
Chapter 2

Requirements Engineering
and Storyboarding

Good system engineering practice is vital to the successful development of

VR systems, more so than ordinary software systems because VR systems

have multifaceted requirements (not just to make correct computations). In

fact, a typical development process for VR systems will go through many

cycles of revisions, as there is a lack of design guidelines on how to effect-

ively integrate various resource-consuming computations and interactive

techniques.

Thus, in building a VR system, we must start with identifying and de-

scribing its requirements. Requirements [IEE94] are statements identifying a

capability, physical characteristic, or quality factor that bounds a product or

process need for which a solution will be pursued. Requirements refer to the

desired properties of the system and the constraints under which it operates

and is developed. Requirements should be documented and specified as

clearly as possible, for ease of revision and later maintenance. Although

requirements engineering is a difficult and cumbersome process, it should be

done at least for the important core part of the system. These descriptions

are best captured and maintained using computational support tools and

formalisms, but in actuality, even hand-drawn sketches and documents

(such as the storyboards) would be useful [Cim04].

Requirements may be functional or nonfunctional. Functional require-

ments describe system services or functions. Nonfunctional requirements are

constraints on the system or on the development process. There are many

ways to go about doing requirements engineering for a VR system. For

instance, we start with the functional requirements such as those about the

scenes, virtual objects comprising the scene, behaviors, and the style of

interaction.

Storyboarding is one way to start off the requirements engineering process.

A storyboard is a visual script designed to make it easier for the director and

cameraman to ‘‘see’’ the shots before executing them [Cri04]. It saves time

and money for the producer and is used for making movies, commercials, and

animation. There are structured ways to make storyboards, but for now,

informal sketches and annotations suffice for our purpose (See Figure 2.1).

14

The overall scenario, as represented in the simple form of sequences of

‘‘cuts’’ (or static scenes) in the storyboard, can be further refined and include

some dynamics. One useful method is to use the Message Sequence Dia-

grams (MSD) [DeM79], or use cases [Car98]. The MSD depicts typical

scenarios of internal and external behaviors of a VR world in terms of

sequences of data or control signals exchanged among objects in the system

(See Figure 2.4). Using the MSDs, one can test the system for later model

validation, but more importantly, it enables the developer to identify im-

portant objects in the system. Constructing MSDs also aids in identifying the

sequences of the messages among various objects and picturing how they

interact with one another. In particular, external devices can be treated as an

object for human–computer interaction. Object classes are then constructed

by examining the identified objects and grouping them according to the

commonality in their attributes.

Objects, better referred to as ‘‘virtual objects,’’ are the constituents of a

virtual environment through which the user will obtain the virtual experi-

ence. Although there is a natural mapping from virtual objects to the

‘‘objects’’ in the object-oriented programming paradigm, virtual objects are

rather just a modeling concept at least at this stage. As these virtual objects

are later implemented as ‘‘objects’’ in an object-oriented computational

platform (which would be a natural thing to do), they are interchangeably

Requirements,Story boards,
Message Diagrams

Class Diagram, Skeleton Codes,
Interobject Relationship, …

Program Implementation

Form
(geometries, physical
properties, structure)

Function/Behavior
(methods, specifications)

Static “Dead”
Virtual objects

(e.g., rock)

Dynamic
Virtual objects

(e.g., car)

Purely
Computational objects

(e.g., collision handling)

Figure 2.1. Modeling and implementing virtual objects in an object-oriented fashion.

Requirements Engineering and Storyboarding 15

referred to as both a modeling concept and a specific computational imple-

mentation. Virtual objects, for their physical connotation, indeed lend them-

selves naturally to the object-oriented system development methodology,

and this book chooses to illustrate the implementation details using the

object-oriented platform. Note that the object-oriented approach can

be used to model the concrete virtual objects and scenes they compose in

the VE, and to abstract various functional services required to execute and

manage them, for instance, device management, rendering control, object

and scene creation/consolidation/importing, event management and

communication, process management, and so forth. We use the Open-

SceneGraph [Ope04] and the SGI Performer1 to illustrate many of the

concepts explained in this book (actual code samples may be found on the

companion CD). OpenSceneGraph is an open-source high-performance 3D

graphics toolkit written entirely in standard Cþþ and OpenGL. SGI Per-

former is a popular commercial package for developing virtual reality

applications.

For a large-scale virtual environment with many sorts of objects, sketch-

ing a rough object class diagram can be useful. A class diagram shows the

existence of classes and their relationships in the logical and brief

view format. The standard class diagram notation such as that of the

Unified Modeling Language (UML) [Fow97] can be used. The diagram

includes association, aggregation, composition, and inheritance relation-

ships. Relationships provide a path for communication between objects. It

is important to begin the overall modeling process with a consistent view of

the object-orientation. With a clear picture of a system configuration

in terms of constituent objects and information flows between them,

the detailed specification behavior, function, and form for each object can

begin.

Virtual objects, just like physical objects, can be characterized by three

main aspects: the form, function and behavior. Form refers to the

outer appearance of virtual objects, and their physical properties and struc-

ture.2 We usually associate ‘‘appearance’’ with the visual sense (how it

looks), however, a form or appearance must be judged with respect to

ways it can stimulate humans through the display devices. Thus, form may

include appearances also in terms of audition, haptics (force feedback), and

other modalities that humans possess. For simplicity, we concentrate on the

visual part for now, but later in the book, we will talk about modeling and

simulation of nonvisual appearances. Other physical properties (which may

be required for physical simulation) such as mass, material property, vel-

ocity, and acceleration may be included as part of form information.

1 Performer is a registered trademark of Silicon Graphics, Inc. A free month-long
evaluation version of Performer is available at www.sgi.com.

2 Structure refers to the spatial/logical relationship among component objects in
the case where the given object is a composite one.

16 2. Requirements Engineering and Storyboarding

Function refers to encoding what virtual objects do (i.e., primitive tasks) to

accomplish their behavior (defined below), whether autonomously or in

response to some external stimuli or event, and behavior refers to how

individual virtual objects dynamically change and carry out different func-

tions over a (relatively long) period of time, usually expressed through states,

exchange of data/events, and interobject constraints. It is somewhat difficult

to clearly draw the line between function and behavior. Functions may be

viewed as primitive behaviors that are mostly atomic and taking a relatively

short amount of time. Separating them, nevertheless, is useful for modular

design of object dynamics. The description of objects, as part of a formal or

informal specification of the overall application or system, must address

these aspects. Note that there may be objects without form (purely compu-

tational objects such as device interfaces) or without function or dynamic

behavior (e.g., static nonmoving objects such as virtual rocks).

So, for instance, the form specification/description would start by captur-

ing the initial approximate shape/volume as well as the physical configur-

ation of those objects (e.g., a simple hand-drawn sketch will do). As the

description gets more mature and goes through a number of refinement

iterations, the objects could decompose into smaller components (e.g., by

breaking a car into its components, such as body, wheels, doors, etc.). Values

of important attributes (e.g., size, color, mass, object type, etc.) may be

added to this description as well. These descriptions are best captured and

maintained using computational support tools and formalisms, but in actu-

ality, hand-drawn sketches and documents (such as the storyboards) would

still prove useful. More detailed explanations of the modeling and initial

implementation process are given in Chapters 3 and 4.

Construction of virtual objects and their world often requires many

revisions, and changing one aspect of the world will undoubtedly affect

other aspects of it. For instance, different shapes and configurations (posi-

tions and orientations in space) can result in different dynamic behaviors.

A jet fighter has different aerodynamic characteristics from that of a passen-

ger airplane. Form can also affect functionality. For instance, two different

robots differing in size may have different work volumes and capabilities.

Such a development cycle is difficult to handle when working in a single level

of abstraction and considering these design spaces in isolation.

Object functions and behaviors can equally be described using tools as

primitive as plain text to more structured and diagrammatic representations

such as procedural scripts, state transition diagrams, data flow diagrams,

constraint languages, and the like. The choice of representation should be

based on the complexity and nature of the object behavior and also on

the type of behavior model supported by the VR development platform

(so that the description can be easily mapped to and implemented at a

later time). For instance, some game engines support state-based automata

to express and implement intelligence into objects. Less fancy VR develop-

ment platforms only support procedural programming for object behavior

Requirements Engineering and Storyboarding 17

implementations. See Chapter 4 for more details. Figure 2.1 illustrates this

initial modeling process as demonstrated in this book.

Another equally important functional requirement concerns user inter-

action. The storyboard and the MSD identify the important junctions and

events atwhichuser input is required.The task required tobe carriedoutby the

user should be refined to some degree and matched with the capabilities of the

hardware devices and computational power of the computing hardware. The

method of interaction modeling and interface design is treated in Chapter 5.

A related problem to interaction is the designation of the proper display

devices. Different display systems are suited for different tasks and situ-

ations. For instance, HMDs are more suited for close-range manipulation

tasks, whereas large projection displays are suited for navigation and walk-

through application. Whether to employ head-tracking, haptics, 3D sound,

and so on is an important interaction-related decision to make. Generally,

sensors and displays cannot be changed during their use. They are also

generally expensive, and one might not have the luxury of choosing the

best possible displays and sensors. A clever design of the contents can

overcome some of the limits introduced by low-end displays and sensors.

Thus, at an early stage, having a rough idea of the nature of the user tasks

and interactions (e.g., style of input and response to input) is helpful in

determining the right displays and sensors and in recognizing the limits and

bounds introduced by the hardware for providing a suitable level of presence

and usability. Also note that there may be interaction objects (those that are

purely functional such as device polling, or those also with form such as

menus) to consider as well. Putting the user in the center of the system design

process is very important as many VR systems fail simply because they are

not user friendly.

The important nonfunctional requirements to consider at this stage are

requirements for the overall system performance and device constraints. The

performance requirement is rather simple. A virtual reality system is a real-

time system, and must make computations for simulations, synchronize its

output with various input devices, and maintain display updates at a rate at

which human users will feel comfortable. For instance, for smooth computer

graphic animations, the simulation for updates should be made at about at

least 15 � 20 times per second. Other input or display devices may require

different timing requirements (for instance, haptic equipments ideally re-

quire an update rate of up to 1000 Hz for delivery of smooth force feed-

back). Note that 1/15th second is an amount relative to the capability of the

computational and graphics hardware. Thus, if the functional requirement

cannot be accommodated by the nonfunctional constraints such as the

performance bounds or the devices, they have to be addressed in some

way, either by making a business decision to purchase the appropriate

equipment or later by designing to overcome the resulting distraction factors

through clever content psychology. The important thing is that this be

known in the early design stage.

18 2. Requirements Engineering and Storyboarding

Finally, a developer needs to understand, once again, that making these

requirements and implementing them is an iterative process, starting from a

rough picture and being refined stage by stage. To what degree should the

requirements and implementation be done? That depends on the discretion

of the developer.

Example: Ship Simulator Design

We illustrate this initial modeling process more concretely by illustrating

the design of a simple virtual ship simulator. The objective of the example

application is to assist trainees to navigate in and out of the pier and anchor

without colliding with other vessels or the coast. Figure 2.2 lists the initial

requirements for the simulator. Given these high-level goals and informal

requirements of the system, we start with sketches of the storyboards as

shown in Figure 2.3.

Requirements (Level 1)

• The virtual ship simulator (named Ship Simulator) helps users (named User)
operate a vessel (named My Ship) and practice docking without colliding with
other vessels (named Other Ship) or the coast.

• Initial View

– The default view (named Camera) is the scene as seen from the control
bridge where the User controls its ship (MyShip). The User can see the
outside environment through the windows in the bridge.

• Interaction

– The control bridge includes a steering wheel (named Steering Wheel) and
an engine lever (named EngineTelegraph) for the User to steer and control
the velocity of the My Ship.

– The User can look around the interior of the bridge and change its view
named Camera).

– The basic mode of control via keyboard (named Keyboard) and mouse
(named Mouse) must be supported. Ship Simulator shall accept input from
the Keyboard to control My Ship.

• Models

– The bridge includes a steering wheel (named Steering Wheel) and an engine
lever (named Engine Telegraph).

– The scene must also include object models for sky, sea, other ship, terrain,
and pier.

• Simulation

– Ship Simulator controls several automatically navigated vessels
(Other Ship).

– Othership’s initial positions and moving directions are chosen randomly.

– Otherships change their speed and directions every 10 seconds.

Figure 2.2. The initial requirements for the virtual ship simulator.

Example: Ship Simulator Design 19

Helpful Info. in text

Gauges and dials

Window to
outside scene

Direction Handle

Velocity Control

Figure 2.3(a). The default starting view of the ShipSimulator. The interior of the

control bridge is seen with the steering wheel, engine lever, outside view, and gauges.

The User can look around the control bridge.

Figure 2.3(b). The external view of Figure 2.3a. A number of ships (including

MyShip) move around the sea. This view can be selected by separate keyboard/

mouse control.

20 2. Requirements Engineering and Storyboarding

Figure 2.3(c). As the User steers the ship using the handle (named SteeringWheel),

the scene through the window is changed accordingly.

Figure 2.3(d). The external view of Figure 2.3c.

Example: Ship Simulator Design 21

Figure 2.3(e). As the User manipulates the engine lever (named EngineTelegraph) and

controls the velocity of MyShip, the scene through the window changes accordingly.

Figure 2.3(f). The external view of Figure 2.3e.

22 2. Requirements Engineering and Storyboarding

As shown in this simple storyboard, the three major objects are identified

first: the trainee vessel (called MyShip), other automatically controlled

vessels (called OtherShip), and the central simulation control module (called

ShipSimulator). MyShip is composed of, among other things, SteeringWheel

and EngineTelegraph (the user interface for vessel control). We also identify

an interface object: the Keyboard (for various ship and training control

functions) and an object representing the camera position, Camera.

The specification starts by creating simple scenarios using the MSD as

depicted in Figure 2.4. Figure 2.4a is the first simple example of the MSD, a

trainee interaction scenario for ‘‘looking around’’ on the control bridge.

When the User enters a key, it is stored by the interface object Keyboard,

and the User checks what kind of keys were pressed (e.g., ‘‘z’’ for looking to

the left), and the Camera is updated accordingly. A similar interaction

scenario is given in Figures 2.4b and c where the User communicates to

the Keyboard (pressing the up/down/left/right arrow keys) to control the

speed and the course of MyShip. In Figure 2.4d, the OtherShip sets its own

initial position and direction in a random fashion and changes its speed and

direction periodically every 10 second.

An initial class definition (with major functionalities specified based on

the content of the messages exchanged) and the class diagram is designed

as depicted in Figure 2.5. Figure 2.5 shows the simplified class diagram

created by constructing various MSDs. Notice that the interaction object

user

press a key

:Keyboard :Camera

store
the key value

iterate when
the user presses a key

user pressed the"z" key?

yes
update view

same process
for the "c" and "x" keys

iterate until
the simulation ends

(a)

Figure 2.4(a). MSD for simple keyboard-based view control.

Example: Ship Simulator Design 23

user

press a key

:Keyboard :Myship

store
the key value

iterate when
the user presses a key

user pressed
the "up arrow" key?

yes
update velocity

same process
for the "down arrow" key

iterate until
the simulation ends

(b)

user

press a key

:Keyboard :Myship

store
the key value

iterate when
the user presses a key

user pressed
the "left arrow" key?

yes
update course

same process
for the "right arrow" key

iterate until
the simulation ends

(c)

Figure 2.4(b),(c). MSD for controlling MyShip’s velocity and direction using the

arrow keys.

24 2. Requirements Engineering and Storyboarding

Keyboard and the ShipSimulator are purely ‘‘functional’’ without any form.

As noted, the relations between classes are clarified at this stage of the

modeling. A trainee can operate MyShip through Keyboard, then MyShip

changes Camera. He or she can also change the orientation of Camera

through Keyboard but the change in Camera does not affect MyShip. This

initial class diagram will be subject to revision during the next phases of

development.

aship:othership

determine the initial
position and orientation

determine the new
speed and course

iterate every 10 seconds
until the simulation ends

Figure 2.4(d). MSD for initializing and updating an instance of an OtherShip.

Ship Simulator

OtherShip

MyShip

CameraKeyboard

Steering Wheel

Engine Telegraph

1
1

1 1

1

1 1

0..n

1

1
1

1

1 1

Figure 2.5. An initial class definition for the ship simulator.

Example: Ship Simulator Design 25

Summary

VR system design starts with listing the requirements and carefully analyzing

them as to whether virtual reality is even needed in the first place. The

requirements must be centered around the user’s expectation and capabil-

ities. For instance, an experience-oriented requirements will result in a

system with emphasis on presence, whereas a task-oriented requirements

will place emphasis on efficient interaction. Based on the requirements, the

overall scenario can be constructed using storyboards. ‘‘Virtual’’ objects that

make up the scene are identified and the basic specifications for their form,

function, and behavior should be made. Other aspects of the system such as

device constraints, interaction, major special effects, and presence cues are

also noted in this early stage of system development. Major interobject

relationships are made more explicit by drawing class diagrams and message

sequence diagrams.

Pondering Points

. Characterize the form, function, and behavior for a virtual human, virtual

rock, virtual airplane, and virtual wind.

. What are possible barriers to making a VR system run in real-time?

. Make a case for, and against, carrying out requirements engineering

at all.

. Make a case for, and against, using abstract formalism, support tools,

or even documentation for requirements and system specifications.

. Is the object-oriented paradigm most fitting for implementing VR

systems?

. Can having too many interaction points in the VR content be detrimental

to inducing a good convincing virtual experience?

. In achieving the intended level of virtual experience, how can one make a

good decision, for instance, between purchasing a special device for the

increased effect, and staying with the less capable one and overcoming its

shortcoming using other tricks?

26 2. Requirements Engineering and Storyboarding

