
33

Code generation
with XDoclet

“It’s so beautifully arranged on the plate—you know someone’s
fingers have been all over it.”

—Julia Child

34 CHAPTER 2

Code generation with XDoclet

Developing EJBs today entails the creation of a bean class, multiple interfaces, pos-
sible helper data access classes, primary key classes, and even lookup utility classes.
In addition, each new bean requires changes and additions to the XML descriptor.
With each new bean developed, the possibility for out-of-synch files increases. For
example, a change to an EJB local interface would require similar changes to the
remote interface, the implementation class, utility classes (data access object,
value objects, etc.), a facade class, and the XML deployment descriptor.

 Now, take that single change and multiply it across all your EJBs. The final
result is that a development team must manage the synchronization of multiple
files across multiple beans in order to keep the most basic tasks, such as compila-
tion and deployment, working successfully. Without a doubt, experienced devel-
opers can ultimately handle this file management problem, but you must also
consider the development time consumed by the trivial task of repeating code
from interface files to implementation files. Time is a valuable commodity, and
most projects struggle to have enough in all phases.

 Increasingly, developers are turning to tools that automate much of bean
development. For instance, more and more tools provide support for descriptor
generation and manipulation. Rather than cover the multitude of IDE tools,
we’ve chosen to cover XDoclet, an open-source tool that is rapidly gaining accep-
tance. Simple and easy, XDoclet saves you time and energy while generating
excellent code.

 In this chapter, we present the most common uses of XDoclet, including the
following tasks:

� Generating EJB interfaces

� Adding JNDI names to your home interfaces

� Maintaining the XML descriptor

� Creating value objects for entity beans

� Creating primary key classes

� Customizing XDoclet tags with Ant properties

� Generating a utility object

� Adding security roles to the bean source

� Creating method permission XML

� Generating finder methods

� Creating the XML for ejbSelect methods

� Adding home methods to home interfaces

An XDoclet appetizer 35

� Generating entity relation XML

� Generating XML descriptors for message-driven EJBs

An XDoclet appetizer

XDoclet requires the use of Ant, a build tool from Apache, which you can find at
http://ant.apache.org. This chapter assumes that you have a working knowledge
of Ant, including writing build.xml files for compiling and packaging your EJB
files. If you have not used Ant for a build system, you can find specific recipes for
those tasks in chapter 9.

 Specifically, XDoclet relies on the Ant task <ejbdoclet/>. Once inserted into the
build.xml, the <ejbdoclet/> task allows you to specify subtasks for file generation,
method construction, and more. Tasks execute a section of code within Ant. Ant
contains many predefined tasks for such jobs as generating documentation and
compiling, but it lets you build your own tasks as well. In fact, the <ejbdoclet/> task
is a custom task that executes certain code in the XDoclet library.

 For this book, we used XDoclet beta version 1.2. Table 2.1 lists the JAR file
dependencies needed by this version of XDoclet, as well as the URL for their down-
load. The JAR files listed in table 2.1 must be in the classpath of the <ejbdoclet/>
task added to your build.xml file before you execute the <ejbdoclet/> Ant task.
(Some of the JAR files will not be needed if you don’t use certain features of the 1.2
version of XDoclet.)

After your environment is set up, you need to perform only three steps to gener-
ate code:

Table 2.1 The JAR file dependencies for the 1.2 version of XDoclet. These jars should be placed in the
<ejbdoclet/> Ant task classpath in order for you to use XDoclet 1.2.

Framework/application Needed JAR files URL

Ant 1.5 ant.jar http://jakarta.apache.org/ant/

Log4j 1.13 log4j-1.1.3-jar http://jakarta.apache.org/log4j/

Commons logging commons-logging-1.0.jar http://jakarta.apache.org/log4j/

XML APIs xml-apis-2.0.2.jar http://xml.apache.org/xerces2-j/

Velocity velocity-1.4-dev.jar http://jakarta.apache.org/velocity/index.html

JUnit junit-3.7.jar http://junit.org

36 CHAPTER 2

Code generation with XDoclet

1 Add the necessary XDoclet tags to your source files (similar to JavaDoc com-
ment tags).

2 Modify the <ejbdoclet/> task in the build.xml file to generate the desired
files.

3 Execute the Ant task using a command similar to ant ejbdoclet.

With three steps, XDoclet can make your EJB development more efficient and
streamlined.

 Before moving on to the actual recipes, let’s quickly examine the pieces of the
<ejbdoclet/> task contained in the build.xml file. The task basically contains
three sections: setup, source file selection, and subtask declaration. The following
XML is only a portion of a larger build.xml file and shows an example
<ejbdoclet/> task definition:

<target name="ejbdoclet" depends="init">

 <taskdef name="ejbdoclet" classname="xdoclet.modules.ejb.EjbDocletTask">
 <classpath>
 <fileset dir="${xdoclet.lib.dir}" includes="*.jar"/>
 </classpath>
 </taskdef>

 <ejbdoclet destdir="${src}" ejbspec="2.0" >

 <fileset dir="${src}">
 <include name="**/*Bean.java" />
 </fileset>

 <remoteinterface/>
 <homeinterface/>
 <localhomeinterface/>
 <homeinterface/>

 <deploymentdescriptor destdir="${build}/ejb/META-INF" />

 </ejbdoclet>
 </target>

The first section of the target declares the task and provides the name of the
implementing class that will perform the functions required of the task. The task
definition is also responsible for setting up the classpath for the task. In this case,
we have the necessary XDoclet JAR files (see table 2.1) in the XDoclet lib direc-
tory. The property xdoclet.lib.dir should be defined earlier in the build.xml file
containing this target.

bDefines the new <ejbdoclet/> task>

c Sets up
the task

dAdds subtasks to
generate code

b

Generating home, remote, local, 37
and local home interfaces

Next, the <ejbdoclet/> tag is started by specifying the source directory, the gener-
ated files destination directory, and the EJB specification version that the
build.xml file should use. After starting the task, the next section defines the set of
source files the build.xml file should examine for possible source-generation tags.
Using the <fileset/> tag, not only can you specify which files to include, but you
can also exclude files. For instance, the sample shows a file set of Java source files
that end with *Bean.java.

Before closing the <ejbdoclet/> task, you can specify subtasks that actually per-
form the source examination and generation of code. The declaration in this
sample generates the remote, home, local home, and local interfaces for bean
classes with the appropriate XDoclet tags.
XDoclet provides many more features than shown in this simple example. This
chapter contains recipes that examine the most useful or commonly used features
of XDoclet. We highlight the XDoclet JavaDoc tags in bold to distinguish them
from the remaining code. In addition, we show generated code where appropriate.

We hope this chapter will encourage you to look further into XDoclet for your EJB
development. Refer to the XDoclet website at http://XDoclet.sourceforge.net for
downloads, examples, and more documentation. In addition, you can refer to the
Ant website (http://jakarta.apache.org) to learn more about using Ant or creat-
ing build.xml files. For more information about creating an Ant task, or using
existing tasks, check the Ant documentation at http://jakarta.apache.org/ant/
manual/index.html, or check out the excellent book Java Development with Ant,
from Manning Publications by Erik Hatcher and Steve Loughran.

2.1 Generating home, remote, local,
and local home interfaces

� Problem

You want to generate the EJB home and remote interfaces.

� Background

While developing bean classes and interfaces, you must spend too much time
keeping your interface file in synch with the implementation class. After develop-
ing the bean class, you would like to generate all the necessary interfaces for
deployment. This includes the remote, home, local, and local home interfaces.

c

d

38 CHAPTER 2

Code generation with XDoclet

Likewise, after any modifications to the bean class, you want the interfaces to be
updated similarly, and in the correct way for the specific interface.

� Recipe

To generate the interfaces (home, local home, remote, and local), you must do two
things. You need to add the appropriate XDoclet tags to the bean implementation
class, and then add the correct subtasks to the <ejbdoclet/> task in your build.xml
file. This recipe covers adding create and business methods to the correct inter-
faces. Other methods, such as finder methods, are covered in later recipes.

A session bean example
The session bean example in listing 2.1 illustrates how to document a bean class
in order to generate both remote and local interfaces. The XDoclet tags are
shown in bold. Notice that assigned values for the tags always use double quotes.

package ch2;

import javax.ejb.*;

/**
 * @ejb.bean type="Stateful"
 * view-type="both"
 */
public class UserBean implements SessionBean
{
 private String name = null;

 public UserBean(){}
 public void setSessionContext(SessionContext context) {}

 /**
 * @ejb.create-method
 */
 public void create(){}
 public void ejbCreate() {}
 public void ejbRemove() {}
 public void ejbLoad() {}
 public void ejbStore() {}
 public void ejbActivate() {}
 public void ejbPassivate() {}

 /**
 * @ejb.interface-method
 */
 public void setName(String value)
 {
 this.name = value;

Listing 2.1 UserBean.java

Declares the
bean attributes

Indicates
which type of
methods to
generate

Generating home, remote, local, 39
and local home interfaces

 }

 /**
 * @ejb.interface-method
 */
 public String getName()
 {
 return name;
 }
}

An entity bean example
The entity bean example in listing 2.2 illustrates the same tags as the previous ses-
sion bean example.

package ch2;

import javax.ejb.*;
/**
 * @ejb.bean type="CMP"
 * view-type="both"
 */
public abstract class DataBean implements EntityBean
{
 public void setEntityContext(EntityContext context) {}
 public void unsetEntityContext() {}

 public void ejbRemove() {}
 public void ejbLoad() {}
 public void ejbStore() {}
 public void ejbActivate() {}
 public void ejbPassivate() {}

 /**
 * @ejb.create-method
 *
 */
 public void ejbCreateData(String data1, String data2)
 {
 setBigData(data1);
 setSmallData(data2);
 }

 /**
 * @ejb.interface-method
 *
 */
 public void getAllData()
 {

Listing 2.2 DataBean.java

Declares the bean
attributes

Indicates
which type of
methods to
generate

40 CHAPTER 2

Code generation with XDoclet

 return getBigData() + " " + getSmallData();
 }

 /**
 * @ejb.interface-method
 */
 public abstract String getBigData();

 /**
 * @ejb.interface-method
 */
 public abstract String getSmallData();

 /**
 * @ejb.interface-method
 */
 public abstract void setBigData(String data);

 /**
 * @ejb.interface-method
 */
 public abstract void setSmallData(String data);
}

Modifying the build.xml
As shown in listing 2.3, you add the <ejbdoclet/> Ant task in your build.xml file
with the appropriate subtasks that will actually perform the code generation.

 <target name="ejbdoclet" depends="init">
 <taskdef name="ejbdoclet" classname="xdoclet.modules.ejb.EjbDocletTask">
 <classpath>
 <fileset dir="${xdoclet.lib.dir}" includes="*.jar"/>
 </classpath>
 </taskdef>

 <ejbdoclet destdir="${src}" ejbspec="2.0" >

 <fileset dir="${src}">
 <include name="**/*Bean.java" />
 </fileset>

 <remoteinterface pattern="{0}Remote"/>
 <homeinterface/>
 <localinterface/>
 <localhomeinterface/>

 </ejbdoclet>
 </target>

Listing 2.3 Sample Build.xml

Add subtasks for
code generation

Generating home, remote, local, 41
and local home interfaces

Notice that this target is only part of a larger build.xml file. In your build.xml,
you need to configure the ${src} and ${xdoclet.lib.dir} properties for the task
to work.

� Discussion

Examining each bean source, you should first notice the class-level JavaDoc com-
ments. The class-level JavaDoc contains the XDoclet tags that describe the bean
and specifies the interfaces that should be generated. The @ejb.bean tag describes
the EJB defined in the source file. It contains two properties—type and view-
type—that are involved in the interface generation. The type property describes
the type of this EJB; it can be Stateful, Stateless, CMP, or BMP. The code generator
needs this information in order to properly provide super interfaces for the gen-
erated interfaces. The second property, view-type, indicates which interfaces
should be generated. Its possible values are local, remote, or both. By specifying
both, you ensure that all four interfaces will be produced.

 However, these two properties only help XDoclet to generate the interface
declaration; you still must describe the methods that go into each interface. To do
this, you need to make use of the @ejb.interface-method and @ejb.create-
method XDoclet tags. As shown in the source, these tags are used to mark bean
methods for declaration in the appropriate interfaces. Create methods are routed
to the home interfaces, and interface methods are declared in the remote and
local interfaces. Table 2.2 summarizes the tags that generate methods into the
interfaces.

Two method types noticeably absent from this discussion are finder and select
methods for entity beans. We show these two method types in greater detail in
later recipes in this chapter.

Table 2.2 Other tags used to specify methods for EJB interfaces

Tag Description

@ejb.interface-method Declares a method to be a business method

@ejb.create-method Declares a method to be an ejbCreate method

@ejb.home-method Declares a method to be a home method

@ejb.finder Used to define a finder method for the home and local home interfaces

@ejb.select Declares a method to be an ejbSelect method

@ejb.pk-field When used properly, creates a findByPrimaryKey method in the home
interface (see recipe 2.5)

42 CHAPTER 2

Code generation with XDoclet

 Finally, the additional subtasks must be specified in the <ejbdoclet/> task
itself. As you can see in the recipe, we add tasks to generate all four interfaces for
the beans. Indeed, all four will be generated because we also specified the view-
type as both.

 In addition, by default XDoclet will add a component name and JNDI name for
both the local home and home interfaces as a public final static member vari-
able. You can use the variable to make your client code more maintainable. By
default, the names correspond to the fully qualified name of the bean class (using
/ instead of .).

 Rather than show all four generated interfaces for each bean, we just show the
local interfaces for each. For the session bean, the getName() and setName() meth-
ods will be in the local and remote interfaces. The session bean’s home and local
home interfaces will contain a create() method. Listing 2.4 contains the session
bean’s generated entire remote interface (comments and all).

/*
 * Generated by XDoclet - Do not edit!
 */
package ch2;

/**
 * Remote interface for ch2.User.
 */
public interface User
 extends javax.ejb.EJBObject
{

 public java.lang.String getName()
 throws java.rmi.RemoteException;

 public void setName(java.lang.String value)
 throws java.rmi.RemoteException;

}

The entity bean’s home and local home interfaces will contain a findByPrima-
ryKey() method. Its remote and local interface will contain getFirstName(), set-
FirstName(), getLastName(), setLastName(), and getName(). Listing 2.5 contains
the entity bean’s generated remote interface

 .

Listing 2.4 Generated by XDoclet, User.java

Adding and customizing the JNDI name 43
for the home interface

/*
 * Generated by XDoclet - Do not edit!
 */
package ch2;

/**
 * Remote interface for ch2.Data.
 */
public interface Data
 extends javax.ejb.EJBObject
{
 public void getAllData()
 throws java.rmi.RemoteException;

 public java.lang.String getBigData()
 throws java.rmi.RemoteException;

 public java.lang.String getSmallData()
 throws java.rmi.RemoteException;

 public void setBigData(java.lang.String data)
 throws java.rmi.RemoteException;

 public void setSmallData(java.lang.String data)
 throws java.rmi.RemoteException;
}

� See also

2.2—Adding and customizing the JNDI name for the home interface

2.5—Generating a primary key class

2.11—Generating finder methods for entity home interfaces

2.2 Adding and customizing the JNDI name
for the home interface

� Problem

You want a good way to store the JNDI name of a bean for easy retrieval to aid in
bean lookup.

Listing 2.5 Generated by XDoclet, Data.java

44 CHAPTER 2

Code generation with XDoclet

� Background

You can use XDoclet to add a public static final member variable to the home
interfaces that it generates to store the JNDI name of the bean. Without customi-
zation, it provides a default value for this name. By specifying the JNDI name in
the home interface, you can modify it without changing your bean lookup code.

� Recipe

Use the recipe shown in recipe 2.1 (listing 2.4) to generate the home interface.
However, change the class-level JavaDoc to look like the following and specify the
JNDI name (the changes are shown in bold):

/**
 * @ejb.bean type="Stateful"
 * jndi-name="ejb/UserBean"
 * local-jndi-name="ejb/UserBeanLocal"
 * view-type="both"
 */
public class UserBean implements SessionBean
{

No changes need to be made to the build.xml file from the target shown in
recipe 2.1.

� Discussion

By including the JNDI lookup name as a public static final member variable in
the home interface, you give your code a permanent, safe way of discovering the
JNDI name for EJB lookup. Using this method, you don’t have to hardcode a name
in the lookup implementation. The resulting home interface has the following
lines added to it:

 public static final String
 COMP_NAME="comp/env/ejb/ch2/User";
 public static final String JNDI_NAME="ejb/UserBean";

The resulting local home interface contains a different name (as specified in the
bean source):

 public static final String
 COMP_NAME="java:comp/env/ejb/ch2/UserLocal";
 public static final String JNDI_NAME="ejb/UserBeanLocal";

Without customization, XDoclet will enter names using the package name of the
bean class. For instance, the UserBean JNDI name would have been ch2/UserBean.

Keeping your EJB deployment descriptor current 45

When looking up an EJB home interface via JNDI, you normally would use code
similar to the following:

InitialContext ctx = new InitialContext();
UserHome home = (UserHome) ctx.lookup("ejb/UserBean");

By adding the JNDI name to the home interface, your code can change to some-
thing like this:

InitialContext ctx = new InitialContext();
UserHome home = (UserHome) ctx.lookup(UserHome.JNDI_NAME);

� See also

2.1—Generating home, remote, local, and local home interfaces

2.3 Keeping your EJB deployment descriptor current

� Problem

You want to generate the EJB deployment descriptor and update it as the EJB
source files change.

� Background

When developing EJBs, you have a multitude of changes to the bean class that
affect the final deployment descriptor of the bean. Even if you generate the
deployment descriptor once, you may have to change it each time you alter a bean
class, interface, or persistent feature. In addition, changes to security roles,
method permissions, and EJB relationships require you to modify the XML descrip-
tor. Generating the deployment XML is only part of an important task. XDoclet will
help you maintain this file by updating it as your beans change and develop.

� Recipe

To have XDoclet generate your deployment descriptor, add the <deploymentde-
scriptor/> subtask to your <ejbdoclet/> task in the build.xml file. (See the sec-
tion “An XDoclet appetizer” at the beginning of this chapter for information
about XDoclet setup and the build.xml file.) The <ejbdoclet/> task shown in list-
ing 2.6 uses the descriptor subtask.

46 CHAPTER 2

Code generation with XDoclet

 <target name="ejbdoclet" depends="init">
 <taskdef name="ejbdoclet"
 classname="xdoclet.modules.ejb.EjbDocletTask">
 <classpath>
 <fileset dir="${xdoclet.lib.dir}" includes="*.jar"/>
 </classpath>
 </taskdef>

 <ejbdoclet destdir="${src}" ejbspec="2.0" >

 <fileset dir="${src}">
 <include name="**/*Bean.java" />
 </fileset>

 <deploymentdescriptor destdir="${build}/ejb/META-INF" />

 </ejbdoclet>
 </target>

Let’s examine the class declaration for a session bean (used from recipes 2.1 and
2.2). However, this time we also include the bean name (shown in bold):

/**
 * @ejb.bean type="Stateful"
 * name="UserBean"
 * jndi-name="ejb/UserBean"
 * local-jndi-name="ejb/UserBeanLocal"
 * view-type="both"
 */
public class UserBean implements SessionBean

XDoclet uses this information to build the basic deployment descriptor for each
bean. The XML section shown in listing 2.7 is what XDoclet generated for this
bean (we have shown only the portion of the XML that contains the UserBean).

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE ejb-jar PUBLIC "-//Sun Microsystems, Inc.//DTD Enterprise

JavaBeans 2.0//EN" "http://java.sun.com/dtd/ejb-jar_2_0.dtd">

<ejb-jar >

 <description><![CDATA[No Description.]]></description>
 <display-name>Generated by XDoclet</display-name>

 <enterprise-beans>

 <!-- Session Beans -->
 <session >

Listing 2.6 Sample Build.xml

Listing 2.7 Deployment descriptor generated by XDoclet

Adds the subtask for
XML generation

Creating value objects for your entity beans 47

 <description><![CDATA[]]></description>

 <ejb-name>UserBean</ejb-name>

 <home>ch2.UserBeanHome</home>
 <remote>ch2.UserBean</remote>
 <local-home>ch2.UserBeanLocalHome</local-home>
 <local>ch2.UserBeanLocal</local>
 <ejb-class>ch2.UserBean</ejb-class>
 <session-type>Stateful</session-type>
 <transaction-type>Container</transaction-type>

 </session>

 </enterprise-beans>

� Discussion

The <deploymentdescriptor/> subtask tells XDoclet to generate the deployment
descriptor for the beans it has examined from the file set described in the
<fileset/> tag. XDoclet will also take care of including any other additions in the
descriptor along with the actual bean description. As long as you keep this subtask
in your <ejbdoclet/> task, XDoclet will generate or regenerate the XML deploy-
ment descriptor for each modified bean class in the file set. As you can tell, all you
need to provide is the destination directory for the XML file.

 XDoclet can also generate the numerous other pieces of the ejb-jar.xml file for
your beans. This includes security roles, method permission, and related EJBs. As
you add more XDoclet JavaDoc comments to your bean source files, more gener-
ated XML will appear. Many of the additional tags are covered in other recipes.

� See also

2.8—Generating vendor-specific deployment descriptors

2.4 Creating value objects for your entity beans

� Problem

You want to generate a value object for your entity beans.

� Background

An accepted practice for improving EJB application performance and for separat-
ing client, business, and data layers is to make use of value objects for entity beans.

48 CHAPTER 2

Code generation with XDoclet

Value objects create a decoupled view of entity beans and also shield clients from
back-end code changes. This class can represent the bean in every way and be
passed back to the client for a read-only snapshot of the entity data.

 Creating value objects for entity beans adds one more file to the list of multiple
files that developers must create for each bean. As with other generated files,
XDoclet will help you maintain this file with changes as your beans change.

� Recipe

Use the @ejb.value-object tag in the class-level JavaDoc for entity beans needing
a value object. For example, the section of the entity bean ItemBean source shown
in listing 2.8 uses this tag. The new tag is shown in bold; reference the previous
recipes for information about the others. Don’t worry about the tags @ejb.pk-
field and @ejb.persistence for now; we cover those in the next recipe.

package ch2;

import javax.ejb.*;
/**
 * @ejb.bean type="CMP"
 * name="ItemBean"
 * jndi-name="ejb/ItemBean"
 * view-type="both"
 *
 * @ejb.value-object
 *
 */
public abstract class ItemBean implements EntityBean
{
 public void setEntityContext(EntityContext context) {}
 public void unsetEntityContext() {}

 public void ejbRemove() {}
 public void ejbLoad() {}
 public void ejbStore() {}
 public void ejbActivate() {}
 public void ejbPassivate() {}

 /**
 * @ejb.create-method
 */
 public void ejbCreate(String id)
 {
 setID(id);
 }

 /**

Listing 2.8 ItemBean.java

Creating value objects for your entity beans 49

 * @ejb.interface-method
 * @ejb.persistence
 * @ejb.pk-field
 */
 public abstract String getID();

 /**
 * @ejb.interface-method
 */
 public abstract String getType();

 /**
 * @ejb.interface-method
 */
 public abstract String setType();
}

In addition, you need to add the subtask <valueobject/> to your build.xml file in
order for XDoclet to know it should generate the new class.

� Discussion

Listing 2.9 contains the generated value object class (including comments), refor-
matted for this chapter.

/*
 * Generated file - Do not edit!
 */
package ch2;

import java.util.*;

/**
 * Value object for ItemBean.
 *
 */
public class ItemBeanValue extends java.lang.Object
 implements java.io.Serializable
{
 private java.lang.String iD;
 private boolean iDHasBeenSet = false;
 private java.lang.String type;
 private boolean typeHasBeenSet = false;

 private ch2.ItemBeanPK pk;

 public ItemBeanValue()
 {
 pk = new ch2.ItemBeanPK();

Listing 2.9 ItemBeanValue.java

50 CHAPTER 2

Code generation with XDoclet

 }

 public ItemBeanValue(java.lang.String iD,
 java.lang.String type)
 {
 this.iD = iD;
 iDHasBeenSet = true;
 this.type = type;
 typeHasBeenSet = true;
 pk = new ch2.ItemBeanPK(this.getID());
 }

 //TODO Cloneable is better than this !
 public ItemBeanValue(ItemBeanValue otherValue)
 {
 this.iD = otherValue.iD;
 iDHasBeenSet = true;
 this.type = otherValue.type;
 typeHasBeenSet = true;

 pk = new ch2.ItemBeanPK(this.getID());
 }

 public ch2.ItemBeanPK getPrimaryKey()
 {
 return pk;
 }

 public void setPrimaryKey(ch2.ItemBeanPK pk)
 {
 // it's also nice to update PK object - just in case
 // somebody would ask for it later...
 this.pk = pk;
 }

 public java.lang.String getID()
 {
 return this.iD;
 }

 public java.lang.String getType()
 {
 return this.type;
 }

 public String toString()
 {
 StringBuffer str = new StringBuffer("{");

 str.append("iD=" + getID() + " " + "type=" + getType());
 str.append('}');

 return(str.toString());
 }

Initializes the
value object
with data

Provides
read-only
access

Creating value objects for your entity beans 51

 /**
 * A Value object has an identity if its
 * attributes making its Primary Key
 * have all been set. One object without identity
 * is never equal to any
 * other object.
 *
 * @return true if this instance have an identity.
 */
 protected boolean hasIdentity()
 {
 boolean ret = true;
 ret = ret && iDHasBeenSet;
 return ret;
 }

 public boolean equals(Object other)
 {
 if (! hasIdentity()) return false;
 if (other instanceof ItemBeanValue)
 {
 ItemBeanValue that = (ItemBeanValue) other;
 if (! that.hasIdentity()) return false;
 boolean lEquals = true;
 if(this.iD == null)
 {
 lEquals = lEquals && (that.iD == null);
 }
 else
 {
 lEquals = lEquals && this.iD.equals(that.iD);
 }

 lEquals = lEquals && isIdentical(that);

 return lEquals;
 }
 else
 {
 return false;
 }
 }

 public boolean isIdentical(Object other)
 {
 if (other instanceof ItemBeanValue)
 {
 ItemBeanValue that = (ItemBeanValue) other;
 boolean lEquals = true;
 if(this.type == null)
 {
 lEquals = lEquals && (that.type == null);

Implements
equality testing

52 CHAPTER 2

Code generation with XDoclet

 }
 else
 {
 lEquals = lEquals && this.type.equals(that.type);
 }

 return lEquals;
 }
 else
 {
 return false;
 }
 }

 public int hashCode(){
 int result = 17;
 result = 37*result +
 ((this.iD != null) ? this.iD.hashCode() : 0);

 result = 37*result +
 ((this.type != null) ? this.type.hashCode() : 0);

 return result;
 }

}

The combination of the XDoclet tags and the <ejbdoclet/> subtask will cause
XDoclet to generate the value object for the entity bean. The generated class will
contain getters for all the data fields of the bean, as well as the primary key. When
used by a bean, the generated value object is a read-only snapshot of the entity
bean. It can therefore be passed to clients as a lightweight representation of the
bean. Value objects can also be used to separate a client’s view to the data persis-
tence model being used.

� See also

2.1—Generating home, remote, local, and local home interfaces

2.2—Adding and customizing the JNDI name for the home interface

2.5—Generating a primary key class

Generating a primary key class 53

2.5 Generating a primary key class

� Problem

You want to generate a primary key class for your entity beans during development.

� Background

As you develop more and more entity beans, you find yourself also having to cre-
ate the primary key class. As we emphasized in this chapter, having to code one
more class just adds to the time it takes to develop a bean and increases your
chances for having source files out of synch.

� Recipe

To have XDoclet generate a primary key class, use the @ejb.pk tag in your bean
source file, use the @ejb.pk-field tag to denote an accessor for the primary key,
and modify your <ejbdoclet/> task to include the <entitypk/> subtask. For
instance, examine the ItemBean class shown in listing 2.10. The XDoclet tags appli-
cable to this recipe are shown in bold; the others can be found in earlier recipes.

package ch2;

import javax.ejb.*;
/**
 * @ejb.bean type="CMP"
 * name="ItemBean"
 * jndi-name="ejb/ItemBean"
 * view-type="both"
 * primkey-field="ID";
 * @ejb.pk
 */
public abstract class ItemBean implements EntityBean
{
 public void setEntityContext(EntityContext context) {}
 public void unsetEntityContext() {}

 public void ejbRemove() {}
 public void ejbLoad() {}
 public void ejbStore() {}
 public void ejbActivate() {}
 public void ejbPassivate() {}

 /**
 * @ejb.create-method
 */

Listing 2.10 ItemBean.java

Identifies the
primary key field

Adds the primary key tag

54 CHAPTER 2

Code generation with XDoclet

 public void ejbCreate(String id)
 {
 setID(id);
 }

 /**
 * @ejb.interface-method
 * @ejb.persistence
 * @ejb.pk-field
 */
 public abstract String getID();
}

Notice in addition to the placement of the specified tags that we included the
primkey-field attribute in the @ejb.bean tag at the class declaration level. Note
that you must also use the @ejb.persistence tag in combination with the
@ejb.pk-field tag.

� Discussion

The result of using these tags is a source file named ItemBeanPK.java (containing
the ItemBeanPK class). Listing 2.11 shows the generated code for this class.

/*
 * Generated by XDoclet - Do not edit!
 */
package ch2;

/**
 * Primary key for ItemBean.
 */
public class ItemBeanPK extends java.lang.Object
 implements java.io.Serializable
{
 private int _hashCode = Integer.MIN_VALUE;
 private StringBuffer _toStringValue = null;

 public java.lang.String iD;

 public ItemBeanPK()
 {
 }

 public ItemBeanPK(java.lang.String iD)
 {
 this.iD = iD;
 }

Identifies the primary
key getter method

Listing 2.11 ItemBeanPK.java

Generating a primary key class 55

 public java.lang.String getID()
 {
 return iD;
 }

 public void setID(java.lang.String iD)
 {
 this.iD = iD;
 _hashCode = Integer.MIN_VALUE;
 }

 public int hashCode()
 {
 if(_hashCode == Integer.MIN_VALUE)
 {
 if (this.iD != null) _hashCode += this.iD.hashCode();
 }

 return _hashCode;
 }

 public boolean equals(Object obj)
 {
 if(!(obj instanceof ch2.ItemBeanPK))
 return false;

 ch2.ItemBeanPK pk = (ch2.ItemBeanPK)obj;
 boolean eq = true;

 if(obj == null)
 {
 eq = false;
 }
 else
 {
 if(this.iD == null &&
 ((ch2.ItemBeanPK)obj).getID() == null)
 {
 eq = true;
 }
 else
 {
 if(this.iD == null ||
 ((ch2.ItemBeanPK)obj).getID() == null)
 {
 eq = false;
 }
 else
 {
 eq = eq && this.iD.equals(pk.iD);
 }
 }
 }

56 CHAPTER 2

Code generation with XDoclet

 return eq;
 }

 /** @return String representation of
 this pk in the form of [.field1.field2.field3]. */
 public String toString()
 {
 if(_toStringValue == null)
 {
 _toStringValue = new StringBuffer("[.");
 _toStringValue.append(this.iD).append('.');
 _toStringValue.append(']');
 }

 return _toStringValue.toString();
 }

}

The generated primary key class contains a default constructor, an initialization
constructor that accepts a String ID parameter, a getter method, a setter method,
hashcode() and equals() methods, and a toString() method.

 If you use the @ejb.pk tag without using the @ejb.pk-field tag, you generate a
primary key file without the getter, setter, and initialization constructor.

� See also

2.1—Generating home, remote, local, and local home interfaces

2.6 Avoiding hardcoded XDoclet tag values

� Problem

You would like to centralize values in one place and not have to modify source
files in order to update the values.

� Background

XDoclet is a great tool for generating necessary EJB files. In addition, it lets you
specify values for the XML deployment descriptor and JNDI names for your beans.
Using XDoclet with your development lets you automate and generate almost
everything you need. However, as you add more XDoclet JavaDoc tags to your
source files, you are specifying more values in code for things like JNDI names and
bean names. Now you have many values spread out across many bean source files.

Avoiding hardcoded XDoclet tag values 57

� Recipe

Use Ant properties in your XDoclet tags. Examine listing 2.12, which contains a
subsection from a build.xml file. This subsection defines a property and the
<ejbdoclet/> task.

<property name="user.bean.jndi"
 value="ejb/session/UserBean"/>

 <target name="ejbdoclet" depends="init">
 <taskdef name="ejbdoclet"
 classname="xdoclet.modules.ejb.EjbDocletTask">
 <classpath>
 <fileset dir="${xdoclet.lib.dir}" includes="*.jar"/>
 </classpath>

 </taskdef>

 <ejbdoclet destdir="${src}" ejbspec="2.0" >

 <fileset dir="${src}">
 <include name="**/*Bean.java" />

 </fileset>

 <remoteinterface pattern="{0}Remote"/>
 <homeinterface/>
 <localhomeinterface/>
 <homeinterface/>

 <entitypk/>

 <deploymentdescriptor destdir="${build}/ejb/META-INF" />

 </ejbdoclet>
 </target>

Notice the property user.bean.jndi at the top of the file. Now examine the class
declaration for the UserBean; it uses the Ant property in the JNDI attribute of the
@ejb.bean tag:

/**
 * @ejb.bean type="Stateful"
 * view-type="both"
 * jndi-name="${user.bean.jndi}"
 *
 */
public class UserBean implements SessionBean{

Listing 2.12 Sample Build.xml

Creates an
Ant property

Completes the
remaining task

58 CHAPTER 2

Code generation with XDoclet

� Discussion

When XDoclet attempts to generate the home interface for this bean, it will see
that for the JNDI name it should use the value specified in the Ant property
user.bean.jndi. Ant replaces the named property in the source file with the value
contained in the build.xml file. Using this system, you can replace every hard-
coded value in your source XDoclet JavaDoc tags with Ant property names. The
advantage of this system is that it centralizes all of your property values into your
build.xml file, and you no longer have to alter source code to change a value.

 XDoclet allows you to specify everything about a bean in its source file. Not
everything is included in this chapter, but the list includes security roles, EJB rela-
tionships, method permission, transactions, and more. By moving all the values
of these various elements into Ant properties in the build.xml file, you create a
centralized control of the various values that can be changed at build time in a
single file.

� See also

2.1—Generating home, remote, local, and local home interfaces

2.2—Adding and customizing the JNDI name for the home interface

2.3—Keeping your EJB deployment descriptor current

2.7 Facilitating bean lookup with a utility object

� Problem

You want to generate a utility object to help with looking up the home interface of
an EJB.

� Background

Two often-repeated tasks in an EJB application are the lookup of a bean’s home
interface and the subsequent creation of the bean. Developers sometimes handle
these tasks by creating a static method that contains the lookup code for a particu-
lar bean. However, it is possible that this code also must change as a bean changes.
The generated class will encapsulate all the code necessary for looking up the
home interface of its parent EJB.

Facilitating bean lookup with a utility object 59

� Recipe

To generate a utility object, use the @ejb.util tag in the class-level JavaDoc of
your bean and modify your <ejbdoclet/> task to include the <utilityobject/>
subtask. This works for both entity and session beans. For example, examine the
class declaration of the UserBean:

package ch2;

import javax.ejb.*;

/**
 * @ejb.bean type="Stateful"
 * view-type="both"
 *
 * @ejb.util
 *
 */
public class UserBean implements SessionBean{

Listing 2.13 contains the build.xml used to generate the utility object.

 <target name="ejbdoclet" depends="init">
 <taskdef name="ejbdoclet" classname="xdoclet.modules.ejb.EjbDocletTask" >
 <classpath>
 <fileset dir="${xdoclet.lib.dir}" includes="*.jar"/>
 </classpath>
 </taskdef>

 <ejbdoclet destdir="${src}" ejbspec="2.0" >

 <fileset dir="${src}">
 <include name="**/*Bean.java" />
 </fileset>

 <utilobject cacheHomes="true" />

 </ejbdoclet>
 </target>

 The <utilobject/> subtask tells XDoclet to search for source files containing the
@ejb.util class-level JavaDoc tag and generate a utility object. Notice the subtask
specifies an attribute cacheHomes equal to true. This attribute tells XDoclet to gen-
erate a utility object that caches the home object after the first lookup in order to
improve performance. Listing 2.14 shows the generated utility class for this exam-
ple (reformatted for this chapter).

Listing 2.13 Sample Build.xml

b Adds the utility
object subtask

b

60 CHAPTER 2

Code generation with XDoclet

/*
 * Generated by XDoclet - Do not edit!
 */
package ch2;

import javax.rmi.PortableRemoteObject;
import javax.naming.NamingException;
import javax.naming.InitialContext;

import java.util.Hashtable;

/**
 * Utility class for ch2.User.
 */
public class UserUtil
{
 /** Cached remote home (EJBHome). Uses lazy loading to obtain
 its value (loaded by getHome() methods). */
 private static ch2.UserHome cachedRemoteHome = null;

 /** Cached local home (EJBLocalHome). Uses lazy loading to obtain
 its value (loaded by getLocalHome() methods). */
 private static ch2.UserLocalHome cachedLocalHome = null;

 // Home interface lookup methods

 /**
 * Obtain remote home interface from default initial context
 * @return Home interface for ch2.User. Lookup using COMP_NAME
 */
 public static ch2.UserHome getHome() throws NamingException
 {
 if (cachedRemoteHome == null) {
 // Obtain initial context
 InitialContext initialContext = new InitialContext();
 try {
 java.lang.Object objRef =
 initialContext.lookup(ch2.UserHome.COMP_NAME);
 cachedRemoteHome = (ch2.UserHome)
 PortableRemoteObject.narrow(objRef,
 ch2.UserHome.class);
 } finally {
 initialContext.close();
 }
 }
 return cachedRemoteHome;
 }

/**
 * Obtain remote home interface from parameterised initial context
 * @param environment Parameters to use for creating initial context
 * @return Home interface for ch2.User. Lookup using COMP_NAME

Listing 2.14 UserUtil.java, generated by XDoclet

Facilitating bean lookup with a utility object 61

 */
 public static ch2.UserHome getHome(Hashtable environment)
 throws NamingException
 {
 // Obtain initial context
 InitialContext initialContext =
 new InitialContext(environment);
 try {
 java.lang.Object objRef =
 initialContext.lookup(ch2.UserHome.COMP_NAME);
 return (ch2.UserHome)
 PortableRemoteObject.narrow(objRef, ch2.UserHome.class);
 } finally {
 initialContext.close();
 }
 }

/**
* Obtain local home interface from default initial context
* @return Local home interface for ch2.User. Lookup using COMP_NAME
*/
 public static ch2.UserLocalHome getLocalHome()
 throws NamingException
 {
 // Local homes shouldn't be narrowed,
 // as there is no RMI involved.
 if (cachedLocalHome == null) {
 // Obtain initial context
 InitialContext initialContext = new InitialContext();
 try {
 cachedLocalHome = (ch2.UserLocalHome)
 initialContext.lookup(ch2.UserLocalHome.COMP_NAME);
 } finally {
 initialContext.close();
 }
 }
 return cachedLocalHome;
 }

}

� Discussion

In addition to the cacheHomes attribute, you could add the generate attribute to
the @ejb.util tag to specify whether the generated utility class should use the
JNDI name or the component name from the home interface to perform a lookup
(see recipe 2.2). The default behavior for the utility object is to use the JNDI
name, but the possible values are false, logical, or physical. Keep in mind that

Looks up
and stores the
home interface

Looks up and
stores the local
home interface

62 CHAPTER 2

Code generation with XDoclet

XDoclet uses every piece of information it has on a bean to generate applicable
files. The generated utility object uses the names declared in the public static
final member variables of the home and local home interfaces to perform look-
ups, making your code more stable.

� See also

2.1—Generating home, remote, local, and local home interfaces

2.2—Adding and customizing the JNDI name for the home interface

2.8 Generating vendor-specific deployment descriptors

� Problem

You would like to generate a vendor-specific XML file along with the standard
XML descriptor.

� Background

One of the great reasons to use J2EE is that its API is a published standard. This
means that EJB applications should be portable across different vendors’ applica-
tion servers. Vendors maintain the specified functionality from the J2EE specifica-
tion, but usually ask that developers deploy EJBs with an additional deployment
XML file that is specific to the application server. This vendor-specific XML file
allows the application server to correctly map EJB functionality to its EJB container.

� Recipe

Use the appropriate subtask in the <ejbdoclet/> task of your build.xml file.
Table 2.3 lists the subtasks that XDoclet uses to generate the vendor-specific
XML descriptors.

Table 2.3 These subtasks can be added to your <ejbdoclet/> task to generate the vendor-specific
deployment XML for your EJBs. Along with each subtask are associated JavaDoc comments in order to
help XDoclet completely generate the XML. Refer to the XDoclet documentation for more information
about each of these tasks.

Application Server Subtask Comments

Weblogic <weblogic/> Generates descriptors for versions 6.0 and 6.1

JBoss <jboss/> Generates the jboss-xml and jaws.xml files

(continued on next page)

Specifying security roles in the bean source 63

� Discussion

These subtasks have many common attributes, but also contain a set of subtask-
specific attributes. Consult the XDoclet documentation for the details specific
to your application server. In addition, many of the subtasks have XDoclet tags
that you can include in your bean source file to make the XML generation
more complete.

� See also

2.3—Keeping your EJB deployment descriptor current

2.9 Specifying security roles in the bean source

� Problem

You want to generate security roles directly into the EJB deployment descriptor.
You do not want to edit the XML file manually.

� Background

Rather than updating the XML deployment descriptor for a bean with security
information after development, you would like it generated along with the other
XML parts of the descriptor. Creating security roles in the XML can be tedious and
error prone when you edit by hand.

JonAS <jonas/>

JRun <jrun/>

Orion <orion/> Generates the orion-ejb-jar.xml

Websphere <websphere/>

Pramati <pramati/>

Resin <resin-ejb-xml/> Generates the resin-ejb xml

HPAS <hpas/>

EAServer <easerver/> Generates XML for EAServer 4.1

Table 2.3 These subtasks can be added to your <ejbdoclet/> task to generate the vendor-specific
deployment XML for your EJBs. Along with each subtask are associated JavaDoc comments in order to
help XDoclet completely generate the XML. Refer to the XDoclet documentation for more information
about each of these tasks. (continued)

Application Server Subtask Comments

64 CHAPTER 2

Code generation with XDoclet

� Recipe

Listing 2.15 contains the UserBean from recipe 2.6 with additional JavaDoc com-
ments (shown in bold) to create security constraints in the generated XML deploy-
ment descriptor.

/**
 * @ejb.bean type="Stateful"
 * view-type="both"
 * jndi-name="${user.bean.jndi}"
 *
 * @ejb.security-role-ref
 * role-name="ADMIN"
 * role-link="administrator"
 *
 */
public class UserBean implements SessionBean{

You must also be sure that your <ejbdoclet/> task in the build.xml file includes
the correct subtask to generate the deployment XML file (see recipe 2.3).

� Discussion

As you can see, there is nothing too complicated about specifying security roles.
In addition, you can use the @ejb.security-identity tag to declare the bean to
assume a role when it acts as a client to another bean. This tag has the attributes
user-caller-identity and run-as, which correspond to the XML elements you
should recognize.

� See also

2.3—Keeping your EJB deployment descriptor current

2.8—Generating vendor-specific deployment descriptors

2.10—Generating and maintaining method permissions

2.10 Generating and maintaining method permissions

� Problem

You would like to automate the permission-creation method in the deployment XML.
You also want the XML to change as your EJB methods and security roles change.

Listing 2.15 Declaring security roles in the source code

Generating and maintaining method permissions 65

� Background

In addition to needing security roles in the EJB deployment XML, EJB applications
usually need method permissions based on those roles in order to provide access
control to various EJB methods. As EJBs change, and as new EJBs are created, the
method permissions created in the deployment descriptor must also change. In
addition, as you create new methods (or new security roles), you will have to add
method permissions in the XML.

� Recipe

Use the @ejb.permission tag in the method-level JavaDoc comments to specify
method permissions for specific methods. This tag must be used in combination
with @ejb.create-method or @ejb.interface-method. Refer to recipe 2.1 for more
information on those tags. The UserBean source subsection in listing 2.16 shows a
single method declaring method permissions (highlighted in bold).

package ch2;

import javax.ejb.*;

/**
 * @ejb.bean type="Stateful"
 * view-type="both"
 * jndi-name="${user.bean.jndi}"
 *
 */
public class UserBean implements SessionBean{

 private String name = null;

 /**
 * @ejb.interface-method
 * @ejb.permission
 * unchecked="true";
 */
 public void setUserName(String name)
 {
 this.name = name;
 }
}

� Discussion

When using the @ejb.permission tag, you can use the role-name attribute to spec-
ify a specific role for the method permission or the unchecked attribute to indicate

Listing 2.16 UserBean.java

66 CHAPTER 2

Code generation with XDoclet

universal access. The role-name attribute can have a single role name value, or it
can be a comma-separated list of role names that can access the method. The use
of the @ejb.permission tag, along with others in this chapter, helps you to more
completely generate your ejb-jar.xml for deploying your EJBs. This tag must be
used with @ejb.create-method or @ejb.interface-method so that XDoclet knows
with which method the permission is associated. To that end, you must include
the subtask <deploymentdescriptor/> in your build.xml file in order to generate
any new XML.

 The generated XML will differ depending on which EJB interfaces you are gen-
erating. If you generate both, you should see XML for the method permission gen-
erated for both view types.

� See also

2.1—Generating home, remote, local, and local home interfaces

2.3—Keeping your EJB deployment descriptor current

2.8—Generating vendor-specific deployment descriptors

2.9—Specifying security roles in the bean source

2.11 Generating finder methods
for entity home interfaces

� Problem

You want to generate the finder method declaration as part of the home interface
generation process.

� Background

Recipe 2.1 shows how to generate home (and other) interfaces for session and
entity beans. In that recipe, we add creation methods to the home interface. In
the case of entity beans, home interfaces often need to include finder methods.
Adding these finder methods requires time-consuming changes to the interface
and may cause file synchronization problems, as described in recipe 2.1.

� Recipe

To generate the finder method declaration, use the @ejb.finder tag in the class-
level JavaDoc of your bean source. For example, the following class section of

Generating the ejbSelect method XML 67

code from the ItemBean generates a finder method for the bean’s home and local
home interface:

package ch2;

import javax.ejb.*;
/**
 * @ejb.bean type="CMP"
 * name="ItemBean"
 * jndi-name="ejb/ItemBean"
 * view-type="both"
 *
 * @ejb.finder signature="java.util.Collection findAll()"
 */
public abstract class ItemBean implements EntityBean
{

� Discussion

The result of this tag is the declaration of the finder method into the home and
local home interface of the EJB. As long as you are generating the home or local
home interface, you don’t need to make any changes to the build.xml file.

� See also

2.1—Generating home, remote, local, and local home interfaces

2.12 Generating the ejbSelect method XML

� Problem

You want to use XDoclet to generate the XML for the select methods of a bean.

� Background

Entity beans often must declare specific select methods allowing you to select col-
lections or specific entities from the persistent store. Select methods must be
described in the deployment XML for a bean. As with all manual tasks, editing the
XML descriptor is error prone and tedious.

� Recipe

To generate the XML for select methods, declare the abstract select methods in
your bean class and identify them with the @ejb.select tag in their JavaDoc com-
ments. Use the tag attribute query to specify the EJB-QL statement for the method.
For instance, examine the ItemBean in listing 2.17.

68 CHAPTER 2

Code generation with XDoclet

package ch2;

import javax.ejb.*;
/**
 * @ejb.bean type="CMP"
 * name="ItemBean"
 * jndi-name="ejb/ItemBean"
 * view-type="both"
 */
public abstract class ItemBean implements EntityBean
{
 //various bean methods…

 //ejbSelect methods

 /**
 * @ejb.select query="SELECT OBJECT(i) FROM Item AS i"
 */
 public abstract java.util.Collection ejbSelectAll();
}

Also, you must specify the <deploymentdescriptor/> subtask in your build.xml file.

� Discussion

Select methods are not generated into a particular interface—the only result you
should see is in the XML deployment descriptor. The descriptor will contain the
EJB-QL and proper declarations for the method. Keep in mind that ejbSelect
methods run under the transaction context of the invoker.

� See also

2.3—Keeping your EJB deployment descriptor current

2.13 Adding a home method
to generated home interfaces

� Problem

You want to add home methods to your generated home or local home interface.

Listing 2.17 ItemBean.java

Adding a home method 69
to generated home interfaces

� Background

Occasionally you need to compute a value that encompasses all bean instances,
such as the sum of all account balances over all Account entity beans. Since these
methods are independent of any particular bean instance, they need to be
defined on the home interface. As long as XDoclet is generating your home inter-
face (see recipe 2.1), you should add any home methods to that generation.
Please read recipe 2.1 before following this recipe.

� Recipe

To add home methods to either/both of your home and local home interfaces,
you simply need to add a method-level JavaDoc tag to the method in the bean
source. For example, the following method from an entity bean illustrates the
necessary JavaDoc:

 /**
 * @ejb.home-method
 * view-type="both"
 */
 public void addDataToAll()
 {
 //method implementation here
 }

� Discussion

Adding a home method to your home interfaces (home and local home) is no dif-
ferent than adding a regular business interface method—except that the JavaDoc
tag routes the method to the home interface. The @ejb.home-method JavaDoc tag
has an optional attribute, view-type, which you can use to specify the home inter-
faces you want to add this method. The possible values are remote, local, and
both. This recipe once again illustrates how XDoclet provides the easiest way to
keep your interface synchronized with your EJB source. If you later add methods,
such as a home method, to your bean source, another trip through the Ant build
process will entirely regenerate your interfaces and keep them up to date.

� See also

2.1—Generating home, remote, local, and local home interfaces

70 CHAPTER 2

Code generation with XDoclet

2.14 Adding entity relation XML
to the deployment descriptor

� Problem

You want to generate the deployment XML for an entity bean relationship.

� Background

A new feature for EJB 2.0 applications is the ability to relate entity beans using rela-
tionships. This is similar to what you would find in any relational database. With
EJB 2.0, you can create one-to-one, one-to-many, and many-to-many data relation-
ships. The only drawback is that creating relationships requires large additions to
the ejb-jar.xml file. Please read recipes 2.1 and 2.3 before using this recipe.

� Recipe

The following source shows a method that indicates a relationship between two
entity beans. This method comes from the OwnerBean entity bean. Each OwnerBean
entity bean is related unidirectly to a DataBean entity bean.

 /**
 * @ejb.interface-method
 * @ejb.relation
 name="OwnerToData"
 relation-role="Owner"
 target-ejb="ch2.DataBean"
 */
 public abstract Data getData();

� Discussion

Using the method-level @ejb-relation tag shown in the recipe generates the fol-
lowing XML in the assembly descriptor section of the ejb-jar.xml file:

 <relationships >
 <ejb-relation >
 <ejb-relation-name>OwnerToData</ejb-relation-name>

 <ejb-relationship-role >
 <multiplicity>One</multiplicity>
 <relationship-role-source >
 <ejb-name>ch2.Owner</ejb-name>
 </relationship-role-source>
 <cmr-field >
 <cmr-field-name>data</cmr-field-name>
 </cmr-field>

Adding the destination type 71
to a message-driven bean deployment descriptor

 </ejb-relationship-role>

 <ejb-relationship-role >
 <multiplicity>One</multiplicity>
 <relationship-role-source >
 <ejb-name>ch2.DataBean</ejb-name>
 </relationship-role-source>
 </ejb-relationship-role>

 </ejb-relation>
 </relationships>

The JavaDoc tag is used to specify a data accessor that indicates the entity data
relationship. In this case, the OwnerBean entity data is related to the DataBean
entity bean. The three attributes shown with the tag are the mandatory properties
that must be set when using this tag.

� See also

2.3—Keeping your EJB deployment descriptor current

3.7— Modeling one-to-one entity data relationships

2.15 Adding the destination type
to a message-driven bean deployment descriptor

� Problem

You want to generate the XML for the JMS message destination type while generat-
ing the deployment descriptor for a message-driven bean.

� Background

Message-driven beans must declare their destination type in their deployment
descriptor from which they will be receiving JMS messages. Recipe 2.3 showed how
to use XDoclet to generate the deployment descriptor for EJBs. Additionally, you
can specify the destination type for a message-driven bean in its class source and
add it to the generated XML. Please read recipe 2.3 before using this one.

� Recipe

To generate the XML for the message destination type, add the destination-type
attribute to the class-level @ejb.bean XDoclet tag for your message-driven bean
class. The following code does this for the MessageBean class:

72 CHAPTER 2

Code generation with XDoclet

/**
 * @ejb.bean
 * name="MessageBean"
 * type="MDB"
 * destination-type="javax.jms.Queue"
 */
public class MessageBean
 implements MessageDrivenBean, MessageListener {

Notice also the change in the type attribute for this example. Instead of session
or entity, its value is MDB, indicating that this class is a message-driven EJB.

� Discussion

Using the destination-type attribute with the @ejb.bean tag generates the addi-
tional XML (shown in bold):

<ejb-jar>
 <enterprise-beans>

 <message-driven>
 <ejb-name>MDB</ejb-name>
 <ejb-class>MessageBean</ejb-class>
 <transaction-type>Container</transaction-type>
 <message-driven-destination>
 <destination-type>javax.jms.Topic</destination-type>
 </message-driven-destination>
 </message-driven>

</enterprise-beans>
<ejb-jar>

The other possible value would be javax.jms.Topic, which would add a Topic des-
tination instead of a Queue. If you are using a Topic, then you can optionally spec-
ify whether the topic should be Durable or NonDurable by using an additional
attribute, subscription-durability.

� See also

2.3—Keeping your EJB deployment descriptor current

2.16—Adding message selectors to a message-driven bean deployment
descriptor

Chapter 6, “Messaging”

Adding message selectors to 73
a message-driven bean deployment descriptor

2.16 Adding message selectors to
a message-driven bean deployment descriptor

� Problem

You want to generate the XML for a message selector while generating the deploy-
ment descriptor for a message-driven bean.

� Background

Message-driven beans have the ability to filter incoming messages by using mes-
sage selectors. Each message selector for a message-driven bean must be specified
in its deployment XML. Recipe 2.3 showed how to use XDoclet to generate the
deployment descriptor for EJBs. You can also use XDoclet to add a message selec-
tor to generated deployment XML for a message-driven bean. Please read
recipe 2.3 before using this one.

� Recipe

To generate the XML for a message selector, add the message-selector attribute
to the class-level @ejb.bean XDoclet tag for your message-driven bean class. The
following code does this for the MessageBean class:

/**
 * @ejb.bean
 * name="MessageBean"
 * type="MDB"
 * message-selector="<![CDATA messageType = 'buyerRequest']]>"
 */
public class MessageBean
 implements MessageDrivenBean, MessageListener {

Notice also the change in the type attribute for this example. Instead of session
or entity, its value is MDB, indicating that this class is a message-driven EJB.

� Discussion

Using the message-selector attribute with the @ejb.bean tag generates the follow-
ing XML:

<ejb-jar>
 <enterprise-beans>

74 CHAPTER 2

Code generation with XDoclet

 <message-driven>
 <ejb-name>MDB</ejb-name>
 <ejb-class>MessageBean</ejb-class>
 <transaction-type>Container</transaction-type>
 <message-selector>
 <![CDATA[messageType = 'buyerRequest']]>
 </message-selector>
 </message-driven>

</enterprise-beans>
<ejb-jar>

Notice the use of the CDATA brackets when specifying the message selector value.
Because message selectors can use special characters like > and <, you must use
the CDATA brackets so that the XML file can be correctly parsed.

� See also

2.3—Keeping your EJB deployment descriptor current

2.15—Adding the destination type to a message-driven bean deployment
descriptor

Chapter 6, “Messaging”

197

Messaging

“An army marches on its stomach.”

—Napoleon Bonaparte

198 CHAPTER 6

Messaging

With the introduction of the message-driven bean in the EJB 2.0 specification,
Enterprise JavaBean applications can now easily be integrated with messaging sys-
tems. Java 2 Platform Enterprise Edition (J2EE)-compliant application servers are
required to provide messaging capabilities. Before the message-driven bean, EJB
applications could still send Java Message Service (JMS) messages and listen for
those messages by including a JMS listener object; however, messages had to be
processed in a synchronous manner. Message-driven beans are now the ideal way
to expose business logic to messaging applications.

This chapter primarily focuses on problems associated with message-driven
bean development. In this chapter, you will find recipes dealing with these topics:

� Sending JMS messages

� Creating a message-driven EJB

� Processing messages first in, first out

� Putting business logic in message-driven beans

� Streaming data with JMS

� Triggering multiple message-driven beans

� Speeding up message delivery

� Using message selectors

� Handling errors in a message-driven bean

� Sending email asynchronously

� Handling rollbacks in a message-driven bean

6.1 Sending a publish/subscribe JMS message

� Problem

You want to send a JMS message to a message topic (known as publish/subscribe
messaging).

� Background

Enterprise applications can now use the JMS to communicate to outside applica-
tions or other application servers. EJBs can use JMS to decouple communication
with these other systems in an asynchronous manner using a publish/subscribe
pattern. JMS message topics create a one (the sender) to many (the receiver) rela-
tionship between messaging partners. In addition, publish/subscribe topics can

Sending a publish/subscribe JMS message 199

be used to store messages even when no entity is ready to retrieve them (referred
to as durable subscriptions).

� Recipe

The code in listing 6.1 shows a private method, publish(), that can be used in any
object that wishes to send a JMS message to a publish/subscribe topic.

 private void publish(String subject, String content) {

 TopicConnection topicConnection = null;
 TopicSession topicSession = null;
 TopicPublisher topicPublisher = null;
 Topic topic = null;
 TopicConnectionFactory topicFactory = null;

 try{
 Properties props = new Properties();
 props.put(Context.INITIAL_CONTEXT_FACTORY,
 "weblogic.jndi.WLInitialContextFactory");
 props.put(Context.PROVIDER_URL, url);
 InitialContext context = new InitialContext(props);

 topicFactory =
 (TopicConnectionFactory)
 context.lookup("TopicFactory");

 topicConnection =
 topicFactory.createTopicConnection();

 topicSession =
 topicConnection.createTopicSession(false,
 Session.AUTO_ACKNOWLEDGE);

 topic = (Topic) context.lookup("ProcessorJMSTopic");
 topicPublisher = topicSession.createPublisher(topic);

 MapMessage message = topicSession.createMapMessage();
 message.setString("Subject", subject);
 message.setString("Content", content);
 topicPublisher.publish(message);
 }catch(Exception e){
 e.printStackTrace();
 }
 }

Listing 6.1 The publish() method

Creates an
InitialContext
for the
Weblogic
application
server

Looks up the
topic factory

Creates a topic
connection and

session

Finds the
topic and
builds a
publisher

Builds and sends
the message

200 CHAPTER 6

Messaging

� Discussion

Publish/subscribe messaging allows you to send a single message to many message
listeners. In fact, you can create message Topic destinations as durable, allowing
message listeners to retrieve messages that were sent before the listener sub-
scribed to the topic.

To send a message to a JMS topic, you first need to create a Java Naming and
Directory Interface (JNDI) context and retrieve the JMS connection factory for
topics in the JMS environment. Next, you must create a topic connection in order
to establish a topic session. Once you have a session, you can find the actual topic
to which you want to send a message, and build a publisher object for transmis-
sion of your message. Finally, simply construct your message and send it using the
publisher. For more about the JMS API, visit http://java.sun.com

� See also

6.2—Sending a point-to-point JMS message

6.3—Creating a message-driven Enterprise JavaBean

7.8—Securing a message-driven bean

6.2 Sending a point-to-point JMS message

� Problem

You want to send a point-to-point message.

� Background

Like the publish/subscribe messaging model shown in recipe 6.1, the point-to-
point model allows applications to send messages asynchronously to remote mes-
sage listeners. Point-to-point messaging differs in that it creates a one-to-one rela-
tionship between sender and receiver—that is, a single receiver consumes a single
message. No message will be duplicated across multiple consumers.

� Recipe

The code in listing 6.2 shows a private method, send(), that can be used in any
object that wishes to send a JMS point-to-point message.

Sending a point-to-point JMS message 201

 private void send(String subject, String content) {
 QueueConnection queueConnection = null;
 QueueSession queueSession=null;
 QueueSender queueSender=null;
 Queue queue=null;
 QueueConnectionFactory queueFactory = null;

 try{
 Properties props = new Properties();
 props.put(Context.INITIAL_CONTEXT_FACTORY,
 "weblogic.jndi.WLInitialContextFactory");
 props.put(Context.PROVIDER_URL, url);
 InitialContext context = new InitialContext(props);

 queueFactory =
 (QueueConnectionFactory) context.lookup("QueueFactory");

 queueConnection = queueFactory.createQueueConnection();
 queueSession = queueConnection.createQueueSession(false,
 Session.AUTO_ACKNOWLEDGE);
 queue = (Queue)context.lookup("BookJMSQueue");
 queueSender = queueSession.createSender(queue);

 MapMessage message =
 queueSession.createMapMessage();
 message.setString("Symbol",symbol);
 message.setString("Description",description);
 queueSender.send(message);

 }
 catch(Exception e){
 log("Error Publishing Message");
 e.printStackTrace();
 }
 }

� Discussion

To send a point-to-point message, you must send a message to a JMS message
queue. To send the message, you first have to create a JNDI context and retrieve
the JMS connection factory for a message queue in the JMS environment. Next,
you must create a queue connection in order to establish a queue session. Once
you have a session, you can find the actual queue to which you want to send a mes-
sage, and build a sender object for transmission of your message. Finally, you sim-
ply construct your message and send it using the sender.

Listing 6.2 The send() method

Creates an
InitialContext

for the
Weblogic

application
server

Looks up the topic factory

Creates a
topic

connection
and session

Finds the
topic and
builds a
senderBuilds and

sends the
message

202 CHAPTER 6

Messaging

Message queues guarantee that messages are consumed by only one receiver
and are never duplicated across multiple listeners (unlike a JMS topic). Message
queues are ideal for messages that should be processed concurrently but only
once. Many receivers can be pulling messages from a queue for processing at the
same time, but each message will be sent to only one consumer.

� See also

6.1—Sending a publish/subscribe JMS message

6.3—Creating a message-driven Enterprise JavaBean

7.8—Securing a message-driven bean

6.3 Creating a message-driven Enterprise JavaBean

� Problem

You want to create a message-driven bean to contain business logic that will be
triggered by a JMS message.

� Background

Message-driven beans (added to the EJB 2.0 specification) are assigned to receive
messages from a particular JMS message destination. These EJBs are ideal for exe-
cuting business logic asynchronously and for exposing EJB applications to enter-
prise messaging systems. Message-driven beans use the same transaction models
(see chapter 5) and declarative security (see chapter 7) as do session and entity
beans. Another advantage of message-driven beans is that they can be used to proc-
ess messages concurrently. EJB containers can create a pool of identical message-
driven beans that are able to process messages at the same time, generating a great
deal of processing power.

� Recipe

This recipe illustrates how to build a simple message-driven bean and create its
XML descriptor. The class in listing 6.3 defines a message-driven bean. It imple-
ments the required MessageDrivenBean interface and the necessary MessageLis-
tener interface that allows the bean to receive JMS messages.

Creating a message-driven Enterprise JavaBean 203

public class SampleMDB implements MessageDrivenBean, MessageListener
{

 private MessageDrivenContext ctx;

 public void ejbRemove() { }

 public void ejbPassivate() { }

 public void setMessageDrivenContext(MessageDrivenContext ctx) {
 this.ctx = ctx;
 }

 public void ejbCreate () throws CreateException { }

 public void ejbActivate() { }

 public void onMessage(Message msg) {
 MapMessage map = (MapMessage) msg;

 try {

 processMessage(map);
 }
 catch(Exception ex) {
 ex.printStackTrace();
 }
 }

 private void processMessage(MapMessage map) throws Exception
 {
 //implementation not shown
 }

}

Listing 6.4 contains the partial deployment XML file for the bean; notice how it
indicates the source type of messages for the bean (either point-to-point or pub-
lish/subscribe).

<ejb-jar>
 <enterprise-beans>

 <message-driven>
 <ejb-name>SampleMDB</ejb-name>
 <ejb-class>SampleMDB</ejb-class>
 <transaction-type>Container</transaction-type>

Listing 6.3 SampleMDB.java

Listing 6.4 Deployment descriptor

Implements the
MessageDrivenBean and

MessageListener interfaces

Handles
incoming
messages

204 CHAPTER 6

Messaging

 <message-driven-destination>
 <destination-type>javax.jms.Topic</destination-type>
 </message-driven-destination>
 </message-driven>

 </enterprise-beans>

 <assembly-descriptor>
 </assembly-descriptor>

</ejb-jar>

Finally, you must perform the vendor-specific steps to assign the bean to an actual
JMS message destination. The deployment XML describes only the type of messag-
ing used by the message-driven bean, not the actual name of a topic or queue.
Consult your application server documentation for more information. For exam-
ple, the following XML could be used for the Weblogic application server:

<weblogic-ejb-jar>

 <weblogic-enterprise-bean>
 <ejb-name>SampleMDB</ejb-name>
 <message-driven-descriptor>
 <destination-jndi-name>BookJMSTopic</destination-jndi-name>
 </message-driven-descriptor>
 <jndi-name>ejb/SampleMDB</jndi-name>
 </weblogic-enterprise-bean>

</weblogic-ejb-jar>

� Discussion

As with all other types of EJBs, security and transaction control is implemented in
the usual way. In some cases, transactions and security do have special consider-
ations that you must take into account when dealing with message-driven beans.
For example, you need a good way to prevent unwanted clients from sending mes-
sages to your message-driven EJBs and triggering business logic, and you also need
to know how to handle rollbacks in the onMessage() method. In addition, you
should keep in mind that message-driven beans are stateless, and you should
therefore not attempt to keep any state information stored at a class level in-
between onMessage() invocations.

The MessageDriveBean interface must be implemented in order to provide the
bean with the appropriate bean methods, such as ejbRemove() and ejbCreate().
The Context object set in the bean is an instance of the MessageDrivenContext,
which provides many of the methods found in the session and entity bean context
classes. However, due to the nature of the message-driven bean, many of the

Describes the
messaging type
for this bean

Processing messages in a FIFO manner 205
from a message queue

context methods will throw an exception if used. Since a message-driven bean has
no real EJB client (only the container that delivers the message), the getCaller-
Principal() and isCallerInRole() methods throw a runtime exception. In addi-
tion, message-driven beans have no home interfaces (and therefore have no
home objects), so getEJBHome() and getEJBLocalHome() also throw runtime
exceptions if used. Finally, since no EJB clients exist for a message-driven bean, the
transaction context for the start of the onMessage() method is started by the con-
tainer in the case of container-managed transactions, or by the bean itself in the
case of bean-managed transactions.

� See also

6.1—Sending a publish/subscribe JMS message

6.2—Sending a point-to-point JMS message

7.8—Securing a message-driven bean

6.4 Processing messages in a FIFO manner
from a message queue

� Problem

You want to ensure that a message in a queue is processed only after any previous
message has finished processing.

� Background

While some business logic operated by a message-driven bean can process mes-
sages in any order, other business functions might need messages supplied in a
specific order. For instance, you might want to process incoming JMS messages
according to the order in which they were received to preserve a specific data-
driven workflow. Each message can be a step in a workflow, and the next step can-
not begin without the previous one completing. Refer to recipe 6.2 for a discussion
of using message queues.

� Recipe

The client shown in listing 6.5 publishes messages onto a message queue for a
message-driven bean to pick up.

206 CHAPTER 6

Messaging

public class Client
{
 private QueueConnection queueConnection = null;
 private QueueSession queueSession = null;
 private QueueSender queueSender = null;
 private Queue queue = null;
 private QueueConnectionFactory queueFactory = null;
 private String url = getURL();

 public Client()throws JMSException, NamingException {
 Context context = getInitialContext();

 queueFactory = (QueueConnectionFactory)
 context.lookup("BookJMSFactory");
 queueConnection = queueFactory.createQueueConnection();
 queueSession = queueConnection.createQueueSession(false,
 Session.AUTO_ACKNOWLEDGE);
 queue = (Queue) context.lookup("BookJMSQueue");
 queueSender = queueSession.createSender(queue);
 }

 public void send() throws JMSException {
 MapMessage message = null;

 for(int i=0;i<10;i++){
 message = queueSession.createMapMessage();
 message.setInt("Index",i);
 queueSender.send(message);
 }
 }

 public void close() throws JMSException {
 queueConnection.close();
 }

 public static void main(String[] args) {
 Client sender = null;

 try{
 sender = new Client();
 sender.send();
 sender.close();
 }
 catch(Exception ex) {
 ex.printStackTrace();
 }
 }
}

Listing 6.5 Client.java

Processing messages in a FIFO manner 207
from a message queue

Notice that the client sends a counter value in the messages. The message-driven
bean will use that value to show that the messages are received and processed one
at a time. The message-driven bean shown in listing 6.6 picks up messages from
the message queue and prints out the counter value that each message contains.

public class MessageBean implements MessageDrivenBean, MessageListener {

 private MessageDrivenContext ctx;

 public void onMessage(Message msg) {
 MapMessage map = (MapMessage) msg;

 try {
 int index = map.getInt("Index");
 System.out.println("Processing message: " + index);
 }
 catch(Exception ex) {
 ex.printStackTrace();
 }
 }

 //other bean methods not shown
}

Since we made use of a message queue, we are guaranteed that messages will be
removed from the queue in the order in which they were placed. To ensure that
one message is completely processed before the next message begins, you should
deploy only a single message-driven bean to remove messages from the queue.

Listing 6.7 contains the deployment XML for the bean; notice how it indicates
the source type of messages for the bean.

<ejb-jar>
 <enterprise-beans>

 <message-driven>
 <ejb-name>fifoMDB</ejb-name>
 <ejb-class>fifo.MessageBean</ejb-class>
 <transaction-type>Container</transaction-type>
 <message-driven-destination>
 <destination-type>javax.jms.Queue</destination-type>
 </message-driven-destination>
 </message-driven>

Listing 6.6 MessageBean.java

Listing 6.7 Deployment descriptor

208 CHAPTER 6

Messaging

 </enterprise-beans>

 <assembly-descriptor>
 </assembly-descriptor>

</ejb-jar>

To ensure that the second message is not consumed before the first message proc-
essing has completed, you must have only one bean listening to the queue. This is
set up in the vendor-specific deployment file. For example, you can use XML like
that shown in listing 6.8 for the Weblogic application server.

<weblogic-ejb-jar>

 <weblogic-enterprise-bean>
 <ejb-name>fifoMDB</ejb-name>
 <message-driven-descriptor>
 <pool>
 <max-beans-in-free-pool>1</max-beans-in-free-pool>
 <initial-beans-in-free-pool>1</initial-beans-in-free-pool>
 </pool>
 <destination-jndi-name>BookJMSQueue</destination-jndi-name>
 </message-driven-descriptor>
 <jndi-name>fifo.MBD</jndi-name>
 </weblogic-enterprise-bean>

</weblogic-ejb-jar>

� Discussion

Message queues guarantee that only one consumer will process each single mes-
sage. By limiting the number of consumers assigned to a queue to a single message-
driven bean, you ensure that all the messages will be processed in the order in
which they were received. In addition, using one consumer guarantees that each
message will completely process before the next one begins processing. Otherwise,
you can create a pool of message-driven beans (by increasing the pool size in a ven-
dor-specific manner) to pull messages faster from the queue. Messages will still only
be delivered to a single message-driven bean instance, but using many message-
driven bean instances with the same queue results in faster message processing.

� See also

6.2—Sending a point-to-point JMS message

Listing 6.8 Weblogic deployment descriptor

Creates the
message-

driven bean
pool of size 1

Insulating message-driven beans 209
from business logic changes

6.5 Insulating message-driven beans
from business logic changes

� Problem

You want to prevent changing your message-driven EJB classes when the business
logic they invoke changes.

� Background

Message-driven EJBs are ideal for executing business logic via JMS messages. How-
ever, when developing an enterprise application in a changing environment (or a
shorter development cycle), you might find that you spend too much time
upgrading the business logic contained in your message-driven beans. It would be
ideal to encapsulate your business logic and insulate your message-driven beans
from unnecessary changes.

� Recipe

To shield your message-driven beans from business logic changes, encapsulate the
business logic with an intermediary object. The message-driven EJB shown in list-
ing 6.9 uses an instance of the BusinessLogicBean class.

public class MessageBean implements MessageDrivenBean, MessageListener
{
 private MessageDrivenContext ctx;

 public void onMessage(Message msg) {
 MapMessage map=(MapMessage)msg;

 try {
 String symbol = map.getString("Symbol");
 String description = map.getString("Description");

 BusinessLogicBean bean =
 new BusinessLogicBean(symbol, description);
 bean.executeBusinessLogic();
 }
 catch(Exception ex) {
 ex.printStackTrace();
 }
 }
}

Listing 6.9 MessageBean.java

Invokes the
encapsulated
business logic

210 CHAPTER 6

Messaging

� Discussion

The BusinessLogicBean class has a single purpose: to encapsulate business logic.
This class is a simple object that allows the message-driven bean to execute busi-
ness logic by passing in parameters and invoking a method. Using a class like this
allows the EJB to shield itself from changes to the business logic. In addition, it is
good practice to build business logic into reusable classes. An alternative to using
a simple object is to invoke a session EJB that already encapsulates some business
logic. By encapsulating all business logic with session beans, you ensure that the
logic is available to both message-driven beans and any other EJB clients.

� See also

6.3—Creating a message-driven Enterprise JavaBean

6.6 Streaming data to a message-driven EJB

� Problem

You want to send a stream of data to a message-driven EJB.

� Background

Message-driven beans can receive all types of JMS messages. Because of that capa-
bility, you can use the most appropriate JMS message type for the data you want to
send. For instance, when you want to send a large amount of binary data (like an
image), you should stream the data to conserve bandwidth and memory. Refer to
recipe 6.1 for more information on using message topics.

� Recipe

This solution demonstrates a client and a message-driven bean using streamed
data. Listing 6.10 shows a client that streams a message containing data from a
binary file to a message-driven EJB. It uses a message topic as a message destination.

public class Client
{
 private TopicConnection topicConnection = null;
 private TopicSession topicSession = null;
 private TopicPublisher topicPublisher = null;
 private Topic topic = null;
 private TopicConnectionFactory topicFactory = null;

Listing 6.10 Client.java

Streaming data to a message-driven EJB 211

 private String url= "http://myjndihost";

 public Client(String factoryJNDI, String topicJNDI)
 throws JMSException, NamingException {

 // Get the initial context, implementation not shown
 Context context = getInitialContext();

 // Get the connection factory
 topicFactory = (TopicConnectionFactory)
 context.lookup(factoryJNDI);

 // Create the connection
 topicConnection = topicFactory.createTopicConnection();

 // Create the session
 topicSession=topicConnection.createTopicSession(false,
 Session.AUTO_ACKNOWLEDGE);

 // Look up the destination
 topic = (Topic) context.lookup(topicJNDI);

 // Create a publisher
 topicPublisher = topicSession.createPublisher(topic);
 }

 public void sendToMDB(String filename) throws JMSException
 {
 byte[] bytes = new byte[1024];
 FileInputStream istream = null;
 int bytesRead = 0;

 try{
 BytesMessage message = topicSession.createBytesMessage();
 Istream = new FileInputStream(filename);
 while((bytesRead = istream.read(bytes,0,bytes.length)) > 0)
 {
 message.writeBytes(bytes,0,bytesRead);
 }
 istream.close();
 topicPublisher.publish(message);
 }
 catch(Exception e){
 e.printStackTrace();
 }
 }

 public void close() throws JMSException {
 topicSession.close();
 topicConnection.close();
 }

 public static void main(String[] args) {
 Client publisher = null;
 String filename = null;

 try{

Creates the
BytesMessage

instance

Writes the data
to the message

212 CHAPTER 6

Messaging

 publisher = new Client("BookJMSFactory", "BookJMSTopic");
 System.out.println("Publishing message:");

 if(args.length > 0){
 filename = args[0];
 publisher.sendToMDB(filename);
 publisher.close();
 }
 }
 catch(Exception ex) {
 ex.printStackTrace();
 }
 }
}

Listing 6.11 shows the sample message-driven bean that receives data from a
streamed message. This bean simply prints out the data it receives.

public class MessageBean implements MessageDrivenBean, MessageListener {

 private MessageDrivenContext ctx;

 public void ejbRemove() { }

 public void ejbPassivate() { }

 public void setMessageDrivenContext(MessageDrivenContext ctx) {
 this.ctx = ctx;
 }

 public void ejbCreate () throws CreateException { }

 public void ejbActivate() { }

 public void onMessage(Message msg)
 {
 BytesMessage message = (BytesMessage) msg;
 int bytesRead = 0;
 byte[] bytes = new byte[1024];

 try {
 while((bytesRead = message.readBytes(bytes, 1024)) > 0){
 System.out.println(new String(bytes, 0 , bytesRead));
 }
 }catch(Exception ex) {
 ex.printStackTrace();
 }
 }
}

Listing 6.11 MessageBean.java

Reads the data
off the message

Triggering two or more message-driven beans 213
with a single JMS message

� Discussion

Streaming large amounts of data helps you to avoid building a single large mes-
sage. In addition, message streams are ideal for sending binary file data. By using
message streams, you can more easily build messaging systems that can restart
message transmission from the point of failure, rather than retransmit data. The
client uses the BytesMessage message class. This message type is used specifically
for sending large amounts of data to a message listener. The message-driven bean
uses its onMessage() method to receive the message, as it would any other message
type. The message-driven bean in this recipe only printed out the data it received
from the streamed message, but it could instead store it in a database or create a
new file containing the data.

� See also

6.1—Sending a publish/subscribe JMS message

6.3—Creating a message-driven Enterprise JavaBean

6.7 Triggering two or more message-driven beans
with a single JMS message

� Problem

You want to start two or more business methods concurrently with a single JMS
message.

� Background

Message-driven beans give other parts of an enterprise application the ability to
execute business logic asynchronously. However, sending multiple JMS messages
to execute multiple pieces of business logic can be time-consuming and redun-
dant. To improve the efficiency of code, you should send a single message that
triggers multiple message-driven beans.

� Recipe

To execute two pieces of business logic with a single message, you need only have
two different message-driven beans listen for the same message. To do this, you
must use a JMS message topic. Topics create a one-to-many relationship between
sender and receiver(s). For this example, we will use two simple message-driven

214 CHAPTER 6

Messaging

beans (listings 6.12 and 6.13). The onMessage() method simply prints out a state-
ment indicating it has received a message.

public class MessageBean implements MessageDrivenBean, MessageListener {

 public void onMessage(Message msg) {
 MapMessage map = (MapMessage) msg;

 try {
 String symbol = map.getString("Symbol");
 String description = map.getString("Description");

 System.out.println("MDB 1 received Symbol : " + symbol
 + " " + description);
 }
 catch(Exception ex) {
 ex.printStackTrace();
 }
 }
 //other bean methods not shown
}

public class MessageBean2 implements MessageDrivenBean, MessageListener {

 public void onMessage(Message msg) {
 MapMessage map=(MapMessage)msg;

 try {
 String symbol = map.getString("Symbol");
 String description = map.getString("Description");

 System.out.println("MDB 2 received Symbol : " + symbol
 + " " + description);
 }
 catch(Exception ex) {
 ex.printStackTrace();
 }
 }
}

Listing 6.14 contains the XML descriptor for these beans. As you can see, the
descriptor indicates the JMS destination type.

Listing 6.12 MessageBean.java

Listing 6.13 MessageBean2.java

Triggering two or more message-driven beans 215
with a single JMS message

<enterprise-beans>

 <message-driven>
 <ejb-name>MDB</ejb-name>
 <ejb-class>multiSubscriber.MessageBean</ejb-class>
 <transaction-type>Container</transaction-type>
 <message-driven-destination>
 <destination-type>javax.jms.Topic</destination-type>
 </message-driven-destination>
 </message-driven>

 <message-driven>
 <ejb-name>MDB2</ejb-name>
 <ejb-class>multiSubscriber.MessageBean2</ejb-class>
 <transaction-type>Container</transaction-type>
 <message-driven-destination>
 <destination-type>javax.jms.Topic</destination-type>
 </message-driven-destination>
 </message-driven>

 </enterprise-beans>

The actual topic used by the message-driven beans is specified in a vendor-specific
manner. For example, listing 6.15 shows the XML used by the Weblogic applica-
tion server to specify the JMS topic for each bean.

<weblogic-ejb-jar>

 <weblogic-enterprise-bean>
 <ejb-name>MDB</ejb-name>
 <message-driven-descriptor>
 <destination-jndi-name>BookJMSTopic</destination-jndi-name>
 </message-driven-descriptor>
 <jndi-name>multiSubscriber.MDB</jndi-name>
 </weblogic-enterprise-bean>

 <weblogic-enterprise-bean>
 <ejb-name>MDB2</ejb-name>
 <message-driven-descriptor>
 <destination-jndi-name>BookJMSTopic</destination-jndi-name> |#1
 </message-driven-descriptor>
 <jndi-name>multiSubscriber2.MDB</jndi-name>
 </weblogic-enterprise-bean>

</weblogic-ejb-jar>

Listing 6.14 Deployment descriptor

Listing 6.15 Weblogic deployment descriptor

Assigns the
message-driven

bean to a JMS topic

Assigns the message-driven bean
to the BookJMSTopic topic

216 CHAPTER 6

Messaging

� Discussion

Recipe 6.1 provides more information on JMS topics. Since they allow multiple
message-driven beans (even message-driven beans of different Java classes) to
receive the same incoming message, you can use them to create concurrent proc-
essing for sections of business logic. Sending a single message, you can trigger two
completely unrelated business functions to start processing at the same time.

In this recipe, each message-driven bean simply prints out a statement indicat-
ing it has received a message. However, in a practical application the two message-
driven beans should each contain an important business function. To ensure that
both message-driven beans receive the same message, they both need to subscribe
to a JMS topic. For both beans to be triggered by a single message, both EJBs need
to use the same topic.

� See also

6.1—Sending a publish/subscribe JMS message

6.3—Creating a message-driven Enterprise JavaBean

6.9—Filtering messages for a message-driven EJB

6.8 Speeding up message delivery
to a message-driven bean

� Problem

You want to reduce the time it takes for a message to start processing in a message-
driven bean.

� Background

In most enterprise situations, you want your asynchronous business functions to
complete as quickly as possible. Since a message-driven bean processes a single
message at a time, the waiting time for a single message increases as the num-
ber of messages delivered before it increases. In other words, if a single message
takes a long period of time to complete, other messages experience a delay
before processing. In critical applications, these messages should be processed as
quickly as possible.

Speeding up message delivery 217
to a message-driven bean

� Recipe

To speed up the consumption of messages, use a pool of message-driven beans.
Each EJB is an instance of the single EJB class. With a pool of message-driven
beans, you can consume more messages in a shorter time. Listing 6.16 shows a
simple message-driven bean used to consume messages.

public class MessageBean implements MessageDrivenBean, MessageListener {

 private MessageDrivenContext ctx;

 public void ejbRemove() {
 }

 public void ejbActivate() {
 }

 public void ejbPassivate() {
 }

 public void setMessageDrivenContext(MessageDrivenContext ctx) {
 this.ctx = ctx;
 }

 public void ejbCreate () throws CreateException {
 }

 public void onMessage(Message msg) {
 MapMessage map= (MapMessage) msg;

 try {
 String symbol = map.getString("Symbol");
 String description = map.getString("Description");

 System.out.println("MDB received Symbol : " + symbol
 + " " + description);
 }
 catch(Exception ex) {
 ex.printStackTrace();
 }
 }
}

To ensure a single message is not duplicated across instances in the message-driven
bean pool, the message-driven bean instances should use a message queue as the
destination type. Listing 6.17 contains the deployment descriptor for the bean.

Listing 6.16 MessageBean.java

218 CHAPTER 6

Messaging

<enterprise-beans>

 <message-driven>
 <ejb-name>concurrentMDB</ejb-name>
 <ejb-class>concurrent.MessageBean</ejb-class>
 <transaction-type>Container</transaction-type>
 <message-driven-destination>
 <destination-type>javax.jms.Queue</destination-type>
 </message-driven-destination>
 </message-driven>

 </enterprise-beans>

Message-driven bean instance pools are created in a vendor-specific manner. List-
ing 6.18 shows how this is accomplished using the Weblogic application server.
Notice the vendor XML creates a pool maximum size of five beans, with an initial
size of two beans.

<weblogic-ejb-jar>

 <weblogic-enterprise-bean>
 <ejb-name>concurrentMDB</ejb-name>
 <message-driven-descriptor>
 <pool>
 <max-beans-in-free-pool>5</max-beans-in-free-pool>
 <initial-beans-in-free-pool>2</initial-beans-in-free-pool>
 </pool>
 <destination-jndi-name>BookJMSQueue</destination-jndi-name>
 </message-driven-descriptor>
 <jndi-name>concurrent.MBD</jndi-name>
 </weblogic-enterprise-bean>

</weblogic-ejb-jar>

� Discussion

Using a bean pool is a quick and dirty way to achieve concurrent processing of
messages. The pool, combined with a message queue, provides a way to process
many messages at once without duplicating messages across instances. Creating
an environment like this allows messages to start processing instead of waiting for
previous messages to complete. You should use this type of processing only when

Listing 6.17 Deployment descriptor

Listing 6.18 Weblogic deployment descriptor

Sets up the message-
driven bean pool

Filtering messages for a message-driven EJB 219

concurrent processing of messages will not cause problems in your business logic
or invalid states in your data.

� See also

6.1—Sending a publish/subscribe JMS message

6.3—Creating a message-driven Enterprise JavaBean

6.9 Filtering messages for a message-driven EJB

� Problem

You want your message-driven beans to receive only the messages that they are
intended to process.

� Background

Message-driven beans that subscribe to a topic or receive messages from a queue
should be able to handle messages of the wrong type (which should not invoke the
message-driven business logic). Beans should just politely discard these messages
when they are encountered. This is especially true for message-driven beans that
exist in an environment with many different beans that watch a single source for
incoming messages. However, it would be more efficient to avoid the execution
time used for discarding messages and instead avoid receiving unwanted messages.

� Recipe

To selectively deliver messages to a message-driven bean, the bean should be
deployed with a message selector. The bean source needs no changes in order to use
the message selector. Listing 6.19 shows a simple message-driven bean that only
wants messages that contain an attribute UserRole set to "BuyerRole". The bean
prints out the role of the incoming message for verification.

public class MessageBean implements MessageDrivenBean, MessageListener {

 private MessageDrivenContext ctx;

 public void onMessage(Message msg) {
 MapMessage map=(MapMessage)msg;

 try {
 String role = map.getString("UserRole");

Listing 6.19 MessageBean.java

220 CHAPTER 6

Messaging

 System.out.println("Received Message for Role: " + role);
 ProcessTheMessage(message);
 }
 catch(Exception ex) {
 ex.printStackTrace();
 }
 }
}

In the XML descriptor for the bean, you describe the message selector that filters
undesired messages for the message-driven bean. Listing 6.20 shows the partial
XML descriptor that describes the simple EJB and its message selector.

<ejb-jar>
 <enterprise-beans>

 <message-driven>
 <ejb-name>MDB</ejb-name>
 <ejb-class>messageSelector.MessageBean</ejb-class>
 <transaction-type>Container</transaction-type>
 <message-selector>
 <![CDATA[UserRole = 'BuyerRole']]>
 </message-selector>
 <message-driven-destination>
 <destination-type>javax.jms.Topic</destination-type>
 </message-driven-destination>
 </message-driven>

 </enterprise-beans>
<ejb-jar>

Here is a simple publish method that appropriately creates messages for the
message-driven bean message selector:

 public void publish(String role) throws JMSException {

 MapMessage message = topicSession.createMapMessage();
 message.setString("UserRole",role);
 message.setStringProperty("UserRole",role);

 System.out.println("Publishing message to Role:" + role);
 topicPublisher.publish(message);
 }

Listing 6.20 Deployment descriptor

Specifies a
message
selector

Encapsulating error-handling code 221
in a message-driven EJB

� Discussion

When sending particular messages, we must assign a value to the property User-
Role. The message selector will pick out the messages that meet its criteria and
deliver them to the message-driven bean. Message selectors operate using the
property values that are set in JMS messages. Any property that is set in the mes-
sage can be examined by a message selector for filtering purposes.

Message selection strings can be any length and any combination of message
property comparisons. The following is an example of a more complex message
selector:

"DollarAmount < 100.00 OR (ShareCount < 100 AND (CreditAmount
 – DollarAmount > 0)) AND Role in ('Buyer', 'ADMIN')"

You can make other familiar comparisons using the following operators as well: =,
BETWEEN, and LIKE (using a % as a wildcard). As mentioned in the recipe, message
selectors operate upon messages by examining the properties set in the message
using its setStringProperty() method. If a property is not present in a message,
the selector considers that a nonmatching message. To specify the message selec-
tor in the deployment XML, you must use the CDATA tag to avoid XML parsing
errors due to the use of special characters like < or >.

� See also

6.3—Creating a message-driven Enterprise JavaBean

6.10 Encapsulating error-handling code
in a message-driven EJB

� Problem

Rather than handle errors in a message-driven bean, you want your beans to off-
load errors to an error-handling system.

� Background

Handling errors across all your message-driven beans should be consistent and
exact. By keeping the error-handling code in your message-driven beans, you
open your beans to tedious changes if your error-handling strategy changes. If you
must change the error-handling code in one bean, you might have to change it in
all your message-driven beans. Passing exceptions to an error-handling object or

222 CHAPTER 6

Messaging

session bean allows you to avoid rollbacks and gracefully handle errors in a consis-
tent manner.

� Recipe

Instead of acting upon any errors, the message-driven bean catches any excep-
tions and forwards them on to an error-handling session bean. The message-
driven bean should be implemented as usual; the only new addition is the error-
handling mechanism (see listing 6.21).

public class MessageBean implements MessageDrivenBean, MessageListener {

 private MessageDrivenContext ctx;

 public void onMessage(Message msg) {
 MapMessage map = (MapMessage) msg;
 String symbol = null;
 String description = null;
 ErrorHome errorHome = null;

 try {
 symbol = map.getString("Symbol");
 description = map.getString("Description");

 System.out.println("Received Symbol : " + symbol);
 System.out.println("Received Description : " + description);

 processEquityMessage(symbol, description);
 }
 catch(Exception e){
 e.printStackTrace();
 System.out.println("Error Creating Equity with Symbol:"+symbol);
 System.out.println("Consuming error and "
 + "passing on to error Handler");
 try{
 handleError(e, msg);
 }
 catch(Exception errorExc){}
 }
 }

 private void handleError(Exception e, Message msg)
 {
 ErrorHandler handler = lookupErrorEJB();
 handler.handleMessageDrivenError(e.getMessage(), msg);
 }
}

Listing 6.21 MessageBean.java

Looks up and
uses the error-
handling
session EJB

Sending an email message asynchronously 223

The handleError() method looks up a session EJB that handles specific errors.
For example, the following remote interface could expose error-handling func-
tionality to an entire EJB application:

public interface ErrorHandler extends javax.ejb.EJBObject
{
 public void handleMessageDrivenError(String message, Message mg);
 public void handleSessionError(Object errorMessage);
 public void handleEntityError(Object errorMessage);
}

� Discussion

The message-driven EJB shown in the recipe processes messages containing equity
information. The actual message-processing logic is not shown, so instead let’s
examine the handleError() method invoked only when an exception occurs dur-
ing message processing. The session EJB interface shown in the recipe declares
methods for handling different types of errors. For example, the session bean has
a specific way it can handle session bean errors, entity bean errors, and message-
driven bean errors. Using an error-handling system like this does not have to take
the place of a normal transactional system. Instead, it acts as a way to store infor-
mation on errors occurring in your application—acting as a logger of errors, and
possibly offloading them to a management system.

� See also

6.12—Handling rollbacks in a message-driven bean

6.11 Sending an email message asynchronously

� Problem

You want to provide your EJBs with the ability to send email in an asynchro-
nous manner.

� Background

The ability to send email is an important part of many enterprise applications.
Email can be used to send notifications, alerts, and general information, such as
price quotes or contract information. When sending an email from an EJB, you
should be able to continue processing without waiting for an email to be sent.
Sending email using the Java mail package is a simple process.

224 CHAPTER 6

Messaging

� Recipe

Combining email-sending code with a message-driven bean provides the asyn-
chronous behavior that is ideal for enterprise applications. Listing 6.22 contains
a message-driven bean that sends email using property values passed to it via a
JMS message.

import javax.jms.*;

public class EmailBean implements MessageDrivenBean, MessageListener {

 private MessageDrivenContext ctx;

 public void onMessage(Message msg) {
 MapMessage map = (MapMessage) msg;

 try {
 sendEmail(map.getProperty("Recipient"),
 map.getProperty("message"));
 }
 catch(Exception ex) {
 ex.printStackTrace();
 }
 }

 private void sendEmail(String recipient, String text)
 throws Exception {
 Session mailSession = null;
 javax.mail.Message msg = null;

 try{
 System.out.println("Sending Email to: " + rcpt);

 mailSession = (Session) ctx.lookup("BookMailSession");

 msg = new MimeMessage(mailSession);
 msg.setFrom();
 msg.setRecipients(Message.RecipientType.TO,
 InternetAddress.parse(recipient , false));
 msg.setSubject("Important Message");
 msg.setText(text);

 Transport.send(msg);
 System.out.println("Sent Email to: "+rcpt);
 }
 catch(Exception e){
 e.printStackTrace();
 }
 }
}

Listing 6.22 EmailBean.java

Retrieves the email address
and text from the JMS message

Sends the email
message

Handling rollbacks in a message-driven bean 225

� Discussion

When using a message-driven bean to send an email message, you need to be sure
to send a JMS message with all the values that you need for the email. For instance,
the solution in the recipe only retrieved the email address and text from the JMS
message and populated the subject of the email with a hardcoded value.

Another improvement you can make to your message-driven email beans is to
only send JMS messages that contain the email recipient address and the type of
email to send. For instance, a message-driven bean can be initialized with standard
email message texts to use for your various email needs in your enterprise applica-
tion (purchase confirmation, error, contract status, etc.). This would include the
subject and message. All your application needs to do is supply a valid email
address and the type of email to send. This way, you won’t have to transmit the
body of an email message to the EJB. In addition, you could pass parameters to the
EJB for formatting an already loaded email body.

� See also

4.5—Sending an email from an EJB

6.12—Handling rollbacks in a message-driven bean

6.12 Handling rollbacks in a message-driven bean

� Problem

When a transaction in a message-driven bean rolls back, the application server
can be configured to resend the JMS message that started the transaction. If the
error that caused the rollback keeps occurring, you could potentially cause an
endless loop.

Background
Rollbacks in message-driven beans occur in the same way that they can happen in
other beans—an error occurs in executing logic. However, in the case of a
message-driven bean using a durable subscription, the application server will
most likely attempt to redeliver the message that caused the rollback in the bean.
If the error is not corrected, the rollback will continue on, consuming more pro-
cessing time and memory. You need your message-driven beans to be insulated
from rollback loops and able to handle error-causing messages without a rollback
every time.

226 CHAPTER 6

Messaging

� Recipe

To handle rollbacks in a message-driven bean, keep track of the number of times
a particular message has been delivered to the bean. Once a certain retry limit is
reached, you want to discard the message from that point on. Listing 6.23 shows
the onMessage() method from a message-driven bean that tracks and checks mes-
sage redelivery attempts.

private HashMap previousMessages;
private int count = 0;

public void onMessage(Message incomingMsg)
{
 // get the unique message Id
 String msgId = incomingMsg.getJMSMessageID();

 if (previousMessages.containsKey(msgId))
 count = ((Integer) msgMap.get(msgId)).intValue();
 else
 count = 0;

 // if msg has been retried couple of times, discard it.
 // and remove the stored id.
 if (count < _MAX_REDLIVERY_CONST_)
 {
 logMessage(incomingMsg);
 previousMessages.remove(msgId);
 return;
 }

 //perform business logic for message
 boolean error = doBusinessFunction();

 if (error)
 {
 mdbContext.setRollBackOnly();
 previousMessages.put(msgId, new Integer(++count));

 }
 else
 {
 if(previousMessages.containsKey(msgId))
 previousMessages.remove(msgId);
 }
}

Listing 6.23 The onMessage() method

Checks for previous
attempts

Checks the number of attempts

Checks for
necessary
rollback

Handling rollbacks in a message-driven bean 227

� Discussion

Some application servers and some JMS vendors allow you to specify the redelivery
count of a rolled-back message delivery to a message-driven bean. However, to
ensure your message-driven EJBs are the most secure and portable, you can imple-
ment a simple message tracker like the one shown in the recipe. In this code, the
EJB maintains a Map of message IDs and the number of times they have been
delivered. If the delivered count for a particular message reaches a predefined
constant value, the bean simply logs the message and returns. By returning suc-
cessfully, the EJB ensures that the EJB container commits the transaction and the
message will not be delivered again.

If the message makes it past the count check, the bean will attempt to perform
its business function. After attempting the business logic, the EJB will check to see
if it is necessary to mark the current transaction for rollback. If so, the EJB uses its
MessageDrivenContext instance to mark the transaction and returns. The con-
tainer will roll back the transaction and will attempt to redeliver the message. The
previousMessages Hashtable will store only those message IDs that caused errors.
If the message succeeds, no ID is stored (and any previously stored ID is removed).

� See also

Chapter 5, “Transactions”

