
 

1. Adaptive Filtering 

Adaptive filters represent a significant part of the subject of statistical signal 
processing upon which they are founded. Historically, the parametric approach has 
been the main engineering approach to signal processing and is based on a priori 
models derived from scientific knowledge about the problem. At the other extreme, 
the alternative nonparametric approach is based on the use of more general models 
trained to replicate desired behaviour using statistical information from 
representative data sets. Adaptive filters are actually based on an approach which is 
somewhere in between these two extremes. When a priori knowledge of a dynamic 
process and its statistics is limited then the use of adaptive filters can offer 
performance improvements over the more conventional parametrically based filter 
designs. Furthermore, they can offer other signal processing benefits that would not 
be possible otherwise. Consequently, adaptive filters have found application in 
diverse fields including communications, controls, robotics, sonar, radar, 
seismology and biomedical engineering to name but a few. 

Filtering in the most general terms is a process of noise removal from a 
measured process in order to reveal or enhance information about some quantity of 
interest. Any real data or signal measuring process includes some degree of noise 
from various possible sources. The desired signal may have added noise due to 
thermal or other physical effects related to the signal generation system, or it may 
be introduced noise due the measuring system or a digital data sampling process. 
Often the noise is a wide-sense stationary random process (has a constant finite 
mean and variance, and an autocorrelation function dependent only on the 
difference between the times of occurrence of the samples), which is known and 
therefore may be modelled by a common statistical model such as the Gaussian 
statistical model. It may also be random noise with unknown statistics. Otherwise, it 
may be noise that is correlated in some way with the desired signal itself. The so-
called filtering problem can be identified and characterised more specifically by the 
terms filtering, smoothing, prediction (Haykin 1996) and deconvolution (Hayes 
1996). 

 
1. Filtering, strictly means the extraction of information about some quantity 

of interest at the current time t by using data measured up to and including 
the time t.  
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2. Smoothing, involves a delay of the output because it uses information 
extracted both after and before the current time t to extract the 
information. The benefit expected from introducing the delay is more to 
do with accuracy than filtering. 

 
3. Prediction, involves forecasting information some time into the future 

given the current and past data at time t and before. 
 
4. Deconvolution, involves the recovery of the filter characteristics given the 

filter’s input and output signals. 
 
Filters can be classified as either linear or nonlinear types. A linear filter is one 

whose output is some linear function of the input. In the design of linear filters it is 
necessary to assume stationarity (statistical-time-invariance) and know the relevant 
signal and noise statistics a priori. The linear filter design attempts to minimise the 
effects of noise on the signal by meeting a suitable statistical criterion. The classical 
linear Wiener filter, for example, minimises the Mean Square Error (MSE) between 
the desired signal response and the actual filter response. The Wiener solution is 
said to be optimum in the mean square sense, and it can be said to be truly optimum 
for second-order stationary noise statistics (fully described by constant finite mean 
and variance). For nonstationary signal and/or noise statistics, the linear Kalman 
filter can be used. Very well developed linear theory exists for both the Wiener and 
Kalman filters and the relationships between them. 

When knowledge of the signal and noise statistics is unavailable a priori it is 
still possible to develop a useful filter by using a recursive algorithm to adjust the 
filter parameters based on the input data stream. This is what an adaptive filter 
does. If the signal and noise statistics are stationary then the adaptive filter would 
be expected to eventually converge to the optimum Wiener solution. If they are 
nonstationary then the adaptive filter tracks them if they vary at a sufficiently slow 
rate. The adaptation rate must be faster than the rate of change in statistics to 
maintain tracking. The parameters of an adaptive filter are updated continuously as 
the data flows through it; therefore the adaptive filter is strictly a nonlinear system. 
However, it is common to distinguish linear and nonlinear adaptive filters. A linear 
adaptive filter is one whose output is some linear combination of the actual input at 
any moment in time between adaptation operations. A nonlinear adaptive filter does 
not necessarily have a linear relationship between the input and output at any 
moment in time. Many different linear adaptive filter algorithms have been 
published in the literature. Some of the important features of these algorithms can 
be identified by the following terms (Haykin 1996), 

 
1. Rate of convergence - how many iterations to reach a near optimum 

Wiener solution. 
 
2. Misadjustment - measure of the amount by which the final value of the 

MSE, averaged over an ensemble of adaptive filters, deviates from the 
MSE produced by the Wiener solution. 
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3. Tracking - ability to follow statistical variations in a nonstationary 
environment.  

 
4. Robustness - implies that small disturbances from any source (internal or 

external) produce only small estimation errors.  
 
5. Computational requirements - the computational operations per iteration, 

data storage and programming requirements. 
 
6. Structure - of information flow in the algorithm, e.g., serial, parallel etc., 

which determines the possible hardware implementations. 
 
7. Numerical properties - type and nature of quantization errors, numerical 

stability and numerical accuracy.  
 
The filters described so far may be referred to as classical adaptive filters in so 

far as they draw upon theory and methods extending from classical Wiener filter 
theory. A nonclassical approach to adaptive filtering is one that does not rely so 
much on linear modelling techniques. Artificial neural networks, fuzzy logic, and 
genetic algorithms have come to prominence in more recent years and are described 
more as learning systems and belong to the family of  CI methods. These employ a 
range of nonlinear learning techniques that are not dependent on such strict 
assumptions about either the process model or process statistics. Nevertheless, they 
can still often be adapted in whole or in part by some form of a gradient descent 
algorithm (Principe et al 2000) that attempts to minimise a mean square error 
function, not unlike the classical adaptive filters. 

1.1 Linear Adaptive Filters 

A linear adaptive filter system filters a sequence of input data by controlling its 
adjustable parameters via an adaptive process. The choice of filter structure is a 
very important part of the system. There are three main types of structures 
commonly used (Haykin 1996), 

 
1. Transversal structure (tapped delay line) - similar to the linear FIR filter 

structure.  
 
2. Lattice predictor - a modular structure with a lattice appearance. 
 
3. Systolic array - a parallel computing network ideally suited for mapping 

important linear algebra computations such as matrix multiplication, 
triangulation, and back substitution. 

 
Of these the transversal structure, although not necessarily the most efficient, is  
very successfully employed for many practical systems. It forms the basis of the 
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Finite Impulse Response (FIR) discrete-time filter (Loy 1988). The terms 
associated with this filter structure are defined more thoroughly in later Chapters 
but for now it is sufficient to say that given an input sequence set of discrete real 
numbers {x[n]}, where n is an integer index value, the output sequence y[n] of a 
Mth order FIR filter is defined by Equation 1.1 and depicted in Figure 1.1. The 
index value n represents the current discrete-time instant, and n - k represents the 
previous kth instant, i.e., delayed by k instants.   
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where: 
b[k] are the fixed filter coefficients that define the filter’s characteristics.  
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Figure 1.1.  FIR Transversal Structure 
 
To design a real FIR filter, Equation 1.1 must be converted into realisable 

blocks, including a means for obtaining a delayed version of the input sequence 
x[n], a means for multiplying input signal values in the delay line by the filter 
coefficients, ][kb , and a means for adding the scaled sequence values. The FIR 
filter is completely defined once the coefficients of the filter are known. For 
example, if the filter coefficients are the set { } { }1,2,1,3][ −=kb  then this represents 
a third order (M = 3) FIR filter, having a tap length of four. Here, a tap is simply a 
tap-off point in a serial delay line. The equation for this example filter can be 
expanded into a four-point (4-tap) difference equation defined by Equation 1.2. 
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The general direct-form realisation of a FIR filter using basic computational 
elements is depicted in Figure 1.1 with the tapping points shown with black dots. 
Notice that the input sequence x[n] flows through the delay line continuously and 
uniformly step by step producing another output value y[n] at each integer step, 
indefinitely. This filter can be made into an adaptive filter by the addition of a 
suitable adaptation mechanism that is capable of sensibly adapting the coefficients 
b[n] progressively at each time step based on some real-time data information. 
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1.1.1 Linear Adaptive Filter Algorithms 

No unique algorithmic solution exists for linear adaptive filtering problems. There 
are various algorithms and approaches that may be used depending on the 
requirements of the problem. However, there are two main approaches to the 
development of recursive adaptive filter algorithms (Haykin 1996), 

 
1. The Stochastic Gradient Approach - uses a tapped delay line or 

transversal structure. The relation between the tap weights and the mean 
square error between the desired and actual filter output is a multi-
dimensional paraboloid (quadratic) error function with a uniquely defined 
minimum, representing the optimum Wiener solution. This solution can be 
found by the well-established optimisation method called steepest descent, 
which uses the gradient vector to gradually descend step by step to the 
minimum of the error function. The so-called Wiener-Hopf equations, in 
matrix form, define this optimum Wiener solution. A simpler way to do 
this is with the Least Mean Squares (LMS) algorithm, invented by B. 
Widrow and M. E. Hoff Jr in 1959. It is a modified system of Wiener-
Hopf equations and is used to adapt the filter weights toward the 
minimum. This algorithm estimates the gradient of the error function from 
instantaneous values of the correlation matrix of the tap inputs and the 
cross-correlation vector between the desired response and the tap weights. 
The LMS algorithm is very simply and elegantly defined by Equation 1.3. 

w[k+1] = w[k] + 2η e[k] x[k] (1.3)

where: 
η = learning rate parameter. 
e[k] = scalar error (desired output minus the actual output).  
x[k] = [ x1, x2,...., xp]T, the tap vector at time instance k. 
w[k] = [ w1,w2,..., wp]T, the tap weight matrix at time instance k. 
  

A problem with the LMS algorithm is that it is slow to converge and is 
dependent on the ratio of the largest to smallest eigenvalue of the 
correlation matrix of the tap inputs. The higher the ratio, the slower the 
convergence. Nevertheless, it is very popular and the most widely used 
learning algorithm, which under the right conditions can perform very 
adequately. Its tracking behaviour is said to be model-independent and 
consequently it exhibits good tracking behaviour. 

A lattice structure can also be used with the gradient approach in 
which case the resulting adaptive filtering algorithm is called the Gradient 
Adaptive Lattice (GAL).  

 
2. Least Squares Estimation (LSE) - minimises an objective, or error, 

function that is defined as the sum of weighted error squares, where the 
error or residual is defined as the difference between the desired and actual 
filter output as before. LSE can be formulated in two important ways, with 
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block estimation or recursive estimation approaches. In block estimation 
the input data sequence is arranged in blocks of equal time length and 
processing proceeds block by block. In recursive estimation the processing 
proceeds sample by individual time sample. Recursive estimation is more 
popular because it typically requires less data storage overhead than block 
estimation.  Recursive Least Squares (RLS) can be seen as a special case of 
the well known Kalman filter, which itself is a form of LSE. The Kalman 
filter uses the idea of state, where state represents a measure of all the 
relevant inputs applied to the filter up to and including a specific instance 
in time. In the most general terms the Kalman filtering algorithm can be 
defined by Equation 1.4. 

s[k+1] = s[k] + K(k) i[k] (1.4)

where: 
K(k) = the Kalman gain matrix at instance k. 
i[k] = the innovation vector at instance k. 
s[k]  = the state at instance k. 

 
The innovation vector i[k] in Equation 1.4 contains the new information (being the 
observed new data at time k less its linear prediction based on observations up to 
and including time k-1) that is presented to the filter at the time of the processing 
for the instance k. As there is a one-to-one correspondence between the Kalman and 
RLS variables it is possible to learn useful ideas for RLS from the vast Kalman 
filter literature. There are three main categories of RLS depending on the specific 
approach taken (Haykin 1996), 

 
1. The Standard RLS Algorithm - uses a tapped delay line or transversal 

structure. Both the RLS and Kalman algorithms rely on the matrix 
inversion lemma, which results in lack of numerical robustness and 
excessive numerical complexity. The next two categories address these 
problems. 

 
2. Square-root RLS Algorithms  - linear adaptive filter approaches based 

on QR-decomposition of the incoming data matrix and they represent the 
square-root forms of the standard RLS algorithm. The QR-decomposition 
can be performed by the Householder transformation and the Givens 
rotation, which are both numerically stable and robust data-adaptive 
transformations.   

 
3. Fast RLS Algorithms - by exploiting the redundancy in the Toeplitz  

structure of the input data matrix (a matrix where all the elements along 
each of its diagonals have the same value) and through use of linear least 
squares prediction in both the forward and backward direction the 
standard and square-root RLS algorithms can be reduced in computational 
complexity from O(M2) to O(M), where M is the number of adjustable 
weights and O(.) denotes “the order of.” This reduction in computational 
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complexity is welcomed for hardware realisations. There are two types of 
fast RLS algorithms depending on the structure used (Haykin 1996), 

 
1.  Order-recursive Adaptive Filters - make linear forward and 

backward predictions using a lattice like structure. These can be 
realised in numerically stable forms. 

 
  2. Fast Transversal Filters - where the linear forward and backward  

   predictions are done with separate transversal filters. These suffer  
   from numerical stability problems and they require some form of  
   stabilisation for practical implementations.   

 
The tracking behaviour of the family of RLS algorithms, unlike the LMS algorithm, 
are model-dependent and therefore their tracking behaviour can be inferior to the 
stochastic gradient approach unless care is taken to choose an accurate model for 
the underlying physical process producing the input data. 

1.2 Nonlinear Adaptive Filters 

The linear adaptive filters discussed above are all based on the minimum mean 
square error criterion, which results in the Wiener solution for wide sense stationary 
statistics. This means that these filters can only relate to the second-order statistics 
of the input data and are strictly only optimum for Gaussian, or at least 
symmetrical, statistics. It is a fortunate happenstance that these types of filters have 
been found to be useful for statistics that deviate from this Gaussian ideal. If the 
input data has non-Gaussian statistics, where the Wiener solution is not guaranteed 
to be optimum, it is necessary to incorporate some form of nonlinearity in the 
structure of the adaptive filter to deal adequately with the higher-order statistical 
information. Although this will improve the learning efficiency it will be at the 
expense of more complex mathematical analysis of the problem. One important 
type of nonlinear adaptive filter is the adaptive Volterra filter. 

1.2.1 Adaptive Volterra Filters 

The adaptive Volterra filter can be seen as a kind of polynomial extension to the 
linear adaptive filter. It includes a zero order Direct Current (DC) offset term, a 
first-order linear term, and then a number of higher order terms starting with the 
second-order quadratic terms, third-order cubic terms and so on to some chosen 
order. In practice the Volterra filter is often implemented only up to quadratic or 
cubic order and rarely higher because of the huge increase in computational 
complexity beyond that, especially for high input dimensions. 
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1.3 Nonclassical Adaptive Systems 

Three types of nonclassical adaptive systems that do not rely on linear modelling 
techniques are Artificial Neural Networks (ANNs), Fuzzy Logic (FL) and Genetic 
Algorithms (GAs). All these types of systems can be classified as nonlinear 
learning structures. Some forms of ANNs are similar to the classical adaptive 
systems in that they do have a set of parameters that are optimised based on the 
minimisation of a scalar quadratic error function. To some extent, fuzzy logic 
systems also have the same kind of similarity as they can be integrated with ANNs 
to produce hybrid adaptive systems. On the other hand genetic algorithms are 
different in their form and function although they do have various types of 
adaptation, or learning mechanisms designed to search, if not for optimal then at 
least better states. 

1.3.1 Artificial Neural Networks  

ANNs are a type of massively parallel computing architecture based on brain-like 
information encoding and processing models. The particular class of supervised 
training or learning ANNs have a similar external form as the linear adaptive filter. 
That is, there is a desired output behaviour that the ANN tries to learn as it is 
exposed to input training data and then it tries to generalise that behaviour after 
training. In this form ANNs offer the following advantages for adaptive filter 
applications, 

 
1. Ability to learn the model of almost any continuous (and preferable 

differentiable) nonlinear physical process given sufficient input-output 
data pairs generated from that process. 

 
2. Ability to accept weak statistical assumptions about the process. 
 
3. Ability to generalise its learning to new data after initial training. 
 
4. VLSI implementation in a massively parallel structure that is fault tolerant 

to hardware failure of some of the circuits because of the inherent 
redundancy. 

 
ANNs, although theoretically able to model linear processes, are less useful for 

this purpose and should not be used for linear modelling. The well-established 
linear design methods are easier to use and analyse. The major disadvantage of 
ANNs is that it is much harder to specify and analyse their application to specific 
problems. Since the process model is developed from a limited set of training input-
output data pairs a degree of uncertainty may exist about the bounds of 
applicability of the ANN solution. The training data may not be fully representative 
of the process and may not contain rare but very significant samples that are critical 
to the system’s success.   
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1.3.2 Fuzzy Logic  

Initially fuzzy logic was conceived of as a better method for sorting and handling 
data but has since proven to be good for control applications because it effectively 
mimics human control logic. It uses an imprecise but very descriptive language to 
deal with input data more like a human operator does and it is very robust and 
forgiving of operator and data input error. FL can be implemented in hardware, 
software, or a combination of both. 

FL is based on the idea that although people do not require precise numerical 
information input, they are still capable of highly adaptive control functionality. 
Therefore, it is reasonable to assume that if feedback controllers could be 
programmed to accept noisy, imprecise inputs, they may be much more effective 
and perhaps easier to implement. FL uses a simple rule-based approach, such as “IF 
A AND B THEN C,” to control problems as opposed to a strict system model 
based approach. In that sense a FL model is empirically-based, built by a designer’s 
experience rather than on his/her technical understanding of the system. The design 
is based on imprecise terms such as “too cool,” “add heat,” etc. that are descriptive 
rather than numerically specific. For instance, if a person was trying to regulate the 
temperature of a shower they might just increase the hot water tap a little if they felt 
it was too cool and then adjust again if it still was not satisfactory.  FL is capable of 
mimicking this type of behaviour but at a much higher rate than a human can do it. 

1.3.3 Genetic Algorithms 

Genetic algorithms represent a learning or adaptation method based on search that 
is analogous to biological evolution and can be described as a kind of simulated 
evolution. The interest in GAs lies in the fact that evolution is known to be a 
successful and robust method for biological adaptation. GAs can be seen as general 
optimisation mechanisms that are not guaranteed to find strictly “optimum” 
solutions but they often succeed in finding very suitable solutions. They are very 
useful not only for machine learning problems including function approximation 
and learning network topologies but also for very many other types of complex 
problems. In their most common form GAs work with hypotheses that may be 
described by symbolic expressions, computer programs, specific model parameters,  
collections of rules, and so on. They are useful in applications where hypotheses 
contain complex interacting parts, where the impact of each part on overall 
hypothesis fitness may be difficult to understand or model. GAs can also take 
advantage of parallel computer hardware since they lend themselves to 
computational subdivision into parallel subparts. 

When the hypotheses are specifically computer programs the evolutionary 
computing process is called Genetic Programming (GP), where GP is a method for 
automatically creating computer programs. It starts from a high-level statement of 
what needs to be done and uses the Darwinian principle of natural selection to 
breed a population of improving programs over many generations (Koza et al 
2003). Given a collection or population of initial hypotheses the search for an 
acceptable hypothesis proceeds from one generation to the next by means of 
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operations inspired by processes in biological evolution such as random mutation 
and crossover. A measure of “fitness” is required to evaluate the relative worth of 
the hypotheses in each generation. For each generation the most “fit” hypotheses 
are selected probabilistically as seeds for producing the next generation by 
mutating and then recombining their components. 

What makes GAs very special is that very little design effort is required to make 
transitions to new problem solutions within a given domain or even new problems 
from a completely different domain. In this sense GAs can truly be classified as 
intelligent in a broader sense because they can provide solutions through a generic 
approach that can rival solutions produced by human intelligence.   

1.4 A Brief History and Overview of Classical Theories 

It is both interesting and instructive to consider a brief history of the related areas 
of linear estimation theory, linear adaptive filters, adaptive signal processing 
applications and adaptive control. The following historical summary is according to 
Haykin (Haykin 1996) and the view of Åström and Wittenmark (Åström and 
Wittenmark 1995). It is not in any sense complete but it is sufficient to provide a 
suitable structure to relate the fundamentally important discoveries and techniques 
in these areas. Some, but not all, of the most significant techniques mentioned 
below are more fully developed and analysed in later Chapters.  

1.4.1 Linear Estimation Theory 

Galileo Galilei, in 1632, originated a theory of estimation, which he developed to 
minimise various functions of errors. However, it was Gauss who was given credit 
for the development of linear estimation theory. This was based on his invention of 
the method of least squares that he developed in 1795 to study the motion of 
heavenly bodies. Legendre invented the method of least squares independently of 
Gauss and actually published before Gauss in 1805 and was therefore subsequently 
given equal credit for the invention.  

In the late 1930s and 1940s Kolmogorov and, Krein and Wiener originated the 
first studies of minimum mean square estimation in connection with stochastic 
processes. In 1939 Kolmogorov (Kolmogorov 1939) developed a comprehensive 
treatment of the linear prediction problem for discrete-time stochastic processes. In 
1945 Krein (Krein 1945) subsequently extended Kolmogorov’s results to 
continuous-time by using a bilinear transformation. By 1949 Wiener (Wiener 
1949), working independently of either Kolmogorov or Krein, had formulated the 
continuous-time linear prediction problem but in a different context to the other 
two. He derived an explicit formula for the optimum predictor as well as solving 
the filtering problem of estimating a process corrupted by added noise. This 
required the solution of the integral equation known as the Wiener-Hopf equation, 
which was developed in 1931. 
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In 1947 Levinson (Levinson 1947) formulated the Wiener filtering problem in 
discrete-time in the form of a transversal filter structure as expressed by matrix 
Equation 1.5. 

Rw0 = p (1.5)

where: 
R  =  autocorrelation matrix of the tap inputs. 
w0 = tap-weight vector of the optimum Wiener filter solution. 
p   =  the cross-correlation vector between the tap inputs and the desired output. 
 

For the special case of stationary inputs R takes the form of a Toeplitz structure, 
which allowed Levinson to derive a recursive procedure for solving the matrix 
Equation 1.5. Later in 1960 Durbin (Durbin 1960) rediscovered Levinson’s 
procedure when he used it for recursive fitting of autoregressive time-series models. 

Both Wiener and Kolmogorov assumed that the stochastic process was 
stationary and that there would be an infinite amount of data available. Other 
researchers in the 1950s generalised the Wiener and Kolmogorov filter theory for 
finite observation intervals and for nonstationary processes. However, these 
solutions were found to be complex and difficult to apply to the prevailing 
application of satellite orbit estimation. In 1960 Kalman (Kalman 1960) achieved 
considerable fame with his Kalman filter algorithm, which seemed to be very 
suitable for the dynamical estimation problems of the new space age. Kalman’s 
original filter was developed for discrete-time processes. A year later in 1961, in 
conjunction with Bucy, he also developed it for the continuous-time case (Kalman 
and Bucy 1961).  

Over the period from 1968 to 1973 Kailath reformulated the solution to the 
linear filtering problem by using the so called “innovations” approach, which was 
first introduced by Kolmogorov in 1941. The term “innovation” conveyed the idea 
of new information that is statistically independent of past samples of the process, 
i.e., orthogonal to the linear estimate given all the past data samples. 

1.4.2 Linear Adaptive Filters 

From earlier work in the 1950s the LMS algorithm for adaptive transversal filters 
emerged in 1959. It was developed by Widrow and Hoff for their ADALINE 
pattern recognition system (Widrow and Hoff 1960). The LMS algorithm is a 
stochastic gradient algorithm and is closely related to the concept of stochastic 
approximation developed by Robins and Monro (Robins and Monro 1951). The 
GAL algorithm was developed by Griffiths around 1977 and is only structurally 
different from the LMS algorithm. In 1981 Zames (Zames 1981) introduced the so 
called H∞ norm (or minimax criterion) as a robust index of performance for solving 
problems in estimation and control. Subsequently, it was shown by Hassibi et al  
(Hassibi et al 1996) that the LMS algorithm is optimum under this new H∞ criterion 
and thereby proving that its performance is robust. In 1965 Lucky (Lucky 1965) 
introduced a zero-forcing algorithm alternative to the LMS algorithm for the 
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adaptive equalisation of communication channels, which also used a minimax type 
of performance criterion. 

The family of RLS algorithms saw its beginnings with the work of Placket 
(Placket 1950). After much work by many researchers, in 1974 Godard (Godard 
1974) presented the most successful application of the Kalman filter theory used to 
derive a variant of the RLS algorithm. It wasn’t until 1994 that Sayed and Kailath 
(Sayed and Kailath 1994) exposed the exact relationship between the RLS 
algorithm and Kalman filter theory opening the way for the full exploitation of the 
vast literature on Kalman filtering for solving linear adaptive filtering problems. 
They showed that QR-decomposition-based RLS and fast RLS algorithms were 
simply special cases of the Kalman filter. 

1.4.3 Adaptive Signal Processing Applications 

Five significant applications of linear adaptive signal processing are, 
 
 1. Adaptive equalisation. 
 
 2. Speech coding. 
 
 3. Adaptive spectrum analysis. 
 
 4. Adaptive noise cancellation. 
 
 5. Adaptive beamforming. 
 
Adaptive equalisation of telephone channels to minimise data transmission 

intersymbol interference was first developed by Lucky in 1965 (Lucky 1965). He 
used his minimax criterion based zero-forcing algorithm to automatically adjust the 
tap weights of a transversal equaliser by minimising what he called the peak 
distortion. This pioneering work by Lucky spearheaded many other significant 
contributions to the adaptive equalisation problem. In 1969, Gerosho and Proakis, 
and Miller independently reformulated the adaptive equaliser problem using a mean 
square-error criterion. In 1978 Falconer and Ljung (Falconer and Ljung 1978) 
developed a simplifying modification to a Kalman based algorithm, for adaptive tap 
adjustment, derived by Godard in 1974. This simplification reduced the 
computational complexity of Godard’s algorithm to that comparable with the LMS 
algorithm. Satorius, Alexander and Pack in the late 1970s and early 80s showed the 
usefulness of lattice-based algorithms for adaptive equalisation. 

Linear Predictive Coding (LPC) was introduced and developed for the problem 
of speech coding in the early 1970s by Atal and Hanauer. In LPC the speech 
waveform is represented directly in terms of time-varying parameters related to the 
transfer function of the vocal tract and excitation characteristics. The predictor 
coefficients are determined by minimising the mean square error between actual 
and predicted speech samples. Although a lattice structure for the linear prediction 
problem was developed by a number of investigators it was Saito and Itakura who 
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were credited with the invention in 1972. They were able to show that the filtering 
process of a lattice predictor model and an acoustic tube model of speech were 
identical.  

From the time when Schuster invented the periodogram for analysing the power 
spectrum of a time-series in 1898 until 1927 it was the only numerical method 
available for spectrum analysis. In 1927 Yule (Yule 1927) introduced a new 
approach based on the concept of a finite parameter model for a stationary 
stochastic process. This new approach was developed to combat the problem of the 
periodogram’s erratic behaviour when applied to empirical time-series observed in 
nature such as sunspot activity. Yule’s model was a stochastic feedback model in 
which the present sample of the time-series is assumed to consist of a linear 
combination of past samples plus an error term. This approach was called 
autoregressive spectrum analysis. Burg rekindled interest in the autoregressive 
method in the 1960s and 70s with his maximum-entropy method of power spectrum 
estimation directly from the available time-series. In 1971 Van den Bos (Van den 
Bos 1971) was able to show that the maximum-entropy method is equivalent to 
least squares fitting of an autoregressive model to the known autocorrelation 
sequence. The maximum-entropy method involved the extrapolation of the 
autocorrelation function of the time series in such a way that the entropy of the 
corresponding probability is maximised at each step of the extrapolation. 

In 1967 Kelly of Bell Telephone Laboratories was given credit for inventing an 
adaptive filter for speech echo cancellation, which used the speech signal itself in 
the adaptation processes. Work on echo cancellers only started around 1965. 
Another type of adaptive noise canceller was the line canceller used for removing 
the mains power frequency interference from instrument and sensor preamplifier 
circuits. This was invented by Widrow and his co-workers at Stanford University. 
An early version of the device was built in 1965 and described in Widrow’s paper 
in 1975 (Widrow et al 1975).   

Initial contributions to adaptive array antennas were made by Howells in the 
late 1950s and by Applebaum in 1966. Howells developed a sidelobe canceller that 
became a special case of Applebaum’s adaptive antenna array system. Applebaum’s 
algorithm was based on maximising the Signal-to-Noise Ratio (SNR) at the array 
output for any type of noise. This classic work was reprinted in the 1976 special 
issue of IEEE Transactions on Antennas and Propagation (Applebaum and 
Chapman 1976). Another major work related to adaptive array antennas was put 
forward independently by Widrow and his co-workers in 1967. Their theory was 
based on the LMS algorithm and their paper, (Widrow et al 1967), the first 
publication in the open literature on adaptive array antenna systems, was 
considered to be another classic of  that era. In 1969 Capon (Capon 1969) proposed 
a different method for solving the adaptive beamforming problem based on 
variance (average power) minimisation. Finally, in 1983, McWhirter (McWhirter 
1983) developed a simplified version of the Gentleman-Kung systolic array for 
recursive least squares estimation, which is very well suited for adaptive beam 
forming applications. 
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1.4.4 Adaptive Control 

Much of the history that is related to adaptive filters is also relevant to adaptive 
control systems as they incorporate much of the same theory. In fact, the main 
difference between the two is mostly a matter of application rather than underlying 
principles of operation. It is helpful to view signal processing and control theory, 
generally, as divergent branches of application of the same underlying theory. In 
some ways there should be more reintegration of the two fields for the sake of 
economy of understanding. 

Historically, adaptive control has been very difficult to define explicitly, 
because it is seen to be superficially similar to feedback control. Both feedback 
control and adaptive control involve changing behaviour to conform to new 
circumstances. Attempts to draw distinctions between the two have not always been 
successful but it is now commonly agreed that a constant-gain feedback is not an 
adaptive system. From a pragmatic view point adaptive control can be seen as a 
special type of nonlinear feedback control in which the states of the process are 
separated into two categories related to the rate of change involved. In this view the 
slowly changing states are seen as the parameters and the fast ones are the ordinary 
feedback states. This definition precludes linear constant parameter regulators and 
gain scheduling from being called adaptive. Constant parameter regulators do not 
change their parameters and gain scheduled systems don’t have any feedback once 
the parameters are changed to a new state.  

There was extensive research on adaptive control applied to autopilots for high 
performance aircraft in the early 1950s. The dynamics of high-performance aircraft 
undergo major changes when they fly from one operating point to another (Levine 
1996). This autopilot control problem was investigated by Whitaker et al  
(Whitaker et al 1958) using Model Reference Adaptive Control (MRAC). Early 
enthusiasm for more sophisticated regulators, which work well over a wider range 
of conditions, diminished through bad hardware, nonexistent theory, a general lack 
of insight, and finally an in flight test disaster. However, in the 1960s important 
underlying theory for adaptive control was introduced through the development of 
state space and stability theory based on Lyapunov and other important results in 
stochastic control theory. Correct proofs for stability of adaptive systems under 
very restrictive assumptions were developed in the late 1970s and early 1980s. 
Nevertheless, controversies over the practicality of adaptive control were still 
raging, mostly based on the sensitivity and potential instability of earlier designs. 
From this early work new and interesting research began into the robustness of 
adaptive control and into controllers that are universally stabilising. By the mid 
1980s the field of robust adaptive control was opened based on new designs and 
analysis. In the late 1980s and early 1990s the focus of adaptive control research 
turned to extending the results of the 1980s to certain classes of nonlinear plants 
with unknown parameters. This led to new classes of MRAC with improved 
transient and steady-state performance.  

Adaptive control has traditionally been classified into the MRAC and Adaptive 
Pole Placement Control schemes (APPC). In MRAC both the poles and zeros of the 
plant model are changed and in APPC only the poles are changed so that the 
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closed-loop plant has the same input-output properties as those of the reference 
model.  

1.5 A Brief History and Overview of Nonclassical 
Theories 

The three main types of nonclassical adaptive or learning systems are ANN, FL and 
GAs. These form the foundation of what is now called the computational intelligent 
systems that have slowly developed into viable and accepted engineering solution 
methods over the past six decades. Although their origins are not much more recent 
than the classical adaptive filtering theories they have found broader commercial 
application only in more recent times. 

1.5.1 Artificial Neural Networks  

The history of ANNs has two significant periods. The period before 1970  
represents the period of initial investigation and the period after 1970 opened the 
modern era of ANNs. 

William James, in 1890, was the first to publish about brain structure and 
function in connection with psychological theories and neuropsychological research 
(James 1890). The first theorists to conceive the fundamentals of neural computing 
were W. S. McCulloch and W. A. Pitts in 1943 (McCulloch and Pitts 1943). They 
derived theorems related to the then current neural models. Their work proved that 
networks consisting of neurons could represent any finite logical expression but 
they did not demonstrate any learning mechanisms.  It was Donald Hebb, in 1949, 
who was the first to define a method of neural network learning (Hebb 1949). 
Rosenblatt, in 1958, defined the ANN structure called the Perceptron that engineers 
recognised as a “learning machine” (Rosenblatt 1958). This work laid the 
foundations for both supervised and unsupervised training algorithms that are seen 
today in both the Multi-Layer Perceptron (MLP) and Kohonen networks 
respectively. 

The advent of silicon based integrated circuit technology and consequent 
growth in computer technology in the 1960s was instrumental in the general surge 
in artificial neural computer systems. The ADALINE introduced by Widrow and 
Hoff  was similar to the Perceptron but it used a much better learning algorithm, 
called the LMS algorithm, which can also be used for adaptive filters. The 
extension of the LMS algorithm is used in today’s MLP. As the 1960s drew to a 
close there was growing optimism for the advance of ANN technology. However, 
funding and research activity in ANNs took a major dive after the publication of 
Minsky and Papert’s book “Perceptrons” in 1969, which was mistakenly thought to 
have criticised the whole field of ANNs rather than just the simple Perceptron.  

The decade of the 1970s saw a much reduced but stable activity in ANN 
research by a smaller number of researchers including Kohonen, Anderson, 
Grossberg and Fukushima. After the low period of the 1970s, several very 
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significant publications appeared between 1982 and 1986 that advanced the state of 
ANN research. John J. Hopfield published a most significant single paper in 1982 
(Hopfield 1982) and a follow-on paper in 1984 (Hopfield 1984) identifying ANN 
structures that could be generalised and that had a high degree of robustness. The 
Parallel Distributed Processing (PDP) Research Group published the first two 
volumes of their “Parallel Distributed Processing“ in 1986 followed by a third 
volume in 1988. The most significant contribution of the PDP volumes was the 
derivation and subsequent popularisation of the Backpropagation-of-error learning 
algorithm for MLPs. Closely following that, important ANNs based on Radial 
Basis Functions (RBFs) (Powell 1985) (Broomhead and Lowe 1988) including 
Donald Specht’s Probabilistic Neural Network (PNN) (Specht 1988) and General 
Regression Neural Network (GRNN) (Specht 1988, 1991) were introduced. 

A significant resurgence in interest in ANNs occurred in the 1980s as 
computers got bigger, faster and cheaper. This ubiquitous computing power 
allowed the development of many mathematical tools to express analytically, the 
complex equilibrium state energy landscapes necessary to study ANN architectures. 
Because of this increased and enthusiastic research activity, especially in 
conjunction with statistics, many new and useful learning theories have now been 
proposed and implemented. One of the most important of these is Vapnik’s 
“Statistical Learning Theory“ (Cherkassky and Mulier 1998). 

1.5.2 Fuzzy Logic  

The basic foundations of fuzzy logic were conceived by Lotfi Zadeh in 1965 as an 
extension of classic set theory (Zadeh 1965). He presented it not as a control 
methodology, but as a way of processing data by allowing partial set membership 
rather than specific or crisp set membership/non-membership. Due to inadequacy of 
computing systems at the time this approach to set theory was not applied to control 
systems until the 1970s. U.S. manufacturers were not quick to embrace this 
technology, whereas the Europeans and Japanese began to aggressively build 
commercial products with it almost from the outset. 

Ebraham Mamdani applied FL to control a simple steam engine for the first time 
in 1974 at the University of London (Mamdani 1974). It was not for another six 
years that the first industrial application appeared for the control of a cement kiln 
by F. H. Smidth of Denmark. Fuji Electric of Japan applied FL to the control of a 
water purification plant in the 1980s and Hitachi later developed an automatic train 
control system. This led to the FL boom in Japan in the early 1990s with the 
production of household electronics products using FL. Since then, FL has been 
applied to a wide range of growing applications including decision support systems, 
investment consultation, fault diagnosis, medical diagnosis, transport scheduling, 
management strategy, social and environmental systems (Tanaka 1997). 

1.5.3 Genetic Algorithms 

In 1948 Alan Turing identified an approach to machine intelligence based on 
genetical or evolutionary search by which a combination of genes is sought based 
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on survival value. He didn’t specify how to conduct the search or mention the 
concept of population recombination but he did introduce the idea that a number of 
child-machines should be experimented with to see how well they learn and then 
choose from the best of these (Turing 1950). Here, the structure of the machine 
represented hereditary material. Changes of the machine represented mutations, and 
natural selection (fitness) was based on the experimenter’s judgement. It was left to 
John Holland between 1962 and 1975 to introduce the crucial concepts of 
maintaining large populations and sexual recombination within them (Holland 
1962, 1995).  
 Since the 1950s there has been a great variety of experimentation with 
evolution-based computational approaches, which has included optimisation of 
numerical parameters in engineering design. In 1966 Fogel, Owens and Walsh 
(Fogel, Owens and Walsh 1966) first developed evolutionary programming, which 
was a method of evolving finite-state machines. This method was followed up and 
further developed by numerous researchers including John Koza (Koza 1992). 
Koza applied the search strategy of GAs to hypotheses consisting of computer 
programs, which has now come to be known as Genetic Programming (GP).  

1.6 Fundamentals of Adaptive Networks 

An adaptive network can be used to model either a linear system whose parameters 
are unknown (or changing with time) or a nonlinear system whose model is 
unknown (or also changing with time). A linear adaptive system will eventually 
converge to a linear solution over sufficient time and range of input signals. It will 
then continue to adapt only if the system or noise statistics change. For a nonlinear 
process, a linear adaptive system can only adapt to a linear approximation at the 
current operating point. It is possible however, to keep a historical record of the set 
of linear models for each small region around a set of operating points and then 
apply an appropriate model as the set point changes. This is called schedule or 
switching control with multiple models. A nonlinear adaptive network will adapt to 
a more accurate model at the current operating point, but like the linear adaptive 
network it cannot generalise this to new operating points, unless a historical record 
is  kept. To ensure a more robust control of nonlinear systems it is desirable to have 
some historical information about the system over the expected range of operating 
points in parallel with a fast adaptive network to make up for any differences.  

The basic system structure that is applicable to both adaptive and some learning 
networks is depicted in Figure 1.2. In the most general terms the vector of the noisy 
input signal at discrete instance k is xk and the vector error signal is ek = (dk - yk), 
where dk is the vector of the noiseless desired output response and yk is the actual 
vector network response given an input of xk. The network is adapted or trained by 
presenting it with successive input and desired vector pairs and then using the error 
signal to adapt the network in such a way as to consistently reduce the error 
according to some specific learning rule. A least squares error rule is commonly 
used for both linear networks and nonlinear learning and adaptation. When the 
network is trained or adapted the error arrives at some statistical minimum. As the 
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statistics of the input vectors change with time the network can be continually 
adapted to maintain a minimum error, otherwise the network parameters are fixed 
after training. Either way the network then represents an estimate of the noiseless 
model of the underlying process or function at that point. The process function is 
represented by the set of input and desired vector pairs used to train the network.  
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Figure 1.2.  Basic Adaptive Structure 

There are two main considerations related to the basic adaptive structure shown 
in Figure 1.2. Firstly, if the desired responses are known why is the network needed 
at all? Secondly, the adaptation mechanism may be simple or complex depending 
on the network and consequently, the convergence may take considerable time or 
computation. In the first case, although the desired responses are not usually known 
explicitly it is often possible to derive them or find responses that are correlated to 
them. Since there is no general solution to this problem it is necessary to look at 
specific examples to gain insight into application issues. The most common generic 
configurations according to (Lim and Oppenheim 1988) are for,  

 
 1. Adaptive prediction.  
  
2. Adaptive forward modelling.  
 

 3. Adaptive inverse modelling.  
 
 4. Adaptive interference cancelling. 

 
These can best be represented by Figures 1.3  to  1.6 respectively.  
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Figure 1.3.  Adaptive Prediction 
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Figure 1.4.  System Forward Modelling 
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Figure 1.5.  Inverse System Modelling 
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Figure 1.6.  Interference Cancelling 

For the adaptive prediction model, shown in Figure 1.3, the input is delayed by 
δ time units and fed to an adaptive network. The input serves as the desired 
response. The network weights are adapted and when they converge this produces a 
best estimate of the present input given an input delayed by δ.  After convergence 
the weights are copied into a slave network, which is then taken to be the best 
predictive model. Wiener developed optimum linear least squares filtering 
techniques for linear signal prediction. When the signal’s autocorrelation function 
is known, Wiener’s theory yields the impulse response of the optimum filter. The 
autocorrelation function can be determined using a correlator, or alternatively the 
predictive filter can be determined directly by adaptive filtering. For nonlinear 
problems and for non-Gaussian noise it is strictly necessary to use adaptation with a 
nonlinear network to achieve acceptable results.  

In cases where a system of unknown structure has observable inputs and outputs 
an adaptive network as shown in Figure 1.4 can be used to model the system’s 
response. This is called forward system modelling. Inverse modelling involves 
developing a filter that is the inverse of the unknown system, as shown in  Figure 
1.5. The delay by δ  units is usually included to account for the propagation delay 
through the plant and the adaptive network, assuming that both are causal systems, 
i.e., their output depends only on inputs up to and including the current time. 

Separating a signal from additive noise, also called interference cancelling, is a 
common problem in signal processing. An adaptive network as shown in Figure 1.6 
can be used to subtract the noise out of the signal. This gives a better result than 
applying an optimum Kalman or a Wiener filter, both of which introduce some 
inevitable phase distortion. The adaptive network solution is only viable when there 
is an additional reference input x’k containing noise that is correlated with the 
original corrupting noise xk. The network filters the reference noise x’k, to produce 
an estimate yk, of the actual noise xk. Then, it subtracts yk from the primary input 
(sk + xk), which acts as the desired response dk. The error signal ek becomes the 
estimate of the signal sk if, sk, x’k, xk and yk are statistically stationary, have zero 
means, and sk is uncorrelated with x’k and xk. 



  Adaptive Filters 23 

1.7 Choice of Adaptive Filter Algorithm 

In the most general terms an adaptive algorithm tries to minimise an appropriate 
objective or error function that involves the input, reference and filter output 
signals. An objective function must be non-negative and ideally have an optimum 
value of zero. The adaptive algorithm can be seen to consist of three main parts, the 
definition of the minimisation algorithm, the definition of the objective function 
and the definition of the error signal (Dinz 1997).  

The most commonly used minimisation methods used for adaptive filters are 
Newton’s method, quasi-Newton methods and the steepest-descent gradient method 
(Principe 2000).  Gradient methods are easy to implement but the Newton method 
usually requires less iterations to achieve convergence. A good compromise 
between these two are the Quasi-Newton methods which have reasonable 
computational efficiency and good convergence. However, the Quasi-Newton 
methods are susceptible to instability problems. In all these methods the gain or 
convergence factor must be chosen carefully based on good knowledge of the 
specific adaptation problem.  

The error function can be formed in many ways but the most common ways 
include the Mean Square Error (MSE), Least Squares (LS), Weighted Least 
Squares (WLS), and Instantaneous Squared Value (ISV). Strictly speaking the 
MSE is approximated by the other more practical methods since the MSE is a 
theoretical value requiring an infinite amount of data. ISV is the easiest to 
implement but it has noisy convergence properties. The LS method is suitable for 
stationary data, whereas WLS is valuable for slowly varying data statistics. The 
choice of error signal is crucial to algorithm complexity, convergence properties, 
robustness and control of biased or multiple solutions. 

There is a great diversity of adaptive applications with their own peculiarities. 
Every application must be carefully evaluated and understood before a suitable 
adaptive algorithm can be chosen, because a solution to one application may not be 
suitable for another. The choice of algorithm must take into account not only the 
specifics of the application environment but also issues of computational cost, 
performance, and robustness. Often it can be instructive to apply the simple but 
robust LMS or Backpropagation-of-error algorithm to the problem first, to study, 
evaluate and compare the benefits of an adaptive solution to the problem. Further 
and more detailed design decisions can then be made based on those findings. All 
adaptive system forms can be implemented to accept and process either real or 
complex input signals depending on the requirements. 




