildcard 0.0.0.0 ::0 This is used when creating sockets to indicate that
they should be bound to ‘all local � � addresses’
rather than a specific one. This the normal case. In
Java it can be indicated by an absent or null
#���$������.

��-���.� #���$������ methods

���� ���	��	���������

��$�)����$������ Wildcard address: see Table 2.2.

�����"����$������ Link-local unicast address. Undefined in ��� ; in ���� it is
an address beginning with �� 6'+ .

��������" Loopback address: see Table 2.2.

����*���� Multicast address of global scope.

�������"���� Multicast address of link-local scope.

����������	���!�� � 13

The methods ����*����, �������"����, etc which return information about
multicast address scopes are discussed in section 11.1.4.

�.� 7����&�
����

A multi-homed host is a host which has more than one �� address. Such hosts
are commonly located at gateways between �� subnets, and commonly have
more than one physical network interface. It is really only in such hosts that pro-
grammers need to be concerned with specific local �� addresses and network
interfaces.

Network interfaces were practically invisible in Java prior to #�� 1.4, which
introduced the &��'��"#������� class. From #�� 1.4, the network interfaces for
a host can be obtained with the methods:

class NetworkInterface
{
static Enumeration getNetworkInterfaces()

throws SocketException;
Enumeration getInetAddresses();

}

where
��&��'��"#�������� returns an 	��������� of &��'��"#��������, and

��#���$�������� returns an 	��������� of #���$��������, representing all or
possibly a subset of the �� addresses bound to a single network interface. If there
is no security manager, the list is complete; otherwise, any #���$������ to which
access is denied by the security manager’s ����"������� method is omitted from
the list.

The accessible �� addresses supported by a host can therefore be retrieved by
the code sequence of Example 2.1.

����&������� Multicast address of node-local scope.

����+�
���� Multicast address of organization-local scope.

������������ Multicast address of site-local scope.

����������$������ Multicast address. In ��� this is an address in the range
224.0.0.0 to 239.255.255.255; in ���� it is an address begin-
ning with �� .

���������� Site-local unicast address. Undefined in ��� ; in ���� it is an
address beginning with �� 6�+ .

a. The ���� cases refer to the specifications in 	�� 2373.

��-���.� #���$������ methods

���� ���	��	���������

14 ����������	�
����������������

� . ����

Java has always supported ��� , the original version of the �� protocol. ���� is
the next version of �� , which is intended to improve a number of aspects of ���
including efficiency; extensibility; the 32-bit ��� address space; quality-of-serv-
ice support; and transport-level authentication and privacy.

From #�� 1.4, Java also supports ���� where the host platform does so, and it
is completely transparent to the programmer. Your existing Java networking pro-
gram automatically supports both ��� and ���� if executed under #�� 1.4 on
a platform supporting ���� : you can connect to both ��� and ���� servers,
and you can be an ��� and ���� server, accepting connections from both
��� and ���� clients.

2�9�7 %��,���'�	��/

���� supports ��� via ‘��� -compatible addresses’. These are 128-bit ����
address whose high-order 96 bits are zero. For example, the ��� address
192.168.1.24 can used in ���� as the ��� -compatible address ::192.168.1.24.

Java’s ���� support can be controlled via system properties. These allow you
to disable ���� support, so that only ��� clients and servers are supported.
You cannot disable ��� support via these properties, although you can achieve
the same effect by specifying only ���� network interfaces as local addresses

,,�	�����������'��"�����������-.�/�01�2!�3

	��������� ���������
1�&��'��"#�������!
��&��'��"#��������-34

'�����-���������!������	�������-33
5

&��'��"#������� ����
1�-&��'��"#�������3�'���!����	������-34

,,�	��������#���$��������������������'��"���������

Enumerationaddresses = intf.getInetAddresses();
while (addresses.hasMoreElements())
{
InetAddress address
= (InetAddress)addresses.nextElement();

// …
}

}
45������.� Enumerating the local network interfaces

����������	���!�� � 15

when creating or binding sockets or server sockets. In future there will be a
socket option to obtain ���� -only behaviour on a per-socket basis.3

These system properties are described in Table 2.4.

2�9�2 �����������!!��������������

In any situation where you need to determine dynamically whether you have an
��� or an ���� socket, the following technique can be used:

if (socket.getLocalAddress() instanceof Inet6Address)
; // you have an IPv6 socket

else
; // you have an IPv4 socket

3. The Java ���� User Guide is distributed in the #�� ����������������<
��������, and is
available online at ����6,,� !���!���,�7��,2!8,����,
����,���,�� %9
����,�����!����.

��-���. ���� system properties

���� ������ �����	
�	�

� !���
!������#: ����"

���� (default),
����

By default, ���� native sockets are used if
available, allowing applications to
communicate with both � �� andIPv6
hosts.

If this property is set to ����, ��� native
sockets are always used. The application
will not be able to communicate with � ���
hosts.

� !���
!������#: %$��������

���� (default),
����

By default, if � ��� is available, � �� -
mapped addresses are preferred over � ���
addresses, ‘for backward compatibility—
e.g. applications that depend on an ��� -
only service, or … on the [“dotted-quad”]
representation of ��� addresses’.

If this property is set to ����, ����
addresses are preferred over ��� -style
addresses, ‘allowing applications to be
tested and deployed in environments where
the application is expected to connect to
���� services’.a

a. Both quotations from Java 1.4 � ��� User Guide.

16 ����������	�
����������������

Apart from the formats of actual �� addresses, the � !���!#���%���"��$������
class described in section 2.2 and the ���"��!���;��������� method described in
section 3.19 are the only points in the entire � !��� package where you need to
be concerned with ��� and ���� .

