
M A N N I N G

Neal Ford

STRUTS

TAPESTRY

COMMONS

VELOCITY

JUNIT

AXIS

COCOON

INTERNETBEANS

WEBWORK

ARTOF

JAVA WEB
DEVELOPMENT

vii

brief contents
PART I THE EVOLUTION OF WEB ARCHITECTURE

AND DESIGN ... 1
1 � State-of-the-art web design 3

2 � Building web applications 27

3 � Creating custom JSP tags 61

4 � The Model 2 design pattern 91

PART II WEB FRAMEWORKS .. 131
5 � Using Struts 133

6 � Tapestry 159

7 � WebWork 199

8 � InternetBeans Express 227

9 � Velocity 261

10 � Cocoon 283

11 � Evaluating frameworks 311

viii BRIEF CONTENTS

PART III BEST PRACTICES .. 327
12 � Separating concerns 329

13 � Handling flow 371

14 � Performance 409

15 � Resource management 445

16 � Debugging 475

17 � Unit testing 521

18 � Web services and Axis 543

19 � What won’t fit in this book 563

133

Using Struts

This chapter covers
� Building Model 2 applications with Struts
� Using ActionForms as entities
� Validating user input using validators

134 CHAPTER 5

Using Struts

In the previous chapter, you saw how the judicious use of design patterns can help
you consolidate common code into reusable assets—the first step in constructing
your own framework. If you extrapolate this behavior to multiple developers and
multiple projects, you have a generic framework, built from parts that are com-
mon to most applications. For example, many web applications need a database
connection pooling facility—which is a perfect candidate for a framework compo-
nent. Fortunately, you don’t have to build each framework for web development
from scratch; they already exist in abundance. Chapter 1 provided an overview of
some available frameworks without showing how they are used to build real appli-
cations. This chapter does just that: it shows an example application built with the
open-source Model 2 framework we described in chapter 1: Jakarta Struts. As the
example unfolds, notice how this project is similar (and how it is different) from
the two projects that appear in chapter 4.

5.1 Building Model 2 Web applications with Struts

Refer back to chapter 1 (section 1.3.1) for download instructions and for an over-
view of Struts’ capabilities. The application we’ll build next is similar in behavior
to the schedule application from chapter 4, allowing for easy comparison and
contrast. In the Struts schedule application, most of the “plumbing” code is han-
dled by Struts. This sample application is available from the source code archive
under the name art_sched_struts and uses Struts version 1.1.

5.1.1 The Struts schedule application

The first page of our Struts application shows a list of the currently scheduled
events, and the second page allows the user to add more events. The first page
appears in figure 5.1.

 The user interface is quite sparse because we wanted to avoid cluttering the
functionality of the code underneath. As in the Model 2 schedule application, the
first order of business is the creation of the model.

 The data access in this application uses virtually the same model beans for
database access developed in chapter 4. Because Struts is a Model 2 framework, its
architecture is similar enough that we can utilize the same type of model objects.
However, one change appears in the ScheduleDb boundary class that makes build-
ing the input JSP much easier. Instead of returning a Map of the associations
between the event key and the event, the Struts version of ScheduleDb returns a
Struts object named LabelValueBean. The updated getEventTypeLabels()
method appears in listing 5.1.

Building Model 2 Web applications with Struts 135

 public List getEventTypeLabels() {
 if (eventTypeLabels == null) {
 Map eventTypes = getEventTypes();
 eventTypeLabels = new ArrayList(5);
 Iterator ei = eventTypes.keySet().iterator();
 while (ei.hasNext()) {
 Integer key = (Integer) ei.next();
 String value = (String) eventTypes.get(key);
 LabelValueBean lvb = new LabelValueBean(value,
 key.toString());
 eventTypeLabels.add(lvb);
 }
 }
 return eventTypeLabels;
 }

The built-in LabelValueBean class creates a mapping between a label (typically a
String) and a value (typically also a String, although other types are possible).
This is useful in cases where you need to show the user one text content (the label)
but map it to a type used internally in the application (the value). The HTML
<select> tag contains nested <option> tags, which consist of label-value pairs. The

Listing 5.1 LabelValueBean encapsulates an association between a label and value.

Figure 5.1
The Struts schedule
application displays a schedule
of upcoming events.

136 CHAPTER 5

Using Struts

user selects the label from the display, but the value is what the <select> returns.
LabelValueBeans are classes that encapsulate this label-value relationship.

5.1.2 Value objects as form beans

Struts manages value objects for the developer, providing such services as auto-
matic population of values and validation that fires automatically when perform-
ing an HTML form POST. We discuss the mechanics of validation in a moment. To
utilize Struts’ value object infrastructure, your form-based value objects extend
the Struts ActionForm class, transforming them into ActionForms. The Schedule-
Item ActionForm is shown in listing 5.2.

package com.nealford.art.strutssched;

import java.io.Serializable;
import javax.servlet.http.HttpServletRequest;
import org.apache.struts.action.*;

public class ScheduleItem extends ActionForm
 implements Serializable {
 private String start;
 private int duration;
 private String text;
 private String eventType;
 private int eventTypeKey;

 public ScheduleItem(String start, int duration, String text,
 String eventType, int eventTypeKey) {
 this.start = start;
 this.duration = duration;
 this.text = text;
 this.eventType = eventType;
 this.eventTypeKey = eventTypeKey;
 }

 public ScheduleItem() {
 }

 public void setStart(String newStart) {
 start = newStart;
 }

 public String getStart() {
 return start;
 }

 public void setDuration(int newDuration) {
 duration = newDuration;
 }

Listing 5.2 The ScheduleItem ActionForm class

Building Model 2 Web applications with Struts 137

 public int getDuration() {
 return duration;
 }

 public void setText(String newText) {
 text = newText;
 }

 public String getText() {
 return text;
 }

 public void setEventType(String newEventType) {
 eventType = newEventType;
 }

 public String getEventType() {
 return eventType;
 }

 public void setEventTypeKey(int eventTypeKey) {
 this.eventTypeKey = eventTypeKey;
 }

 public int getEventTypeKey() {
 return eventTypeKey;
 }
}

This ActionForm is mostly a collection of properties with accessor and mutator
methods and is identical to the similar value object from the Model 2 schedule
application (also named ScheduleItem), except for the super class.

 The ScheduleDb collection manager and the ScheduleItem ActionForm make
up the model for this application. Directly extending the Struts ActionForm in
ScheduleItem does tie this value object to the Struts framework, diminishing its
usefulness in non-Struts applications. If this is a concern, you may implement the
entity as a separate class and allow the ActionForm to encapsulate the entity. In this
scenario, the ActionForm becomes a proxy for the methods on the entity object. In
this application, the entity directly extends ActionForm for simplicity’s sake.

5.1.3 Objectifying commands with Struts’ actions

Chapter 4 (section 4.2) illustrated the use of the Command design pattern to
parameterize commands. We used an abstract Action class and a master controller
servlet written in terms of that generic Action. For new pages, the developer
extended Action and wrote page-specific behavior. The Action and controller
combination handled much of the basic infrastructure of dispatching requests,

138 CHAPTER 5

Using Struts

freeing the developer to concentrate on the real work of the application. Struts
employs the same pattern. The Struts designers have already implemented the
controller servlet that understands Struts Action classes, which are classes that
extend the Struts Action class and encapsulates a great deal of behavior within the
framework. These actions act as proxies for the controller servlet, so they are
responsible for the interaction between the models and the views. The first action
invoked is ViewScheduleAction, which appears in listing 5.3.

package com.nealford.art.schedstruts.action;

import java.io.IOException;
import java.sql.SQLException;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import javax.sql.DataSource;

import org.apache.struts.action.*;
import com.nealford.art.schedstruts.boundary.*;
import javax.servlet.*;

public class ViewScheduleAction extends Action {
 private static final String ERR_POPULATE =
 "SQL error: can't populate dataset";

 public ActionForward execute(ActionMapping mapping,
 ActionForm form,
 HttpServletRequest request,
 HttpServletResponse response)
 throws IOException, ServletException {

 DataSource dataSource = getDataSource(request);
 ScheduleDb sb = new ScheduleDb();
 sb.setDataSource(dataSource);

 try {
 sb.populate();
 } catch (SQLException x) {
 getServlet().getServletContext().log(ERR_POPULATE, x);
 }
 request.setAttribute("scheduleBean", sb);
 return mapping.findForward("success");
 }
}

The Struts developers have created helper classes that handle many of the details
of building a Struts application. For example, notice that the execute() method

Listing 5.3 The ViewScheduleAction is the first action invoked.

DataSource
retrieval from
the Struts
controller

Building Model 2 Web applications with Struts 139

returns an ActionForward instance via the mapping parameter. This is a class that
facilitates forwarding a request. It encapsulates the behavior of a RequestDis-
patcher and adds more functionality. The ViewScheduleAction first retrieves the
DataSource instance created by the controller servlet by calling the getData-
Source() method, which it inherits from Action. It then creates a ScheduleDb,
populates it, adds it to the request, and dispatches to the appropriate view. The
controller servlet is responsible for two tasks in the ViewScheduleAction class.
First, it creates the connection pool and adds it to the appropriate collection. Sec-
ond, it manages the mapping between requests and the appropriate Action
instances.

5.1.4 Configuring Struts applications

The connection pool, mappings, and other configuration information for Struts
appear in the Struts configuration XML file, which is shown in listing 5.4. The
Struts framework defines this document’s format.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE struts-config PUBLIC
"-//Apache Software Foundation//DTD Struts Configuration 1.1//EN"
"http://jakarta.apache.org/struts/dtds/struts-config_1_1.dtd">

<struts-config>
 <data-sources>
 <data-source
 type="com.mysql.jdbc.jdbc2.optional.MysqlDataSource">
 <set-property property="url"
 value="jdbc:mysql://localhost/schedule" />
 <set-property property="user" value="root" />
 <set-property property="password" value="marathon" />
 <set-property property="maxCount" value="5" />
 <set-property property="driverClass"
 value="com.mysql.jdbc.Driver" />
 <set-property value="1" property="minCount" />
 </data-source>
 </data-sources>
 <form-beans>
 <form-bean name="scheduleItem"
 type="com.nealford.art.schedstruts.entity.ScheduleItem"
 dynamic="no" />
 </form-beans>
 <action-mappings>
 <action
 type="com.nealford.art.schedstruts.action.ViewScheduleAction"
 path="/sched">

Listing 5.4 The Struts XML configuration file

DataSource
definition

B

Form bean definitionC

Action definitionsD

140 CHAPTER 5

Using Struts

 <forward name="success" path="/ScheduleView.jsp" />
 </action>
 <action
 type="com.nealford.art.schedstruts.action.ScheduleEntryAction"
 path="/schedEntry">
 <forward name="success" path="/ScheduleEntryView.jsp" />
 </action>
 <action name="scheduleItem"
 type="com.nealford.art.schedstruts.action.AddToScheduleAction"
 validate="true" input="/ScheduleEntryView.jsp"
 scope="session" path="/add">
 <forward name="success" path="/sched.do" />
 <forward name="error" path="/ScheduleEntryView.jsp" />
 </action>
 </action-mappings>
 <plug-in className="org.apache.struts.validator.ValidatorPlugIn">
 <set-property
 property="pathnames"
 value="/WEB-INF/validator-rules.xml,/WEB-INF/validation.xml"/>
 </plug-in>
</struts-config>

The top section defines a Java Database Connectivity (JDBC) data source that is
delivered from the Struts connection pooling utility class. This configuration file
allows you to define all the characteristics of your database connection.

This section of the document allows you to define form beans. These are the
ActionForm subclasses utilized by the framework. The ScheduleItem class defined
in listing 5.2 is the example declared here.

This section of the document lists the action mappings. Each action mapping
may define local forwards, which are web resources the Action may reference. In
the ViewScheduleAction in listing 5.3, the return value is the mapping for suc-
cess, which maps to the local forward defined in the configuration document for
the /sched action.

Struts allows you to define properties beyond the mapping for each action. The
path definition in the configuration file becomes the resource you request in the
servlet engine. Typically, either a prefix mapping or extension mapping exists in
the web.xml file for the project that allows you to automatically map resources to
the Struts controller servlet. In this sample, we are using extension mapping. In
the web.xml deployment descriptor, the following entry maps all resources with
the extension of .do to the Struts controller:

 <servlet-mapping>
 <servlet-name>action</servlet-name>

B

C

D

Building Model 2 Web applications with Struts 141

 <url-pattern>*.do</url-pattern>
 </servlet-mapping>

When this application executes, you request the sched.do resource from the web
site. The extension-mapping mechanism maps the extension to the Action servlet.
The Action servlet consults the struts-config document and maps sched to the
class com.nealford.art.schedstruts.action.ViewScheduleAction. Thus, you can
freely reference resources in your web application with the .do extension and rely
on them being handled by the Struts controller. We aren’t forced to use Struts for
every part of the application. Any resource that should not be under the control
of Struts can be referenced normally.

Struts configuration for the web application
The Struts controller is automatically loaded in the web.xml configuration docu-
ment for the web application. It is a regular servlet instance that is configurable
via init parameters. The web.xml file for this sample is shown in listing 5.5.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE web-app PUBLIC
"-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
"http://java.sun.com/dtd/web-app_2_3.dtd">
<web-app>
 <servlet>
 <servlet-name>action</servlet-name>
 <servlet-class>
 org.apache.struts.action.ActionServlet
 </servlet-class>
 <init-param>
 <param-name>application</param-name>
 <param-value>
 com.nealford.art.strutssched.Schedule
 </param-value>
 </init-param>
 <init-param>
 <param-name>config</param-name>
 <param-value>/WEB-INF/struts-config.xml</param-value>
 </init-param>
 <init-param>
 <param-name>debug</param-name>
 <param-value>2</param-value>
 </init-param>
 <load-on-startup>2</load-on-startup>
 </servlet>
 <servlet-mapping>
 <servlet-name>action</servlet-name>

Listing 5.5 The web.xml configuration document for the schedule application

Struts controller
servlet configuration

Extension mapping
for the Action servlet

142 CHAPTER 5

Using Struts

 <url-pattern>*.do</url-pattern>
 </servlet-mapping>
 <session-config>
 <session-timeout>30</session-timeout>
 </session-config>
 <taglib>
 <taglib-uri>/WEB-INF/struts-bean.tld</taglib-uri>
 <taglib-location>/WEB-INF/struts-bean.tld</taglib-location>
 </taglib>
 <taglib>
 <taglib-uri>/WEB-INF/struts-html.tld</taglib-uri>
 <taglib-location>/WEB-INF/struts-html.tld</taglib-location>
 </taglib>
 <taglib>
 <taglib-uri>/WEB-INF/struts-logic.tld</taglib-uri>
 <taglib-location>/WEB-INF/struts-logic.tld</taglib-location>
 </taglib>
 <taglib>
 <taglib-uri>/WEB-INF/struts-template.tld</taglib-uri>
 <taglib-location>/WEB-INF/struts-template.tld</taglib-location>
 </taglib>
</web-app>

The configuration document for the web application loads the Struts controller
on startup so that it need not to be loaded on first invocation. The parameters for
this servlet specify the locations of a couple of configuration documents. The first
is the struts-config.xml document (shown in listing 5.4). The other is under the
application parameter, which points to a properties file. We’ll explore the useful-
ness of this properties file shortly. The rest of this document defines URL patterns
and the custom Struts tag libraries that make building the view JSPs easier.

5.1.5 Using Struts’ custom tags to simplify JSP

The ViewScheduleAction eventually forwards the request to ScheduleView.jsp,
which is shown in listing 5.6.

<%@ taglib uri="/WEB-INF/struts-logic.tld" prefix="logic" %>
<%@ taglib uri="/WEB-INF/struts-bean.tld" prefix="bean" %>
<%@ taglib uri="/WEB-INF/struts-html.tld" prefix="html" %>

<html>
<head>
<title>
<bean:message key="title.view" />
</title>

Struts taglib definitions

Listing 5.6 The main display JSP for the Struts version of the schedule application

Pulls text labels
properties

Building Model 2 Web applications with Struts 143

</head>
<body>
<h2><bean:message key="prompt.listTitle" /></h2></p>
<table border="2">
 <tr bgcolor="yellow">
 <th><bean:message key="prompt.start" /></th>
 <th><bean:message key="prompt.duration" /></th>
 <th><bean:message key="prompt.text" /></th>
 <th><bean:message key="prompt.eventType" /></th>
 </tr>

<logic:iterate id="schedItem"
 type="com.nealford.art.schedstruts.entity.ScheduleItem"
 name="scheduleBean" property="list" >
 <tr>
 <td><bean:write name="schedItem" property="start" />
 <td><bean:write name="schedItem"
 property="duration" />
 <td><bean:write name="schedItem" property="text" />
 <td><bean:write name="schedItem"
 property="eventType" />
 </tr>
</logic:iterate>
</table>
<p>
 Add New Schedule Item
</body>
</html>

While the Action class is very similar to the controller from the Model 2 schedule
application in chapter 4 (section 4.1.1), this JSP is significantly different. The first
major difference is the declaration of a number of taglibs at the top of the file.
Struts defines numerous custom tags, in four different categories, to aid you in
building JSPs. The four categories are listed in table 5.1.

Table 5.1 Struts custom tags

Name TLD File Description

Bean tags struts-bean.tld The struts-bean tag library contains JSP custom tags useful in
defining new beans (in any desired scope) from a variety of
possible sources, as well as a tag that renders a particular
bean (or bean property) to the output response.

HTML tags struts-html.tld The struts-html tag library contains JSP custom tags useful in
creating dynamic HTML user interfaces, including input forms.

continued on next page

Iterates with Struts tag

144 CHAPTER 5

Using Struts

Continuing with the analysis of ScheduleView in listing 5.6, the next item of
interest concerns the text labels. In the Model 2 schedule application, the title
was placed directly inside the JSP page. However, Struts defines a mechanism
whereby you can isolate the labels and other user interface (UI) elements into a
separate resource file and reference those resources via a Struts tag. The exter-
nal resource is a PropertyResourceBundle, which has the same format as a prop-
erties file, and the key attribute indicates the key value for the string resource.
The resource properties file for this application is shown in listing 5.7.

prompt.duration=Duration
prompt.eventType=Event Type
prompt.start=Start Date
prompt.text=Text
prompt.listTitle=Schedule List
prompt.addEventTitle=Add New Schedule Entry

title.view=Schedule Items
title.add=Add Schedule Items

button.submit=Submit
button.reset=Reset

errors.header=Validation Error
errors.ioException=I/O exception rendering error messages: {0}
error.invalid.duration=
 Duration must be positive and less than 1 month
error.no.text=You must supply text for this schedule item

errors.required={0} is required.
errors.minlength={0} can not be less than {1} characters.
errors.maxlength={0} can not be greater than {1} characters.
errors.invalid={0} is invalid.

Logic tags struts-logic.tld The struts-logic tag library contains tags that are useful in man-
aging conditional generation of output text, looping over object
collections for repetitive generation of output text, and applica-
tion flow management.

Template tags struts-template.tld The struts-template tag library contains tags that are useful in
creating dynamic JSP templates for pages that share a com-
mon format. These templates are best used when it is likely
that a layout shared by several pages in your application will
change.

Listing 5.7 The resource properties file for our application

Table 5.1 Struts custom tags (continued)

Name TLD File Description

Building Model 2 Web applications with Struts 145

errors.byte={0} must be a byte.
errors.short={0} must be a short.
errors.integer={0} must be an integer.
errors.long={0} must be a long.
errors.float={0} must be a float.
errors.double={0} must be a double.

errors.date={0} is not a date.
errors.range={0} is not in the range {1} through {2}.
errors.creditcard={0} is an invalid credit card number.
errors.email={0} is an invalid e-mail address.

This mapping mechanism serves two purposes. First, it allows you to ensure com-
mon labels and titles throughout the application. If you have a specific label for a
button that appears in multiple locations, you can reference the same resource
and change it everywhere with a simple change to the resource. The other benefit
involves internationalization, which we look at in the next section.

5.1.6 Internationalization with Struts

You can define the resource bundle keys used by Struts custom tags independently
of the language of the labels and other resources. The location of this properties
file is the application init parameter in the web.xml file in listing 5.5. Struts allows
you to create a properties file in a particular language (in our case, American
English) as the default resource file. You can then create additional resource files
that have the same name with an additional locale code suffix. The international-
ization characteristics provided by Struts supports the standard capabilities in the
SDK using ResourceBundles. For example, to create a French version of the prop-
erties file, you would create schedule_fr.properties. When a request arrives from a
browser, part of the request information indicates the user’s locale, which is a pre-
defined two- or four-digit identifier indicating the language of that user. If a user
accesses the web application using a browser that identifies it as a French speaker,
Struts automatically pulls the labels from the localized properties file named
schedule_fr.properties. If the user is Canadian, Struts will look for a properties file
with the fr_CA suffix. If it doesn’t exit, the user gets the generic French localized
properties. If a language is requested that doesn’t have a specific properties file,
the user gets the default one. A partial listing of some locales appears in table 5.2.

 The next item of interest in listing 5.6 is the iterate tag. In the Model 2 sched-
ule application in chapter 4 (in particular, listing 4.7), one of the few places in the
JSP where we were forced to resort to scriptlet code and/or JSP Standard Tag

146 CHAPTER 5

Using Struts

Table 5.2 Some character locales supported by Struts

Locale Language Country

da_DK Danish Denmark

DE_AT German Austria

DE_CH German Switzerland

DE_DE German Germany

el_GR Greek Greece

en_CA English Canada

en_GB English United Kingdom

en_IE English Ireland

en_US English United States

es_ES Spanish Spain

fi_FI Finnish Finland

fr_BE French Belgium

fr_CA French Canada

fr_CH French Switzerland

fr_FR French France

it_CH Italian Switzerland

it_IT Italian Italy

ja_JP Japanese Japan

ko_KR Korean Korea

nl_BE Dutch Belgium

nl_NL Dutch Netherlands

no_NO Norwegian (Nynorsk) Norway

no_NO_B Norwegian (Bokmål) Norway

pt_PT Portuguese Portugal

sv_SE Swedish Sweden

tr_TR Turkish Turkey

zh_CN Chinese (Simplified) China

zh_TW Chinese (Traditional) Taiwan

Building Model 2 Web applications with Struts 147

Library (JSTL) tags was when we needed to iterate over a list of items. Struts
handles this situation with the iterate custom tag. This tag uses the attributes
listed in table 5.3.

The iterate tag works with a variety of collections of objects, including arrays.
This is a powerful tag because it takes care of typecasting and assignment for you.
Within the tag body, you can freely reference the properties and methods of the
objects from the collection without worrying about typecasting. Also notice that
there is no longer any scriptlet code in the JSP, not even a useBean declaration.
The code on this page is much cleaner than the corresponding code in a typical
Model 2 application.

 At the bottom of the file, an HTML <href> tag appears that points to SchedEn-
try.do. Clicking on this link invokes another Action object (ScheduleEntryAction)
through the Struts controller.

5.1.7 Struts’ support for data entry

ScheduleEntryAction is the action invoked when the user clicks on the hyper-
link at the bottom of the view page. It leads to the data-entry screen, shown in
figure 5.2.

 ScheduleEntryAction is responsible for setting up the edit conditions. The
code appears in listing 5.8.

Table 5.3 The Struts iterate tag attributes

Attribute Value Description

id schedItem The local (i.e., within the tag body) name of the
object pulled from the collection.

type com.nealford.art.sched-
struts.entity.ScheduleItem

The type of objects found in the collection. The tag
automatically casts the items it pulls from the col-
lection to this class.

name scheduleBean The name of the bean that you want to pull from a
standard web collection (in this case, schedule-
Bean from the request collection).

property list The name of the method on the bean that returns
the collection.

148 CHAPTER 5

Using Struts

package com.nealford.art.schedstruts.action;

import javax.servlet.http.*;
import javax.servlet.ServletException;
import java.io.IOException;
import org.apache.struts.action.*;
import javax.sql.DataSource;
import com.nealford.art.schedstruts.boundary.*;

public class ScheduleEntryAction extends Action {
 private static final String ERR_DATASOURCE_NOT_SET =
 "ScheduleEntryAction: DataSource not set";

 public ActionForward execute(ActionMapping mapping,
 ActionForm form, HttpServletRequest request,
 HttpServletResponse response) throws IOException,
 ServletException {

 ScheduleDb sb = new ScheduleDb();
 DataSource ds = getDataSource(request);
 if (ds == null)
 throw new ServletException(ERR_DATASOURCE_NOT_SET);
 sb.setDataSource(ds);
 //-- place the scheduleBean on the session in case the
 //-- update must redirect back to the JSP -- it must be
 //-- able to pull the scheduleBean from the session, not
 //-- the request
 HttpSession session = request.getSession(true);

Listing 5.8 The ScheduleEntryAction action subclass sets up editing.

Figure 5.2
ScheduleEntryAction allows the user to enter
new schedule items and performs automatic
validation through the ActionForm associated
with AddToScheduleAction.

Building Model 2 Web applications with Struts 149

 session.setAttribute("eventTypes", sb.getEventTypeLabels());
 return mapping.findForward("success");
 }
}

The view JSP for this page must be able to pull event types from the ScheduleDb to
display in the HTML select control. Adding the ScheduleDb to the request and for-
warding it to the JSP could normally accomplish this. However, the automatic vali-
dation functionality of Struts adds some complexity to this scenario. More about
this issue appears in section 5.1.8. For now, trust that the session, not the request,
must be used here. Before this mystery is unraveled, let’s discuss the view portion
of this request.

Building the entry view
The action in listing 5.8 forwards the schedule bean to the entry view JSP, which
appears in listing 5.9.

<%@ taglib uri="/WEB-INF/struts-html.tld" prefix="html" %>
<%@ taglib uri="/WEB-INF/struts-bean.tld" prefix="bean" %>
<%@ taglib uri="/WEB-INF/struts-logic.tld" prefix="logic" %>

<html>
<head>
<title><bean:message key="title.add" /></title>
</head>
<body>
<h3><bean:message key="prompt.addEventTitle" /></h3>
<logic:messagesPresent>
 <h3>
 <bean:message key="errors.header"/>
 </h3>

 <html:messages id="error">
 <bean:write name="error"/>
 </html:messages>

 <p/>
</logic:messagesPresent>

<html:form action="add.do">
<table border="0" width="30%" align="left">
 <tr>
 <th align="right">
 <bean:message key="prompt.duration"/>
 </th>

Listing 5.9 ScheduleEntryView.jsp provides the insertion user interface.

150 CHAPTER 5

Using Struts

 <td align="left">
 <html:text property="duration" size="16"/>
 </td>
 </tr>
 <tr>
 <th align="right">
 <bean:message key="prompt.eventType"/>
 </th>
 <td align="left">
 <html:select property="eventTypeKey">
 <html:options collection="eventTypes" property="value"
 labelProperty="label"/>
 </html:select>

 </td>
 </tr>
 <tr>
 <th align="right">
 <bean:message key="prompt.start"/>
 </th>
 <td align="left">
 <html:text property="start" size="16"/>
 </td>
 </tr>
 <tr>
 <th align="right">
 <bean:message key="prompt.text"/>
 </th>
 <td align="left">
 <html:text property="text" size="16"/>
 </td>
 </tr>

 <tr>
 <td align="right">
 <html:submit>
 <bean:message key="button.submit"/>
 </html:submit>
 </td>
 <td align="right">
 <html:reset>
 <bean:message key="button.reset"/>
 </html:reset>
 </td>
 </tr>
</table>
</html:form>

</body>
</html>

Struts’ <select> tag

Building Model 2 Web applications with Struts 151

This JSP provides two fertile topics, and they are covered in reverse order. The first
topic appears in the body of the page with the custom Struts JSP tags. Using Struts
tags instead of standard HTML tags provides at least two benefits for this page.
The first benefit is the ability to define the text labels in the application-wide
properties file, discussed earlier. The second benefit is the immense simplification
of some HTML constructs. If you refer back to the Model 2 schedule application
in listing 4.11, you will find that 17 lines of mixed HTML and scriptlet code are
required to generate the list of select options from the database. That code is ugly
and hard to maintain. The annotation in listing 5.9 shows how the same behavior
is accomplished with Struts.

5.1.8 Declarative validations

Another topic of interest on the ScheduleEntryView page is validation. One of the
most common tasks in web applications is the validation of data entered by the
user via an HTML POST. Generally, this is handled in the controller where the
page posts. If the validations fail, the user is redirected back to the page to correct
the errors. A friendly web application will replace all the values the user typed in
so that the user only has to correct the errors, not type all the values back into the
page. This behavior is coded by hand, frequently using the JSP * setProperty com-
mand to automatically repopulate the fields:

<jsp:setProperty name="beanName" property="*" />

However, this command presents some problems in that it isn’t very discriminating.
 Struts provides a graceful alternative. Referring back to the struts-config docu-

ment in listing 5.8, one of the action entries (AddToScheduleAction) is associated
with a <form-bean> tag. The tag associates a name (addItem) with a class that is in
turn associated with the add action. Struts allows you to associate action forms with
actions via the <form-bean> tag. In those cases, Struts performs some special han-
dling of the action form classes. When a form bean is associated with an action
and that action is invoked, Struts looks for an instance of the form bean in the
user’s session. If it doesn’t find one, it automatically instantiates it and adds it to
the session.

 Struts is intelligent enough to pull data automatically from the form bean and
populate the HTML fields with the values. So, for example, if you have a getAd-
dress() method in your form bean and an HTML input called address, Struts
automatically fills in the value of the field. This mechanism makes it easy to build
wizard-style interfaces with Struts, where the user supplies information across a
series of screens. This mechanism also assists in validation.

152 CHAPTER 5

Using Struts

 Declarative validations allow the developer to define rules in a configuration
document that are automatically enforced by the framework. Many web applica-
tions have simple validation needs, usually falling into the categories of required
fields, minimum and maximum values, and input masks. To configure declarative
validations, you must first define the validation rules for your form in an XML doc-
ument, whose format is mandated by Struts. The validation document for the
Struts 1.1 schedule application is shown in listing 5.10.

<?xml version="1.0" encoding="ISO-8859-1" ?>

<!-- DTD omitted for space considerations -->

<form-validation>
 <formset>
 <form name="scheduleItem">
 <field property="duration"
 depends="required,integer,intRange">
 <arg0 key="prompt.duration"/>

 <arg1 name="intRange"
 key="${var:min}" resource="false"/>

 <arg2 name="intRange"
 key="${var:max}" resource="false"/>

 <var>
 <var-name>min</var-name>
 <var-value>0</var-value>
 </var>
 <var>
 <var-name>max</var-name>
 <var-value>31</var-value>
 </var>
 </field>
 <field property="text"
 depends="required,minlength">
 <arg0 key="prompt.text"/>
 <arg1 name="minlength"
 key="${var:minlength}" resource="false"/>
 <var>
 <var-name>minlength</var-name>
 <var-value>1</var-value>
 </var>
 </field>
 </form>
 </formset>
</form-validation>

Listing 5.10 The validation.xml rules file for the Struts schedule application

Validation
declaration for

duration

B

Message resource
key for validation
message

C

Variable
declarations
defining
validation
criteria

D

Variable values for
validation criteria

E

Validation declaration
for the text field

F

Building Model 2 Web applications with Struts 153

This mapping creates a validation for the duration property of the scheduleItem
class, validating that a value for the field exists (required) and that it is an integer
(integer), and defining a range (intRange).

The first argument is a mapping into the application’s resource file, pulling the
same prompt value for the field used on the form.

The fields may contain several arguments. In this case, the minimum and maxi-
mum arguments are supplied as replaceable variables, defined in the entry in the
file. The syntax for referencing the variables is the now common ${x} syntax used
by JSTL.

The last part of the field definition includes the variable values used in the pre-
ceding arguments. In this example, the min and max values define the minimum
and maximum duration values.

The text field validation requires a value and it must be at least one character in
length.

The next step in configuring declarative validations is the addition to the struts-
config file of the validator plug-in. The Struts configuration file supports plug-ins
to provide additional behavior (like validations); listing 5.11 shows the plug-in
portion of the struts-config document.

 <plug-in className="org.apache.struts.validator.ValidatorPlugIn">
 <set-property
 property="pathnames"
 value="/WEB-INF/validator-rules.xml,/WEB-INF/validation.xml"/>
 </plug-in>

The validator plug-in specifies two XML configuration documents: the document
particular to the application (validation.xml, shown in listing 5.10) and validator-
rules.xml, which is generic across all Struts applications. The presence of the plug-
in and the configuration documents enable declarative validations.

 The results of the validation are shown in figure 5.3.
 Declarative validation is ideal for situations like the schedule application,

where the validation requirements fit into the scope of the validator plug-in
(namely, required fields and minimum values). Struts also includes a more robust
validation mechanism for more complex cases. The ActionForm class includes a
validate() method, which may be overridden in child ActionForms. When post-
ing to an action, Struts performs declarative validations and then checks to see if a

Listing 5.11 The struts-config document’s <plug-in> tag with the validator plug-in

B

C

D

E

F

154 CHAPTER 5

Using Struts

form bean has a validate() method. This method returns a collection of Action-
Error objects. If the collection is empty, Struts continues with the execution of the
action. If there are items in the collection, Struts automatically redirects back to
the input form that invoked the controller, passing the form bean back with it.

 Struts tags placed on the page test for the presence of validation failures and
display the results. For example, the top of the ScheduleEntryView page in
listing 5.9 includes the following code:

<logic:messagesPresent>
 <h3>
 <bean:message key="errors.header"/>
 </h3>

 <html:messages id="error">
 <bean:write name="error"/>
 </html:messages>

 <p/>
</logic:messagesPresent>

If validation error messages are present in the collection, the messages (pulled
from the application’s properties file) are displayed, yielding the result shown in
figure 5.3.

Figure 5.3 The validation in the Struts 1.1 version of the schedule application uses validations
declared in the validations.xml configuration file.

Building Model 2 Web applications with Struts 155

Building the AddToScheduleAction
The last piece of the Struts schedule application is the action object that is posted
from the entry JSP. AddToScheduleAction is shown in listing 5.12.

package com.nealford.art.schedstruts.action;

import java.io.IOException;

import javax.servlet.ServletException;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import javax.servlet.http.HttpSession;

import com.nealford.art.schedstruts.boundary.ScheduleDb;
import com.nealford.art.schedstruts.entity.ScheduleItem;
import com.nealford.art.schedstruts.util.ScheduleAddException;
import org.apache.struts.action.Action;
import org.apache.struts.action.ActionForm;
import org.apache.struts.action.ActionForward;
import org.apache.struts.action.ActionMapping;

public class AddToScheduleAction extends Action {
 private static final String ERR_INSERT =
 "AddToScheduleAction: SQL Insert error";

 public ActionForward execute(ActionMapping mapping,
 ActionForm actionForm, HttpServletRequest request,
 HttpServletResponse response) throws IOException,
 ServletException {
 ScheduleDb sb = new ScheduleDb();
 sb.setDataSource(getDataSource(request));
 ScheduleItem si = (ScheduleItem) actionForm;
 try {
 sb.addRecord(si);
 } catch (ScheduleAddException sax) {
 getServlet().getServletContext().log(ERR_INSERT, sax);
 sax.printStackTrace();
 }
 //-- clean up extraneous session reference to eventTypes
 HttpSession session = request.getSession(false);
 if (session != null)
 session.removeAttribute("eventTypes");
 return mapping.findForward("success");
 }
}

Notice that no code appears in the AddToScheduleAction class to handle the valida-
tion. When the action is invoked, Struts “notices” that the form bean is associated

Listing 5.12 AddToScheduleAction inserts the record.

156 CHAPTER 5

Using Struts

with it in the struts-config.xml document. Because the form bean was created on
the page that posted to this action, Struts validates the form based on the declara-
tive validations. Failure of the validation automatically redirects to the entry JSP
and fills in the form values. If the validation was successful, this action is invoked
normally. To get the values entered via the form bean, we need only cast the
actionForm instance that is passed to the execute() method. Once we have
retrieved the value object, we pass it to the ScheduleDb to add it to the database and
forward back to the listing page.

 Because of the automatic form validation, this action may not be executed
immediately. The event type list must be present for the HTML <select> tag to
access the event types. However, if the user is automatically redirected back to the
JSP because of a validation error, the list will no longer be available on the request.
Thus, the event type list must be added to the session before invoking the page
the first time. While it is generally a bad idea to place long-lived objects on the ses-
sion, this action is careful to remove it when it has completed its work.

 The last order of business is the forward to the next resource via the mapping
object. In this case, the target is another action object via Struts, not a JSP. The
ActionForward (like a RequestDispatcher) can be directed to any web resource,
not just a JSP.

5.2 Evaluating Struts

As frameworks go, Struts is not overbearing. Many times, frameworks are so exten-
sive that you can’t get anything done outside the context of the framework. Or, 80
percent of what you want to do is extremely easy to do in the framework, another
10 percent is possible but difficult, and the last 10 percent cannot be accom-
plished because, of or in spite of, the framework. Struts is a much more light-
weight framework. It fits into standard Model 2 type applications but doesn’t
preclude your writing code that doesn’t need or want to fit into Struts. I estimate
that Struts saves developers from having to write between 30 and 40 percent of the
plumbing code normally required for a typical web application.

 Struts provides support for building Model 2 applications by supplying a large
part of the code necessary for every web application. It includes a variety of pow-
erful custom tags to simplify common operations. It offers a clean automatic vali-
dation mechanism, and it eases building internationalized applications. Its
disadvantages chiefly lie in its complexity. Because there are numerous moving
parts in Struts, it takes some time to get used to how everything fits together. It is

Summary 157

still a new framework, so you may experience some performance issues with
extremely busy sites. However, my company has used it for several moderately
busy web applications and been pleased with its performance and scalability, and
the lack of serious bugs. Struts is now in its second release (Struts 1.1) and has
garnered considerable developer support.

 One apparent disadvantage of Struts goes hand in hand with one of its advan-
tages. To fully exploit Struts’ custom tags, you must write your JSPs in terms of
Struts elements, replacing the standard HTML elements like <input>, <select>,
and so on. However, one of the stated goals of the Model 2 architecture is a sepa-
ration of responsibilities, ideally allowing the graphics designers to work solely on
the user interface. If they are forced to use Struts tags, they can no longer use
their design tools.

 The Jakarta web site contains links to resources for Struts. One of these is a
plug-in that allows you to use custom JSP tags within Dreamweaver UltraDev, one
of the more popular HTML development environments. By using this extension,
your HTML developers can still drop what looks like standard HTML elements
(like inputs, selects, etc.), and the tool generates Struts tags. The extension is
nice enough to allow the HTML developer to fill in attribute values for tags and
generally work seamlessly with the Struts tags. We have used this within our com-
pany, and HTML designers who know virtually nothing about Java quickly become
accustomed to working in this environment. Now you can have the Model 2
advantages of separation of responsibilities and still use Struts. Check out http://
jakarta.apache.org/taglibs/doc/ultradev4-doc/intro.html for information on this
and other useful Struts extensions.

 If you are using more recent versions of Dreamweaver, it already offers support
for all custom JSP tags, which includes the Struts tags. Several Java development
environments are adding support for Struts. Starting with version 8, Borland’s
JBuilder development environment has wizards and other designers to facilitate
Struts development.

5.3 Summary

Struts has found the middle ground of being useful, powerful, but not too com-
plex. Using Struts is easy to anyone familiar with Model 2, and it helps developers
build highly effective web applications. This chapter covered the open-source
Struts framework. We walked you through the development of the schedule appli-
cation, building the parts that accommodate the framework along the way. Struts

158 CHAPTER 5

Using Struts

contains many elements and can be daunting because of the perceived complex-
ity, but once you understand it, it fits together nicely.

 This chapter covered the basic classes necessary for the application, including
the boundary and entity classes. We then discussed Struts Actions, comparing
them to the Parameterized Command example from chapter 4. The discussion of
actions led to the description of the main Struts controller servlet; we explained
how to configure it through both the web.xml and struts-config.xml files. We
described how action mappings work and how the controller dispatches requests.
You learned about the user interface elements of Struts, including several of the
Struts custom tags. Our schedule application showed you how to create pages with
little or no Java code, relying on the custom tags. You also learned about complex
HTML elements like <select>, and the concept of internationalization.

 Next, we turned to validations and the automatic validation built into the
framework. Finally, we discussed the advantages and disadvantages of using Struts.

 In the next chapter, we look at Tapestry, another framework for building
Model 2 applications that has virtually nothing in common with Struts.

Neal Ford

S
o you’ve mastered servlets, JSPs, statelessness, and the other founda-
tional concepts of Java web development. Now it’s time to raise your
productivity to the next level and tackle frameworks. Frameworks—

like Struts, Tapestry, WebWork, and others—are class libraries of pre-
built parts that all web applications need, so they will give you a huge
leg up. But first you’ll need a solid understanding of how web apps are
designed and the practical techniques for the most common tasks such
as unit testing, caching, pooling, performance tuning, and more.

Let this book be your guide! Its author, an experienced architect,
designer, and developer of large-scale applications, has selected a core
set of areas you will need to understand to do state-of-the-art web
development. You will learn about the architecture and use of six
popular frameworks, some of which are under-documented. You will
benefit from a certain synergy in the book’s simultaneous coverage of
both the conceptual and the concrete, like the fundamental Model 2
design pattern along with the details of frameworks, the how-tos of
workflow, the innards of validation, and much more. In this book,
combining the general and the specific is a deep and useful way to
learn, even for those who have not used a framework before.

What’s Inside

■ Web frameworks analyzed
■ How to incorporate Web services
■ How-tos of

◆ caching
◆ pooling
◆ workflow
◆ validation
◆ testing

Neal Ford is an architect, designer, and developer of applications,
instructional materials, books, magazine articles, video presentations,
and a speaker at numerous developers’ conferences worldwide. He is
Chief Technology Officer of The DSW Group, Ltd.

M A N N I N G $44.95 US/$67.95 Canada

www.manning.com/ford

Author responds to reader questions

Ebook edition available

AUTHOR
✔

ONLINE

✔

,!7IB9D2-djeagb!:p;o;O;t;P
ISBN 1-932394-06-0

“Great combination of the three
levels: patterns, frameworks,
and code.”

—Shahram Khorsand
NetServ Consulting Sweden

“Covers all facets of web
application development
This book is bold!”

—Eitan Suez
Founder, UpToData Inc.
Creator of DBDoc

“You have two options: read four
or five books plus stuff from all
over the Net—or read this one.”

—Luigi Viggiano, co-founder,
Turin Java Users Group

“I really like what I’m reading
... nice style, very approachable.”

—Howard M. Lewis Ship
Creator of Tapestry

JAVA

ARTOF JAVA WEB DEVELOPMENT
STRUTS, TAPESTRY, COMMONS, VELOCITY, JUNIT, AXIS, COCOON, INTERNETBEANS, WEBWORK

M A N N I N G

Neal Ford

STRUTS

TAPESTRY

COMMONS

VELOCITY

JUNIT

AXIS

COCOON

INTERNETBEANS

WEBWORK

ARTOF

JAVA WEB
DEVELOPMENT

vii

brief contents
PART I THE EVOLUTION OF WEB ARCHITECTURE

AND DESIGN ... 1
1 � State-of-the-art web design 3

2 � Building web applications 27

3 � Creating custom JSP tags 61

4 � The Model 2 design pattern 91

PART II WEB FRAMEWORKS .. 131
5 � Using Struts 133

6 � Tapestry 159

7 � WebWork 199

8 � InternetBeans Express 227

9 � Velocity 261

10 � Cocoon 283

11 � Evaluating frameworks 311

viii BRIEF CONTENTS

PART III BEST PRACTICES .. 327
12 � Separating concerns 329

13 � Handling flow 371

14 � Performance 409

15 � Resource management 445

16 � Debugging 475

17 � Unit testing 521

18 � Web services and Axis 543

19 � What won’t fit in this book 563

371

Handling flow

This chapter covers
� Application usability options
� Building undo operations
� Handling exceptions

372 CHAPTER 13

Handling flow

In this chapter, we take a look at the usability and flow of a web application from a
design standpoint. The greatest application in the world won’t be used much if its
flow doesn’t meet the needs of its users, or if it doesn’t handle exceptions grace-
fully and thus frustrates your users.

 By studying flow, you can address both of these concerns. First, we look at how
to reconcile often-requested usability elements (such as column sorting and page-
at-a-time scrolling) with the design principles we’ve already discussed. We use the
Model 2 version of the eMotherEarth e-commerce site introduced in chapter 4 as
a base for this and future chapters.

 You must also handle more infrastructural elements of flow, such as exception
handling. Your application should be designed for robustness in the face of both
user and application errors. In this chapter, you’ll see how to build sortable col-
umns, page-at-a-time scrolling, undo operations, and robust exception handling.

13.1 Application usability options

Users have an annoying habit of asking for features that seem easy and intuitive to
use but that are difficult for the developer to implement. For example, two com-
mon features that users expect are sortable columns in tables and page-at-a-time
scrolling. When adding bells and whistles to your application, you must avoid
compromising its design and architecture. No matter how “pretty” it becomes, the
developer who must maintain it later makes the final judgment on an applica-
tion’s quality.

13.1.1 Building the base: eMotherEarth.com

To illustrate these requests, an application must be in place. This and subsequent
chapters use a simulated toy e-commerce site named eMotherEarth. The begin-
nings of this application appeared in chapter 2 to illustrate the evolution of web
development from servlets and JSP. However, this version of the application is
reorganized into a Model 2 application (see chapter 4). This section discusses the
new architecture, and the following sections show how to incorporate usability
options into a Model 2 application.

Packages
The application now appears in four major packages, shown in figure 13.1.

 The boundary package contains two boundary classes, ProductDb and OrderDb,
to persist the entities into the database. The application contains four entities:
Product, Order, Lineitem, and CartItem. Only two boundary classes are required

Application usability options 373

because Order and Lineitem are handled by the same
boundary class; there is never a case in the applica-
tion where you can add line items without adding an
order, and the CartItem entity is never persisted. Car-
tItem is a helper class that holds information until
the time that an order is generated. The controller
package contains the controller servlets for the appli-
cation, and the util package contains miscellaneous
utility classes, such as the database connection pool
and the shopping cart.

 For the sake of brevity, we show only the code that
is unique to this application. The entire application is
available with the source code archive as art_emotherearth_base. So, we won’t
show listings of classes that consist primarily of accessors and mutators and discuss
only the interesting methods of the controller servlets.

Welcome
The first page of the application is a simple logon page, as shown in figure 13.2.

 The welcome controller does more than just forward to a JSP with an entry
field. It sets up global configuration items, like the database connection pool. List-
ing 13.1 shows the entire welcome controller.

public class Welcome extends HttpServlet {

 public void init() throws ServletException {
 String driverClass =
 getServletContext().getInitParameter("driverClass");
 String password =
 getServletContext().getInitParameter("password");
 String dbUrl =
 getServletContext().getInitParameter("dbUrl");
 String user =
 getServletContext().getInitParameter("user");
 DBPool dbPool =
 createConnectionPool(driverClass, password, dbUrl,
 user);
 getServletContext().setAttribute("dbPool", dbPool);
 }

 private DBPool createConnectionPool(String driverClass,
 String password,
 String dbUrl,
 String user) {

Listing 13.1 The welcome controller

controller

boundary entity

util

Figure 13.1 The Model 2
version of eMotherEarth.com is
organized into four packages,
each with different
responsibilities.

374 CHAPTER 13

Handling flow

 DBPool dbPool = null;
 try {
 dbPool = new DBPool(driverClass, dbUrl, user, password);
 } catch (SQLException sqlx) {
 getServletContext().log(new java.util.Date() +
 ":Connection pool error", sqlx);
 }
 return dbPool;
 }

 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 RequestDispatcher dispather =
 request.getRequestDispatcher("/WelcomeView.jsp");
 dispather.forward(request, response);
 }
}

The real action in the welcome controller occurs before the doGet() method is
called. This method gets configuration parameters from the web.xml file and uses
them to create the database connection pool that is utilized by the remainder of
the application. Once the pool is created, it is added to the global collection. The
doGet() method does nothing but forward directly to the view for the welcome.

Catalog
The next page of the application shows the user a catalog of all the items available
for purchase. This page is shown in figure 13.3.

 While the Welcome page strongly resembles the original version of the applica-
tion from chapter 2, the Catalog page has some significant changes. First, it allows
the user to click on the column heads to sort the items based on that column. Sec-
ond, it offers multiple pages of items. Instead of showing all the items at the outset

Figure 13.2
This page allows the user to log on,
while the servlet underneath sets up the
web application.

Application usability options 375

(a potentially long list), it shows a subset with hyperlinks at the bottom that allow
the user to choose the display page.

 Catalog is the workhorse controller in the application because it must execute
the code that makes all the display techniques possible. Ideally, the JSP should
have as little logic as possible—all the “real” code should execute in the control-
ler. Figure 13.4 shows a UML sequence diagram highlighting the classes and meth-
ods called by the catalog controller. The real work in the controller is split up
among the methods that appear in the sequence diagram. The doPost() method,
which is fired from the Welcome page, appears in listing 13.2.

public void doPost(HttpServletRequest request,
 HttpServletResponse response) throws
 ServletException, IOException {

 HttpSession session = request.getSession(true);
 ensureThatUserIsInSession(request, session);
 ProductDb productDb = getProductBoundary(session);
 int start = getStartingPage(request);
 int recsPerPage = Integer.parseInt(getServletConfig().
 getInitParameter("recsPerPage"));
 int totalPagesToShow = calculateNumberOfPagesToShow(
 productDb.getProductList().size(), recsPerPage);
 String[] pageList =
 buildListOfPagesToShow(recsPerPage,
 totalPagesToShow);

Listing 13.2 The catalog controller’s doPost() method breaks the work down
into smaller chunks.

Figure 13.3
The Catalog page shows users the first of
several pages of items they can buy from
the site.

376 CHAPTER 13

Handling flow

 List outputList = productDb.getProductListSlice(start,
 recsPerPage);
 sortPagesForDisplay(request, outputList);

 bundleInformationForView(request, start, pageList,
 outputList);
 forwardToView(request, response);
}

The catalog controller makes sure the user is in the session. If the user isn’t in
the session (for example, upon the first invocation of the page), the ensure-
ThatUserIsInSession() method adds the user to the session, pulling the name
from the request collection. Either way, this method guarantees that the user is in
the session.

Catalog ProductDbSession

getSession()

ensureThatUserIsInSession()

Request

getProductBoundary()

getStartPage()

getRecsPerPage()

calculateNumOfPagesToShow()

buildListOfPages()

getProductListSlice()

bundleIntoToView()

CatalogView

forwardToView()

Figure 13.4 This sequence diagram shows the interactions and method calls from the
catalog controller.

Application usability options 377

 Next, the servlet starts to gather the components and information needed to
build the display for the user. It calls the getProductBoundary() method to get the
boundary class for product entities. This method is shown in listing 13.3.

private ProductDb getProductBoundary(HttpSession session) throws
 NumberFormatException {
 ProductDb products = (ProductDb) session.getAttribute(
 "productList");

 if (products == null) {
 products = new ProductDb();
 products.setDbPool(
 (DBPool) getServletContext().getAttribute(
 "dbPool"));
 session.setAttribute("productList", products);
 }
 return products;
}

The product boundary class encapsulates access to individual product entities,
which it pulls from a database. All the data access code appears in the boundary
class, leaving the product entities to include only product-specific domain infor-
mation. The ProductDb class includes a property that is a java.util.List of Prod-
uct entities. Figure 13.5 illustrates the relationship between these classes.

 The application is designed so that every user gets a copy of this product
boundary object. The controller’s getProductBoundary() method is designed to
place a copy of this object in the user’s session upon first request. This behavior is
a design decision whose goal is to ensure that every user has a copy of the object.
The design represents a classic trade-off of memory versus speed. Although this
strategy occupies more memory (a bound-
ary object per user), the speed of access to
the data is faster. If we wanted to create a
more scalable application, we would handle
the boundary differently. Chapters 14 and
15 include discussions of various caching
and pooling mechanisms that are alterna-
tives to this approach. The design decision
to cache the boundary object in the user’s

Listing 13.3 The getProductBoundary() method either retrieves or creates a product
boundary object.

<<entity>> <<boundary>>

1*

Product ProductDB

Figure 13.5 The ProductDb class includes
an aggregation of Product objects and
delivers them via a method that returns a
java.util.List.

378 CHAPTER 13

Handling flow

session highlights the fact that performance and scalability must illuminate every
decision made in a web application.

13.1.2 Page-at-a-time scrolling

The page-at-a-time scrolling interface technique concerns the volume of informa-
tion and the usability of the application. If you have a data-driven web application,
you don’t want to inundate the user with several thousand records on a single
page. Most web sites handle this with page-at-a-time scrolling. When using this
technique, the user sees only a single page worth of data and a list of pages. If
users want to see more records, they can navigate to another page.

 To implement this technique, the controller gathers some values from the
request collection to help determine the number of pages to show at the bottom
of the page. It calls the getStartPage() method, which appears in listing 13.4.

private int getStartingPage(HttpServletRequest request) {
 String recStart = request.getParameter("start");
 int start = 0;

 if (recStart != null)
 start = Integer.parseInt(recStart);
 return start;
}

This method pulls the start parameter from the request, parses it, and returns it.
This parameter is available because the view encodes it into self-posting requests
back to the controller for this page. Note that this method is designed to work in
cases where the start parameter is not available (such as the first invocation of
the page).

 Users must specify the page they want through the view, which is specified by
the series of hyperlinks at the bottom of the page. The values of these hyperlinks
(in other words, the generated HTML for them) are shown in listing 13.5.

<p> Pages:
1
2
3
4

Listing 13.4 The getStartMethod() from the controller calculates
the starting page number.

Listing 13.5 The page links at the bottom allow the user to navigate between pages.

Application usability options 379

 Each of the page links contains a reference to the controller (catalog) and the
starting record for that page. You will notice in listing 13.5 that each page starts six
records beyond the previous page. The getStartPage() method of the controller
pulls the start parameter value from the request and uses it to calculate which
records should appear on the page. The number of records per page is set through
a servlet configuration parameter. In this case, it is set to six records per page. The
next line of code in the controller is the retrieval of that value from the servlet-
Config object.

 The next method called by the controller is the calculateNumberOfPages-
ToShow() method, which appears in listing 13.6.

private int calculateNumberOfPagesToShow(int numInList,
 int recsPerPage) {
 int totalToShow = numInList / recsPerPage;

 if (numInList % recsPerPage != 0)
 ++totalToShow;
 return totalToShow;
}

The calculateNumberOfPagesToShow() method accepts the total number of rec-
ords available and the requested records per page, and then calculates the num-
ber of pages required. Note that the contingency of having a last page that isn’t
completely full is handled with the use of the modulus operator (%) to ensure that
enough pages exist.

 The next method called is buildListOfPagesToShow(), which builds up an
array of strings containing the displayable hyperlinks. This method is shown in
listing 13.7.

private String[] buildListOfPagesToShow(int recsPerPage,
 int totalPagesToShow) {
 String[] pageList = new String[totalPagesToShow];
 StringBuffer work = new StringBuffer(20);
 int currentPage = 0;

 for (int i = 0; i < totalPagesToShow; i++) {
 work.setLength(0);
 work.append("<a href='catalog?start=").append(

Listing 13.6 This method calculates the number of pages it will take to show
all the requested records.

Listing 13.7 This method builds the list of hyperlinks embedded at the bottom
of the page.

380 CHAPTER 13

Handling flow

 currentPage).append("'>").append(i + 1).append(
 " ");
 pageList[i] = work.toString();
 currentPage += recsPerPage;
 }
 return pageList;
}

The buildListOfPagesToShow() method builds up a list of hyperlinks with the
appropriate page and start record information embedded in them. It iterates over
a list up to the total number of pages to show, building a StringBuffer with the
appropriate hyperlink and display data. Eventually, it returns the array of strings
that includes the page list. This page list is passed to the view in a request parame-
ter (it is one of the parameters to the bundleInformationForView() method).

 The view extracts that information and places it on the bottom of the page.
Listing 13.8 shows the snippet of code at the bottom of the page that builds this
list of pages.

<%-- show page links --%>
<p> Pages:
<%
 String[] pageList = (String[]) request.getAttribute("pageList");
 if (pageList != null) {
 for (int i = 0; i < pageList.length; i++) {
 out.println(pageList[i]);
 }
 }
%>

The scriptlet in listing 13.8 walks over the pageList passed from the controller
and outputs each of the links. The spacing is already built into the HTML in the
pageList, simplifying the job of the scriptlet code.

Using JSTL
The kind of scriptlet code that appears in listing 13.8 is generally not required if
you are using a modern JSP specification (and of course a servlet container that
supports this specification). The JSP Standard Tag Library (JSTL) includes custom
JSP tags that handle common chores like iteration. The JSTL version of this code is
shown in listing 13.9

Listing 13.8 The CatalogView page uses the pageList to build the list of hyperlinks
at the bottom.

Application usability options 381

 .

<% pageContext.setAttribute("pageList",
 (String[]) request.getAttribute("pageList")); %>
<p> Pages:
<c:forEach var="page" items="${pageList}">
 <c:out value="${page}" escapeXml="false"/>
</c:forEach>

This code is much better than the scriptlet alternative because the custom JSTL tag
handles conditions like null properties by just ignoring the tag. This is a case in
which using JSTL does greatly improve the readability and maintainability of your
code without compromising the clean separation of model, view, and controller.

 JSTL is also used to show the rows of data on this view page. Listing 13.10 con-
tains the code that displays the products available for purchase.

<%
 Integer start = (Integer) request.getAttribute("start");
 int s = start.intValue();
%>
Catalog of Items
</h1>
<table border=1>
 <tr><th><a href="catalog?sort=id&start=<%= s %>">ID</th>
 <th><a href="catalog?sort=name&start=<%= s %>">NAME</th>
 <th><a href="catalog?sort=price&start=<%= s %>">PRICE</th>
 <th>Buy</th></tr>
 <c:forEach var="product" items="${outputList}">
 <tr>
 <td><c:out value="${product.id}"/></td>
 <td><c:out value="${product.name}"/></td>
 <td align='right'>
 <c:out value="${product.priceAsCurrency}"/>
 </td>
 <td>
 <form action="showcart" method="post">
 Qty: <input type="text" size="3" name="quantity">
 <input type="hidden" name="id"
 value=<c:out value="${product.id}"/>>
 <input type="submit" value="Add to cart">
 </form>
 </td>
 </tr>
 </c:forEach>
</table>

Listing 13.9 JSTL provides custom tags to help with iteration over a collection.

Listing 13.10 The Catalog page uses JSTL tags to help the readability of the JSP code.

382 CHAPTER 13

Handling flow

You can contrast this code with the similar code in chapter 3 (section 3.5.2 and
listing 3.16). This version is much better because the JSTL tag is used to output
the values of the individual properties of the bean passed to this page by the con-
troller. The version in listing 3.16 used a custom tag to output the HTML directly
from Java code. In listing 13.10, a presentation expert has full access to the fields
and can make changes to the look and feel of the application without touching
any Java code.

 Another powerful feature of JSTL is the ability to use dot notation to access
embedded property values of objects. Consider the ShowCart JSP page for this
Model 2 version of eMotherEarth. It appears in listing 13.11.

<%
 pageContext.setAttribute("cartItems", cart.getItemList());
%>
<table border=1>
 <tr>
 <c:forEach var="col" items="ID,NAME,PRICE,QUANTITY,TOTAL">
 <th><c:out value="${col}"/></th>
 </c:forEach>
 </tr>
 <c:forEach var="cartItem" items="${cartItems}">
 <tr>
 <td><c:out value="${cartItem.product.id}"/></td>
 <td><c:out value="${cartItem.product.name}"/></td>
 <td><c:out value="${cartItem.product.priceAsCurrency}"/></td>
 <td><c:out value="${cartItem.quantity}"/></td>
 <td><c:out value="${cartItem.extendedPriceAsCurrency}"/></td>
 </tr>
 </c:forEach>
 <tr>
 <td> </td>
 <td> </td>
 <td> </td>
 <td align='right'>Grand Total =</td>
 <td align='right'><%= cart.getTotalAsCurrency() %></td>
 </tr>
</table>

The CartItem and Product classes are related to each other. The CartItem class
encapsulates a Product object so that it won’t have to duplicate the information
already encapsulated by Product. The ShoppingCart class composes the CartItem
class because it includes a collection of CartItems. It is a composition relationship

Listing 13.11 The ShowCart JSP uses JSTL to access the embedded product object
in the CartItem class.

Application usability options 383

rather than an aggregation because the ShoppingCart class is responsible for the
creation and destruction of the CartItem objects. The relationship between these
classes is illustrated in figure 13.6.

 Because of the relationship between CartItem and Product, you may find it dif-
ficult to cleanly access the encapsulated Product object. Using regular iteration
scriptlets, you end up with code that looks like listing 13.12.

<table border=1>
<tr><th>ID</th><th>NAME</th><th>PRICE</th>
 <th>QUANTITY</th><th>TOTAL</th></tr>
<%
 Iterator iterator = cart.getItemList().iterator();
 while (iterator.hasNext()) {
 CartItem ci = (CartItem) iterator.next();
 pageContext.setAttribute("ci", ci);
 Product p = ci.getProduct();
 pageContext.setAttribute("p", p);
%>
<tr><td><jsp:getProperty name="p" property="id" /></td>
<td><jsp:getProperty name="p" property="name" /></td>
<td align='right'><jsp:getProperty name="p"
 property="priceAsCurrency" /></td>
<td align='right'><jsp:getProperty name="ci"
 property="quantity" /></td>
<td align='right'><jsp:getProperty name="ci"
 property="extendedPriceAsCurrency" /></td>
</tr>
<%
 }
%>
<tr><td> </td><TD> </td><TD> </td>
<td align='right'>Grand Total =</td>
<td align='right'><%= cart.getTotalAsCurrency() %></td>
</tr>

</table>

Listing 13.12 The embedded objects make iteration complex.

-quantity : int

CartItem -id : int
-name : String
-price : double

Product

1 1

ShoppingCart

1 0..*

Figure 13.6 The ShoppingCart, CartItem, and Product classes are related.
ShoppingCart composes CartItem, which has a one-to-one association with a Product.

384 CHAPTER 13

Handling flow

In the iteration code, to be able to access both CartItem and Product through the
standard JSP tags, you must add both to the pageContext collection as you iterate
over the collection.

 JSTL makes this job much easier. The syntax for embedded objects is much
cleaner because you can directly access the embedded object using dot notation.
The code in listing 13.11 performs the same task but is less cluttered by the use of
the JSTL forEach tag instead of handcrafted iteration. Note that the chain of
method calls follows the same standard Java guidelines. To get to the Name prop-
erty of the product embedded inside cartItem, you write the following Java code:

cartItem.getProduct().getName()

This code is exactly equivalent to the JSTL code:

cartItem.product.name

In other words, the JSTL tag isn’t looking for a public member variable when
using the dot notation but rather a method that follows the standard Java naming
convention for accessing methods.

13.1.3 Sortable columns

Users are accustomed to being able to manipulate data that they see on the screen.
Most applications allow them to do so to one degree or another. Selective sorting
is a facility that users are familiar with from such applications as spreadsheets and
databases. When the user clicks on the title for a particular column, all the results
are sorted based on that column.

 As with much of the functionality users have come to expect in traditional
applications, implementing this kind of dynamic behavior is more difficult in the
HTTP/HTML-governed world of web applications. For a Model 2 application, the
sorting is provided by the model, and the selection must be specified through the
view. Like the page-at-a-time scrolling technique, sorting is handled through
hyperlinks that post back to the Catalog page, passing a parameter indicating the
desired sorting criteria.

 Listing 13.2, the code for the catalog controller’s doPost() method, includes the
method call that handles sorting. Named sortPagesForDisplay(), this method
appears in listing 13.13.

private void sortPagesForDisplay(HttpServletRequest request,
 ProductDb productDb,
 List outputList) {

Listing 13.13 This method handles the sorting of the records for display.

Application usability options 385

 productDb.sortList(request.getParameter("sort"),
 outputList);
}

The sortPagesForDisplay() method is called after the output list has already
been generated. Note that it must appear after the code that decides what page’s
worth of records to show. The sorting must apply to the records that appear on
the current page and not to the entire set of records from all pages. Thus, the
sorting operation takes place on the list subset already generated by the previ-
ous methods.

 The list for display is a java.util.List type, so the standard sorting mecha-
nism built into Java is applicable. We need to be able to sort by a variety of criteria,
so it is not sufficient to allow the Product class to implement the Comparable inter-
face. The Comparable interface is used when you have a single sort criterion for a
member of a collection. It allows you to specify the rules for how to sort the enti-
ties. The sort routines built into Java use these rules to determine how to sort the
records. While it is possible to make the single compareTo() method of the Compa-
rable interface handle more than one sort criterion, it is always a bad idea. This
method becomes a long, brittle series of decision statements to determine how to
sort based on some external criteria.

 If you need to sort based on multiple criteria, you are much better off creating
small Comparator subclasses. All the sort routines built into Java (for both the
arrays and collections helpers) take an additional parameter of a class that imple-
ments the Comparator interface. This interface (minus the JavaDocs) appears in
listing 13.14.

package java.util;

public interface Comparator {

 int compare(Object o1, Object o2);
 boolean equals(Object obj);
}

For the Product sorting operation, you need the ability to sort on name, price,
and ID. To that end, three Comparator implementers exist. Because of their simi-
larity, only one of the three created for this application is shown (listing 13.15).

Listing 13.14 The Comparator interface allows the user to specify
discrete sorting criteria.

386 CHAPTER 13

Handling flow

package com.nealford.art.emotherearth.util;

import java.util.Comparator;
import com.nealford.art.emotherearth.entity.Product;

public class PriceComparator implements Comparator {

 public int compare(Object o1, Object o2) {
 Product p1 = (Product) o1;
 Product p2 = (Product) o2;
 return (int) Math.round(p1.getPrice() - p2.getPrice());
 }

 public boolean equals(Object obj) {
 return this.equals(obj);
 }
}

The recipe for creating Comparator’s compareTo() methods is always the same: cast
the two objects passed to you by the sort routine into the type of objects you are
comparing, and then return a negative, positive, or zero number indicating which
object appears before the other when sorted.

 Once Comparators exist, the sorting routines can use them to sort arrays or
collections. The sortPagesForDisplay() method from listing 13.13 looks for a
request parameter named sort. The actual sorting is done in the boundary class
for products. The method called from the controller, sortList(), appears in
listing 13.16.

public List sortList(String criteria, List theList) {
 if (criteria != null) {
 Comparator c = new IdComparator();
 if (criteria.equalsIgnoreCase("price"))
 c = new PriceComparator();
 else if (criteria.equalsIgnoreCase("name"))
 c = new NameComparator();

 Collections.sort(theList, c);
 }
 return theList;

}

Listing 13.15 The PriceComparator class sorts Product objects based on price.

Listing 13.16 The sortList() method is a helper method that sorts the list based on the
column name passed to it.

Application usability options 387

If it is present, the appropriate Comparator class is applied to the output list. This
output list is bundled in a request parameter and sent to the View page for display
by the controller. The View page doesn’t have to perform any additional work to
display the sorted records—all the sorting is done in the boundary class, called by
the controller.

 The last piece of the sorting puzzle resides in the view portion, where the user
specifies the sort criteria. Listing 13.10 shows the CatalogView JSP. The sorting
portion of that page appears in listing 13.17.

<%
 Integer start = (Integer) request.getAttribute("start");
 int s = start.intValue();
%>
Catalog of Items
</h1>
<table border=1>
 <tr><th><a href="catalog?sort=id&start=<%= s %>">ID</th>
 <th><a href="catalog?sort=name&start=<%= s %>">NAME</th>
 <th><a href="catalog?sort=price&start=<%= s %>">PRICE</th>
 <th>Buy</th></tr>

The hyperlinks in listing 13.17 supply two values for reposting to the catalog con-
troller. The first is the sort criteria to apply, and the second is the starting page.
When the user clicks on one of these hyperlinks, the page reposts to the catalog
controller, which uses these parameters to modify the contents of the page before
redisplaying it.

 Note that, as much as possible, the real workflow part of the application is per-
formed in the controller. The data portions of the application are performed in
the model classes. The view is very lightweight, handling display characteristics
and supplying values, which allows the user to change the view via parameters sent
to the controller.

Using factories
The sortList() method uses a simple set of if comparisons to determine which
Comparator to apply to the list. This is sufficient for a small number of criteria but
quickly becomes cumbersome if a large number of options are available. In that
case, a factory class simplifies the code in the boundary class by handling the deci-
sion itself. An example of such a factory class appears in listing 13.18.

Listing 13.17 The sorting criteria are embedded in hyperlinks at the top of the page.

388 CHAPTER 13

Handling flow

package com.nealford.art.emotherearth.util;

import java.util.Comparator;

public class ProductComparatorFactory {
 private static ProductComparatorFactory internalReference;

 private ProductComparatorFactory() {
 }

 public static ProductComparatorFactory getInstance() {
 if (internalReference == null)
 internalReference = new ProductComparatorFactory();
 return internalReference;
 }

 public synchronized final Comparator getProductComparator(
 String criteria) {
 String className = this.getClass().getPackage().getName() +
 '.' + toProperCase(criteria) + "Comparator";
 Comparator comparator = null;
 try {
 comparator = (Comparator) Class.forName(className).
 newInstance().;
 } catch (Exception defaultsToIdComparator) {
 comparator = new IdComparator();
 }
 return comparator;
 }

 public String toProperCase(String theString) {
 return String.valueOf(theString.charAt(0)).toUpperCase() +
 theString.substring(1);
 }
}

The ProductComparatorFactory class is implemented as a singleton object (so that
only one of these objects will ever be created) via the static getInstance() method
and the private constructor. This factory uses the name of the sort criteria to
match the name of the Comparator it dynamically creates. When the developer
sends a sort criterion (like name) to this factory, the factory builds up a class name
in the current package with that criterion name plus “Comparator.” If an object
based on that class name is available in the classpath, an instance of that Compara-
tor is returned. If not, the default IdComparator() is returned.

Listing 13.18 The ComparatorFactory class offloads the decision process
to a singleton factory.

Builds Comparator name
from string parameter

Dynamically instantiates Comparator

Defaults to
idComparator if an
exception occurs

Application usability options 389

 Using a factory in this way allows you to add new sorting criteria just by adding
new classes to this package with the appropriate name. None of the surrounding
code has to change. This is one of the advantages to deferring such decisions to a
factory class, which can determine which instances to return.

 This factory could be improved by removing the reliance on the name of the
class. A superclass Comparator with a method indicating to what fields it is tied
would remove the reliance on the name of the class matching the name of the cri-
teria. In that case, the factory would iterate through all the potential Comparators
and call the getField() method until it finds the appropriate Comparator object.
This is easier if all the Comparators reside in the same package so that the factory
could iterate over all the classes in that package.

13.1.4 User interface techniques in frameworks

Implementing page-at-a-time scrolling and sortable columns in the frameworks
from part 2 is accomplished with varying degrees of difficultly. Some of the frame-
works already include this behavior, whereas InternetBeans Express prevents it.

Struts
Using Struts to build the user interface elements that we’ve seen in the previous
sections is easy. In fact, the code presented in this chapter works with few modifi-
cations. In Struts, you move the controller code to actions, but the model and
view code remains the same. Of course, you can move the iteration and other dis-
play characteristics to Struts tags, but the fundamental code remains the same.
Because Struts is close to a generic Model 2 application, the framework doesn’t
interfere with building code like this.

Tapestry
Tapestry already encapsulates the two user interface elements discussed in the
previous sections. The built-in table component supports both page-at-a-time
scrolling and sortable columns (see chapter 6, figure 6.6). The sortability in Tap-
estry is accomplished through interfaces that define the column headers. This
behavior highlights one of the advantages of an all-encompassing framework like
Tapestry. Chances are good that it already implements many of the common char-
acteristics you would build by hand in other frameworks. The disadvantage
appears when you want to build something that isn’t already there. Because the
framework is more complex, it takes longer to build additions.

390 CHAPTER 13

Handling flow

WebWork
Like Tapestry, WebWork also includes a table component that features sortable
columns and page-at-a-time scrolling (see chapter 7, figure 7.3). Although imple-
mented differently from Tapestry, this behavior is still built into the framework.
Even though WebWork generally isn’t as complex as Tapestry, it still requires a fair
amount of work to build something that isn’t already supported.

InternetBeans Express
The architecture of InternetBeans Express effectively prevents this kind of cus-
tomization without digging deeply into the components that make up the frame-
work. While building applications quickly is this framework’s forte, customizing
the behavior of those applications is not. This is a shortcoming of overly restrictive
frameworks and is common with Rapid Application Development (RAD).

Velocity
Our user interface code could easily be written using Velocity. Velocity’s syntax
would simplify the view portion of the code even more than JSTL. Generally,
Velocity isn’t complex enough to prevent adding features like the ones in this
chapter. Because it is a simple framework, it tends to stay out of your way.

Cocoon
Using Extensible Server Pages (XSP), it shouldn’t be difficult to build our user
interface techniques in Cocoon. XSP generally follows similar rules to JSP, so the
user interface portion isn’t complicated. Because the web portion of Cocoon
relies on Model 2, the architecture we presented in the previous sections falls
right in line with a similar Cocoon application.

13.2 Building undo operations

Another common flow option in traditional applications is the ability to perform
an undo operation. This feature is usually implemented as a conceptual stack,
where each operation is pushed onto the stack and then popped off when the
user wants to undo a series of operations. The stack usually has a finite size so that
it doesn’t negatively affect the operating system. After all, an infinite undo facility
must either consume more memory or build a mechanism to offload the work to
permanent storage of some kind.

 Undo may also encompass traditional transaction processing. Ultimately, trans-
actions that roll back can be thought of as sophisticated undo operations for a set

Building undo operations 391

of tables when the operation is unsuccessful. Either a database server or an appli-
cation server working in conjunction with a database server normally handles
transaction processing. You have two options when building undo operations for
a web application: either using database transaction processing or building an in-
memory undo.

13.2.1 Leveraging transaction processing

Most database servers handle transactions for you, at varying degrees of sophisti-
cation. The Java Database Connectivity (JDBC) API allows you to handle transac-
tions via the setAutoCommit() method, which determines whether every atomic
operation occurs within a transaction or if the developer decides the transaction
boundaries. If the developer controls the transactions, then either a commit() or a
rollback() method call is eventually issued. Modern JDBC drivers (those that sup-
port the JDBC 3 API) will also allow you to create save-points and roll back to a
save-point within a larger transaction.

Transactions in Model 2 applications
In a Model 2 application, the transaction processing and other database-related
activities occur in the boundary classes. In fact, if you ever find yourself importing
java.sql.* classes into other parts of the application, you have almost certainly
violated the clean separation of responsibilities.

 In the eMotherEarth application, the transaction processing occurs within the
Order boundary class. It must ensure that both order and line item records are
completely written or not at all. The addOrder() method composes all the other
methods of the class and appears in listing 13.19.

public void addOrder(ShoppingCart cart, String userName,
 Order order) throws SQLException {
 Connection c = null;
 PreparedStatement ps = null;
 Statement s = null;
 ResultSet rs = null;
 boolean transactionState = false;
 try {
 c = dbPool.getConnection();
 transactionState = c.getAutoCommit();
 int userKey = getUserKey(userName, c, ps, rs);
 c.setAutoCommit(false);
 addSingleOrder(order, c, ps, userKey);
 int orderKey = getOrderKey(s, rs);

Listing 13.19 The OrderDb boundary class’s addOrder() method

392 CHAPTER 13

Handling flow

 addLineItems(cart, c, orderKey);
 c.commit();
 order.setOrderKey(orderKey);

 } catch (SQLException sqlx) {
 s = c.createStatement();
 c.rollback();
 throw sqlx;
 } finally {
 try {
 c.setAutoCommit(transactionState);
 dbPool.release(c);
 if (s != null)
 s.close();
 if (ps != null)
 ps.close();
 if (rs != null)
 rs.close();
 } catch (SQLException ignored) {
 }
 }
}

The addOrder() method retrieves a connection from the connection pool and
saves the transaction state for the connection. This behavior allows the transaction
state to be restored before it is placed back into the pool. If you are creating your
own connections every time you need one, you don’t have to. If you are reusing
connections from a pool or cache, you should also make sure that they go back
into the pool with the same state they had when they came out.

 The addOrder() method gets a connection, starts a transaction implicitly by
calling setAutoCommit(false), and calls the addSingleOrder() method. After
obtaining the key of the new order, it adds the line items associated with this
order and commits the transaction. If any operation fails, a SQLException is gener-
ated and the entire operation is rolled back.

 None of the code in any of the called methods is in any way unusual—it is typ-
ical JDBC code for entering values into a table. Note that all database access,
including the transaction processing, occurs in the boundary class. The boundary
class accepts entity objects and handles persisting them into the database. It
would be easy to change database servers (even to change to something radically
different, like an object-oriented database server) and modify the code in this
boundary class only. Chapter 12 describes the process of taking a Model 2 appli-
cation and porting it to Enterprise JavaBeans by making changes to only the
boundary classes.

Building undo operations 393

Handling generated keys
One behavior that is not handled in a standard way across database servers is key
generation. Most database servers have a facility for generating keys automatically.
However, key generation is not part of the ANSI SQL standard, so each database
server is free to implement it in any way it likes. In our sample, this detail is han-
dled in the addOrder() method via the call to getOrderKey(), which uses the fea-
tures specific to MySQL to retrieve the last-generated key. Listing 13.20 shows the
getOrderKey() method.

private int getOrderKey(Statement s, ResultSet rs) throws
 SQLException {
 rs = s.executeQuery("SELECT LAST_INSERT_ID()");
 int orderKey = -1;
 if (rs.next())
 orderKey = rs.getInt(1);
 else
 throw new SQLException(
 "Order.addOrder(): no generated key");
 return orderKey;
}

MySQL includes a built-in stored procedure that returns the last key generated for
this connection to the database. This procedure protects against a large number
of concurrent users inserting new records because it returns the key for the
record associated with this connection. Notice that this forces our application to
use the same connection across method calls because the key generation is tied to
the database connection.

 Because this procedure is not standardized across database servers, you
should always be careful to isolate this behavior into its own method, decoupling
it from the rest of the application. If you change database servers, you should be
able to change this single method and not have to change the surrounding code.
Separation of responsibilities and loose coupling works on both a micro and a
macro level.

Transactions via JSTL
JSTL includes SQL-specific custom tags that allow transaction processing within
the JSP. It works with the SQL-based tags also defined in JSTL. Listing 13.21 shows a
couple of examples of using the transaction tag in JSTL.

Listing 13.20 The getOrderKey() method retrieves the last key generated
for this connection to the database.

394 CHAPTER 13

Handling flow

<h2>Creating table using a transaction</h2>

<sql:transaction dataSource="${example}">
 <sql:update var="newTable">
 CREATE TABLE PRODUCTS (
 ID INTEGER NOT NULL AUTO_INCREMENT,
 NAME VARCHAR(100),
 PRICE DOUBLE PRECISION,
 CONSTRAINT PK_ID PRIMARY KEY (ID)
)
 </sql:update>
</sql:transaction>

<h2>Populating table in one transaction</h2>

<sql:transaction dataSource="${example}">
 <sql:update var="updateCount">
 INSERT INTO PRODUCTS (NAME, PRICE) values ("Snow", 2.45);
 </sql:update>
 <sql:update var="updateCount">
 INSERT INTO PRODUCTS (NAME, PRICE) values ("Dirt", 0.89);
 </sql:update>
 <sql:update var="updateCount">
 INSERT INTO PRODUCTS (NAME, PRICE) values ("Sand", 0.15);
 </sql:update>
</sql:transaction>

The ability to handle transactions directly within a JSP page is handy for small
applications, but you should avoid using it in most applications. This facility was
intended to make it easy for you to create web applications completely within
JSP—without being forced to embed scriptlet code. One of its goals is to create
RAD kinds of environments for JSP. The problem with this code is that it violates
the tenets of Model 2 applications, namely the separation of responsibilities.
While convenient, it introduces undesirable design flaws in your application.
Therefore, I recommend that you don’t use these tags, and use a cleaner Model 2
architecture instead.

13.2.2 Using the Memento design pattern

Transaction processing works nicely for information persisted in relational data-
bases. It is the best kind of code to leverage—someone else wrote it, debugged it,
and stands behind it! However, situations arise when you don’t want to make use
of transaction processing. For example, you may want to keep information in
memory and not bother persisting it to permanent storage until a certain mile-

Listing 13.21 JSTL includes a transaction tag that works with the SQL tags.

Building undo operations 395

stone is reached. The perfect example of this kind of information is the shopping
cart in an e-commerce application. The shopper may never check out but instead
abandon the shopping cart and wander away to another site without notifying
your application. Beyond transaction-processing behavior, you might also want to
make available undo behavior in your web application. This amounts to a kind of
in-memory transaction processing, although the semantics are different.

 Undo operations in traditional applications are typically handled via the
Memento design pattern. The intent behind this pattern is to capture and
externalize an object’s internal state so that the object can be restored to the
original state, all without violating encapsulation. Three participant classes exist
for Memento, as shown in table 13.1.

The relationship between these participants is illustrated in figure 13.7.
 The Originator is the class whose state needs to be stored, and the Memento is

where that state is stored. The Caretaker holds onto the Memento until the Origi-
nator needs it back. The Caretaker may encapsulate a collection of Mementos.
When used for undo, the Caretaker usually keeps the Mementos in an undo stack.

Creating bookmarks in eMotherEarth
Using the Memento design pattern in a web application is slightly different than
the implementation in traditional applications. This is a frequent side effect of
applying design patterns to architectures beyond their original intent. For the

Table 13.1 Participant classes of the Memento design pattern

Participant Function

Memento Stores the state of the original object and protects against access of that
state by external objects.

Originator Creates the Memento containing a snapshot of its state and uses the
Memento to restore its state.

Caretaker Holds onto the Memento without operating on it or spying on its internal state.

+setMemento()
+createMemento()

-state

Originator

+getState()
+setState()

-state

Memento Caretaker**

Figure 13.7 The participant classes in the Memento design pattern revolve
around their relationship to the Memento class.

396 CHAPTER 13

Handling flow

eMotherEarth application, we will allow the user to create bookmarks in their
shopping cart. For example, the user can buy several related items, create a book-
mark, and then later roll back to that bookmark. The bookmark facility uses a
stack, which means users can create as many bookmarks as they like and unroll
them in the reverse order from which they were created.

 The first step is to create the Memento class. This class must access the private
data of the ShoppingCart class without exposing it to the outside world. The best
way to handle this in Java is with an inner class. Inner classes can access the pri-
vate member variables of the outer class without exposing the encapsulated data
to the rest of the world. The updated version of the ShoppingCart class is shown
in listing 13.22.

package com.nealford.art.memento.emotherearth.util;

import java.io.Serializable;
import java.text.NumberFormat;
import java.util.ArrayList;
import java.util.Iterator;
import java.util.List;

import com.nealford.art.memento.emotherearth.entity.CartItem;

public class ShoppingCart implements Serializable {
 private List itemList;
 private static final NumberFormat formatter =
 NumberFormat.getCurrencyInstance();

 public ShoppingCart() {
 itemList = new ArrayList(5);
 }

 public void addItem(CartItem ci) {
 itemList.add(ci);
 }

 public double getCartTotal() {
 Iterator it = itemList.iterator();
 double sum = 0;
 while (it.hasNext())
 sum += ((CartItem) it.next()).getExtendedPrice();
 return sum;
 }

 public String getTotalAsCurrency() {
 return formatter.format(getCartTotal());
 }

 public java.util.List getItemList() {

Listing 13.22 The updated ShoppingCart class

Building undo operations 397

 return itemList;
 }

 public ShoppingCartMemento setBookmark() {
 ShoppingCartMemento memento = new ShoppingCartMemento();
 memento.saveMemento();
 return memento;
 }

 public void restoreFromBookmark(ShoppingCartMemento memento) {
 this.itemList = memento.restoreMemento();
 }

 public class ShoppingCartMemento {
 private List itemList;

 public List restoreMemento() {
 return itemList;
 }

 public void saveMemento() {
 List mementoList = ShoppingCart.this.itemList;
 itemList = new ArrayList(mementoList.size());
 Iterator i = mementoList.iterator();
 while (i.hasNext())
 itemList.add(i.next());
 }
 }

}

The important change to the ShoppingCart class is the inclusion of the inner class
ShoppingCartMemento. It includes a single private member variable of type List.
This is the variable that will hold the current state of the shopping cart list when a
bookmark is set. The restoreMemento() method simply returns the list. The save-
Memento() method is responsible for taking a snapshot of the state of the shop-
ping cart. To do this, it must access the private member variable from the outer
shopping cart class. The syntax for this in Java uses the class name followed by
this, followed by the member variable:

List mementoList = ShoppingCart.this.itemList;

Even though itemList is private in ShoppingCart, it is available to the inner class.
This relationship is perfect for the Memento pattern, where the Memento needs
access to the private member variables of the Originator without forcing the
Originator to violate encapsulation.

 The ShoppingCart class has two new methods: setBookmark() and restoreFrom-
Bookmark(). The setBookmark() method creates a new Memento, saves the current

Sets a
bookmark

Restores a
bookmark

Stores state
information

398 CHAPTER 13

Handling flow

state, and returns it. The restoreFromBookmark() method accepts a Memento and
restores the state of the itemList back to the list kept by the Memento.

The Caretaker
For a web application, the session object is the perfect Caretaker for the Memento.
It is tied to a particular user and contains arbitrary name-value pairs. However, sav-
ing a single Memento isn’t very useful, and saving a stack of Mementos is just as easy
as saving one. So, in the eMotherEarth application we allow the user to keep a
stack of Mementos. This process is managed by the controller servlet. The updated
doPost() method in the ShowCart controller servlet appears in listing 13.23.

public void doPost(HttpServletRequest request,
 HttpServletResponse response) throws
 ServletException, IOException {
 RequestDispatcher dispatcher = null;
 HttpSession session = redirectIfSessionNotPresent(
 request, response, dispatcher);
 ShoppingCart cart = getOrCreateShoppingCart(session);
 Stack mementoStack = (Stack) session.getAttribute(
 MEMENTO_STACK_ID);
 if (request.getParameter("bookmark") != null)
 mementoStack = handleBookmark(cart, mementoStack);
 else if (request.getParameter("restore") != null)
 handleRestore(session, cart, mementoStack);
 else
 handleAddItemToCart(request, session, cart);
 if (mementoStack != null && !mementoStack.empty()) {
 request.setAttribute("bookmark", new Boolean(true));
 session.setAttribute(MEMENTO_STACK_ID, mementoStack);
 }
 dispatcher = request.getRequestDispatcher("/ShowCart.jsp");
 dispatcher.forward(request, response);
}

The ShowCart controller servlet now has three distinct paths of execution. The
first path is the one from the previous version: adding an item to the shopping
cart and forwarding to the show cart view. Two additional execution paths have
been added. The first allows the user to set a bookmark, and the second allows
the user to restore from a bookmark. The path of execution is determined by
request parameters that are encoded if the show cart JSP reposts to this page. The
body of the doPost() method checks for these request parameters and routes
control appropriately.

Listing 13.23 The ShowCart controller acts as the Memento Caretaker.

Building undo operations 399

 The handleBookmark() method (listing 13.24) is invoked if the user has decided
that he or she wants to bookmark the shopping cart.

private Stack handleBookmark(ShoppingCart cart,
 Stack mementoStack) {
 if (mementoStack == null) {
 mementoStack = new Stack();
 }
 mementoStack.push(cart.setBookmark());
 return mementoStack;
}

The handleBookmark() method checks to see if a stack already exists; if not, it cre-
ates one. In either case, it generates a new Memento from the cart object and pushes
it onto the stack. The symmetrical handleRestore() method (listing 13.25) does
the opposite—it pops the Memento off the stack and restores the cart contents.

private void handleRestore(HttpSession session,
 ShoppingCart cart,
 Stack mementoStack) {
 if (mementoStack == null)
 return;
 cart.restoreFromBookmark(
 (ShoppingCart.ShoppingCartMemento)
 mementoStack.pop());
 if (mementoStack.empty()) {
 session.removeAttribute(MEMENTO_STACK_ID);
 }
}

The handleRestore() method also removes the Memento stack from the session if
the stack is empty, effectively relieving the session from its caretaker role.

 The user interface for the shopping cart must change marginally to provide the
user with a way to create and restore bookmarks. To that end, we’ve added a Cre-
ate Bookmark button and, in case the Memento stack exists, we’ve added a Restore
From Bookmark button as well. The updated user interface appears in figure 13.8.

 The last portion of the controller servlet that manages bookmarks appears
near the bottom of the doPost() method. It checks to see if a Memento stack exists

Listing 13.24 This method handles generating a bookmark and saving it.

Listing 13.25 The handleRestore() method restores the state back
to the most recent bookmark.

400 CHAPTER 13

Handling flow

and, if it does, it adds a request parameter as a flag to the view to create the
Restore button. It also updates the session with the current Memento stack.

 The user interface JSP checks to see if the request parameter is available and
shows the Restore button if it is. The updated portion of the ShowCart JSP
appears in listing 13.26.

<form action="showcart" method="post">
<input type="submit" name="bookmark" value="Create bookmark">
<%
 if (request.getAttribute("bookmark") != null) {
%>
<input type="submit" name="restore" value="Restore from bookmark">
<%
 }
%>
</form>

Listing 13.26 The ShowCart JSP must check to see if restoring from a bookmark should
be presented as an option.

Figure 13.8
The user interface for the ShowCart
page now incorporates buttons for
managing bookmarks.

Using exception handling 401

The user interface currently does not provide any visual feedback indicating
which records appear at each bookmark marker. It is certainly possible to color-
code the records or provide some other indication of the bookmark boundaries.

 As with other user interface techniques in Model 2 applications, most of the
work appears in the model and controller, with supporting elements in the JSP.
Undo using the Memento design pattern is fairly easy to implement in web appli-
cations because of the ready availability of the session, which is an ideal caretaker.
The use of inner classes helps achieve the original intent of the pattern, exposing
the inner workings of the Originator only enough to enable the snapshot and res-
toration through the Memento.

13.2.3 Undo in frameworks

Because most of the activity in building undo with transaction processing appears
in the boundary classes, it is easy to add it to the Model 2 frameworks. Internet-
Beans Express also facilitates this type of undo operation because the data-aware
components are transaction aware. Thus, adding transaction processing to that
framework is even simpler (it consists of setting a property).

 Using Memento is also easy in Model 2 frameworks. For the lighter-weight
ones, the same pattern of code that appears in the previous section works because
they all support the standard web APIs, like HttpSession. The other medium-to-
heavyweight frameworks also support using Memento, albeit with different mech-
anisms for the caretaker. In Tapestry, the caretaker moves to the Visit object,
which is available to all the pages. In WebWork, it moves to WebWork’s own ses-
sion object, which is similar in intent but different in implementation to the stan-
dard HttpSession. Cocoon supports HttpSession, so no change is necessary.

13.3 Using exception handling

Java developers are familiar with exception handling and how exception-handling
syntax works in the language, so I won’t rehash that material here. However, many
developers are reluctant to create their own exception classes. It is also important
to distinguish between fundamental types of exceptions.

13.3.1 The difference between technical and domain exceptions

The Java libraries define a hierarchy of exception classes, starting with Throwable
at the top of the tree. Most methods in libraries in Java throw exceptions tuned to
the kinds of potential problems in that method. All these exceptions fall into the

402 CHAPTER 13

Handling flow

broad category of technical exceptions. A technical exception is one that is raised for
some technical reason, generally indicating that something is broken from an
infrastructure level. Technical exceptions are related to the area of how you are
building the application, not why. Examples of technical exceptions are Class-
NotFoundException, NullPointerException, SQLException, and a host of others.
Technical exceptions come from the Java libraries or from libraries created by
other developers. Frequently, if you use a framework developed by others, they
have included technical exceptions in their methods to indicate that something is
either broken or potentially broken.

 Domain exceptions are exceptions that relate to the problem domain you are
writing the application around. These exceptions have more to do with a business
rule violation than something broken. Examples of domain exceptions include
ValidationException, InvalidBalanceException, NoNullNameException, and any
other exception you create to signify that some part of the application is violating
its intended use. Domain exceptions are ones you create yourself and use within
the application to help with the application flow.

13.3.2 Creating custom exception classes

Java makes it easy to create your own exception classes. At a minimum, you can
subclass the Exception class and provide your own constructor that chains back to
the superclass constructor. Listing 13.27 shows an example of such a lightweight
exception class.

public class InvalidCreditCardNumberException extends Exception {
 public InvalidCreditCardNumber(String msg) {
 super(msg);
 }
}

Instead of creating a lightweight class like this, it is possible to generate a new
Exception object and pass the error message in it:

throw new Exception("Invalid Credit Card Number");

The problem with this approach is not the generation of the exception but the
handling of it. If you throw a generic exception, the only way to catch it is with a
catch block for the Exception class. It will catch your exception, but it will also
catch every other exception that subclasses Exception, which encompasses most

Listing 13.27 A custom exception that provides a new child of the Exception class

Using exception handling 403

of the exceptions in Java. You are better off creating your own exception sub-
classes to handle specific problems. There is no penalty for creating lots of classes
in Java, so you shouldn’t scrimp on exception classes.

 If you extend Exception, you must provide a throws clause in any method
where your exception might propagate. Checked exceptions and the mandated
throws clause are actually one of the better safety features of the Java language
because they prevent developers from delaying writing exception-handling code.
This type of code isn’t glamorous, so many developers like to put it off or avoid it.
Other languages (such as C++) make it all too easy to do this. The checked
exception mechanism in Java forces developers to handle exceptions where they
occur and deal with them. Often, developers will say something like, “I know I
should have some error-handling code here—I’ll come back later and add it.”
But “later” never comes because one rarely has the luxury of extra time at the
end of a project.

 If you feel you must short-circuit the propagation mechanism in Java (and
occasionally there are legitimate reasons for doing so), you can create your excep-
tion to subclass RuntimeException instead of Exception. RuntimeException is the
parent class for all unchecked exceptions in Java, such as NullPointerException,
ArrayIndexOutOfBoundsException, and many more. The semantic distinction
between Exception and RuntimeException lies with their intended use. Runtime-
Exception and its subclasses are bugs lying in the code, waiting for repair. They
are unchecked because the developer should correct the code and the applica-
tion cannot reasonably handle them. While it is possible to create domain excep-
tions based on RuntimeException, it is not recommended. RuntimeExceptions
represent a flaw in the infrastructure code of the application and shouldn’t mix
with domain exceptions. Forcing developers to handle checked domain excep-
tions is not a burden but an opportunity afforded by the language to make your
code more robust.

13.3.3 Where to catch and handle exceptions

It is impossible to generalize too much about where exceptions occur and are
handled in Model 2 applications. Entities typically throw domain exceptions;
boundary classes and other infrastructure classes tend to throw technical excep-
tions. In both cases, the controller is usually where the exception is handled. For
example, in the eMotherEarth application, each boundary class must have a refer-
ence to the database connection pool. If they don’t, they throw an exception. For
this purpose, a PoolNotSetException class resides in the project (listing 13.28).

404 CHAPTER 13

Handling flow

package com.nealford.art.emotherearth.util;

public class PoolNotSetException extends RuntimeException {
 private static final String STANDARD_EXCEPTION_MESSAGE =
 "Pool property not set";

 public PoolNotSetException(String msg) {
 super(STANDARD_EXCEPTION_MESSAGE + ":" + msg);
 }
}

The custom exception class in listing 13.28 extends RuntimeException to prevent
it from cluttering up controller code by forcing an exception catch. It also con-
tains a predefined message, to which the users of this exception can add as they
generate the exception. This exception is used in the ProductDb boundary class:

if (dbPool == null) {
 throw new PoolNotSetException("ProductDB.getProductList()");
}

Rethrowing exceptions
Often, you are writing low-level library code that is called from many layers up by
application code. For example, if you are writing a Comparator class to make it easy
to sort within a boundary object, you have no idea what type of application (desk-
top, web, distributed, etc.) will ultimately use your code. You must handle an excep-
tion, but you don’t really know the proper way to handle it within the method you
are writing. In these cases, you can catch the checked exception and rethrow it as
another kind, either as a RuntimeException or as a custom domain exception. An
example of this technique appears in the getProductList() method (listing 13.29)
of the ProductDb boundary class.

public List getProductList() {
 if (dbPool == null) {
 throw new PoolNotSetException(
 "ProductDB.getProductList()");
 }
 if (productList.isEmpty()) {
 Connection c = null;
 Statement s = null;

Listing 13.28 This custom exception class is thrown when the pool property isn’t set on
one of the boundary classes.

Listing 13.29 The getProductList() method rethrows a SQLException
rather than handling it.

Using exception handling 405

 ResultSet resultSet = null;
 try {
 c = dbPool.getConnection();
 s = c.createStatement();
 resultSet = s.executeQuery(SQL_ALL_PRODUCTS);
 while (resultSet.next()) {
 Product p = new Product();
 p.setId(resultSet.getInt("ID"));
 p.setName(resultSet.getString("NAME"));
 p.setPrice(resultSet.getDouble("PRICE"));
 productList.add(p);
 }
 } catch (SQLException sqlx) {
 throw new RuntimeException(sqlx.getMessage());
 } finally {
 try {
 dbPool.release(c);
 resultSet.close();
 s.close();
 } catch (SQLException ignored) {
 }
 }

 }
 return productList;
}

Empty catch blocks
One of the frowned-upon tendencies in some Java developers is to create empty
catch blocks to get code to compile. This is a bad thing because now the checked
exception is raised and swallowed, and the application continues (or tries to con-
tinue) to run. Usually, the application will break in a totally unrelated place, mak-
ing it difficult to track down the original error. For this reason, empty catch blocks
are discouraged.

 However, there is one situation where they make sense. If you look at the end
of listing 13.29, the database code must close the statement and result set in the
finally block. Both the close() methods throw checked SQLExceptions. In this
case, as you are cleaning up, the worst thing that can happen is that the statement
has already closed. In this case, it makes sense to include an empty catch block. To
keep from having to write a comment to the effect of “I’m not lazy—this catch
block intentionally left blank,” name the instance variable in the catch block
ignored. This is a self-documenting technique that keeps you from having to doc-
ument it because it is documented by the variable name.

Rethrows an
exception

406 CHAPTER 13

Handling flow

Redirecting to an error JSP
One of the nice automatic facilities in JSP is the ability to flag a page as the generic
error page for the application. If any unhandled exceptions occur from other
JSPs, the user is automatically redirected to the error page specified at the top of
the source page. The error page has access to a special implicit exception object
so that it can display a reasonable error message.

 When you’re building Model 2 applications, the controller won’t automati-
cally forward to an error page if something goes wrong. However, you can still for-
ward to the error page yourself and take advantage of the implicit exception
object. Before you forward to the error page, you can add the exception with a
particular name that the error page is expecting. The CheckOut controller in
eMotherEarth handles an insertion error by redirecting to the JSP error page.
See this code in listing 13.30.

try {
 orderDb.addOrder(sc, user, order);
} catch (SQLException sqlx) {
 request.setAttribute(
 "javax.servlet.jsp.jspException", sqlx);
 dispatcher = request.getRequestDispatcher("/SQLErrorPage.jsp");
 dispatcher.forward(request, response);
 return;
}

The JSP error page looks for a request attribute named javax.serv-
let.jsp.jspException to populate the implicit exception object. The destination
page has no idea if the JSP runtime or the developer added this attribute. This
approach allows you to consolidate generic error handling across the application.
If you want more control over the application-wide exception handling, you can
write your own controller/view pair to handle exceptions generically.

13.3.4 Exceptions in frameworks

The Model 2 frameworks’ exception-handling code generally follows the guide-
lines we stated earlier. Entities typically throw domain exceptions, and boundary
classes and other infrastructure classes typically throw technical exceptions. In
both cases, the controller is where the exception is handled. The frameworks
themselves frequently throw exceptions, which fall under the category of technical

Listing 13.30 The CheckOut controller forwards to the JSP error page to inform the user
that an exception occurred.

Summary 407

exceptions. These exceptions are best handled in the controller or controller
proxy classes (i.e., an Action class).

 Handling exceptions in the two frameworks that try to mimic the event-driven
nature of desktop applications is more difficult. An exception in a desktop appli-
cation represents a state, and the propagation depends on the current call stack.
It is much harder to emulate this call stack state in a web application, because the
user always sees a fully unwound call stack. Tapestry has good mechanisms in
place for both mimicking event-driven behaviors and handling exceptions. Inter-
netBeans Express makes artificial exception state management more difficult
because it uses a thinner veneer over the components it uses.

13.4 Summary

Users tend to request features in web applications that they have seen in desktop
or other web applications. Many of these requests relate to the flow of informa-
tion in the application. Building usable web applications in Model 2 applications
generally touch all three moving parts: the controller, the model, and the view.
These three pieces work together to provide an attractive application.

 The flexibility of Model 2 applications makes it easy to implement even the
most complex user requirements. Keeping the application well partitioned and
the parts separate requires diligent effort, but it pays off in the long run with easy-
to-maintain and scalable applications.

 In the next chapter, we look at performance in web applications and how to
measure and improve it.

Neal Ford

S
o you’ve mastered servlets, JSPs, statelessness, and the other founda-
tional concepts of Java web development. Now it’s time to raise your
productivity to the next level and tackle frameworks. Frameworks—

like Struts, Tapestry, WebWork, and others—are class libraries of pre-
built parts that all web applications need, so they will give you a huge
leg up. But first you’ll need a solid understanding of how web apps are
designed and the practical techniques for the most common tasks such
as unit testing, caching, pooling, performance tuning, and more.

Let this book be your guide! Its author, an experienced architect,
designer, and developer of large-scale applications, has selected a core
set of areas you will need to understand to do state-of-the-art web
development. You will learn about the architecture and use of six
popular frameworks, some of which are under-documented. You will
benefit from a certain synergy in the book’s simultaneous coverage of
both the conceptual and the concrete, like the fundamental Model 2
design pattern along with the details of frameworks, the how-tos of
workflow, the innards of validation, and much more. In this book,
combining the general and the specific is a deep and useful way to
learn, even for those who have not used a framework before.

What’s Inside

■ Web frameworks analyzed
■ How to incorporate Web services
■ How-tos of

◆ caching
◆ pooling
◆ workflow
◆ validation
◆ testing

Neal Ford is an architect, designer, and developer of applications,
instructional materials, books, magazine articles, video presentations,
and a speaker at numerous developers’ conferences worldwide. He is
Chief Technology Officer of The DSW Group, Ltd.

M A N N I N G $44.95 US/$67.95 Canada

www.manning.com/ford

Author responds to reader questions

Ebook edition available

AUTHOR
✔

ONLINE

✔

,!7IB9D2-djeagb!:p;o;O;t;P
ISBN 1-932394-06-0

“Great combination of the three
levels: patterns, frameworks,
and code.”

—Shahram Khorsand
NetServ Consulting Sweden

“Covers all facets of web
application development
This book is bold!”

—Eitan Suez
Founder, UpToData Inc.
Creator of DBDoc

“You have two options: read four
or five books plus stuff from all
over the Net—or read this one.”

—Luigi Viggiano, co-founder,
Turin Java Users Group

“I really like what I’m reading
... nice style, very approachable.”

—Howard M. Lewis Ship
Creator of Tapestry

JAVA

ARTOF JAVA WEB DEVELOPMENT
STRUTS, TAPESTRY, COMMONS, VELOCITY, JUNIT, AXIS, COCOON, INTERNETBEANS, WEBWORK

