
2

Computer Control Systems 

In this chapter we present the elements and the basic concepts of computer-
controlled systems. The discretization and choice of sampling frequency will be 
first examined, followed by a study of discrete-time models in the time and
frequency domains, discrete-time systems in closed loop and basic principles for
designing digital controllers.

2.1 Introduction to Computer Control

The first approach for introducing a digital computer or a microprocessor into a
control loop is indicated in Figure 2.1. The measured error between the reference
and the output of the plant is converted into digital form by an analog-to-digital
converter (ADC), at sampling instants k defined by the synchronization clock. The
computer interprets the converted signal y(k) as a sequence of numbers, which it
processes using a control algorithm and generates a new sequence of numbers
{u(k)} representing the control. By means of a digital-to-analog converter (DAC),
this sequence is converted into an analog signal, which is maintained constant
between the sampling instants by a zero-order hold (ZOH). The cascade: ADC-
computer-DAC should behave in the same way as an analog controller (PID type),
which implies the use of a high sampling frequency but the algorithm implemented
on the computer is very simple (we just do not make use of the potentialities of the
digital computer!).

A second and much more interesting approach for the introduction of a digital
computer or microprocessor in a control loop is illustrated in Figure 2.2 which can 
be obtained from Figure 2.1 by moving the reference-output comparator after the
analog-to-digital converter. The reference is now specified in a digital way as a 
sequence provided by a computer.

In Figure 2.2 the set DAC - plant - ADC is interpreted as a discretized system,
whose control input is the sequence {u(k)} generated by the computer, the output
being the sequence {y(k)} resulting from the A/D conversion of the system output
y(t). This discretized system is characterized by a “discrete-time model”, which

25



26 Digital Control Systems

describes the relation between the sequence of numbers {u(k)} and the sequence of
numbers {y(k)}. This model is related to the continuous-time model of the plant.

CLOCK

Figure 2.1. Digital realization of an « analog » type controller

Figure 2.2. Digital control system

This approach offers several advantages. Among these advantages here we
recall the following:

1. The sampling frequency is chosen in accordance with the “bandwidth” of
the continuous-time system (it will be much lower than for the first 
approach).

DAC
+

ZOH
PLANTADC COMPUTER

e(k) y(t)e(t) u(k) u(t)

r(t)
+

-

CONTROLLER

CLOCK

DAC
+

ZOH
PLANT ADCCOMPUTER

y(k)e(k) u(k) u(t) y(t)

r(k)
+

-
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2. Possibility of a direct design of the control algorithms tailored to the
discretized plant models.

3. Efficient use of the computer since the increase of the sampling period
permits the computation power to be used in order to implement
algorithms which are more performant but more complex than a PID
controller, and which require a longer computation time.

In fact, if one really wants to take advantage of the use of a digital computer in
a control loop, the “language” must also be changed. This may be achieved by
replacing the continuous-time system models by discrete-time system models, the
continuous-time controllers by digital control algorithms, and by using dedicated
control design techniques.

The changing over to this new “language” (discrete-time dynamic models)
makes it possible to use various high performing control strategies which cannot be
implemented by analog controllers.

The operating details of the ADC (analog-to-digital converter), the DAC
(digital-to-analog converter) and the ZOH (zero-order hold) are illustrated in
Figure 2.3.

A.D.C.

D.A.C.
 +

Z.O.H.

Z.O.H.

Ts

sampling period

Figure 2.3. Operation of the analog-to-digital converter (ADC), the digital-to-analog
converter (DAC) and the zero-order hold (ZOH) 



28 Digital Control Systems

The analog-to-digital converter implements two functions: 
1. Analog signal sampling: this operation consists in the replacement of 

the continuous signal with a sequence of values equally spaced in the 
time domain (the temporal distance between two values is the 
sampling period), as these values correspond to the continuous signal 
amplitude at sampling instants. 

2. Quantization: this is the operation by means of which the amplitude of 
a signal is represented with a discrete set of different values (quantized 
values of the signal), generally coded with a binary sequence. 

The general use of high-resolution A/D converters (where the samples are 
coded with 12 bits or more) allows one to consider the quantification effects as 
negligible, and this assumption will hold in the following. Quantization effects will 
be taken into account in Chapter 8. 

The digital-analog converter (DAC) converts at the sampling instants a discrete 
signal, digitally coded, in a continuous signal. 

The zero-order hold (ZOH) keeps constant this continuous signal between two 
sampling instants (sampling period), in order to provide a continuous-time signal. 

2.2 Discretization and Overview of Sampled-data Systems 

2.2.1 Discretization and Choice of Sampling Frequency 

Figure 2.4 illustrates the discretization of a sinusoid of frequency f0 for several 
sampling frequencies fs.

It can be noted that, for a sampling frequency fs = 8 f0, the continuous nature of 
the analog signal is unaltered in the sampled signal. 

For the sampling frequency fs = 2 f0, if the sampling is carried out at instants 
2 f0 t other than multiples of  a periodic sampled signal is still obtained. 
However if the sampling is carried out at the instants where 2 f0 t = n , the 
corresponding sampled sequence is identically zero. 

If the sampling frequency is decreased under the limit of fs = 2f0, a periodic 
sampled signal still appears, but its frequency differs from that of the continuous 
signal (f = fs - f0).

In order to reconstruct a continuous signal from the sampled sequence, the 
sampling frequency must verify the condition (Nyquist's theorem): 

fs > 2 fmax (2.2.1)
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f s = 2 f
0

s
f = 8 f

0

!!
f s = 2 f

0

Figure 2.4. Sinusoidal signal discretization

in which fmax is the maximum frequency to be transmitted. The frequency fs=2 fmax
is a theoretical limit; in practice, a higher sampling frequency must be chosen.

The existence of a maximum limit for the frequency that may be converted
without distortion, for a given sampling frequency, is also understandable when it
is observed that the sampling of a continuous-time signal is a “magnitude
modulation” of a “carrier” frequency fs (analogy with the magnitude modulation in
radio transmitters). The modulation effect may be observed in the replication of the
spectrum of the modulating signal (in our case the continuous signal) around the
sampling frequency and its multiples.

The spectrum of the sampled signal, if the maximum frequency of the
continuous signal (fmax) is less than (1/2) fs, is represented in the upper part of
Figure 2.5.

The spectrum of the sampled signal, if fmax > (1/2)fs, is represented in the lower
part of Figure 2.5. The phenomenon of overlapping (aliasing) can be observed.
This corresponds to the appearance of distortions. The frequency (1/2)fs, which
defines the maximum frequency (fmax) admitted for a sampling with no distortions,
is known as “Nyquist frequency” (or Shannon frequency).
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Figure 2.5. Spectrum of a sampled signal 

For a given sampling frequency, in order to avoid the folding (aliasing) of the 
spectrum and thus of the distortions, the analog signals must be filtered prior to
sampling to ensure that:

f max f s2
1

 (2.2.2)

The filters used are known as “anti-aliasing filters”. A good anti-aliasing filter 
must have a minimum of two cascaded second-order cells (fmax << (1/2) fs). An
example of an anti-aliasing filter of this type is given in Figure 2.6. These filters
must introduce a large attenuation at frequencies higher than (1/2) fs, but their
bandwidth must be higher than the required bandwidth of the closed loop system
(generally higher than open loop system bandwidth). Circuits of this type (or more
complex) are currently available.

2
0

2
0
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2 ss 2
0

2
0

2
0

2 ss

Figure 2.6. Anti-aliasing filter
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In the case of very low frequency sampling, first a sampling at a higher
frequency is carried out (integer multiple of the desired frequency), using an 
appropriate analog anti-aliasing filter. The sampled signal thus obtained is passed
through a digital anti-aliasing filter followed by a frequency divider (decimation)
thereby giving a sampled signal having the required frequency. This procedure is
shown in Figure 2.7. It is also employed every time the frequency of data
acquisition is higher than the sampling frequency chosen for the loop that must be
controlled (the sampling frequency should be an integer divider of the acquisition
frequency).

A/D converter
(acquisition frequency)

y(t)  Anti-aliasing
analog filter

T

Under-sampling
( Ts = n.Ta)

a

y (k)

T s

Anti-aliasing
digital filter

Figure 2.7. Anti-aliasing filtering with under-sampling

2.2.2 Choice of the Sampling Frequency for Control Systems

The sampling frequency for digital control systems is chosen according to the
desired bandwidth of the closed loop system . Note that, no matter how the desired
performances are specified, these can always be related to the closed loop system
bandwidth.

Example: Let us consider the performances imposed in Section 1.1.6 on the
step response (maximum overshoot 5%, rise time 2.75 s). The transfer function to
be determined corresponds to the desired closed loop system transfer function.
From the diagrams given in Figure 1.11 we have deduced that the closed loop
transfer function must be a normalized second-order transfer function with =0.7
and 0=1 rad/s. By immediately using the diagrams given in Figure 1.12, it can be 
observed that the bandwidth of the closed loop system is approximately equal to

Hzf CL
B 2

1

The rule used to choose the sampling frequency in control systems is the
following:

(2.2.3)ftof CL
Bs )256(

where

fs: sampling frequency, : closed loop system bandwidthf CL
B
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Rule of Equation 2.2.3 is equally used in open loop, when it is desired to
choose the sampling frequency in order to identify the discrete-time model of a 
plant. In this case  is replaced by an estimation of the bandwidth of the plant.CL

Bf
For information purposes, Table 2.1 gives the sampling periods (Ts = 1/fs) used

for the digital control of different types of plants.
The rule for choosing the sampling frequency given in Equation 2.2.3 can be

connected to the transfer function parameters.

First- order system

01
1)(
sT

sH

In this case the system bandwidth is 

0
0 2

1
T

ff B

(an attenuation greater than 3 db is introduced for frequencies higher than 0 = 
1/T0 = 2 f0).

Table 2.1. Choice of the sampling period for digital control systems (indicative values)

Type of variable

(or plant))

Sampling period (s) 

Flow rate 1 – 3 

Level 5 – 10 

Pressure 1 – 5 

Temperature 10 - 180 

Distillation 10 - 180 

Servo-mechanisms 0.001 - 0.05 

Catalytic reactors 10 - 45 

Cement plants 20 - 45 

Dryers 20 – 45 
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By applying the rule of Equation 2.2.3 the condition for choosing the sampling
period is obtained Ts = 1/fs):

0
0

4
TT

T
s (2.2.4)

This corresponds to the existence of two to nine samples on the rise time of a step
response.

Second- order system

ss
sH 2

0
2
0

2
0

2
)(

The bandwidth of the second-order system depends on 0 and on  (see Figure
1.12).

For example:

2
7.0 0f B

2
6.01 0f B

By applying the rule of Equation 2.2.3, the following relations are obtained
between the natural frequency 0 and the sampling period Ts :

0.25 0 Ts  1  ; = 0.7 (2.2.5) 

and

 0.4 0 Ts  1.75 ; = 1 (2.2.6) 

The lower values correspond to the choice of a high sampling frequency and
the upper values to the choice of a low sampling frequency.

For simplicity's sake, given that in closed loop the behavior frequently chosen
as the desired behavior is that of a second order having a damping factor

between 0.7 and 1, the following rule can be used (approximation of Equations
2.2.5 and 2.2.6):

 0.25 0 Ts  1.5 ;  0.7 1 (2.2.7) 
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2.3 Discrete-time Models 

2.3.1 Time Domain

Figure 2.8 illustrates the response of a continuous-time system to a step input, a 
response that can be simulated by a first order system (an integrator with a 
feedback gain indicated in the figure).

+
-

 1
T

G
T I

t

u

t

y
u y

dy

dt
_

Figure 2.8. Continuous-time model 

The corresponding model is described by the differential equation

)()(
1

tu
T
G

ty
Tdt

dy
 (2.3.1) 

or by the transfer function

sT
G

sH
1

)( (2.3.2)

where T is the time constant of the system and G is the gain.
If the input u(t) and the output y(t) are sampled with a specified sampling

period, the representations of u(t) and y(t) are obtained as number sequences in 
which t (or k) is now the normalized discrete-time (real time divided by the
sampling period, t = t/Ts). The relation between the input sequence {u(t)} and the
output sequence {y(t)} can be simulated by the scheme given in Figure 2.9 by
using a delay (backward shift) operator (symbolized by q-1: y(t-1) = q-1 y(t)),
instead of an integrator. 

This relation is described in the time domain by the algorithm (known as
recursive equation or difference equation)

y(t) = -a1 y(t-1) + b1 u(t-1) (2.3.3) 
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Figure 2.9. Discrete-time model

Let us now examine in greater detail the discrete-time model given by Equation
2.3.3 for a zero initial condition (y(0) = 0) and a discrete-time unit step input:

01
00

)(
t
t

tu

The response is directly computed by recursively using Equation 2.3.3 from t = 0
(in the case of discrete-time models there are no problem with the integration of the
differential equations like in continuous time). We shall examine two cases. 

Case 1. a1 = - 0.5 ; b1 = 0.5
The output values for different instants are given in Table 2.2 and the
corresponding sequence is represented in Figure 2.10.

Table 2.2. Step response of a first-order discrete-time model (a1= -0.5, b1= 0.5) 

T 0 1 2 3 4 5

y(t) 0 0.5 0.75 0.875 0.937 0.969

1 2 3  4  5  6 t

y

0,5

1 -

Figure 2.10. Step response of a first-order discrete- time model (a1 = -0.5, b1= 0.5)

It is observed that the response obtained resembles the step response of a 
continuous-time first order system which has been sampled. An equivalent time
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constant for the continuous-time system can even be determined (rise time from 0
to 90 %: tR = 2.2 T). From Table 2.2, one then obtains

2.2
4

2.2
3 ss T

T
T

Case 2. a1 = 0.5 ; b1 = 1.5
Output values for different instants are given in Table 2.3 and the corresponding
sequence is represented in Figure 2.11.

Table 2.3. Step response of a first-order discrete-time model (a1=0.5; b1=1.5)

T 0 1 2 3 4 5

y(t) 0 1.5 0.75 1.125 0.937 1.062

An oscillatory damped response is observed with a period equal to two sampling
periods. This type of phenomenon cannot result from the discretization of a 
continuous-time first order system, since this latter is always a-periodic. It may
thus be concluded that the first order discrete-time model corresponds to the
discretization of a first order continuous-time system only if a1 is negative1.

1     2     3      4     5     6

y

0,5 Damped
oscillating
response

1 -

1,5-

t

Figure 2.11. Step response of a first-order discrete-time model (a1=0.5; b1=1.5)

We now go back to the method used to describe discrete-time models. The 
delay operator q-1 is used to obtain a more compact writing of the recursive
(difference) equations which describe discrete-time models in the time domain (it 
has the same function as the operator p = d/dt for continuous-time systems). The
following relations hold:

1 For a positive , this corresponds to the discretization of a 2nd order system, with a damped resonant
frequency equal to  (see Section 2.3.2).

1a
sf5.0
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(2.3.4)
)()(
)1()(1

dtytyq
tytyq

d

By using the operator q-1, Equation 2.3.3 is rewritten as 

 (1 + a1 q-1) y(t) = b1 q-1 u(t) (2.3.5) 

Discrete-time models may also be obtained by the discretization of the differential
equations describing continuous-time models. This operation is used for the
simulation of continuous-time models on a digital computer.

Let us consider Equation 2.3.1 and approximate the derivative by

T
tyTty

dt
dy

s

s )()(  (2.3.6)

Equation 2.3.1 will be rewritten as 

)()(1)()(
tu

T
Gty

TT
tyTty

s

s  (2.3.7) 

By multiplying both sides of Equation 2.3.7 by Ts, and with the introduction of the
normalized time t (= t/Ts), it follows that

)()(1)1( tuTT
Gty

T
Tty s

s  (2.3.8) 

which can be further rewritten as:

 (1 + a1 q-1) y(t+1) = b1 u(t) (2.3.9) 

where

11 T
T

a s (  0)  ; TT
G

b s1

Shifting Equation 2.3.9 by one step, Equation 2.3.3 is obtained.
We point out that, in order to represent a first-order continuous model with

Equation 2.3.9, the condition a1 < 0 must be verified. As a consequence, the
sampling period Ts must be smaller than time constant T (Ts < T). This result
corresponds to the upper bound in Equation 2.2.4, introduced for sampling period
selection of a first-order system as a function of the desired closed loop bandwidth.
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If Equation 2.3.6 is the approximation of the “derivative”, the digital integrator
equation can be directly deduced. Thus, if normalized time is used, Equation 2.3.6
is written as 

)()1()1()( 1 tyqtytypyy
dt
d  (2.3.10) 

where (1 - q-1) is now equivalent to p. As the integration is the opposite of the
differentiation, one obtains:

)(
1

11)( 1 ty
q

y
p

dtyts  (2.3.11) 

Multiplying both sides of Equation 2.3.11 by (1-q-1), it follows that 

 s(t) (1 - q-1) = y(t) (2.3.12)

which we can rewrite as

s(t) = s(t-1) + 1 . y(t) (2.3.13) 

corresponding to the approximation of the integration operation by means of the
rectangular rule, as illustrated in Figure 2.12 (if continuous-time is used, Equation
2.3.13 is written as s(t) = s(t-Ts) + Ts.y(t)).

 y

tt-1

y(t)

s(t-1)

Figure 2.12. Numerical integration

2.3.2 Frequency Domain

The study of continuous-time models in the frequency domain has been carried out
considering a periodic input of the complex exponential type

ej t = cos t + j sin t

or est with s = + j .
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For the study of discrete-time models in the frequency domain we shall
consider complex (sampled) exponentials, i.e. sequences resulting from complex
continuous-time exponentials evaluated at the sampling instants t = k Ts.

These sequences will thus be written as

 ;  ; k=1,2,3…kTj se ksTse

Since the discrete-time models being considered are linear, if a signal of a certain 
frequency is applied to the input, a signal of the same frequency, but amplified or
attenuated according to the frequency, will be found at the output. This is 
summarized in Figure 2.13. in which H(s) is the “transfer function” of the system
that expresses the dependence of the gain and the phase-deviation on the complex
frequency s ( js ).

u(t)=ej Tsk y(t)=H(j )ej Tsk
DISCRETE TIME 

Figure 2.13. Frequency response of a discrete-time system

If the input of the system is in the form , the output will be ksTse

(2.3.14)ksTsesHty )()(

and respectively

 (2.3.15))()()()1( )1( tyeesHeesHty ssss sTksTsTksT

It is thus observed that shifting backward by one step is equivalent to multiplying
by .ssTe

Let now determine the transfer function related to the recursive Equation 2.3.3.
In this case  and the output will be in the form of Equation 2.3.14. By
also using Equation 2.3.15 one obtains:

ksTsetu )(

 (2.3.16)ksTsTksTsT ssss eebesHea 11 )()1(

from which results

SYSTEMu(t)=esTsk y(t)=H(s)esTsk



40 Digital Control Systems

ea
ebsH

Ts

Ts

s

s

1

1

1
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We consider now the following change of variable:

 (2.3.18)ssTez

which corresponds to the transformation of the left half-plane of the s-plane into 
the interior of the unit circle centered at the origin in the z- plane, as illustrated by
Figure 2.14.

Re s > 0

Figure 2.14. Effect of the transformation z = e ssT

With the transformation given by Equation 2.3.18 the transfer function given in 
Equation 2.3.17 becomes

za
zbzH 1
1

1
11

1
)(  (2.3.19)

Note that the transfer function in z-1 can be directly obtained from the recursive
Equation 2.3.3 by using the delay operator q-1 (see Equation 2.3.5), and afterwards
by formally computing the ratio y(t)/u(t) and replacing q-1 with z-1. This procedure
can obviously be applied to all models described by linear difference equations
with constant coefficients, regardless of their complexity. The same result can be
also derived by means of the z - transform (see Appendix A, Section A.2)

We also remark that the transfer functions of discrete-time models are often
written in terms of q-1. It is of course understood that the meaning of q-1 varies
according to the context (delay operator or complex variable). When q-1 is 
considered as a delay operator, the expression H(q-1) is named “transfer operator”.
It must be observed that the representation by transfer operators can also be used
for models described by linear difference equations with time varying coefficients 
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as well. In contrast, the interpretation of q-1 as a complex variable (z-1) is only
possible for linear difference equations with constant coefficients.

Properties of the Transformation ssTez
The transformation of Equation 2.3.18 is not bijective because several points in the 
s- plane are transformed at the same point in the z-plane. Nevertheless, we are
interested in the s-plane being delimited between the two horizontal lines crossing
the points ]2/,[ sj0  and ]2/,[ sj0  where s = 2 fs = 2 /Ts. This region is 
called “primary strip”. 

esTsX

X

j
s

 Re s <0 Re s > 0
s

2

- s
2

- 1

23

4 5

5

X

-1
X

1
1

2 3

45

z

Figure 2.15. Effects of the transformation z = e on the points located in the “primary
strip” in s-plane

ssT

The complementary bands are outside the frequency domain of interest if the 
conditions of the Shannon theorem (Section 2.2.1) have been satisfied. 
Figure 2.15 gives a detailed image of the effects of the transformation for
the points that are inside the “primary strip”.

ssTez

Attention must be focused on an important aspect for continuous second-order
systems in the form:

ss 2
0

2
0

0
2

2
( <1)

for which the resonant damped frequency is equal to half the sampling frequency:

2/1 2
0 s

The image of their conjugates poles

202,1
sjs
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through the transformation corresponds to a single point placed on the
real axis in the z- plane and with negative abscissa.

esTez

One gets: 

2
0002,1 12

2,1 eeeeeeez ss
s

s

ss TjTTjTTs

since:

2
0

12
s

This is the reason why discrete-time models in the form of Equation 2.3.3 such as

 (1 + a1 q-1) y(t) = b1 q-1 u(t)

give oscillating step responses for a1 > 0 (damped if |a1| < 1) with period 2Ts (see
Section 2.3.1). These first-order discrete-time models have the same poles as the 
discrete-time models derived from second-order continuous-time systems having a
damped resonant frequency equal to s /2.

2.3.3 General Forms of Linear Discrete-time Models 

A linear discrete-time model is generally described as 

 (2.3.20))()()(
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idtubityaty
BA n

i
i

n

i
i

in which d corresponds to a pure time delay which is an integer multiple of the 
sampling period.

Let us introduce the following notations: 
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 (2.3.24)
11

21
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n
n qbqbbqB

By using the delay operator q-1 in Equation 2.3.20 and taking into account the
notations of Equations 2.3.21 to 2.3.24, the Equation 2.3.20 describing the discrete-
time system is written as 

 A(q-1) y(t) = q-d B(q-1) u(t) (2.3.25)

or in the predictive form (by multiplying both sides by qd)

 A(q-1) y(t+d) = B(q-1) u(t) (2.3.26)

Equation 2.3.25 can also be written in a compact form using the pulse transfer
operator

 y(t) = H(q-1) u(t) (2.3.27)

where the pulse transfer operator is given by

)(
)()( 1

1
1

qA
qBqqH

d
 (2.3.28)

The pulse transfer function characterizing the system described by Equation 2.3.20
is obtained from the pulse transfer operator given in Equation 2.3.28 by replacing
q-1 with z-1 2

)(
)()( 1

1
1

zA
zBzzH

d
 (2.3.29)

Pulse Transfer Function Order
To evaluate the order of a discrete time model represented by the pulse transfer
function in the form of Equation 2.3.29, the representation in terms of positive 
power of z is needed. If d is the system pure time delay expressed as number of 
samples, nA the degree of the polynomial A(z-1) and nB the degree of the
polynomial B(z-1), one must multiply both numerator and denominator of H(z-1) by
zn in order to obtain a proper3 pulse transfer function H(z) on the positive powers 
of z, where 

2 The pulse transfer operator H(q-1) can be used for a compact representation of the input-output
relationship even in the case of A(q-1) and B(q-1) have time depending coefficients. The pulse transfer
function H(z-1) is only defined for the case of A(q-1) and B(q-1) are with constant coefficients.
3 This means that the denominator degree is greater than (or equal to) the numerator degree.
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n= max (nA, nB + d)

n represents the discrete-time system order (the higher power of a term in z in the
pulse transfer function denominator).

Example 1:
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3
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1
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n = max (1, 5) = 5 

zaz
bzbzH 4

1
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Example 2:
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n = max (2, 2) = 2 

azaz
bzbzH

21
2

21)(

One notes that the order n of an irreducible pulse transfer function also corresponds 
to the number of states for a minimal state space system representation associated
to the transfer function (See Appendix C).

2.3.4 Stability of Discrete-time Systems

The stability of discrete-time systems can be studied either from the recursive
(differences) equation describing the discrete-time system in the time domain, or 
from the interpretation of difference equations solutions as sums of discretized 
exponentials. We shall use examples to illustrate both these approaches. 

Let us assume that the recursive equation is 

y(t) = -a1 y(t-1)  ;     y(0) = y0 (2.3.30)

which is obtained from Equation 2.3.3 when the input u(t) is identically zero. The
free response of the system is written as

y(1) = -a1 y0  ;   y(2) = (-a1)2 y0 ;  y(t) = (-a1)t y0 (2.3.31)
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The asymptotic stability of the system implies

 (2.3.32)0)(lim ty
t

The condition of asymptotic stability thus results from Equation 2.3.31. It is 
necessary and sufficient that 

 |a1| < 1 (2.3.33)

On the other hand, it is known that the solution of the recursive (difference)
equations is of the form (for a first-order system):

 (2.3.34)ttTs KzeKty s)(

By introducing this solution into Equation 2.3.30, and taking into account Equation
2.3.15, one obtains

 (2.3.35)0)1()1( 1
11

ttsTsT KzzaKeea ss

from which it follows that 

 (2.3.36)1
)( aeeeez ssss TjTTjsT

For this solution to be asymptotically stable, it is necessary that  = Re s < 0 which
implies that e Ts < 1 and respectively |z| < 1 (or |a1| < 1).

However, the term (1 + a1 z-1) is nothing more than the denominator of the
pulse transfer function related to the system described by Equation 2.3.3 (see
Equation 2.3.19).

The result obtained can be generalized. For a discrete-time system to be
asymptotically stable, all the roots of the transfer function denominator must be 
inside the unit circle (see Figure 2.14):

1 + a1 z-1 +.....+ an z-n = 0 |z| < 1 (2.3.37)

In contrast, if one or several roots of the transfer function denominator are in the
region defined by |z| > 1 (outside the unit circle), this implies that Re s > 0 and 
thus the discrete-time system will be unstable.

As for the continuous-time case, some stability criteria are available (Jury 
criterion, Routh-Hurwitz criterion applied after the change of variable
w = (z + 1)/(z-1)) for establishing the existence of unstable roots for a polynomial
in the variable z with no explicit calculation of the roots (Åström and Wittenmark
1997).
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A helpful tool to test z-polynomial stability is derived from a necessary
condition for the stability of a z-1-polynomial. This condition states: the evaluations 
of the polynomial A(z-1) given by Equation 2.3.37 in z = 1, (A(1)) and in z = -1 
(A(-1)) must be positive (the coefficient of A(q-1) corresponding to z0 is supposed
to be positive). 

Example:

 A(z-1) = 1 – 0.5 z-1 (stable system)

A(1) = 1 – 0.5 = 0.5 > 0 ; A(-1) = 1 + 0.5 = 1.5 > 0 

 A(z-1) = 1 – 1.5 z-1; (unstable system)

A(1) = - 0. 5 < 0  ;  A(-1) = 2.5 > 0

2.3.5 Steady-state Gain

In the case of continuous-time systems, the steady-state gain is obtained by making
s = 0 (zero frequency) in the transfer function. In the discrete case, s = 0
corresponds to 

 (2.3.38)10 sTezs

and thus the steady-state gain G(0) is obtained by making z = 1 in the pulse
transfer function. Therefore for the first-order system one obtains:
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Generally speaking, the steady-state gain is given by the formula
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In other words, the steady-state gain is obtained as the ratio between the sum of the 
numerator coefficients and the sum of the denominator coefficients. This formula
is quite different from the continuous-time systems, where the steady-state gain
appears as a common factor of the numerator (if the denominator begins with 1).
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The steady-state gain may also be obtained from the recursive equation
describing the discrete-time models, the steady-state being characterized by u(t) = 
const. and y(t) = y(t-1) = y(t-2)....
From Equation 2.3.3, it follows that 

(1 + a1) y(t) = b1 u(t)

and respectively

)()0()(
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)(
1

1 tuGtu
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bty

2.3.6 Models for Sampled-data Systems with Hold

Up to this point we have been concerned with sampled-data systems models
corresponding to the discretization of inputs and outputs of a continuous-time
system. However, in a computer controlled system, the control applied to the plant
is not continuous. It is constant between the sampling instants (effect of the zero-
order hold) and varies discontinuously at the sampling instants, as is illustrated in 
Figure 2.16.

It is important to be able to relate the model of the discretized system, which
gives the relation between the control sequence (produced by the digital controller)
and the output sequence (obtained after the analog-to-digital converter), to the
transfer function H(s) of the continuous-time system. The zero-order hold, whose 
operation is reviewed in Figure 2.17 introduces a transfer function in cascade with 
H(s).

ADC
DAC

+
ZOH

PLANT

H (z )-1

H(s)

Figure 2.16. Control system using an analog-to-digital converter followed by
a zero-order hold 

ZERO
ORDER
HOLD

Ts

1(t-T  )

+

1(t)

Ts

s

Figure 2.17. Operation of the zero-order hold 
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The hold converts a Dirac pulse given by the digital-to-analog converter at the
sampling instant into a rectangular pulse of duration Ts, which can be interpreted as
the difference between a step and the same step shifted by Ts. As the step is the 
integral of the Dirac pulse, it follows that the zero-order hold transfer function is 

s
esH

Ts s

ZOH

1)(  (2.3.40)

Equation 2.3.40 allows one to consider the zero-order hold as a filter having a 
frequency response given by

2
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From the study of this response in the frequency region 2/0 sff
( 2/0 s ), one can conclude:

1. The ZOH gain at the zero frequency is equal to: GZOH(0) = Ts.
2. The ZOH introduces an attenuation at high frequencies. For f = fs / 2 one

gets G(fs / 2) = 
2

Ts = 0.637 Ts (-3. 92 dB).

3. The ZOH introduces a phase lag which grows with the frequency. This
phase lag is between 0 (for f = 0) and - /2 (for f = fs / 2) and should be
added to the phase lag due to H(s).

The global continuous-time transfer function will be 

)(1)(' sH
s
esH

Ts s

 (2.3.41)

to which a pulse transfer function is associated. 
Tables which give the discrete-time equivalent of systems with a zero-order

hold are available. Some typical situations are summarized in Table 2.4.
The computation of ZOH sampled models for transfer functions of different

orders can be done by means of the functions: cont2disc.sci (Scilab) or cont2disc.m
(MATLAB®). The corresponding sampled model (with Z.O.H) for a second-order
system characterized by 0 and can be obtained with the functions ft2pol.sci
(Scilab) or ft2pol.m (MATLAB®)4.

4 To be downloaded from the book website.
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2.3.7 Analysis of First-order Systems with Time Delay

The continuous-time model is characterized by the transfer function

T
eGsH

s

s

1
)(  (2.3.42)

where G is the gain, T is the time constant and is the pure time delay. If Ts is the 
sampling period, then  is expressed as 

= d Ts + L  ;   0 < L < Ts (2.3.43)

where L is the fractional time delay and d is the integer number of sampling
periods included in the delay and corresponding to a sampled delay of d-periods.
From Table 2.4, one derives the transfer function of the corresponding sampled
model (when a zero-order hold is used)
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The effect of the fractional time delay can be seen in the appearance of the
coefficient b2 in the transfer function. For L = 0, one gets b2 = 0. On the other
hand, if L = Ts, it follows that b1 = 0, which correspond to an additional delay of 
one sampling period. For L<0.5Ts one has b2 < b1, and for L>0.5Ts one has
b2 > b1. For L=0.5Ts b2  b1. Therefore, a fractional delay introduces a zero in the
pulse transfer function. For L > 0.5 Ts the relation |b2| > |b1| holds and the zero is 
outside the unit circle (unstable zero)5.

The pole-zero configuration in the z plane for the first-order system with ZOH
is represented in Figure 2.18. The term z-d-1 introduces d+1 poles at the origin
[H(z) = (b1z + b2) / zd+1 (z + a1)].

5 The presence of unstable zeros has no influence on the system stability, but it imposes constraints on 
the use of controller design techniques based on the cancellation of model zeros by controller poles. 
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Table 2.4. Pulse transfer functions for continuous-time systems with zero-order hold
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Figure 2.19 represents the step responses for a system characterized by a pulse 
transfer function 

za
zbzH 1
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1
)(  (2.3.45)

with 1
1 1

1

a
b (steady-state gain = 1) for different values of the parameter a1:

 a1 = -0.2 ;  -0.3 ; -0.4 ;  -0.5 ; -0.6 ;  -0.7 ;  -0.8 ; -0.9
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o - zero 
x - pole

z

1

-j

xo

b2

b1

b2

b1

>1

<1

o

+j

-a 1
x

Figure 2.18. Pole-zero configuration of the sampled-data system described by Equation
2.3.44 ( first order system with ZOH) 

On the basis of these responses, it is easy to derive the time constant of the
corresponding continuous-time system, expressed in terms of the sampling period
(the time constant is equal to the time required to reach 63% of the final value).

The presence of a time delay equal to an integer multiple of the sampling
period only causes a time shift in the responses given in Figure 2.19.

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1
a1 = -0.2

a1 = -0.8

a1 = -0.9

Step Responses

Time (t/Ts)

Figure 2.19. Step responses of the discrete-time system b1 z-1/(1+a1 z-1) for different values 
of a1 and [b1 /(1+ a1) ]=1

The presence of a fractional time delay has as a main consequence a 
modification at the beginning of the step response, if compared to the case with no
fractional time delay.

Exercise. Assuming that the sampled-data system model is 
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y(t) = - 0.6 y(t-1) + 0.2 u(t-1) + 0.2 u(t-2)

What is the corresponding continuous-time model?
It is interesting to analyze the relation between the location of the pole 

( ) and the rising time of the system. Figure 2.19 indicates that the response
of the system becomes slower as the pole of the system moves toward the point [1,
j0], and it becomes faster as the pole of the system approaches the origin (z = 0).
These considerations can be applied to systems with several poles.

1az

In the case of systems with more than one pole, the term “dominant pole(s)” is 
introduced to characterize the pole (or the poles) that is (are) the closest to the 
point [1,j0], i.e. which is the slowest pole(s).

Figure 2.20 shows the frequency responses (magnitude and phase) of the first-
order discrete system given by 2.3.45 for a1 = - 0.8; -0.5; -0.3. It can be observed
that the bandwidth increases when the system pole is approaching the origin (faster
pole). We can also remark that the phase lag at the frequency 0.5fs is   -180o due to
the presence of the ZOH (see Section 2.3.6).
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Figure 2.20. Frequency responses (magnitude and phase) of the discrete-time model b1 z-1 / 
(1 + a1 z-1) for different values of a1 and b1

2.3.8 Analysis of Second-order Systems

The pulse transfer function corresponding to the discretization with a zero-order 
hold of a normalized second-order continuous-time system, characterized by a 
natural frequency 0 and a damping , is given by
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where d represents the integer number of sampling periods contained in the delay.
The values of a1, a2, b1, b2 as a function of 0 and for a pure time delay  = d·Ts
are given in Table 2.4.

It is interesting to express the poles of the discretized system as a function of 
0,  and the sampling period Ts (or the sampling frequency fs).

From Table 2.4 the following relations are easily found (for  < 1):
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The poles of the pulse transfer function (roots of the denominator) are found by
solving the equation 

z2 + a1z + a2 = (z - z1) (z - z2) = 0

From the expressions of a1 and a2 the solutions are directly derived:
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Note that the poles of the discretized system correspond to the poles of the
continuous-time system 2

002,1 1js by applying the transformation

.ssTez
For  < 1, the poles of the discretized system are complex conjugate and, 

consequently, symmetric with respect to the real axis. They are characterized by a 
module and a phase given by
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Pole - Zero Map
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Figure 2.21. The curves constant and ss ffT /2/ 00 constant in the z-plane for
a second-order discrete-time system

Note that the poles location depends upon  and 0Ts (or 0/ s = f0/fs).
That is: 

z = f( , 0 Ts / 2 ) = f( , f0/fs ) 

and in the z-plane the following curves can be drawn: 

z = f( 0 Ts /2  ) = f(f0 /fs) for  = constant

and

z = f( ) for 0 Ts /2  = f(f0 /fs) = constant 

We must remember (see Figure 1.9) that in the s-plane (continuous system) the
curves  = constant are straight lines forming an angle  = cos-1 with the real axis 
and the curves 0 = constant are circles with radius 0 (these two sets of curves
are orthogonal). In the z-plane the curves z = f ( 0 Ts) for  = constant are
logarithmic spirals that are orthogonal in each point to the curves z: f( ) for 0 Ts =
constant.
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Figure 2.21 shows the set of curves z = f( ) for 0 Ts/2  = constant and z = 
f( 0 Ts/2 ) for  = constant corresponding to different values of  and 0Ts/2
(respectively f0/fs).

We should also remember (see Section 2.3.2) that for
2

00 12/1// ssff , the corresponding poles in the z- plane are

confounded ( z1,2 = ± ), and they are located on the segment of the real axis (-

1,0) having an abscissa coordinate equal to
21e .

The stability domain of the second-order discrete-time system in the plane of 
the parameters a1 - a2 is a triangle (see Figure 2.22). For values of a1, a2 placed
inside of the triangle, the roots of the denominator of the pulse transfer function are 
inside the unit circle. 

-2 -1  1                    2
a

1

-1

+1
a 2

Figure 2.22. Stability domain for the second-order discrete-time system

2.4 Closed Loop Discrete-time Systems

2.4.1 Closed Loop System Transfer Function

Figure 2.23 gives the diagram of a closed loop discrete-time system. The transfer 
function on the feedforward channel can result from the cascade of a digital
controller and of the group DAC+ ZOH + continuous-time system + ADC 
(discretized system).
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Figure 2.23. Closed loop discrete-time system

Let

)(
)()(

1

1
1

zA
zB

zH OL  (2.4.1)

be the feed-forward channel transfer function with
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where the coefficients b1, b2 ... bd may be zero if there is a time delay of d
sampling periods.

In the same way as for continuous-time systems, the closed loop transfer
function connecting the reference signal r(t) to the output y(t) is written as 
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The denominator of the closed loop transfer function, whose roots correspond to
the closed loop system poles, is also called characteristic polynomial of the closed
loop.

2.4.2 Steady-state Error

The steady-state is obtained for r(t) = constant by making z = 1, corresponding to 
the zero frequency (z = esTs = 1 for s = 0).

It follows from Equation 2.4.3 that 
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where HCL(1) is the steady-state gain (static gain) of the closed loop system. In 
order to obtain a zero steady-state error between the reference signal r and the 
output y, it is necessary that 

 HCL(1) = 1 (2.4.5)

From Equation 2.4.4 the following conditions are derived:
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In order to obtain A(1) = 0, A(z-1) must have the following structure:

A(z-1) = (1 - z-1) · A'(z-1) (2.4.7)

where
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and thus the global transfer function of the feedforward channel must be of the type
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It is thus observed that the feedforward channel must contain a digital integrator in 
order to obtain a zero steady-state error in closed loop. This situation is similar to 
the continuous case (see Section 1.2.3) and internal model principle is also 
applicable to discrete-time systems.

2.4.3 Rejection of Disturbances

In the presence of a disturbance p(t) acting on the controlled output (see Figure
2.23), the objective is to reduce its effect as much as possible, at least in some
frequency regions.

In particular, the constant disturbance effect (a step), often called “load 
disturbance”, is expected to be zero in steady-state (t z 1).

The pulse transfer function, which links the disturbance to the output, is 
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As for the continuous-time case, Syp (z-1) is called “output sensitivity function”. 
The steady-state is obtained for z = 1. It follows that 
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(where p is the stationary value of the disturbance).
In order to achieve a perfect steady-state disturbance rejection, it is necessary

that Syp(1) = 0 and thus A(1) = 0. This implies that A(z-1) must have the form given 
in Equation 2.4.7, corresponding to the integrator insertion in the feedforward
channel.

Similarly, to the continuous case, a perfect steady-state disturbance rejection 
implies that the feedforward channel must contain the internal model of the 
disturbance (the transfer function that produces p(t) from a Dirac pulse).

As in the continuous-time case, it should be avoided that an amplification of the
disturbance effect occurs in certain frequency regions. This is the reason why |Syp
(e-j must be lower than a specified value for all frequencies f = /2   fs / 2.

A typical value used as upper bound is

|Syp (e - j 2    0  fs
Furthermore, if it is known that a disturbance has its energy concentrated in a
particular frequency region, |Syp (ej may be constrained to introduce a desired
attenuation in this frequency region.

2.5 Basic Principles of Modern Methods for Design of Digital 
Controllers

2.5.1 Structure of Digital Controllers

Figure 2.24 gives the diagram of a PI type analog controller. The controller
contains two channels (a proportional channel and an integral channel) that process
the error between the reference signal and the output. 

In the case of sampled-data systems the controller is digital, and the only 
operations it can carry out are additions, multiplications, storage and shift. All the
digital control algorithms have the same structure. Only “the memory” of the 
controller is different, that is the number of coefficients.

Figure 2.25 illustrates the computation structure of the control u(t) applied to
the plant at the instant t by the digital controller. This control is a weighted average
of the measured output at instants t, t-1,...., t-nA .., of the previous control values at
instants t-1, t-1…, t-nB… and of the reference signal at instants t, t-1,…, the weights
being the coefficients of the controller.
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Figure 2.24. PI analog controller

Figure 2.25. Digital controller

This type of control law can even be obtained by the discretization of a PI or
PID analog controller. We shall consider, as an example, the discretization of a PI 
controller. The control law for an analog PI controller is given by
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For the discretization of the PI controller, p (the differentiation operator) is
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and the equation of the PI controller becomes
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Multiplying both sides of Equation 2.5.4 by (1 - q-1), the equation of the digital PI 
controller is written as 

S(q-1) u(t) = T(q-1) r(t) - R(q-1) y(t) (2.5.5) 

where

S(q-1) = 1 - q-1 = 1 + s1 q-1  (s1 = - 1) (2.5.6) 
R(q-1) = T(q-1) = K (1+Ts/Ti) -K q-1 = r0 + r1 q-1 (2.5.7)

which leads to the diagram represented in Figure 2.26.
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Figure 2.26. Digital PI controller

Taking into account the expression of S(q-1), the control signal u(t) is computed
on the basis of Equation 2.5.5, by means of the formula

u(t) = u(t-1) - R(q-1) y(t) + T(q-1) r(t)

 = u(t-1) - r0 y(t) - r1 y(t-1) + r0 r(t) + r1 r(t-1) (2.5.8) 

which corresponds to the diagram given in Figure 2.26.
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2.5.2 Digital Controller Canonical Structure

Dividing by S(q-1) both sides of Equation 2.5.5, one obtains
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from which we derive the digital controller canonical structure presented in Figure 
2.27 (three branched RST structure). 

In general, T(q-1) in Figure 2.27 is different from R(q-1).

T

R

1/S B/A

PLANT

r(t) u(t) y(t)
+

-

Figure 2.27. Digital controller canonical structure

Consider
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as the pulse transfer function of the cascade DAC + ZOH + continuous-time
system + ADC, then the transfer function of the open loop system is written as 
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and the closed loop transfer function between the reference signal r(t) and the 
output y(t), using a digital controller canonical structure, has the expression
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where

 (2.5.13) ...1)()()()()( 2
2

1
1

11111 zpzpzRzBzSzAzP

is the denominator of the closed loop transfer function that defines the closed loop
system poles. Note that T(q-1) introduces one more degree of freedom, which 
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allows one to establish a distinction between tracking and regulation performances
specifications.

We also remark that r(t) is often replaced by a “desired trajectory” y*(t),
obtained either by filtering the reference signal r(t) with the so-called shaping filter 
or tracking reference model, or saving in the memory of the digital computer the 
sequence of the desired trajectory values.

The digital controller represented in Figure 2.27 is also defined as “RST digital
controller”. It is a two degrees of freedom controller, which allows one to impose
different specifications in terms of desired dynamics for the tracking and regulation
problems.

The goal of the digital controller design is to find the polynomials R, S, and T in 
order to obtain the closed loop transfer functions, with respect to the reference and
disturbance signals, satisfying the desired performances.

This explains why the desired closed loop performances will be expressed, (if
not, they will be converted) in terms of desired closed loop poles, and eventually in 
terms of desired zeros (in this way the closed loop transfer function will be 
completely imposed).

In the presence of disturbances (see Figure 2.28) there are other four important
transfer functions to consider, relating the disturbance to the output and the input of
the plant. 

The transfer function between the disturbance p(t) and the output y(t) (output
sensitivity function) is given by 
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+
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Figure 2.28. Digital control system in presence of disturbances and noise

This function allows the characterization of the system performances from the
point of view of disturbances rejection. In addition, certain components of S(z-1)
can be pre-specified in order to obtain satisfactory disturbance rejection properties.

Thus, if a perfect disturbance rejection is required at a specified frequency, S(z-
1) must include a zero corresponding to this frequency. In particular, if a perfect
load disturbance rejection in steady-state (i.e. zero frequency) is desired, Syp(z-1)
must include a term (1 - z-1) in the numerator, which leads to a value of the gain 
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equal to zero for z = 1. This is coherent with the result given in Section 2.4.3.,
because a zero of Syp(z-1) corresponds to a pole of the open loop system.

The transfer function between the disturbance p(t) and the input of the plant u(t)
(input sensitivity function) is given by
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The analysis of this function allows one to evaluate the influence of a disturbance
upon the plant input, and to specify a factor of the polynomial R(z-1) if the 
controller must not react to disturbances concentrated in a particular frequency
region.

When noise is added to the measured output (see Figure 2.28), important
information can be retrieved by the transfer function that relates the noise b(t) to
the plant output y(t) (noise-output sensitivity function).
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As the noise energy is often concentrated at high frequency, attention should be 
paid in order to obtain a low gain of the transfer function )( j

yb eS  in this

frequency region.
For T=R, the sensitivity function between r and y (also called complementary

sensitivity function) is defined as 
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Note that

1)()()()( 1111 zSzSzSzS yrypybyp

which implies an interdependence between these sensitivity functions.
Notice that Sub (z-1), the transfer function between the noise and the plant input, 

is equal to Sup (z-1).
Another important transfer function describes the influence on the output of a

disturbance v(t) on the plant input. This sensitivity function (input disturbance-
output sensitivity function) is given by
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The importance of this sensitivity function is that it enhances the possible 
simplification of unstable plant poles by the zeros of R(z-1).

In order to clarify this point, let us consider the assumption R(z-1)=A(z-1) (plant
poles compensation by controller zeros) and suppose that the plant to be controlled
is unstable (A(z-1) has roots outside the unit circle). In this case 
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Note that Syp, Sup, Syb are stable transfer functions if S(z-1) is chosen in order to
have S(z-1)+B(z-1) stable, that is

10)()( 11 zzBzS

while the sensitivity function Syv(z-1) is unstable.
This remark yields to the following general statement:

The feedback system presented in Figure 2.28 is asymptotically stable if and
only if all the four sensitivity functions Syp, Sup, Syb (or Syr) and Syv (describing
the relations between disturbances on one hand and plant input or output on the
other hand) are asymptotically stable.

The set of five transfer functions HOL (z-1), Syp(z-1), Sup(z-1), Syb(z-1) (or
Syr(z-1)) and Syv(z-1) also play an important role in the closed loop system
robustness analysis.

2.5.3 Control System with PI Digital Controller

In this section the design of digital PI controllers will be illustrated. The transfer 
(function) operator of the discretized plant with zero-order hold is given by
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For the sake of notation uniformity, we shall often use, in the case of constant
coefficients, q-1 notation both for the delay operator and the complex variable z-1.



Computer Control Systems 65

The z-1 notation will be specially employed when an interpretation in the frequency
domain is needed (in this case ).sTjez

The digital PI controller is characterized by the polynomials (see Equations
2.5.6 and 2.5.7):

R(q-1) = T(q-1) = r0 + r1 q-1 (2.5.20)
S(q-1) = 1 - q-1 (2.5.21)

The closed loop system transfer function (with respect to the reference r(t)) in the 
general form is given by Equation 2.5.12.

The characteristic polynomial P(q-1), whose roots are the desired closed loop
system poles, essentially defines the performances. As a general rule, it is chosen 
as a second-order polynomial corresponding to the discretization of a second-order
continuous-time system with a specified natural frequency 0 and damping  ( 0
and , for example, and can be obtained on the basis of the diagrams given in
Figures 1.10 or 1.11) starting from specifications in the time domain. The
coefficients corresponding to the polynomial P(q-1) are obtained either by 
conversion tables mentioned in Table 2.4, or by Scilab and MATLAB® functions
given in Section 2.3. In this case, sampling period Ts, natural frequency 0 and
damping must be specified.

We recall that the relation between 0 and Ts must be respected (see Section 
2.2.2, Equation 2.2.7):

0.25 0 Ts  1.5 ; 0.7 1 (2.5.22) 

For a plant having an equivalent discrete-time transfer operator (function) given by
Equation 2.5.19, and the use of a digital PI controller, the closed loop system poles 
are given by Equation 2.5.13, and they are

 (1 + a1 q-1) (1 - q-1) + b1 q-1(r0 + r1 q-1) = 1 + p1 q-1 + p2 q-2 (2.5.23)

By rearranging the terms in Equation 2.5.23 in ascending q-1 powers, we get 

 1 + (a1 - 1 + r0 b1) q-1 + (b1 r1 - a1) q-2 = 1 + p1 q-1 + p2 q-2 (2.5.24)

For the polynomial Equation 2.5.24 to be verified, it is necessary that the 
coefficients of the same q-1 powers must be equal on both sides. Thus the
following system is obtained:

 (2.5.25) 
2111

1101 1
parb
pbra
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which gives for r0 and r1 the results

1

12
1 b

apr  ;
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11
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1
b
apr  (2.5.26) 

One can see that the parameters of the controller depend upon the performance
specifications (the desired closed loop poles) and the plant model parameters.

By using Equation 2.5.7, one can obtain the parameters of the continuous-time
PI controller:
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2.6 Analysis of the Closed Loop Sampled-Data Systems in the 
Frequency Domain 

2.6.1 Closed Loop Systems Stability

In the case of continuous-time systems, it was shown in Chapter 1, Section 1.2.5,
how to use the open loop transfer function representation in the complex plane (the
Nyquist plot) in order to analyze the closed loop system stability and the 
robustness with respect to the parameters variations (or uncertainties on the 
parameters value). The same approach can be applied to the case of sampled-data
systems. The Nyquist plot for sampled-data systems can be drawn using the
functions Nyquist-ol.sci (Scilab) and Nyquist-ol.m (MATLAB®)6.

Figure 2.29 shows the Nyquist plot of an open loop sampled-data system
including a plant (represented by the corresponding transfer function
H (z-1) =B(z-1) / A(z-1) ) and a RST controller.

In this case, the open loop transfer function is given by

)()(
)()()( jj

jj
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OL eSeA
eReBeH  (2.6.1) 

The vector linking the plane origin to a point belonging to the Nyquist plot of the
transfer function represents HOL (e-j ) for a specified normalized radian frequency

 = s = 2  f/fs. The considered range of variation of the radian natural

6 To be downloaded from the book website. 
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frequency  is between 0 and (corresponding to an unnormalized frequency
variation between 0 and 0.5 fs ). 

H
OL

(e      )S      = 1 +
H

OL
(e      )

yp
-1

Critical point 

-1

Im H

Re H

-j
-j

Figure 2.29. Nyquist plot for a sampled-data system transfer function and the critical point 

In this diagram the point [-1, j0] is the “critical point”. As Figure 2.29 clearly
shows, the vector linking the point [- 1, j0] to the Nyquist plot of HOL (e-j ) has the
expression
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This vector represents the inverse of the output sensitivity function Syp (z-1) (see
Equation 2.5.14) and the zeros of S-1yp (z-1) correspond to the closed loop system
poles (see Equation 2.5.13). In order to have an asymptotically stable closed loop 
system, it is necessary that all the zeros of S-1yp (z-1) (that are the poles of Syp (z-1))
be inside the unit circle ( |z| < 1). The necessary and sufficient conditions for the
asymptotic stability of the closed loop system are given by the Nyquist criterion. 

For systems having stable poles in open loop (in this case A(z-1) = 0 and S(z-1)
= 0  |z|  1) the Nyquist stability criterion states (stable open loop system):
The Nyquist plot of HOL(z-1) traversed in the sense of growing frequencies (from

 0 to ), leaves the critical point [-1, j0] on the left.
As a general rule, for the given nominal plant model B(z-1)/A(z-1), polynomials

R(q-1) and S(q-1) are computed in order to have

A(z-1) S(z-1) + B(z-1) R(z-1) = P(z-1) (2.6.3) 

where P(z-1) is a polynomial with asymptotically stable roots. As a consequence,
for the nominal values of A(z-1) and B(z-1), since the closed loop system is stable,
the open loop transfer function: 
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does not encircle the critical point (if A(z-1) and S(z-1) have their roots inside the
unit circle). 

In the case of an unstable open loop system, either if A(z-1) has some pole
outside the unit circle (unstable plant), or if the computed controller is unstable in
open loop (S(z-1) has some pole outside the unit circle), the stability criterion is: 
The Nyquist plot of HOL(z-1) traversed in the sense of growing frequencies (from

 0 to ), leaves the critical point [-1, j0] on the left and the number of
counter clockwise encirclements of the critical point should be equal to the number
of unstable poles of the open loop system7.

Note that the Nyquist locus between 0.5 fs and fs is the symmetric of the 
Nyquist locus between 0 and 0.5 fs with respect to the real axis.

The general Nyquist criterion formula that gives the number of encirclements
around the critical point is 

i
OL

i
CL PPN

where is the number of closed loop unstable poles and is the number of 
open loop unstable poles. Positive values of N correspond to clockwise
encirclements around the critical point. In order that the closed loop system be 
asymptotically stable it is necessary that . Figure 2.30 shows two 
interesting Nyquist loci.

i
CLP i

OLP

i
OLPN

If the plant is stable in open loop and the controller is computed on the basis of 
Equation 2.6.3 to obtain a desired stable closed loop polynomial P(z-1) (this means
that the nominal closed loop system is stable too), then, if a Nyquist plot of the
form of Figure 2.30a is obtained, one concludes that the controller is unstable in 
open loop. This situation must be generally avoided8, and this can be achieved by
reducing the desired closed loop dynamic performances (by modifying P(z-1)).

7 The criterion holds even if an unstable pole-zero cancellation occurs. The number of encirclements
should be equal to the number of unstable poles without taking into account the possible cancellations. 
8 Note that there exist some « pathological » transfer functions B(z-1)/A(z-1) with unstable poles and/or
zeros that can be only stabilized by controllers that are unstable in open loop.
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1 Open Loop unstable pole
   Stable  Closed Loop (a)

-1

Im H

Re H

Stable Open Loop
Unstable  Closed Loop (b)

Figure 2.30. Nyquist plots: a) unstable system in open loop but stable in closed loop;
b) stable system in open loop but unstable in closed loop 

2.6.2 Closed Loop System Robustness

When designing a control system, one has to take into account the plant model
uncertainties (uncertainties of the parameter values or of the frequency
characteristics, variations of the parameters, etc.). It is therefore extremely
important to assess if the stability of the closed loop is guaranteed in the presence 
of the plant model uncertainties. The closed loop will be termed “robust” if the
stability is guaranteed for a given set of model uncertainties. 

The robustness of the closed loop is related to the minimal distance between the
Nyquist plot for the nominal plant model and the “critical point” as well as to the
frequency characteristics of the modulus of the sensitivity functions.

The following elements help to evaluate how far is the critical point [-1, j0] (see
Figure 2.31):

Gain margin;
Phase margin;
Delay margin;
Modulus margin.

Gain Margin
The gain margin ( G) equals the inverse of  gain for the frequency

corresponding to a phase shift  =  -180° (see Figure 2.31).

)( j
OL eH

The gain margin is often expressed in dB. In other words, the gain margin gives
the maximum admissible increase of the open loop gain for the frequency
corresponding to = - 180°.

)(
1

180j
OL eH

G  for 180)( 180
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|HOL|=1

Figure 2.31. Gain, phase and modulus margins 

Typical values for a good gain margin are 

G 2  (6 dB)   [min: 1.6 (4 dB)]

If the Nyquist plot crosses the real axis at several frequencies i characterized by 
a phase lag

i = - i 180°;  i = 1, 3, 5 ...

and the corresponding gains of the open loop system are denoted by
)( ij

OL eH , then the gain margin is defined by9

)(
1min

ij
OL

i eH
G

Phase Margin
The phase margin ( ) is the additional phase that we must add at the crossover 
frequency, for which the gain of the open-loop system equals 1, in order to obtain a
total phase shift    = - 180° (see Figure 2.31).

1)()(1800 crj
OLcr eHfor

in which cr is called crossover frequency and it corresponds to the frequency for
which the Nyquist plot crosses the unit circle (see Figure 2.31).

9 Note that if the Nyquist plot crosses the real axis for values less than –1 and leaves the critical point to 
the left, there is a minimal value of the gain margin under which the system becomes unstable. 
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Typical values for a good phase margin are 

30°  60°

If the Nyquist plot crosses the unit circle at several frequencies characterized
by the corresponding phase margins:

i
cr

)(1800 i
cri

then the system phase margin is defined as

ii
min

Delay Margin 
A time-delay introduces a phase shift proportional to the frequency . For a certain 
frequency 0, the phase shift introduced by a time-delay is

00 )(

We can therefore convert the phase margin in a “time-delay margin”, i.e. to
compute the maximum admissible increase of the delay of the open-loop system
without making the closed-loop system unstable. It then follows that:

cr

If the Nyquist plot intersects the unit circle at several frequencies ,
characterized by the corresponding phase margins i, the delay margin is defined
as

i
cr

i
cr

i
i

min

Note that a good phase margin does not guarantee a good delay margin (if the
frequency cr  is high, then the delay margin is low even if the phase margin is 
important).

The typical value of the delay margin is ST [min: 0.75TS]

Modulus Margin
This concerns a more global measure of the distance between the critical point 
[-1, j0] and the plot of HOL (z-1). The modulus margin ( M) is defined as the radius
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of the circle centered in [-1, j0] and tangent to the plot of HOL (z-1) (see Figure
2.31).

From the definition of Equation 2.6.2 of the vector connecting the critical point
[-1, j0] to the plot of  it follows immediately that )( j

OL eH
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 (2.6.4) 

In other words, the modulus margin M is equal to the inverse of the maximum
value of the sensitivity function Syp (z-1) magnitude. By plotting Syp (z-1)
magnitude in dB scale, the following condition is immediately derived:

dBMdBMdBeS j
yp

1
max

)(  (2.6.5) 

Figure 2.32 shows the relation between the sensitivity function Syp and the
modulus margin.

dB

S yp

S yp

S yp
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= - M

=     M

S yp
max

0

=  - S yp
max

Figure 2.32. Relation between the output sensitivity function and the modulus margin

Therefore, the reduction (or the minimization) of |Syp (j )|max will lead to an 
increase (or maximization) of the modulus margin10.

Typical values for a good modulus margin are 

 M  0.5 (- 6 dB)   [min: 0.4 (-8 dB)]

10 |Syp (j )|max corresponds to the H norm of the output sensitivity function.
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Note that M  0.5 implies a gain margin G  2 (6 dB) and a phase margin  > 
29°. As a general rule, a good modulus margin guarantees satisfactory values for
the gain and phase margins11.

 To summarize, typical values for the stability margins in a robust design are: 

gain margin: G  2 (6dB)   [min.: 1.6 (4dB)]
phase margin: 30°  60°

delay margin:  =
cr

 Ts [min.: 0.75 Ts]

modulus margin: M  0.5 (-6dB),  [min.: 0.4 (-8dB)]

If the plant model is known with a very good precision for a certain region of
operation, the imposed robustness margins can eventually be less restrictive.

The modulus margin is very important because:

It defines the maximum admissible value for the modulus of the output
sensitivity function and therefore the low limits of the performance in
disturbance rejection; 

It defines the tolerance with respect to nonlinear or time varying elements
that may belong to the system (the circle criterion - see below).

Tolerance with Respect to Nonlinear Elements 
In control systems we frequently have components with static nonlinear or time-
varying characteristics (often in the actuators).

The characteristics of these components, without being accurately known,
generally lie inside the conic region defined by a minimum linear gain ( ) and a
maximum linear gain ( ) – see Figure 2.33.

y = u

y = u

y = f(u)

u

y
NL

TVP
yu

Figure 2.33. Nonlinear or time-varying characteristics, contained in the conic domain ( )

The closed-loop system looks, for example, like those in Figure 2.34a.

11 The converse is not true. Systems having satisfactory gain and phase margins may have a very low 
modulus margin.
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.

H (s) = H (z-1). H (z-1)
12

-b)

H  ( z-1 )1 H (z-1)
2+

-
NL Block and / or TVPa)

Figure 2.34. Closed-loop systems containing a nonlinear block (NL) and / or time-varying
parameters (TVP): a) block diagram b) equivalent representation
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Figure 2.35. Circle stability criterion and modulus margin for discrete time systems

From the stability analysis point of view, we may use an equivalent
representation of such systems, given in Figure 2.34b, where

.)()()( 1
2

1
1

1 zHzHzHOL

For this kind of system we have a generalization of the Nyquist criterion,
known as “the circle criterion” (Popov-Zames).

Circle (Stability) Criterion
The feedback system represented in Figure 2.34b is asymptotically stable for the 
set of nonlinear and/or time-varying characteristics lying in the conic domain
[ ] (with  if the plot of , traversed in the sense of growing
frequencies, leaves on the left, without crossing it, the circle centered on the real
axis and passes through the points

)( 1zHOL

]0,/1[ j  and ]0,/1[ j .
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The modulus margin M defines a circle of radius M centered in [-1, j0] that
is outside the Nyquist plot of the open loop transfer function.

Thus, the closed loop system can tolerate non-linear blocks or time-variable
parameters described by input-output characteristics lying in a conic sector
delimited by a minimum linear gain (1/(1+ M)) and a maximum linear gain (1/(1-

M)) (see Figure 2.35).

Tolerances to Plant Transfer Function Uncertainties and/or Parameters
Variations.
Figure 2.36 shows the effect of the plant nominal model uncertainties and
parameters variations on the Nyquist plot of the open loop transfer function. As a 
general rule, the Nyquist plot of the plant nominal model lies inside a “tube”
corresponding to the accepted tolerances of the parameters variations (or the 
uncertainties) of the plant model transfer function.

In order to ensure the stability of the closed loop system for an open loop 
transfer function H'OL(z-1) that is different from the nominal one HOL(z-1) (but
having the same number of unstable poles as HOL (z-1)), it is necessary that the
Nyquist plot of the open loop transfer function H'OL (z-1) leaves the critical point [-
1 j0] on the left when traversed in the sense of growing frequencies from 0 to 0.5
fs. This condition is satisfied if the difference between the real open loop transfer
function H'OL (z-1) and the nominal one HOL (z-1) is smaller than the distance
between the Nyquist plot of the open loop nominal transfer function and the critical
point for all frequencies (see Figure 2.36). This robust stability condition is 
expressed by the inequality
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Figure 2.36. Nyquist plot for the nominal open loop transfer function and the real open loop
transfer function in presence of uncertainties and parameters variations (HOL and H’OL are
stable)
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where S(z-1) and R(z-1) are computed on the basis of Equation 2.6.3 for the nominal
values of A(z-1) and B(z-1).

In other words, the magnitude of S-1yp (e-j  function (evaluated in dB units),
obtained by symmetry from Syp (e-j (see Figure 2.32) gives, at each frequency, a 
sufficient condition for the accepted difference (computed as the Euclidian 
distance) between the real open loop transfer function and the nominal open loop
transfer function, in order to guarantee the stability of the closed loop.

This tolerance is higher at low frequencies (see Figure 2.32) where the gain of 
the open loop system is high (especially when an integrator is included), and it has
a minimum value at the frequency (or frequencies) where S-1yp (e-j reaches its
minimum (= M), that is the frequency where Syp (e-j  has the maximum value.

It is necessary to ensure that at these frequencies the plant model variations are 
compatible with the obtained modulus margin. If this is not the case, the solution is
to provide a more accurate model, or to modify the specifications in order to
maintain the closed loop stability.

Equation 2.6.6 expresses a robustness condition in terms of open loop transfer
function variations (controller + plant). It is interesting to express this robustness
condition in terms of the plant model variations only. Note that Equation 2.6.6 can 
be further expressed as
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where B(z-1)/A(z-1) corresponds to the nominal plant transfer function.
Multiplying by |S(z-1)/R(z-1)| both sides of Equation 2.6.7 one gets the

condition
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 (2.6.8) 

By plotting the inverse of the input sensitivity function magnitude, sufficient
conditions for tolerated (additive) variations (or uncertainties) of the plant transfer
function are obtained. The inverse of the magnitude of the input sensitivity
function is symmetric to the input sensitivity function magnitude in dB units with 
respect to the axis at 0 dB (see Figure 2.37). 

As plant model uncertainties at high frequencies are often present, one must
verify that the maximum of |Sup (e-j | at high frequencies is small. On the other
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hand, the input sensitivity function Sup is an effective image of the actuator stress 
in the frequency domain when disturbances act on the system. The physical
characteristics of the actuator often impose a bound on actuator stress at high
frequencies, and an upper bound of the maximum of |Sup (e-j | at these frequencies
should be imposed.

Notice that (from Equation 2.6.8) the admitted tolerances (neglecting the term
1/|R(z-1)|) depend to a large extent upon the relation between the open loop system 
poles (defined by A(z-1)) and the desired closed loop poles (defined by P(z-1)).

In order to understand this phenomenon in greater detail, Figure 2.38 shows the
Sup(z-1) magnitude functions for a plant model characterized by A(z-1)= 1 – 0.8 z-1;
B(z-1)= z-1 and for two different desired closed loop system characteristic
polynomials: P1(z-1)=1-0.6 z-1 and P2(z-1)=1-0.3 z-1 (the controller includes an 
integrator). Note that P2(z-1) corresponds to a closed loop system faster than the
one specified by P1(z-1), and both closed loop systems are faster than the plant 
(open loop system).

The |Sup(z-1)| maximum for P2(z-1) is greater than for P1(z-1), and then the
inverse of |Sup(z-1)| will be smaller. As a consequence, the accepted tolerances for
the frequency response variations (especially at high frequencies) are smaller in the
case of P2(z-1) with respect to the case of desired closed loop performances
imposed by P1(z-1).

|Sup|-1

|Sup| dB
Bounds on the actuator requirements

0 0.5fs

(Tolerance to additive uncertainties)

Figure 2.37. The input sensitivity function and its inverse



78 Digital Control Systems

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
-15

-10

-5

0

5

10

15
Input Sensitivity Function

M
ag

ni
tu

de
 (d

B
)

Frequency (f/fs)

P1 = 1 - 0.6z-1

P2 = 1 - 0.3z-1

Figure 2.38. Input sensitivity function for the plant model q-1 /(1 – 0.8 q-1) as a function of
the desired closed loop performances

Equation 2.6.8 gives a sufficient condition for the accepted (additive) tolerance
in terms of real plant transfer function parameters variations (or uncertainties) with 
respect to the nominal plant transfer function.

Moreover, we may be interested in the evaluation of the accepted relative 
tolerance with respect to the nominal plant transfer function magnitude. It follows
from Equation 2.6.8 that
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where Syb is the “noise-output sensitivity function” and Syr is the complementary
sensitivity function.

The noise-output sensitivity function Syb allows the definition of a frequency
“template” to ensure that the “delay margin” constraint is fulfilled. Let consider the
case of a delay margin sT1 .

It follows that
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and consequently
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Equation 2.6.9 becomes
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or in dB units
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Figure 2.39. Frequency template for the noise-output sensitivity function and ST
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This expression defines a frequency robustness template for the sensitivity
function Syb. This template corresponds to the frequency response of a digital
integrator and is represented in Figure 2.39.

As the modulus margin introduces a frequency template on the output
sensitivity function ( MeS j

yp )( ; 0 ), we are interested in finding

what template is introduced by the delay margin on | Syp|.
From Equations 2.5.14 and 2.5.17 it results that

 (2.6.14) )(1)( 11 zSzS ybyp

and by means of the triangle inequality it follows that

)(1)()(1 111 zSzSzS ybypyb  (2.6.15) 

Taking into account the frequency bound on Syb given by Equation 2.6.12, the
following condition is obtained :

11111 11)(11 zzSz yp  (2.6.16) 
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that leads to the robustness template on |Syp| represented in Figure 2.40.
Notice that, from the point corresponding to 0.17 fs , |Syp| must lie inside a 

region delimited by an upper and a lower bound and that, for frequencies below
0.17 fs, the frequency template for the modulus margin also assures the delay
margin constraint to be respected.

It is important to note that the template on Syp will not always guarantee the
desired delay margin (it is an approximation). If the condition on |Syb| is satisfied,
then the condition on |Syp| will also be satisfied. However, if the condition on |Syb|
is violated, this will not imply necessarily that the condition on |Syp| will also be
violated. In practice, the results obtained by using the template on the |Syp| are very 
reliable.

The following remark is important: the closed loop system robustness will be, 
in general, reduced when the closed loop system bandwidth is increased with
respect to the open loop system bandwidth. Conversely, for a relevant reduction of
the rise time for the closed loop system, with respect to the open loop system rise
time, a good estimation of the plant model is required (especially in the frequency
regions where |Syp(z-1)| is high).

As a consequence, robustness constraints can imply either a small reduction of
the closed loop system rise time (with respect to the open loop system rise time), or 
a controller design which takes into account the bounds on the sensitivity
functions.

An important challenge in control system design is the maximization of the
controller robustness for given performances. This is obtained by minimizing the
sensitivity functions maximum in the critical frequency regions.

2.7 Concluding Remarks 

Recursive (differences) equations of the form

 (2.7.1) 
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where u is the input, y is the output and d is the discrete-time delay, are used to
describe discrete-time dynamic models.

The delay operator q-1 [q-1 y(t) = y(t-1)] is a simple tool to handle recursive
equations. If the operator q-1 is used, the recursive Equation 2.7.1 takes the form
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where
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The input-output relation for a discrete-time model is also conveniently described
by the pulse transfer operator H(q-1):
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The pulse transfer function of a discrete-time linear system is expressed as function
of the complex variable (Ts = sampling period). The pulse transfer 
function can be derived from the pulse transfer operator H(q-1) by replacing q-1

with z-1.

ssTez

The asymptotical stability of a discrete-time model is ensured if, and only if, all 
pulse transfer function poles (in z) lie inside the unit circle. 

The order of a pulse transfer function is 

n = max (nA, nB + d)

In computer controlled systems, the input signal applied to the plant is held
constant between two sampling instants by means of a zero-order hold (ZOH). The
zero-order hold is characterized by the following transfer function:

s
esH

ssT

ZOH
1)(

Therefore, the continuous-time part of the system (between digital-to-analog
converter and the analog-to-digital converter) is characterized by the continuous-
time transfer function 

H' (s) = HZOH (s) . H(s)

where H(s) is the plant transfer function.
In computer controlled systems, the input signal applied to the plant at time t is

a weighted average of the plant output at times t, t-1, ..., t-nA+1, of the previous
input signal values at instants t-1, t-2, ..., t-nB-d, and of the reference signal at
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instants t, t-1,…, the weights being the coefficients of the controller. The
corresponding control law (controller RST) is written as 

S(q-1) u(t) = - R(q-1) y(t) + T(q-1) r(t) (2.7.2)

where u(t) is the control (input) signal to the plant, y(t) is the plant output and r(t)
is the reference.

The transfer function of the closed loop system (between the reference signal
and the plant output) that includes the digital controller of Equation 2.7.2 is given 
by
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where H(z-1) = B(z-1)/A(z-1) is the pulse transfer function of the discretized plant
(in this case B(z-1) may include possible delays).

The characteristic polynomial defining the closed loop system poles is given by

P(z-1) = A(z-1) S(z-1) + B(z-1) R(z-1)

The disturbance rejection properties on the output result from the output sensitivity
function frequency response
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Robust stability of the closed loop system, with respect to the plant transfer
function uncertainties or parameters variations, is essentially characterized by the 
modulus margin and the delay margin.

The modulus margin and the delay margin introduce frequency constraints on
the magnitude of the sensitivity functions. These constraints lead to the definition
of frequency robustness templates that must be respected.

The robust stability (or performance) of the closed loop system robustness, with 
respect to the plant transfer function uncertainties or parameters variations, 
depends upon the choice of the desired closed loop system performances
(bandwidth, rise time) with respect to the open loop system dynamics. A
significant reduction of the closed loop system rise time (or a significant
augmentation of the bandwidth of the closed loop system), compared to the open
loop system rise time (or bandwidth), requires a good estimation of the plant
model.

In order to ensure closed loop system robustness, when a good estimation of the
plant model is not available, or when large system parameters variations occur, the
closed loop system rise time acceleration, compared to the open loop system rise
time, must be moderate. However, some methods exist for maximizing the
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controller robustness with respect to plant model uncertainties (or parameters 
variations), for given nominal performance. 
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