
M A N N I N GM A N N I N G $44.95 US/$62.95 Canada

H
ibernate practically exploded on the Java scene. Why is this open-source
tool so popular? Because it automates a tedious task: persisting your Java
objects to a relational database. The inevitable mismatch between your

object-oriented code and the relational database requires you to write code
that maps one to the other. This code is often complex, tedious and costly to
develop. Hibernate does the mapping for you.

Not only that, Hibernate makes it easy. Positioned as a layer
between your application and your database, Hibernate
takes care of loading and saving of objects. Hibernate appli-
cations are cheaper, more portable, and more resilient to
change. And they perform better than anything you are
likely to develop yourself.

Hibernate in Action carefully explains the concepts you need,
then gets you going. It builds on a single example to show
you how to use Hibernate in practice, how to deal with
concurrency and transactions, how to efficiently retrieve
objects and use caching.

The authors created Hibernate and they field questions from
the Hibernate community every day—they know how to
make Hibernate sing. Knowledge and insight seep out of
every pore of this book.

A member of the core Hibernate developer team, Christian Bauer maintains
the Hibernate documentation and website. He is a senior software engineer
in Frankfurt, Germany. Gavin King is the Hibernate founder and principal
developer. He is a J2EE consultant based in Melbourne, Australia.

JAVA

HIBERNATE IN ACTION
Christian Bauer and Gavin King

“The Bible of Hibernate”
—Ara Abrahamian, XDoclet Lead Developer

,!7IB9D2-djebfd!:p;o;O;t;P
ISBN 1-932394-15-X

Christian Bauer
Gavin King

M A N N I N G

HIBERNATE
IN ACTIO

HIBERNATE
IN ACTION

Bauer
King

What’s Inside

■ ORM concepts

■ Getting started

■ Many real-world tasks

■ The Hibernate application
development process

The ultimate Hibernate reference

Ask the Authors Ebook edition

AUTHOR
✔

ONLINE

✔

www.manning.com/bauer

D. Marsico
 SAMPLE CHAPTER

Hibernate in Action
by Christian Bauer

and
Gavin King
 Chapter 2

Copyright 2004 Manning Publications

contents

Chapter 1 � Understanding object/relational persistence
Chapter 2 � Introducing and integrating Hibernate
Chapter 3 � Mapping persistent classes
Chapter 4 � Working with persistent objects
Chapter 5 � Transactions, concurrency, and caching
Chapter 6 � Advanced mapping concepts
Chapter 7 � Retrieving objects efficiently
Chapter 8 � Writing Hibernate applications
Chapter 9 � Using the toolset

Appendix A � SQL Fundamentals
Appendix B � ORM implementation strategies
Appendix C � Back in the real world

30

Introducing and
integrating Hibernate

This chapter covers

■ Hibernate in action with “Hello World”
■ The Hibernate core programming interfaces
■ Integration with managed

and non-managed environments
■ Advanced configuration options

“Hello World” with Hibernate 31

It’s good to understand the need for object/relational mapping in Java applica-
tions, but you’re probably eager to see Hibernate in action. We’ll start by showing
you a simple example that demonstrates some of its power.

As you’re probably aware, it’s traditional for a programming book to start with
a “Hello World” example. In this chapter, we follow that tradition by introducing
Hibernate with a relatively simple “Hello World” program. However, simply print-
ing a message to a console window won’t be enough to really demonstrate Hiber-
nate. Instead, our program will store newly created objects in the database, update
them, and perform queries to retrieve them from the database.

This chapter will form the basis for the subsequent chapters. In addition to the
canonical “Hello World” example, we introduce the core Hibernate APIs and
explain how to configure Hibernate in various runtime environments, such as J2EE
application servers and stand-alone applications.

2.1 “Hello World” with Hibernate

Hibernate applications define persistent classes that are “mapped” to database tables.
Our “Hello World” example consists of one class and one mapping file. Let’s see
what a simple persistent class looks like, how the mapping is specified, and some of
the things we can do with instances of the persistent class using Hibernate.

The objective of our sample application is to store messages in a database and
to retrieve them for display. The application has a simple persistent class, Message,
which represents these printable messages. Our Message class is shown in listing 2.1.

package hello;
public class Message {
 private Long id;
 private String text;
 private Message nextMessage;
 private Message() {}
 public Message(String text) {
 this.text = text;
 }
 public Long getId() {
 return id;
 }
 private void setId(Long id) {
 this.id = id;
 }
 public String getText() {
 return text;

Listing 2.1 Message.java: A simple persistent class

Identifier
attribute

Message text

Reference to
another
Message

32 CHAPTER 2

Introducing and integrating Hibernate

 }
 public void setText(String text) {
 this.text = text;
 }

 public Message getNextMessage() {
 return nextMessage;
 }
 public void setNextMessage(Message nextMessage) {
 this.nextMessage = nextMessage;
 }
}

Our Message class has three attributes: the identifier attribute, the text of the mes-
sage, and a reference to another Message. The identifier attribute allows the appli-
cation to access the database identity—the primary key value—of a persistent
object. If two instances of Message have the same identifier value, they represent
the same row in the database. We’ve chosen Long for the type of our identifier
attribute, but this isn’t a requirement. Hibernate allows virtually anything for the
identifier type, as you’ll see later.

You may have noticed that all attributes of the Message class have JavaBean-style
property accessor methods. The class also has a constructor with no parameters.
The persistent classes we use in our examples will almost always look something
like this.

Instances of the Message class may be managed (made persistent) by Hibernate,
but they don’t have to be. Since the Message object doesn’t implement any
Hibernate-specific classes or interfaces, we can use it like any other Java class:

Message message = new Message("Hello World");
System.out.println(message.getText());

This code fragment does exactly what we’ve come to expect from “Hello World”
applications: It prints "Hello World" to the console. It might look like we’re trying
to be cute here; in fact, we’re demonstrating an important feature that distin-
guishes Hibernate from some other persistence solutions, such as EJB entity
beans. Our persistent class can be used in any execution context at all—no special
container is needed. Of course, you came here to see Hibernate itself, so let’s save
a new Message to the database:

Session session = getSessionFactory().openSession();
Transaction tx = session.beginTransaction();
Message message = new Message("Hello World");
session.save(message);

“Hello World” with Hibernate 33

tx.commit();
session.close();

This code calls the Hibernate Session and Transaction interfaces. (We’ll get to
that getSessionFactory() call soon.) It results in the execution of something sim-
ilar to the following SQL:

insert into MESSAGES (MESSAGE_ID, MESSAGE_TEXT, NEXT_MESSAGE_ID)
values (1, 'Hello World', null)

Hold on—the MESSAGE_ID column is being initialized to a strange value. We didn’t
set the id property of message anywhere, so we would expect it to be null, right?
Actually, the id property is special: It’s an identifier property—it holds a generated
unique value. (We’ll discuss how the value is generated later.) The value is
assigned to the Message instance by Hibernate when save() is called.

For this example, we assume that the MESSAGES table already exists. In chapter 9,
we’ll show you how to use Hibernate to automatically create the tables your appli-
cation needs, using just the information in the mapping files. (There’s some more
SQL you won’t need to write by hand!) Of course, we want our “Hello World” pro-
gram to print the message to the console. Now that we have a message in the data-
base, we’re ready to demonstrate this. The next example retrieves all messages
from the database, in alphabetical order, and prints them:

Session newSession = getSessionFactory().openSession();
Transaction newTransaction = newSession.beginTransaction();
List messages =
 newSession.find("from Message as m order by m.text asc");
System.out.println(messages.size() + " message(s) found:");
for (Iterator iter = messages.iterator(); iter.hasNext();) {
 Message message = (Message) iter.next();
 System.out.println(message.getText());
}
newTransaction.commit();
newSession.close();

The literal string "from Message as m order by m.text asc" is a Hibernate query,
expressed in Hibernate’s own object-oriented Hibernate Query Language (HQL).
This query is internally translated into the following SQL when find() is called:

select m.MESSAGE_ID, m.MESSAGE_TEXT, m.NEXT_MESSAGE_ID
from MESSAGES m
order by m.MESSAGE_TEXT asc

The code fragment prints

1 message(s) found:
Hello World

34 CHAPTER 2

Introducing and integrating Hibernate

If you’ve never used an ORM tool like Hibernate before, you were probably
expecting to see the SQL statements somewhere in the code or metadata. They
aren’t there. All SQL is generated at runtime (actually at startup, for all reusable
SQL statements).

To allow this magic to occur, Hibernate needs more information about how the
Message class should be made persistent. This information is usually provided in an
XML mapping document. The mapping document defines, among other things, how
properties of the Message class map to columns of the MESSAGES table. Let’s look at
the mapping document in listing 2.2.

<?xml version="1.0"?>
<!DOCTYPE hibernate-mapping PUBLIC
 "-//Hibernate/Hibernate Mapping DTD//EN"
 "http://hibernate.sourceforge.net/hibernate-mapping-2.0.dtd">
<hibernate-mapping>
 <class
 name="hello.Message"
 table="MESSAGES">
 <id
 name="id"
 column="MESSAGE_ID">
 <generator class="increment"/>
 </id>
 <property
 name="text"
 column="MESSAGE_TEXT"/>
 <many-to-one
 name="nextMessage"
 cascade="all"
 column="NEXT_MESSAGE_ID"/>
 </class>
</hibernate-mapping>

The mapping document tells Hibernate that the Message class is to be persisted to
the MESSAGES table, that the identifier property maps to a column named
MESSAGE_ID, that the text property maps to a column named MESSAGE_TEXT, and
that the property named nextMessage is an association with many-to-one multiplicity
that maps to a column named NEXT_MESSAGE_ID. (Don’t worry about the other
details for now.)

As you can see, the XML document isn’t difficult to understand. You can easily
write and maintain it by hand. In chapter 3, we discuss a way of generating the

Listing 2.2 A simple Hibernate XML mapping

Note that Hibernate 2.0
and Hibernate 2.1

have the same DTD!

“Hello World” with Hibernate 35

XML file from comments embedded in the source code. Whichever method you
choose, Hibernate has enough information to completely generate all the SQL
statements that would be needed to insert, update, delete, and retrieve instances
of the Message class. You no longer need to write these SQL statements by hand.

NOTE Many Java developers have complained of the “metadata hell” that
accompanies J2EE development. Some have suggested a movement away
from XML metadata, back to plain Java code. Although we applaud this
suggestion for some problems, ORM represents a case where text-based
metadata really is necessary. Hibernate has sensible defaults that mini-
mize typing and a mature document type definition that can be used for
auto-completion or validation in editors. You can even automatically gen-
erate metadata with various tools.

Now, let’s change our first message and, while we’re at it, create a new message
associated with the first, as shown in listing 2.3.

Session session = getSessionFactory().openSession();
Transaction tx = session.beginTransaction();

// 1 is the generated id of the first message
Message message =
 (Message) session.load(Message.class, new Long(1));
message.setText("Greetings Earthling");
Message nextMessage = new Message("Take me to your leader (please)");
message.setNextMessage(nextMessage);
tx.commit();
session.close();

This code calls three SQL statements inside the same transaction:

select m.MESSAGE_ID, m.MESSAGE_TEXT, m.NEXT_MESSAGE_ID
from MESSAGES m
where m.MESSAGE_ID = 1

insert into MESSAGES (MESSAGE_ID, MESSAGE_TEXT, NEXT_MESSAGE_ID)
values (2, 'Take me to your leader (please)', null)

update MESSAGES
set MESSAGE_TEXT = 'Greetings Earthling', NEXT_MESSAGE_ID = 2
where MESSAGE_ID = 1

Notice how Hibernate detected the modification to the text and nextMessage
properties of the first message and automatically updated the database. We’ve
taken advantage of a Hibernate feature called automatic dirty checking: This feature

Listing 2.3 Updating a message

36 CHAPTER 2

Introducing and integrating Hibernate

saves us the effort of explicitly asking Hibernate to update the database when we
modify the state of an object inside a transaction. Similarly, you can see that the
new message was made persistent when a reference was created from the first mes-
sage. This feature is called cascading save: It saves us the effort of explicitly making
the new object persistent by calling save(), as long as it’s reachable by an already-
persistent instance. Also notice that the ordering of the SQL statements isn’t the
same as the order in which we set property values. Hibernate uses a sophisticated
algorithm to determine an efficient ordering that avoids database foreign key con-
straint violations but is still sufficiently predictable to the user. This feature is
called transactional write-behind.

If we run “Hello World” again, it prints

 2 message(s) found:
 Greetings Earthling
 Take me to your leader (please)

This is as far as we’ll take the “Hello World” application. Now that we finally have
some code under our belt, we’ll take a step back and present an overview of
Hibernate’s main APIs.

2.2 Understanding the architecture

The programming interfaces are the first thing you have to learn about Hiber-
nate in order to use it in the persistence layer of your application. A major objec-
tive of API design is to keep the interfaces between software components as
narrow as possible. In practice, however, ORM APIs aren’t especially small. Don’t
worry, though; you don’t have to understand all the Hibernate interfaces at once.
Figure 2.1 illustrates the roles of the most important Hibernate interfaces in the
business and persistence layers. We show the business layer above the persistence
layer, since the business layer acts as a client of the persistence layer in a tradi-
tionally layered application. Note that some simple applications might not
cleanly separate business logic from persistence logic; that’s okay—it merely sim-
plifies the diagram.

The Hibernate interfaces shown in figure 2.1 may be approximately classified as
follows:

■ Interfaces called by applications to perform basic CRUD and querying oper-
ations. These interfaces are the main point of dependency of application
business/control logic on Hibernate. They include Session, Transaction,
and Query.

Understanding the architecture 37

■ Interfaces called by application infrastructure code to configure Hibernate,
most importantly the Configuration class.

■ Callback interfaces that allow the application to react to events occurring
inside Hibernate, such as Interceptor, Lifecycle, and Validatable.

■ Interfaces that allow extension of Hibernate’s powerful mapping function-
ality, such as UserType, CompositeUserType, and IdentifierGenerator.
These interfaces are implemented by application infrastructure code (if
necessary).

Hibernate makes use of existing Java APIs, including JDBC), Java Transaction API
(JTA, and Java Naming and Directory Interface (JNDI). JDBC provides a rudimen-
tary level of abstraction of functionality common to relational databases, allowing
almost any database with a JDBC driver to be supported by Hibernate. JNDI and
JTA allow Hibernate to be integrated with J2EE application servers.

In this section, we don’t cover the detailed semantics of Hibernate API methods,
just the role of each of the primary interfaces. You can find most of these interfaces
in the package net.sf.hibernate. Let’s take a brief look at each interface in turn.

Figure 2.1 High-level overview of the HIbernate API in a layered architecture

38 CHAPTER 2

Introducing and integrating Hibernate

2.2.1 The core interfaces

The five core interfaces are used in just about every Hibernate application.
Using these interfaces, you can store and retrieve persistent objects and control
transactions.

Session interface
The Session interface is the primary interface used by Hibernate applications. An
instance of Session is lightweight and is inexpensive to create and destroy. This is
important because your application will need to create and destroy sessions all the
time, perhaps on every request. Hibernate sessions are not threadsafe and should
by design be used by only one thread at a time.

The Hibernate notion of a session is something between connection and transac-
tion. It may be easier to think of a session as a cache or collection of loaded objects
relating to a single unit of work. Hibernate can detect changes to the objects in this
unit of work. We sometimes call the Session a persistence manager because it’s also
the interface for persistence-related operations such as storing and retrieving
objects. Note that a Hibernate session has nothing to do with the web-tier HttpSes-
sion. When we use the word session in this book, we mean the Hibernate session.
We sometimes use user session to refer to the HttpSession object.

We describe the Session interface in detail in chapter 4, section 4.2, “The per-
sistence manager.”

SessionFactory interface
The application obtains Session instances from a SessionFactory. Compared to
the Session interface, this object is much less exciting.

The SessionFactory is certainly not lightweight! It’s intended to be shared
among many application threads. There is typically a single SessionFactory for the
whole application—created during application initialization, for example. How-
ever, if your application accesses multiple databases using Hibernate, you’ll need
a SessionFactory for each database.

The SessionFactory caches generated SQL statements and other mapping
metadata that Hibernate uses at runtime. It also holds cached data that has been
read in one unit of work and may be reused in a future unit of work (only if class
and collection mappings specify that this second-level cache is desirable).

Understanding the architecture 39

Configuration interface
The Configuration object is used to configure and bootstrap Hibernate. The
application uses a Configuration instance to specify the location of mapping doc-
uments and Hibernate-specific properties and then create the SessionFactory.

Even though the Configuration interface plays a relatively small part in the
total scope of a Hibernate application, it’s the first object you’ll meet when you
begin using Hibernate. Section 2.3 covers the problem of configuring Hibernate
in some detail.

Transaction interface
The Transaction interface is an optional API. Hibernate applications may choose
not to use this interface, instead managing transactions in their own infrastruc-
ture code. A Transaction abstracts application code from the underlying transac-
tion implementation—which might be a JDBC transaction, a JTA UserTransaction,
or even a Common Object Request Broker Architecture (CORBA) transaction—
allowing the application to control transaction boundaries via a consistent API.
This helps to keep Hibernate applications portable between different kinds of
execution environments and containers.

We use the Hibernate Transaction API throughout this book. Transactions and
the Transaction interface are explained in chapter 5.

Query and Criteria interfaces
The Query interface allows you to perform queries against the database and con-
trol how the query is executed. Queries are written in HQL or in the native SQL
dialect of your database. A Query instance is used to bind query parameters, limit
the number of results returned by the query, and finally to execute the query.

The Criteria interface is very similar; it allows you to create and execute object-
oriented criteria queries.

To help make application code less verbose, Hibernate provides some short-
cut methods on the Session interface that let you invoke a query in one line of
code. We won’t use these shortcuts in the book; instead, we’ll always use the
Query interface.

A Query instance is lightweight and can’t be used outside the Session that cre-
ated it. We describe the features of the Query interface in chapter 7.

40 CHAPTER 2

Introducing and integrating Hibernate

2.2.2 Callback interfaces

Callback interfaces allow the application to receive a notification when something
interesting happens to an object—for example, when an object is loaded, saved,
or deleted. Hibernate applications don’t need to implement these callbacks, but
they’re useful for implementing certain kinds of generic functionality, such as cre-
ating audit records.

The Lifecycle and Validatable interfaces allow a persistent object to react to
events relating to its own persistence lifecycle. The persistence lifecycle is encom-
passed by an object’s CRUD operations. The Hibernate team was heavily influ-
enced by other ORM solutions that have similar callback interfaces. Later, they
realized that having the persistent classes implement Hibernate-specific interfaces
probably isn’t a good idea, because doing so pollutes our persistent classes with
nonportable code. Since these approaches are no longer favored, we don’t discuss
them in this book.

The Interceptor interface was introduced to allow the application to process
callbacks without forcing the persistent classes to implement Hibernate-specific
APIs. Implementations of the Interceptor interface are passed to the persistent
instances as parameters. We’ll discuss an example in chapter 8.

2.2.3 Types

A fundamental and very powerful element of the architecture is Hibernate’s
notion of a Type. A Hibernate Type object maps a Java type to a database column
type (actually, the type may span multiple columns). All persistent properties of
persistent classes, including associations, have a corresponding Hibernate type.
This design makes Hibernate extremely flexible and extensible.

There is a rich range of built-in types, covering all Java primitives and many JDK
classes, including types for java.util.Currency, java.util.Calendar, byte[], and
java.io.Serializable.

Even better, Hibernate supports user-defined custom types. The interfaces
UserType and CompositeUserType are provided to allow you to add your own types.
You can use this feature to allow commonly used application classes such as
Address, Name, or MonetaryAmount to be handled conveniently and elegantly. Cus-
tom types are considered a central feature of Hibernate, and you’re encouraged to
put them to new and creative uses!

We explain Hibernate types and user-defined types in chapter 6, section 6.1,
“Understanding the Hibernate type system.”

Basic configuration 41

2.2.4 Extension interfaces

Much of the functionality that Hibernate provides is configurable, allowing you to
choose between certain built-in strategies. When the built-in strategies are insuffi-
cient, Hibernate will usually let you plug in your own custom implementation by
implementing an interface. Extension points include:

■ Primary key generation (IdentifierGenerator interface)

■ SQL dialect support (Dialect abstract class)

■ Caching strategies (Cache and CacheProvider interfaces)

■ JDBC connection management (ConnectionProvider interface)

■ Transaction management (TransactionFactory, Transaction, and Transac-
tionManagerLookup interfaces)

■ ORM strategies (ClassPersister interface hierarchy)

■ Property access strategies (PropertyAccessor interface)

■ Proxy creation (ProxyFactory interface)

Hibernate ships with at least one implementation of each of the listed interfaces,
so you don’t usually need to start from scratch if you wish to extend the built-in
functionality. The source code is available for you to use as an example for your
own implementation.

By now you can see that before we can start writing any code that uses Hibernate,
we must answer this question: How do we get a Session to work with?

2.3 Basic configuration

We’ve looked at an example application and examined Hibernate’s core inter-
faces. To use Hibernate in an application, you need to know how to configure it.
Hibernate can be configured to run in almost any Java application and develop-
ment environment. Generally, Hibernate is used in two- and three-tiered client/
server applications, with Hibernate deployed only on the server. The client appli-
cation is usually a web browser, but Swing and SWT client applications aren’t
uncommon. Although we concentrate on multitiered web applications in this
book, our explanations apply equally to other architectures, such as command-
line applications. It’s important to understand the difference in configuring
Hibernate for managed and non-managed environments:

■ Managed environment—Pools resources such as database connections and
allows transaction boundaries and security to be specified declaratively (that

42 CHAPTER 2

Introducing and integrating Hibernate

is, in metadata). A J2EE application server such as JBoss, BEA WebLogic, or
IBM WebSphere implements the standard (J2EE-specific) managed environ-
ment for Java.

■ Non-managed environment—Provides basic concurrency management via
thread pooling. A servlet container like Jetty or Tomcat provides a non-
managed server environment for Java web applications. A stand-alone desk-
top or command-line application is also considered non-managed. Non-
managed environments don’t provide automatic transaction or resource
management or security infrastructure. The application itself manages data-
base connections and demarcates transaction boundaries.

Hibernate attempts to abstract the environment in which it’s deployed. In the case
of a non-managed environment, Hibernate handles transactions and JDBC connec-
tions (or delegates to application code that handles these concerns). In managed
environments, Hibernate integrates with container-managed transactions and
datasources. Hibernate can be configured for deployment in both environments.

In both managed and non-managed environments, the first thing you must do
is start Hibernate. In practice, doing so is very easy: You have to create a Session-
Factory from a Configuration.

2.3.1 Creating a SessionFactory

In order to create a SessionFactory, you first create a single instance of Configu-
ration during application initialization and use it to set the location of the map-
ping files. Once configured, the Configuration instance is used to create the
SessionFactory. After the SessionFactory is created, you can discard the Config-
uration class.

The following code starts Hibernate:

Configuration cfg = new Configuration();
cfg.addResource("hello/Message.hbm.xml");
cfg.setProperties(System.getProperties());
SessionFactory sessions = cfg.buildSessionFactory();

The location of the mapping file, Message.hbm.xml, is relative to the root of the
application classpath. For example, if the classpath is the current directory, the
Message.hbm.xml file must be in the hello directory. XML mapping files must be
placed in the classpath. In this example, we also use the system properties of the
virtual machine to set all other configuration options (which might have been set
before by application code or as startup options).

Basic configuration 43

Method chaining is a programming style supported by many Hibernate
interfaces. This style is more popular in Smalltalk than in Java and is
considered by some people to be less readable and more difficult to
debug than the more accepted Java style. However, it’s very convenient
in most cases.

Most Java developers declare setter or adder methods to be of type
void, meaning they return no value. In Smalltalk, which has no void
type, setter or adder methods usually return the receiving object. This
would allow us to rewrite the previous code example as follows:

 SessionFactory sessions = new Configuration()
 .addResource("hello/Message.hbm.xml")
 .setProperties(System.getProperties())
 .buildSessionFactory();

Notice that we didn’t need to declare a local variable for the Configura-
tion. We use this style in some code examples; but if you don’t like it, you
don’t need to use it yourself. If you do use this coding style, it’s better to
write each method invocation on a different line. Otherwise, it might be
difficult to step through the code in your debugger.

By convention, Hibernate XML mapping files are named with the .hbm.xml exten-
sion. Another convention is to have one mapping file per class, rather than have
all your mappings listed in one file (which is possible but considered bad style).
Our “Hello World” example had only one persistent class, but let’s assume we
have multiple persistent classes, with an XML mapping file for each. Where should
we put these mapping files?

The Hibernate documentation recommends that the mapping file for each per-
sistent class be placed in the same directory as that class. For instance, the mapping
file for the Message class would be placed in the hello directory in a file named
Message.hbm.xml. If we had another persistent class, it would be defined in its own
mapping file. We suggest that you follow this practice. The monolithic metadata
files encouraged by some frameworks, such as the struts-config.xml found in
Struts, are a major contributor to “metadata hell.” You load multiple mapping files
by calling addResource() as often as you have to. Alternatively, if you follow the con-
vention just described, you can use the method addClass(), passing a persistent
class as the parameter:

SessionFactory sessions = new Configuration()
 .addClass(org.hibernate.auction.model.Item.class)
 .addClass(org.hibernate.auction.model.Category.class)
 .addClass(org.hibernate.auction.model.Bid.class)
 .setProperties(System.getProperties())
 .buildSessionFactory();

METHOD
CHAINING

44 CHAPTER 2

Introducing and integrating Hibernate

The addClass() method assumes that the name of the mapping file ends with the
.hbm.xml extension and is deployed along with the mapped class file.

We’ve demonstrated the creation of a single SessionFactory, which is all that
most applications need. If another SessionFactory is needed—if there are multi-
ple databases, for example—you repeat the process. Each SessionFactory is then
available for one database and ready to produce Sessions to work with that partic-
ular database and a set of class mappings.

Of course, there is more to configuring Hibernate than just pointing to map-
ping documents. You also need to specify how database connections are to be
obtained, along with various other settings that affect the behavior of Hibernate at
runtime. The multitude of configuration properties may appear overwhelming (a
complete list appears in the Hibernate documentation), but don’t worry; most
define reasonable default values, and only a handful are commonly required.

To specify configuration options, you may use any of the following techniques:

■ Pass an instance of java.util.Properties to Configuration.setProper-
ties().

■ Set system properties using java -Dproperty=value.

■ Place a file called hibernate.properties in the classpath.

■ Include <property> elements in hibernate.cfg.xml in the classpath.

The first and second options are rarely used except for quick testing and proto-
types, but most applications need a fixed configuration file. Both the hibernate.
properties and the hibernate.cfg.xml files provide the same function: to config-
ure Hibernate. Which file you choose to use depends on your syntax preference.
It’s even possible to mix both options and have different settings for development
and deployment, as you’ll see later in this chapter.

A rarely used alternative option is to allow the application to provide a JDBC Con-
nection when it opens a Hibernate Session from the SessionFactory (for exam-
ple, by calling sessions.openSession(myConnection)). Using this option means
that you don’t have to specify any database connection properties. We don’t rec-
ommend this approach for new applications that can be configured to use the envi-
ronment’s database connection infrastructure (for example, a JDBC connection
pool or an application server datasource).

Of all the configuration options, database connection settings are the most
important. They differ in managed and non-managed environments, so we deal
with the two cases separately. Let’s start with non-managed.

Basic configuration 45

2.3.2 Configuration in non-managed environments

In a non-managed environment, such as a servlet container, the application is
responsible for obtaining JDBC connections. Hibernate is part of the application,
so it’s responsible for getting these connections. You tell Hibernate how to get (or
create new) JDBC connections. Generally, it isn’t advisable to create a connection
each time you want to interact with the database. Instead, Java applications should
use a pool of JDBC connections. There are three reasons for using a pool:

■ Acquiring a new connection is expensive.

■ Maintaining many idle connections is expensive.

■ Creating prepared statements is also expensive for some drivers.

Figure 2.2 shows the role of a JDBC connection pool in a web application runtime
environment. Since this non-managed environment doesn’t implement connec-
tion pooling, the application must implement its own pooling algorithm or rely
upon a third-party library such as the open source C3P0 connection pool. Without
Hibernate, the application code usually calls the connection pool to obtain JDBC
connections and execute SQL statements.

With Hibernate, the picture changes: It acts as a client of the JDBC connection
pool, as shown in figure 2.3. The application code uses the Hibernate Session and
Query APIs for persistence operations and only has to manage database transac-
tions, ideally using the Hibernate Transaction API.

Using a connection pool
Hibernate defines a plugin architecture that allows integration with any connec-
tion pool. However, support for C3P0 is built in, so we’ll use that. Hibernate will
set up the configuration pool for you with the given properties. An example of a
hibernate.properties file using C3P0 is shown in listing 2.4.

Non-Managed Environment

Database

Connection
Pool

User-managed
JDBC connections

JSP

main()
Servlet

Application

Figure 2.2 JDBC connection pooling in a non-managed environment

46 CHAPTER 2

Introducing and integrating Hibernate

hibernate.connection.driver_class = org.postgresql.Driver
hibernate.connection.url = jdbc:postgresql://localhost/auctiondb
hibernate.connection.username = auctionuser
hibernate.connection.password = secret
hibernate.dialect = net.sf.hibernate.dialect.PostgreSQLDialect
hibernate.c3p0.min_size=5
hibernate.c3p0.max_size=20
hibernate.c3p0.timeout=300
hibernate.c3p0.max_statements=50
hibernate.c3p0.idle_test_period=3000

This code’s lines specify the following information, beginning with the first line:

■ The name of the Java class implementing the JDBC Driver (the driver JAR
file must be placed in the application’s classpath).

■ A JDBC URL that specifies the host and database name for JDBC connec-
tions.

■ The database user name.

■ The database password for the specified user.

■ A Dialect for the database. Despite the ANSI standardization effort, SQL is
implemented differently by various databases vendors. So, you must specify
a Dialect. Hibernate includes built-in support for all popular SQL data-
bases, and new dialects may be defined easily.

■ The minimum number of JDBC connections that C3P0 will keep ready.

Listing 2.4 Using hibernate.properties for C3P0 connection pool settings

JSP

main()
Servlet

Application

Hibernate

Database

Connection
Pool

Session

Transaction

Query

Non-Managed Environment

Figure 2.3 Hibernate with a connection pool in a non-managed environment

Basic configuration 47

■ The maximum number of connections in the pool. An exception will be
thrown at runtime if this number is exhausted.

■ The timeout period (in this case, 5 minutes or 300 seconds) after which an
idle connection will be removed from the pool.

■ The maximum number of prepared statements that will be cached. Caching
of prepared statements is essential for best performance with Hibernate.

■ The idle time in seconds before a connection is automatically validated.

Specifying properties of the form hibernate.c3p0.* selects C3P0 as Hibernate’s
connection pool (you don’t need any other switch to enable C3P0 support). C3P0
has even more features than we’ve shown in the previous example, so we refer you
to the Hibernate API documentation. The Javadoc for the class net.sf.hiber-
nate.cfg.Environment documents every Hibernate configuration property,
including all C3P0-related settings and settings for other third-party connection
pools directly supported by Hibernate.

The other supported connection pools are Apache DBCP and Proxool. You
should try each pool in your own environment before deciding between them. The
Hibernate community tends to prefer C3P0 and Proxool.

Hibernate also ships with a default connection pooling mechanism. This con-
nection pool is only suitable for testing and experimenting with Hibernate: You
should not use this built-in pool in production systems. It isn’t designed to scale to
an environment with many concurrent requests, and it lacks the fault tolerance fea-
tures found in specialized connection pools.

Starting Hibernate
How do you start Hibernate with these properties? You declared the properties in
a file named hibernate.properties, so you need only place this file in the applica-
tion classpath. It will be automatically detected and read when Hibernate is first
initialized when you create a Configuration object.

Let’s summarize the configuration steps you’ve learned so far (this is a good
time to download and install Hibernate, if you’d like to continue in a non-
managed environment):

1 Download and unpack the JDBC driver for your database, which is usually
available from the database vendor web site. Place the JAR files in the appli-
cation classpath; do the same with hibernate2.jar.

2 Add Hibernate’s dependencies to the classpath; they’re distributed along
with Hibernate in the lib/ directory. See also the text file lib/README.txt
for a list of required and optional libraries.

48 CHAPTER 2

Introducing and integrating Hibernate

3 Choose a JDBC connection pool supported by Hibernate and configure it
with a properties file. Don’t forget to specify the SQL dialect.

4 Let the Configuration know about these properties by placing them in a
hibernate.properties file in the classpath.

5 Create an instance of Configuration in your application and load the XML
mapping files using either addResource() or addClass(). Build a Session-
Factory from the Configuration by calling buildSessionFactory().

Unfortunately, you don’t have any mapping files yet. If you like, you can run the
“Hello World” example or skip the rest of this chapter and start learning about
persistent classes and mappings in chapter 3. Or, if you want to know more about
using Hibernate in a managed environment, read on.

2.3.3 Configuration in managed environments

A managed environment handles certain cross-cutting concerns, such as applica-
tion security (authorization and authentication), connection pooling, and trans-
action management. J2EE application servers are typical managed environments.
Although application servers are generally designed to support EJBs, you can still
take advantage of the other managed services provided, even if you don’t use EJB
entity beans.

Hibernate is often used with session or message-driven EJBs, as shown in
figure 2.4. EJBs call the same Hibernate APIs as servlets, JSPs, or stand-alone appli-
cations: Session, Transaction, and Query. The Hibernate-related code is fully por-
table between non-managed and managed environments. Hibernate handles the
different connection and transaction strategies transparently.

EJB

EJB
EJB

Application

Hibernate

Session

Transaction

Query

Transaction
Manager

Database

Resource
Manager

Application Server

Figure 2.4 Hibernate in a managed environment with an application server

Basic configuration 49

An application server exposes a connection pool as a JNDI-bound datasource, an
instance of javax.jdbc.Datasource. You need to tell Hibernate where to find the
datasource in JNDI, by supplying a fully qualified JNDI name. An example Hiber-
nate configuration file for this scenario is shown in listing 2.5.

hibernate.connection.datasource = java:/comp/env/jdbc/AuctionDB
hibernate.transaction.factory_class = \
 net.sf.hibernate.transaction.JTATransactionFactory
hibernate.transaction.manager_lookup_class = \
 net.sf.hibernate.transaction.JBossTransactionManagerLookup
hibernate.dialect = net.sf.hibernate.dialect.PostgreSQLDialect

This file first gives the JNDI name of the datasource. The datasource must be
configured in the J2EE enterprise application deployment descriptor; this is a
vendor-specific setting. Next, you enable Hibernate integration with JTA. Now
Hibernate needs to locate the application server’s TransactionManager in order to
integrate fully with the container transactions. No standard approach is defined
by the J2EE specification, but Hibernate includes support for all popular applica-
tion servers. Finally, of course, the Hibernate SQL dialect is required.

Now that you’ve configured everything correctly, using Hibernate in a managed
environment isn’t much different than using it in a non-managed environment: Just
create a Configuration with mappings and build a SessionFactory. However, some
of the transaction environment–related settings deserve some extra consideration.

Java already has a standard transaction API, JTA, which is used to control trans-
actions in a managed environment with J2EE. This is called container-managed trans-
actions (CMT). If a JTA transaction manager is present, JDBC connections are
enlisted with this manager and under its full control. This isn’t the case in a non-
managed environment, where an application (or the pool) manages the JDBC con-
nections and JDBC transactions directly.

Therefore, managed and non-managed environments can use different transac-
tion methods. Since Hibernate needs to be portable across these environments, it
defines an API for controlling transactions. The Hibernate Transaction interface
abstracts the underlying JTA or JDBC transaction (or, potentially, even a CORBA
transaction). This underlying transaction strategy is set with the property hiber-
nate.connection.factory_class, and it can take one of the following two values:

Listing 2.5 Sample hibernate.properties for a container-provided datasource

50 CHAPTER 2

Introducing and integrating Hibernate

■ net.sf.hibernate.transaction.JDBCTransactionFactory delegates to direct
JDBC transactions. This strategy should be used with a connection pool in a
non-managed environment and is the default if no strategy is specified.

■ net.sf.hibernate.transaction.JTATransactionFactory delegates to JTA.
This is the correct strategy for CMT, where connections are enlisted with JTA.
Note that if a JTA transaction is already in progress when beginTransac-
tion() is called, subsequent work takes place in the context of that transac-
tion (otherwise a new JTA transaction is started).

For a more detailed introduction to Hibernate’s Transaction API and the effects
on your specific application scenario, see chapter 5, section 5.1, “Transactions.”
Just remember the two steps that are necessary if you work with a J2EE application
server: Set the factory class for the Hibernate Transaction API to JTA as described
earlier, and declare the transaction manager lookup specific to your application
server. The lookup strategy is required only if you use the second-level caching sys-
tem in Hibernate, but it doesn’t hurt to set it even without using the cache.

Tomcat isn’t a full application server; it’s just a servlet container, albeit a
servlet container with some features usually found only in application
servers. One of these features may be used with Hibernate: the Tomcat
connection pool. Tomcat uses the DBCP connection pool internally but
exposes it as a JNDI datasource, just like a real application server. To con-
figure the Tomcat datasource, you’ll need to edit server.xml according
to instructions in the Tomcat JNDI/JDBC documentation. You can config-
ure Hibernate to use this datasource by setting hibernate.connec-
tion.datasource. Keep in mind that Tomcat doesn’t ship with a
transaction manager, so this situation is still more like a non-managed
environment as described earlier.

You should now have a running Hibernate system, whether you use a simple serv-
let container or an application server. Create and compile a persistent class (the
initial Message, for example), copy Hibernate and its required libraries to the
classpath together with a hibernate.properties file, and build a SessionFactory.

The next section covers advanced Hibernate configuration options. Some of
them are recommended, such as logging executed SQL statements for debugging
or using the convenient XML configuration file instead of plain properties. How-
ever, you may safely skip this section and come back later once you have read more
about persistent classes in chapter 3.

HIBERNATE
WITH

TOMCAT

Advanced configuration settings 51

2.4 Advanced configuration settings

When you finally have a Hibernate application running, it’s well worth getting to
know all the Hibernate configuration parameters. These parameters let you opti-
mize the runtime behavior of Hibernate, especially by tuning the JDBC interaction
(for example, using JDBC batch updates).

We won’t bore you with these details now; the best source of information about
configuration options is the Hibernate reference documentation. In the previous
section, we showed you the options you’ll need to get started.

However, there is one parameter that we must emphasize at this point. You’ll
need it continually whenever you develop software with Hibernate. Setting the
property hibernate.show_sql to the value true enables logging of all generated
SQL to the console. You’ll use it for troubleshooting, performance tuning, and just
to see what’s going on. It pays to be aware of what your ORM layer is doing—that’s
why ORM doesn’t hide SQL from developers.

So far, we’ve assumed that you specify configuration parameters using a hiber-
nate.properties file or an instance of java.util.Properties programmatically.
There is a third option you’ll probably like: using an XML configuration file.

2.4.1 Using XML-based configuration

You can use an XML configuration file (as demonstrated in listing 2.6) to fully
configure a SessionFactory. Unlike hibernate.properties, which contains only
configuration parameters, the hibernate.cfg.xml file may also specify the loca-
tion of mapping documents. Many users prefer to centralize the configuration of
Hibernate in this way instead of adding parameters to the Configuration in appli-
cation code.

?xml version='1.0'encoding='utf-8'?>
<!DOCTYPE hibernate-configuration
 PUBLIC "-//Hibernate/Hibernate Configuration DTD//EN"
 "http://hibernate.sourceforge.net/hibernate-configuration-2.0.dtd">
<hibernate-configuration>
 <session-factory name="java:/hibernate/HibernateFactory">
 <property name="show_sql">true</property>
 <property name="connection.datasource">
 java:/comp/env/jdbc/AuctionDB
 </property>
 <property name="dialect">
 net.sf.hibernate.dialect.PostgreSQLDialect
 </property>

Listing 2.6 Sample hibernate.cfg.xml configuration file

B
Document type

declaration

Name
attributeC

D Property
specifications

52 CHAPTER 2

Introducing and integrating Hibernate

 <property name="transaction.manager_lookup_class">
 net.sf.hibernate.transaction.JBossTransactionManagerLookup
 </property>
 <mapping resource="auction/Item.hbm.xml"/>
 <mapping resource="auction/Category.hbm.xml"/>
 <mapping resource="auction/Bid.hbm.xml"/>
 </session-factory>
</hibernate-configuration>

The document type declaration is used by the XML parser to validate this document
against the Hibernate configuration DTD.

The optional name attribute is equivalent to the property hibernate.session_
factory_name and used for JNDI binding of the SessionFactory, discussed in the
next section.

Hibernate properties may be specified without the hibernate prefix. Property
names and values are otherwise identical to programmatic configuration
properties.

Mapping documents may be specified as application resources or even as hard-
coded filenames. The files used here are from our online auction application,
which we’ll introduce in chapter 3.

Now you can initialize Hibernate using

SessionFactory sessions = new Configuration()
 .configure().buildSessionFactory();

Wait—how did Hibernate know where the configuration file was located?
When configure() was called, Hibernate searched for a file named hiber-

nate.cfg.xml in the classpath. If you wish to use a different filename or have Hiber-
nate look in a subdirectory, you must pass a path to the configure() method:

SessionFactory sessions = new Configuration()
 .configure("/hibernate-config/auction.cfg.xml")
 .buildSessionFactory();

Using an XML configuration file is certainly more comfortable than a properties
file or even programmatic property configuration. The fact that you can have the
class mapping files externalized from the application’s source (even if it would be
only in a startup helper class) is a major benefit of this approach. You can, for
example, use different sets of mapping files (and different configuration
options), depending on your database and environment (development or pro-
duction), and switch them programatically.

d
E Mapping

document
specifications

B

C

D

E

Advanced configuration settings 53

If you have both hibernate.properties and hibernate.cfg.xml in the classpath,
the settings of the XML configuration file will override the settings used in the
properties. This is useful if you keep some base settings in properties and override
them for each deployment with an XML configuration file.

You may have noticed that the SessionFactory was also given a name in the XML
configuration file. Hibernate uses this name to automatically bind the SessionFac-
tory to JNDI after creation.

2.4.2 JNDI-bound SessionFactory

In most Hibernate applications, the SessionFactory should be instantiated once
during application initialization. The single instance should then be used by all
code in a particular process, and any Sessions should be created using this single
SessionFactory. A frequently asked question is where this factory must be placed
and how it can be accessed without much hassle.

In a J2EE environment, a SessionFactory bound to JNDI is easily shared between
different threads and between various Hibernate-aware components. Or course,
JNDI isn’t the only way that application components might obtain a SessionFac-
tory. There are many possible implementations of this Registry pattern, including
use of the ServletContext or a static final variable in a singleton. A particularly
elegant approach is to use an application scope IoC (Inversion of Control) frame-
work component. However, JNDI is a popular approach (and is exposed as a JMX
service, as you'll see later). We discuss some of the alternatives in chapter 8,
section 8.1, “Designing layered applications.”

NOTE The Java Naming and Directory Interface (JNDI) API allows objects to be
stored to and retrieved from a hierarchical structure (directory tree).
JNDI implements the Registry pattern. Infrastructural objects (transac-
tion contexts, datasources), configuration settings (environment settings,
user registries), and even application objects (EJB references, object fac-
tories) may all be bound to JNDI.

The SessionFactory will automatically bind itself to JNDI if the property hiber-
nate.session_factory_name is set to the name of the directory node. If your run-
time environment doesn’t provide a default JNDI context (or if the default JNDI
implementation doesn’t support instances of Referenceable), you need to specify
a JNDI initial context using the properties hibernate.jndi.url and hiber-
nate.jndi.class.

54 CHAPTER 2

Introducing and integrating Hibernate

Here is an example Hibernate configuration that binds the SessionFactory to
the name hibernate/HibernateFactory using Sun’s (free) file system–based JNDI
implementation, fscontext.jar:

hibernate.connection.datasource = java:/comp/env/jdbc/AuctionDB
hibernate.transaction.factory_class = \
 net.sf.hibernate.transaction.JTATransactionFactory
hibernate.transaction.manager_lookup_class = \
 net.sf.hibernate.transaction.JBossTransactionManagerLookup
hibernate.dialect = net.sf.hibernate.dialect.PostgreSQLDialect
hibernate.session_factory_name = hibernate/HibernateFactory
hibernate.jndi.class = com.sun.jndi.fscontext.RefFSContextFactory
hibernate.jndi.url = file:/auction/jndi

Of course, you can also use the XML-based configuration for this task. This exam-
ple also isn’t realistic, since most application servers that provide a connection
pool through JNDI also have a JNDI implementation with a writable default con-
text. JBoss certainly has, so you can skip the last two properties and just specify a
name for the SessionFactory. All you have to do now is call Configuration.con-
figure().buildSessionFactory() once to initialize the binding.

NOTE Tomcat comes bundled with a read-only JNDI context, which isn’t writ-
able from application-level code after the startup of the servlet con-
tainer. Hibernate can’t bind to this context; you have to either use a full
context implementation (like the Sun FS context) or disable JNDI bind-
ing of the SessionFactory by omitting the session_factory_name prop-
erty in the configuration.

Let’s look at some other very important configuration settings that log Hibernate
operations.

2.4.3 Logging

Hibernate (and many other ORM implementations) executes SQL statements
asynchronously. An INSERT statement isn’t usually executed when the application
calls Session.save(); an UPDATE isn’t immediately issued when the application
calls Item.addBid(). Instead, the SQL statements are usually issued at the end of a
transaction. This behavior is called write-behind, as we mentioned earlier.

This fact is evidence that tracing and debugging ORM code is sometimes non-
trivial. In theory, it’s possible for the application to treat Hibernate as a black box
and ignore this behavior. Certainly the Hibernate application can’t detect this
asynchronicity (at least, not without resorting to direct JDBC calls). However, when
you find yourself troubleshooting a difficult problem, you need to be able to see
exactly what’s going on inside Hibernate. Since Hibernate is open source, you can

Advanced configuration settings 55

easily step into the Hibernate code. Occasionally, doing so helps a great deal! But,
especially in the face of asynchronous behavior, debugging Hibernate can quickly
get you lost. You can use logging to get a view of Hibernate’s internals.

We’ve already mentioned the hibernate.show_sql configuration parameter,
which is usually the first port of call when troubleshooting. Sometimes the SQL
alone is insufficient; in that case, you must dig a little deeper.

Hibernate logs all interesting events using Apache commons-logging, a thin
abstraction layer that directs output to either Apache log4j (if you put log4j.jar
in your classpath) or JDK1.4 logging (if you’re running under JDK1.4 or above and
log4j isn’t present). We recommend log4j, since it’s more mature, more popular,
and under more active development.

To see any output from log4j, you’ll need a file named log4j.properties in your
classpath (right next to hibernate.properties or hibernate.cfg.xml). This exam-
ple directs all log messages to the console:

direct log messages to stdout
log4j.appender.stdout=org.apache.log4j.ConsoleAppender
log4j.appender.stdout.Target=System.out
log4j.appender.stdout.layout=org.apache.log4j.PatternLayout
log4j.appender.stdout.layout.ConversionPattern=%d{ABSOLUTE}
➾ %5p %c{1}:%L - %m%n
root logger option ###
log4j.rootLogger=warn, stdout
Hibernate logging options ###
log4j.logger.net.sf.hibernate=info
log JDBC bind parameters ###
log4j.logger.net.sf.hibernate.type=info
log PreparedStatement cache activity
log4j.logger.net.sf.hibernate.ps.PreparedStatementCache=info

With this configuration, you won’t see many log messages at runtime. Replacing
info with debug for the log4j.logger.net.sf.hibernate category will reveal the
inner workings of Hibernate. Make sure you don’t do this in a production envi-
ronment—writing the log will be much slower than the actual database access.

Finally, you have the hibernate.properties, hibernate.cfg.xml, and
log4j.properties configuration files.

There is another way to configure Hibernate, if your application server supports
the Java Management Extensions.

2.4.4 Java Management Extensions (JMX)

The Java world is full of specifications, standards, and, of course, implementations
of these. A relatively new but important standard is in its first version: the Java

56 CHAPTER 2

Introducing and integrating Hibernate

Management Extensions (JMX). JMX is about the management of systems compo-
nents or, better, of system services.

Where does Hibernate fit into this new picture? Hibernate, when deployed in
an application server, makes use of other services like managed transactions and
pooled database transactions. But why not make Hibernate a managed service
itself, which others can depend on and use? This is possible with the Hibernate JMX
integration, making Hibernate a managed JMX component.

The JMX specification defines the following components:

■ The JMX MBean—A reusable component (usually infrastructural) that
exposes an interface for management (administration)

■ The JMX container—Mediates generic access (local or remote) to the MBean

■ The (usually generic) JMX client—May be used to administer any MBean via
the JMX container

An application server with support for JMX (such as JBoss) acts as a JMX container
and allows an MBean to be configured and initialized as part of the application
server startup process. It’s possible to monitor and administer the MBean using
the application server’s administration console (which acts as the JMX client).

An MBean may be packaged as a JMX service, which is not only portable
between application servers with JMX support but also deployable to a running sys-
tem (a hot deploy).

Hibernate may be packaged and administered as a JMX MBean. The Hibernate
JMX service allows Hibernate to be initialized at application server startup and con-
trolled (configured) via a JMX client. However, JMX components aren’t automati-
cally integrated with container-managed transactions. So, the configuration
options in listing 2.7 (a JBoss service deployment descriptor) look similar to the
usual Hibernate settings in a managed environment.

<server>
<mbean
 code="net.sf.hibernate.jmx.HibernateService"
 name="jboss.jca:service=HibernateFactory, name=HibernateFactory">
 <depends>jboss.jca:service=RARDeployer</depends>
 <depends>jboss.jca:service=LocalTxCM,name=DataSource</depends>
 <attribute name="MapResources">
 auction/Item.hbm.xml, auction/Bid.hbm.xml
 </attribute>

Listing 2.7 Hibernate jboss-service.xml JMX deployment descriptor

Advanced configuration settings 57

 <attribute name="JndiName">
 java:/hibernate/HibernateFactory
 </attribute>
 <attribute name="Datasource">
 java:/comp/env/jdbc/AuctionDB
 </attribute>
 <attribute name="Dialect">
 net.sf.hibernate.dialect.PostgreSQLDialect
 </attribute>
 <attribute name="TransactionStrategy">
 net.sf.hibernate.transaction.JTATransactionFactory
 </attribute>
 <attribute name="TransactionManagerLookupStrategy">
 net.sf.hibernate.transaction.JBossTransactionManagerLookup
 </attribute>
 <attribute name="UserTransactionName">
 java:/UserTransaction
 </attribute>
</mbean>
</server>

The HibernateService depends on two other JMX services: service=RARDeployer
and service=LocalTxCM,name=DataSource, both in the jboss.jca service domain
name.

The Hibernate MBean may be found in the package net.sf.hibernate.jmx.
Unfortunately, lifecycle management methods like starting and stopping the JMX
service aren’t part of the JMX 1.0 specification. The methods start() and stop()
of the HibernateService are therefore specific to the JBoss application server.

NOTE If you’re interested in the advanced usage of JMX, JBoss is a good
open source starting point: All services (even the EJB container) in
JBoss are implemented as MBeans and can be managed via a supplied
console interface.

We recommend that you try to configure Hibernate programmatically (using the
Configuration object) before you try to run Hibernate as a JMX service. However,
some features (like hot-redeployment of Hibernate applications) may be possible
only with JMX, once they become available in Hibernate. Right now, the biggest
advantage of Hibernate with JMX is the automatic startup; it means you no longer
have to create a Configuration and build a SessionFactory in your application
code, but can simply access the SessionFactory through JNDI once the
HibernateService has been deployed and started.

58 CHAPTER 2

Introducing and integrating Hibernate

2.5 Summary

In this chapter, we took a high-level look at Hibernate and its architecture after
running a simple “Hello World” example. You also saw how to configure Hiber-
nate in various environments and with various techniques, even including JMX.

The Configuration and SessionFactory interfaces are the entry points to
Hibernate for applications running in both managed and non-managed environ-
ments. Hibernate provides additional APIs, such as the Transaction interface, to
bridge the differences between environments and allow you to keep your persis-
tence code portable.

Hibernate can be integrated into almost every Java environment, be it a servlet,
an applet, or a fully managed three-tiered client/server application. The most
important elements of a Hibernate configuration are the database resources (con-
nection configuration), the transaction strategies, and, of course, the XML-based
mapping metadata.

Hibernate’s configuration interfaces have been designed to cover as many
usage scenarios as possible while still being easy to understand. Usually, a single
file named hibernate.cfg.xml and one line of code are enough to get Hibernate
up and running.

None of this is much use without some persistent classes and their XML mapping
documents. The next chapter is dedicated to writing and mapping persistent
classes. You’ll soon be able to store and retrieve persistent objects in a real applica-
tion with a nontrivial object/relational mapping.

M A N N I N GM A N N I N G $44.95 US/$62.95 Canada

H
ibernate practically exploded on the Java scene. Why is this open-source
tool so popular? Because it automates a tedious task: persisting your Java
objects to a relational database. The inevitable mismatch between your

object-oriented code and the relational database requires you to write code
that maps one to the other. This code is often complex, tedious and costly to
develop. Hibernate does the mapping for you.

Not only that, Hibernate makes it easy. Positioned as a layer
between your application and your database, Hibernate
takes care of loading and saving of objects. Hibernate appli-
cations are cheaper, more portable, and more resilient to
change. And they perform better than anything you are
likely to develop yourself.

Hibernate in Action carefully explains the concepts you need,
then gets you going. It builds on a single example to show
you how to use Hibernate in practice, how to deal with
concurrency and transactions, how to efficiently retrieve
objects and use caching.

The authors created Hibernate and they field questions from
the Hibernate community every day—they know how to
make Hibernate sing. Knowledge and insight seep out of
every pore of this book.

A member of the core Hibernate developer team, Christian Bauer maintains
the Hibernate documentation and website. He is a senior software engineer
in Frankfurt, Germany. Gavin King is the Hibernate founder and principal
developer. He is a J2EE consultant based in Melbourne, Australia.

JAVA

HIBERNATE IN ACTION
Christian Bauer and Gavin King

“The Bible of Hibernate”
—Ara Abrahamian, XDoclet Lead Developer

,!7IB9D2-djebfd!:p;o;O;t;P
ISBN 1-932394-15-X

Christian Bauer
Gavin King

M A N N I N G

HIBERNATE
IN ACTIO

HIBERNATE
IN ACTION

Bauer
King

What’s Inside

■ ORM concepts

■ Getting started

■ Many real-world tasks

■ The Hibernate application
development process

The ultimate Hibernate reference

Ask the Authors Ebook edition

AUTHOR
✔

ONLINE

✔

www.manning.com/bauer

M A N N I N GM A N N I N G $44.95 US/$62.95 Canada

H
ibernate practically exploded on the Java scene. Why is this open-source
tool so popular? Because it automates a tedious task: persisting your Java
objects to a relational database. The inevitable mismatch between your

object-oriented code and the relational database requires you to write code
that maps one to the other. This code is often complex, tedious and costly to
develop. Hibernate does the mapping for you.

Not only that, Hibernate makes it easy. Positioned as a layer
between your application and your database, Hibernate
takes care of loading and saving of objects. Hibernate appli-
cations are cheaper, more portable, and more resilient to
change. And they perform better than anything you are
likely to develop yourself.

Hibernate in Action carefully explains the concepts you need,
then gets you going. It builds on a single example to show
you how to use Hibernate in practice, how to deal with
concurrency and transactions, how to efficiently retrieve
objects and use caching.

The authors created Hibernate and they field questions from
the Hibernate community every day—they know how to
make Hibernate sing. Knowledge and insight seep out of
every pore of this book.

A member of the core Hibernate developer team, Christian Bauer maintains
the Hibernate documentation and website. He is a senior software engineer
in Frankfurt, Germany. Gavin King is the Hibernate founder and principal
developer. He is a J2EE consultant based in Melbourne, Australia.

JAVA

HIBERNATE IN ACTION
Christian Bauer and Gavin King

“The Bible of Hibernate”
—Ara Abrahamian, XDoclet Lead Developer

,!7IB9D2-djebfd!:p;o;O;t;P
ISBN 1-932394-15-X

Christian Bauer
Gavin King

M A N N I N G

HIBERNATE
IN ACTIO

HIBERNATE
IN ACTION

Bauer
King

What’s Inside

■ ORM concepts

■ Getting started

■ Many real-world tasks

■ The Hibernate application
development process

The ultimate Hibernate reference

Ask the Authors Ebook edition

AUTHOR
✔

ONLINE

✔

www.manning.com/bauer

D. Marsico
 SAMPLE CHAPTER

Hibernate in Action
by Christian Bauer

and
Gavin King
 Chapter 6

Copyright 2004 Manning Publications

contents

Chapter 1 � Understanding object/relational persistence
Chapter 2 � Introducing and integrating Hibernate
Chapter 3 � Mapping persistent classes
Chapter 4 � Working with persistent objects
Chapter 5 � Transactions, concurrency, and caching
Chapter 6 � Advanced mapping concepts
Chapter 7 � Retrieving objects efficiently
Chapter 8 � Writing Hibernate applications
Chapter 9 � Using the toolset

Appendix A � SQL Fundamentals
Appendix B � ORM implementation strategies
Appendix C � Back in the real world

195

Advanced mapping concepts

This chapter covers

■ The Hibernate type system
■ Custom mapping types
■ Collection mappings
■ One-to-one and many-to-many associations

196 CHAPTER 6

Advanced mapping concepts

In chapter 3, we introduced the most important ORM features provided by Hiber-
nate. You’ve met basic class and property mappings, inheritance mappings, com-
ponent mappings, and one-to-many association mappings. We now continue
exploring these topics by turning to the more exotic collection and association
mappings. At various places, we’ll warn you against using a feature without careful
consideration. For example, it’s usually possible to implement any domain model
using only component mappings and one-to-many (occasionally one-to-one) asso-
ciations. The exotic mapping features should be used with care, perhaps even
avoided most of the time.

Before we start to talk about the exotic features, you need a more rigorous
understanding of Hibernate’s type system—particularly of the distinction between
entity and value types.

6.1 Understanding the Hibernate type system

In chapter 3, section 3.5.1, “Entity and value types,” we first distinguished between
entity and value types, a central concept of ORM in Java. We must elaborate that
distinction in order for you to fully understand the Hibernate type system of enti-
ties, value types, and mapping types.

Entities are the coarse-grained classes in a system. You usually define the features
of a system in terms of the entities involved: “the user places a bid for an item” is a
typical feature definition that mentions three entities. Classes of value type often
don’t appear in the business requirements—they’re usually the fine-grained classes
representing strings, numbers, and monetary amounts. Occasionally, value types do
appear in feature definitions: “the user changes billing address” is one example,
assuming that Address is a value type, but this is atypical.

More formally, an entity is any class whose instances have their own persistent
identity. A value type is a class that doesn’t define some kind of persistent identity.
In practice, this means entity types are classes with identifier properties, and value-
type classes depend on an entity.

At runtime, you have a graph of entity instances interleaved with value type
instances. The entity instances may be in any of the three persistent lifecycle states:
transient, detached, or persistent. We don’t consider these lifecycle states to apply
to the value type instances.

Therefore, entities have their own lifecycle. The save() and delete() methods
of the Hibernate Session interface apply to instances of entity classes, never to
value type instances. The persistence lifecycle of a value type instance is completely
tied to the lifecycle of the owning entity instance. For example, the username

Understanding the Hibernate type system 197

becomes persistent when the user is saved; it never becomes persistent indepen-
dently of the user.

In Hibernate, a value type may define associations; it’s possible to navigate from
a value type instance to some other entity. However, it’s never possible to navigate
from the other entity back to the value type instance. Associations always point to
entities. This means that a value type instance is owned by exactly one entity when
it’s retrieved from the database—it’s never shared.

At the level of the database, any table is considered an entity. However, Hiber-
nate provides certain constructs to hide the existence of a database-level entity
from the Java code. For example, a many-to-many association mapping hides the
intermediate association table from the application. A collection of strings (more
accurately, a collection of value-typed instances) behaves like a value type from the
point of view of the application; however, it’s mapped to its own table. Although
these features seem nice at first (they simplify the Java code), we have over time
become suspicious of them. Inevitably, these hidden entities end up needing to be
exposed to the application as business requirements evolve. The many-to-many
association table, for example, often has additional columns that are added when
the application is maturing. We’re almost prepared to recommend that every data-
base-level entity be exposed to the application as an entity class. For example, we’d
be inclined to model the many-to-many association as two one-to-many associations
to an intervening entity class. We’ll leave the final decision to you, however, and
return to the topic of many-to-many entity associations later in this chapter.

So, entity classes are always mapped to the database using <class>, <subclass>,
and <joined-subclass> mapping elements. How are value types mapped?

Consider this mapping of the CaveatEmptor User and email address:

<property
 name="email"
 column="EMAIL"
 type="string"/>

Let’s focus on the type="string" attribute. In ORM, you have to deal with Java
types and SQL data types. The two different type systems must be bridged. This is
the job of the Hibernate mapping types, and string is the name of a built-in Hiber-
nate mapping type.

The string mapping type isn’t the only one built into Hibernate; Hibernate
comes with various mapping types that define default persistence strategies for
primitive Java types and certain JDK classes.

198 CHAPTER 6

Advanced mapping concepts

6.1.1 Built-in mapping types

Hibernate’s built-in mapping types usually share the name of the Java type they
map; however, there may be more than one Hibernate mapping type for a partic-
ular Java type. Furthermore, the built-in types may not be used to perform arbitrary
conversions, such as mapping a VARCHAR field value to a Java Integer property
value. You may define your own custom value types to do this kind of thing, as dis-
cussed later in this chapter.

We’ll now discuss the basic, date and time, large object, and various other built-
in mapping types and show you what Java and SQL data types they handle.

Java primitive mapping types
The basic mapping types in table 6.1 map Java primitive types (or their wrapper
types) to appropriate built-in SQL standard types.

You’ve probably noticed that your database doesn’t support some of the SQL types
listed in table 6.1. The listed names are ANSI-standard data types. Most database
vendors ignore this part of the SQL standard (because their type systems sometimes
predate the standard). However, the JDBC driver provides a partial abstraction of
vendor-specific SQL data types, allowing Hibernate to work with ANSI-standard

Table 6.1 Primitive types

Mapping type Java type
Standard SQL
built-in type

integer int or java.lang.Integer INTEGER

long long or java.lang.Long BIGINT

short short or java.lang.Short SMALLINT

float float or java.lang.Float FLOAT

double double or java.lang.Double DOUBLE

big_decimal java.math.BigDecimal NUMERIC

character java.lang.String CHAR(1)

string java.lang.String VARCHAR

byte byte or java.lang.Byte TINYINT

boolean boolean or java.lang.Boolean BIT

yes_no boolean or java.lang.Boolean CHAR(1) ('Y' or 'N')

true_false boolean or java.lang.Boolean CHAR(1) ('T' or 'F')

Understanding the Hibernate type system 199

types when executing data manipulation language (DML). For database-specific
DDL generation, Hibernate translates from the ANSI-standard type to an appropri-
ate vendor-specific type, using the built-in support for specific SQL dialects. (You
usually don’t have to worry about SQL data types if you’re using Hibernate for data
access and data schema definition.)

Date and time mapping types
Table 6.2 lists Hibernate types associated with dates, times, and timestamps. In your
domain model, you may choose to represent date and time data using either
java.util.Date, java.util.Calendar, or the subclasses of java.util.Date defined
in the java.sql package. This is a matter of taste, and we leave the decision to
you—make sure you’re consistent, however!

Large object mapping types
Table 6.3 lists Hibernate types for handling binary data and large objects. Note that
none of these types may be used as the type of an identifier property.

Table 6.2 Date and time types

Mapping type Java type
Standard SQL
built-in type

date java.util.Date or java.sql.Date DATE

time java.util.Date or java.sql.Time TIME

timestamp java.util.Date or java.sql.Timestamp TIMESTAMP

calendar java.util.Calendar TIMESTAMP

calendar_date java.util.Calendar DATE

Table 6.3 Binary and large object types

Mapping type Java type
Standard SQL
built-in type

binary byte[] VARBINARY (or BLOB)

text java.lang.String CLOB

serializable any Java class that implements
java.io.Serializable

VARBINARY (or BLOB)

clob java.sql.Clob CLOB

blob java.sql.Blob BLOB

200 CHAPTER 6

Advanced mapping concepts

java.sql.Blob and java.sql.Clob are the most efficient way to handle large
objects in Java. Unfortunately, an instance of Blob or Clob is only useable until the
JDBC transaction completes. So if your persistent class defines a property of
java.sql.Clob or java.sql.Blob (not a good idea anyway), you’ll be restricted in
how instances of the class may be used. In particular, you won’t be able to use
instances of that class as detached objects. Furthermore, many JDBC drivers don’t
feature working support for java.sql.Blob and java.sql.Clob. Therefore, it
makes more sense to map large objects using the binary or text mapping type,
assuming retrieval of the entire large object into memory isn’t a performance killer.

Note you can find up-to-date design patterns and tips for large object usage on
the Hibernate website, with tricks for particular platforms.

Various JDK mapping types
Table 6.4 lists Hibernate types for various other Java types of the JDK that may be
represented as VARCHARs in the database.

Certainly, <property> isn’t the only Hibernate mapping element that has a type
attribute.

6.1.2 Using mapping types

All of the basic mapping types may appear almost anywhere in the Hibernate
mapping document, on normal property, identifier property, and other map-
ping elements.

The <id>, <property>, <version>, <discriminator>, <index>, and <element> ele-
ments all define an attribute named type. (There are certain limitations on which
mapping basic types may function as an identifier or discriminator type, however.)

You can see how useful the built-in mapping types are in this mapping for the
BillingDetails class:

Table 6.4 Other JDK-related types

Mapping type Java type
Standard SQL
built-in type

class java.lang.Class VARCHAR

locale java.util.Locale VARCHAR

timezone java.util.TimeZone VARCHAR

currency java.util.Currency VARCHAR

Understanding the Hibernate type system 201

<class name="BillingDetails"
 table="BILLING_DETAILS"
 discriminator-value="null">

 <id name="id" type="long" column="BILLING_DETAILS_ID">
 <generator class="native"/>
 </id>

 <discriminator type="character" column="TYPE"/>

 <property name="number" type="string"/>
 ...
</class>

The BillingDetails class is mapped as an entity. Its discriminator, identifier, and
number properties are value typed, and we use the built-in Hibernate mapping types
to specify the conversion strategy.

It’s often not necessary to explicitly specify a built-in mapping type in the XML
mapping document. For instance, if you have a property of Java type
java.lang.String, Hibernate will discover this using reflection and select string
by default. We can easily simplify the previous mapping example:

<class name="BillingDetails"
 table="BILLING_DETAILS"
 discriminator-value="null">

 <id name="id" column="BILLING_DETAILS_ID">
 <generator class="native"/>
 </id>

 <discriminator type="character" column="TYPE"/>

 <property name="number"/>

</class>

The most important case where this approach doesn’t work well is a
java.util.Date property. By default, Hibernate interprets a Date as a timestamp
mapping. You’d need to explicitly specify type="time" or type="date" if you didn’t
wish to persist both date and time information.

For each of the built-in mapping types, a constant is defined by the class
net.sf.hibernate.Hibernate. For example, Hibernate.STRING represents the
string mapping type. These constants are useful for query parameter binding, as
discussed in more detail in chapter 7:

session.createQuery("from Item i where i.description like :desc")
 .setParameter("desc", desc, Hibernate.STRING)
 .list();

202 CHAPTER 6

Advanced mapping concepts

These constants are also useful for programmatic manipulation of the Hibernate
mapping metamodel, as discussed in chapter 3.

Of course, Hibernate isn’t limited to the built-in mapping types. We consider the
extensible mapping type system one of the core features and an important aspect
that makes Hibernate so flexible.

Creating custom mapping types
Object-oriented languages like Java make it easy to define new types by writing new
classes. Indeed, this is a fundamental part of the definition of object orientation. If
you were limited to the predefined built-in Hibernate mapping types when declar-
ing properties of persistent classes, you’d lose much of Java’s expressiveness. Fur-
thermore, your domain model implementation would be tightly coupled to the
physical data model, since new type conversions would be impossible.

Most ORM solutions that we’ve seen provide some kind of support for user-
defined strategies for performing type conversions. These are often called convert-
ers. For example, the user would be able to create a new strategy for persisting a
property of JDK type Integer to a VARCHAR column. Hibernate provides a similar,
much more powerful, feature called custom mapping types.

Hibernate provides two user-friendly interfaces that applications may use when
defining new mapping types. These interfaces reduce the work involved in defin-
ing custom mapping types and insulate the custom type from changes to the Hiber-
nate core. This allows you to easily upgrade Hibernate and keep your existing
custom mapping types. You can find many examples of useful Hibernate mapping
types on the Hibernate community website.

The first of the programming interfaces is net.sf.hibernate.UserType. User-
Type is suitable for most simple cases and even for some more complex problems.
Let’s use it in a simple scenario.

Our Bid class defines an amount property; our Item class defines an initial-
Price property, both monetary values. So far, we’ve only used a simple BigDecimal
to represent the value, mapped with big_decimal to a single NUMERIC column.

Suppose we wanted to support multiple currencies in our auction application
and that we had to refactor the existing domain model for this (customer-driven)
change. One way to implement this change would be to add new properties to Bid
and Item: amountCurrency and initialPriceCurrency. We would then map these
new properties to additional VARCHAR columns with the built-in currency mapping
type. We hope you never use this approach!

Understanding the Hibernate type system 203

Creating a UserType
Instead, we should create a MonetaryAmount class that encapsulates both currency
and amount. Note that this is a class of the domain model; it doesn’t have any
dependency on Hibernate interfaces:

public class MonetaryAmount implements Serializable {

 private final BigDecimal value;
 private final Currency currency;

 public MonetaryAmount(BigDecimal value, Currency currency) {
 this.value = value;
 this.currency = currency;
 }

 public BigDecimal getValue() { return value; }

 public Currency getCurrency() { return currency; }

 public boolean equals(Object o) { ... }
 public int hashCode() { ...}
}

We’ve made MonetaryAmount an immutable class. This is a good practice in Java.
Note that we have to implement equals() and hashCode() to finish the class (there
is nothing special to consider here). We use this new MonetaryAmount to replace the
BigDecimal of the initialPrice property in Item. Of course, we can, and should
use it for all other BigDecimal prices in our persistent classes (such as the
Bid.amount) and even in business logic (for example, in the billing system).

Let’s map this refactored property of Item to the database. Suppose we’re
working with a legacy database that contains all monetary amounts in USD. Our
application is no longer restricted to a single currency (the point of the refactor-
ing), but it takes time to get the changes done by the database team. We need to
convert the amount to USD when we persist the MonetaryAmount and convert it
back to USD when we are loading objects.

For this, we create a MonetaryAmountUserType class that implements the Hiber-
nate interface UserType. Our custom mapping type, is shown in listing 6.1.

package auction.customtypes;

import ...;

public class MonetaryAmountUserType implements UserType {

 private static final int[] SQL_TYPES = {Types.NUMERIC};

Listing 6.1 Custom mapping type for monetary amounts in USD

204 CHAPTER 6

Advanced mapping concepts

public int[] sqlTypes() { return SQL_TYPES; }

public Class returnedClass() { return MonetaryAmount.class; }

public boolean equals(Object x, Object y) {
 if (x == y) return true;
 if (x == null || y == null) return false;
 return x.equals(y);
 }

public Object deepCopy(Object value) { return value; }

public boolean isMutable() { return false; }

public Object nullSafeGet(ResultSet resultSet,
 String[] names,
 Object owner)
 throws HibernateException, SQLException {

 if (resultSet.wasNull()) return null;
 BigDecimal valueInUSD = resultSet.getBigDecimal(names[0]);

 return new MonetaryAmount(valueInUSD, Currency.getInstance)"USD"));
}

public void nullSafeSet(PreparedStatement statement,
 Object value,
 int index)
 throws HibernateException, SQLException {
 if (value == null) {
 statement.setNull(index, Types.NUMERIC);
 } else {
 MonetaryAmount anyCurrency = (MonetaryAmount)value;
 MonetaryAmount amountInUSD =
 MonetaryAmount.convert(anyCurrency,
 Currency.getInstance("USD"));
 // The convert() method isn't shown in our examples
 statement.setBigDecimal(index, amountInUSD.getValue());
 }
 }
}

The sqlTypes() method tells Hibernate what SQL column types to use for DDL
schema generation. The type codes are defined by java.sql.Types. Notice that
this method returns an array of type codes. A UserType may map a single property
to multiple columns, but our legacy data model only has a single NUMERIC.

returnedClass() tells Hibernate what Java type is mapped by this UserType.

B

C

D

E

F

G

H

B

C

Understanding the Hibernate type system 205

The UserType is responsible for dirty-checking property values. The equals()
method compares the current property value to a previous snapshot and deter-
mines whether the property is dirty and must by saved to the database.

The UserType is also partially responsible for creating the snapshot in the first
place. Since MonetaryAmount is an immutable class, the deepCopy() method
returns its argument. In the case of a mutable type, it would need to return a copy
of the argument to be used as the snapshot value. This method is also called when
an instance of the type is written to or read from the second-level cache.

Hibernate can make some minor performance optimizations for immutable types
like this one. The isMutable() method tells Hibernate that this type is immutable.

The nullSafeGet() method retrieves the property value from the JDBC ResultSet.
You can also access the owner of the component if you need it for the conversion.
All database values are in USD, so you have to convert the MonetaryAmount
returned by this method before you show it to the user.

The nullSafeSet() method writes the property value to the JDBC PreparedState-
ment. This method takes whatever currency is set and converts it to a simple Big-
Decimal USD value before saving.

We now map the initialPrice property of Item as follows:

<property name="initialPrice"
 column="INITIAL_PRICE"
 type="auction.customtypes.MonetaryAmountUserType"/>

This is the simplest kind of transformation that a UserType could perform. Much
more sophisticated things are possible. A custom mapping type could perform val-
idation; it could read and write data to and from an LDAP directory; it could even
retrieve persistent objects from a different Hibernate Session for a different data-
base. You’re limited mainly by your imagination!

We’d prefer to represent both the amount and currency of our monetary
amounts in the database, especially if the schema isn’t legacy but can be defined
(or updated quickly). We could still use a UserType, but then we wouldn’t be able
to use the amount (or currency) in object queries. The Hibernate query engine
(discussed in more detail in the next chapter) wouldn’t know anything about the
individual properties of MonetaryAmount. You can access the properties in your Java
code (MonetaryAmount is just a regular class of the domain model, after all), but not
in Hibernate queries.

D

E

F

G

H

206 CHAPTER 6

Advanced mapping concepts

Instead, we should use a CompositeUserType if we need the full power of Hiber-
nate queries. This (slightly more complex) interface exposes the properties of our
MonetaryAmount to Hibernate.

Creating a CompositeUserType
To demonstrate the flexibility of custom mapping types, we don’t change our Mon-
etaryAmount class (and other persistent classes) at all—we change only the custom
mapping type, as shown in listing 6.2.

package auction.customtypes;

import ...;

public class MonetaryAmountCompositeUserType
 implements CompositeUserType {

 public Class returnedClass() { return MonetaryAmount.class; }

 public boolean equals(Object x, Object y) {
 if (x == y) return true;
 if (x == null || y == null) return false;
 return x.equals(y);
 }

 public Object deepCopy(Object value) {
 return value; // MonetaryAmount is immutable
 }

 public boolean isMutable() { return false; }

 public Object nullSafeGet(ResultSet resultSet,
 String[] names,
 SessionImplementor session,
 Object owner)
 throws HibernateException, SQLException {

 if (resultSet.wasNull()) return null;
 BigDecimal value = resultSet.getBigDecimal(names[0]);
 Currency currency =
 Currency.getInstance(resultSet.getString(names[1]));
 return new MonetaryAmount(value, currency);
 }

 public void nullSafeSet(PreparedStatement statement,
 Object value,
 int index,
 SessionImplementor session)
 throws HibernateException, SQLException {

Listing 6.2 Custom mapping type for monetary amounts in new database schemas

Understanding the Hibernate type system 207

 if (value==null) {
 statement.setNull(index, Types.NUMERIC);
 statement.setNull(index+1, Types.VARCHAR);
 } else {
 MonetaryAmount amount = (MonetaryAmount) value;
 String currencyCode =
 amount.getCurrency().getCurrencyCode();
 statement.setBigDecimal(index, amount.getValue());
 statement.setString(index+1, currencyCode);
 }
 }

 public String[] getPropertyNames() {
 return new String[] { "value", "currency" };

 }

 public Type[] getPropertyTypes() {
 return new Type[] { Hibernate.BIG_DECIMAL, Hibernate.CURRENCY };
 }

 public Object getPropertyValue(Object component,
 int property)
 throws HibernateException {
 MonetaryAmount MonetaryAmount = (MonetaryAmount) component;
 if (property == 0)
 return MonetaryAmount.getValue()();
 else
 return MonetaryAmount.getCurrency();
 }

 public void setPropertyValue(Object component,
 int property,
 Object value) throws HibernateException {
 throw new UnsupportedOperationException("Immutable!");
 }

 public Object assemble(Serializable cached,
 SessionImplementor session,
 Object owner)
 throws HibernateException {
 return cached;
 }

 public Serializable disassemble(Object value,
 SessionImplementor session)
 throws HibernateException {
 return (Serializable) value;
 }

}

B

C

D

E

F

G

208 CHAPTER 6

Advanced mapping concepts

A CompositeUserType has its own properties, defined by getPropertyNames().

The properties each have their own type, as defined by getPropertyTypes().

The getPropertyValue() method returns the value of an individual property of
the MonetaryAmount.

Since MonetaryAmount is immutable, we can’t set property values individually (no
problem; this method is optional).

The assemble() method is called when an instance of the type is read from the
second-level cache.

The disassemble() method is called when an instance of the type is written to the
second-level cache.

The order of properties must be the same in the getPropertyNames(), getProper-
tyTypes(), and getPropertyValues() methods. The initialPrice property now
maps to two columns, so we declare both in the mapping file. The first column
stores the value; the second stores the currency of the MonetaryAmount (the order
of columns must match the order of properties in your type implementation):

<property name="initialPrice"
 type="auction.customtypes.MonetaryAmountCompositeUserType">
 <column name="INITIAL_PRICE"/>
 <column name="INITIAL_PRICE_CURRENCY"/>
</property>

In a query, we can now refer to the amount and currency properties of the custom
type, even though they don’t appear anywhere in the mapping document as indi-
vidual properties:

from Item i
where i.initialPrice.value > 100.0
 and i.initialPrice.currency = 'AUD'

We’ve expanded the buffer between the Java object model and the SQL database
schema with our custom composite type. Both representations can now handle
changes more robustly.

If implementing custom types seems complex, relax; you rarely need to use a
custom mapping type. An alternative way to represent the MonetaryAmount class is
to use a component mapping, as in section 3.5.2, “Using components.” The deci-
sion to use a custom mapping type is often a matter of taste.

Let’s look at an extremely important, application of custom mapping types. The
type-safe enumeration design pattern is found in almost all enterprise applications.

B

C

D

E

F

G

Understanding the Hibernate type system 209

Using enumerated types
An enumerated type is a common Java idiom where a class has a constant (small)
number of immutable instances.

For example, the Comment class (users giving comments about other users in
CaveatEmptor) defines a rating. In our current model, we have a simple int prop-
erty. A typesafe (and much better) way to implement different ratings (after all, we
probably don’t want arbitrary integer values) is to create a Rating class as follows:

package auction;

public class Rating implements Serializable {

 private String name;

 public static final Rating EXCELLENT = new Rating("Excellent");
 public static final Rating OK = new Rating("OK");
 public static final Rating LOW = new Rating("Low");
 private static final Map INSTANCES = new HashMap();

 static {
 INSTANCES.put(EXCELLENT.toString(), EXCELLENT);
 INSTANCES.put(OK.toString(), OK);
 INSTANCES.put(LOW.toString(), LOW);
 }
 private Rating(String name) {
 this.name=name;
 }

 public String toString() {
 return name;
 }

 Object readResolve() {
 return getInstance(name);
 }

 public static Rating getInstance(String name) {
 return (Rating) INSTANCES.get(name);
 }
}

We then change the rating property of our Comment class to use this new type. In
the database, ratings would be represented as VARCHAR values. Creating a UserType
for Rating-valued properties is straightforward:

package auction.customtypes;

import ...;
public class RatingUserType implements UserType {

 private static final int[] SQL_TYPES = {Types.VARCHAR};

210 CHAPTER 6

Advanced mapping concepts

 public int[] sqlTypes() { return SQL_TYPES; }
 public Class returnedClass() { return Rating.class; }
 public boolean equals(Object x, Object y) { return x == y; }
 public Object deepCopy(Object value) { return value; }
 public boolean isMutable() { return false; }

 public Object nullSafeGet(ResultSet resultSet,
 String[] names,
 Object owner)
 throws HibernateException, SQLException {

 String name = resultSet.getString(names[0]);
 return resultSet.wasNull() ? null : Rating.getInstance(name);
 }

 public void nullSafeSet(PreparedStatement statement,
 Object value,
 int index)
 throws HibernateException, SQLException {

 if (value == null) {
 statement.setNull(index, Types.VARCHAR);
 } else {
 statement.setString(index, value.toString());
 }
 }
}

This code is basically the same as the UserType implemented earlier. The imple-
mentation of nullSafeGet() and nullSafeSet() is again the most interesting part,
containing the logic for the conversion.

One problem you might run into is using enumerated types in Hibernate que-
ries. Consider the following query in HQL that retrieves all comments rated “Low”:

Query q =
 session.createQuery("from Comment c where c.rating = Rating.LOW");

This query doesn’t work, because Hibernate doesn’t know what to do with Rat-
ing.LOW and will try to use it as a literal. We have to use a bind parameter and set
the rating value for the comparison dynamically (which is what we need for other
reasons most of the time):

Query q =
 session.createQuery("from Comment c where c.rating = :rating");
q.setParameter("rating",
 Rating.LOW,
 Hibernate.custom(RatingUserType.class));

Mapping collections of value types 211

The last line in this example uses the static helper method Hibernate.custom() to
convert the custom mapping type to a Hibernate Type, a simple way to tell Hiber-
nate about our enumeration mapping and how to deal with the Rating.LOW value.

If you use enumerated types in many places in your application, you may want
to take this example UserType and make it more generic. JDK 1.5 introduces a
new language feature for defining enumerated types, and we recommend using a
custom mapping type until Hibernate gets native support for JDK 1.5 features.
(Note that the Hibernate2 PersistentEnum is considered deprecated and
shouldn’t be used.)

We’ve now discussed all kinds of Hibernate mapping types: built-in mapping
types, user-defined custom types, and even components (chapter 3). They’re all
considered value types, because they map objects of value type (not entities) to the
database. We’re now ready to explore collections of value typed instances.

6.2 Mapping collections of value types

You’ve already seen collections in the context of entity relationships in chapter 3.
In this section, we discuss collections that contain instances of a value type, includ-
ing collections of components. Along the way, you’ll meet some of the more
advanced features of Hibernate collection mappings, which can also be used for
collections that represent entity associations, as discussed later in this chapter.

6.2.1 Sets, bags, lists, and maps

Suppose that our sellers can attach images to Items. An image is accessible only via
the containing item; it doesn’t need to support associations to any other entity in
our system. In this case, it isn’t unreasonable to model the image as a value type.
Item would have a collection of images that Hibernate would consider to be part
of the Item, without its own lifecycle.

We’ll run through several ways to implement this behavior using Hibernate. For
now, let’s assume that the image is stored somewhere on the filesystem and that we
keep just the filename in the database. How images are stored and loaded with this
approach isn’t discussed.

Using a set
The simplest implementation is a Set of String filenames. We add a collection
property to the Item class:

212 CHAPTER 6

Advanced mapping concepts

private Set images = new HashSet();
...
public Set getImages() {
 return this.images;
}

public void setImages(Set images) {
 this.images = images;
}

We use the following mapping in the Item:

<set name="images" lazy="true" table="ITEM_IMAGE">
 <key column="ITEM_ID"/>
 <element type="string" column="FILENAME" not-null="true"/>
</set>

The image filenames are stored in a table named ITEM_IMAGE. From the database’s
point of view, this table is separate from the ITEM table; but Hibernate hides this
fact from us, creating the illusion that there is a single entity. The <key> element
declares the foreign key, ITEM_ID of the parent entity. The <element> tag declares
this collection as a collection of value type instances: in this case, of strings.

A set can’t contain duplicate elements, so the primary key of the ITEM_IMAGE
table consists of both columns in the <set> declaration: ITEM_ID and FILENAME. See
figure 6.1 for a table schema example.

It doesn’t seem likely that we would allow the user to attach the same image
more than once, but suppose we did. What kind of mapping would be appropriate?

Using a bag
An unordered collection that permits duplicate elements is called a bag. Curiously,
the Java Collections framework doesn’t define a Bag interface. Hibernate lets you
use a List in Java to simulate bag behavior; this is consistent with common usage
in the Java community. Note, however, that the List contract specifies that a list is
an ordered collection; Hibernate won’t preserve the ordering when persisting a
List with bag semantics. To use a bag, change the type of images in Item from Set
to List, probably using ArrayList as an implementation. (You could also use a
Collection as the type of the property.)

ITEM

ITEM_ID NAME

1
2
3

Foo
Bar
Baz

ITEM_IMAGE

ITEM_ID FILENAME

1
1
2

fooimage1.jpg
fooimage2.jpg
barimage1.jpg

Figure 6.1
Table structure and example data for
a collection of strings

Mapping collections of value types 213

Changing the table definition from the previous section to permit duplicate FILE-
NAMEs requires another primary key. An <idbag> mapping lets us attach a surrogate
key column to the collection table, much like the synthetic identifiers we use for
entity classes:

<idbag name="images" lazy="true" table="ITEM_IMAGE">
 <collection-id type="long" column="ITEM_IMAGE_ID">
 <generator class="sequence"/>
 </collection-id>
 <key column="ITEM_ID"/>
 <element type="string" column="FILENAME" not-null="true"/>
</idbag>

In this case, the primary key is the generated ITEM_IMAGE_ID. You can see a graph-
ical view of the database tables in figure 6.2.

You might be wondering why the Hibernate mapping was <idbag> and if there
is also a <bag> mapping. You’ll soon learn more about bags, but a more likely sce-
nario involves preserving the order in which images were attached to the Item.
There are a number of good ways to do this; one way is to use a real list instead of
a bag.

Using a list
A <list> mapping requires the addition of an index column to the database table.
The index column defines the position of the element in the collection. Thus,
Hibernate can preserve the ordering of the collection elements when retrieving
the collection from the database if we map the collection as a <list>:

<list name="images" lazy="true" table="ITEM_IMAGE">
 <key column="ITEM_ID"/>
 <index column="POSITION"/>
 <element type="string" column="FILENAME" not-null="true"/>
</list>

The primary key consists of the ITEM_ID and POSITION columns. Notice that dupli-
cate elements (FILENAME) are allowed, which is consistent with the semantics of a

ITEM

ITEM_ID NAME

1
2
3

Foo
Bar
Baz

ITEM_IMAGE

ITEM_ID FILENAME

1
1
2

fooimage1.jpg
fooimage1.jpg
barimage1.jpg

ITEM_IMAGE_ID

1
2
3

Figure 6.2
Table structure using a
bag with a surrogate
primary key

214 CHAPTER 6

Advanced mapping concepts

list. (We don’t have to change the Item class; the types we used earlier for the bag
are the same.)

If the collection is [fooimage1.jpg, fooimage1.jpg, fooimage2.jpg], the POSI-
TION column contains the values 0, 1, and 2, as shown in figure 6.3.

Alternatively, we could use a Java array instead of a list. Hibernate supports this
usage; indeed, the details of an array mapping are virtually identical to those of a
list. However, we very strongly recommend against the use of arrays, since arrays
can’t be lazily initialized (there is no way to proxy an array at the virtual machine
level).

Now, suppose that our images have user-entered names in addition to the file-
names. One way to model this in Java would be to use a Map, with names as keys and
filenames as values.

Using a map
Mapping a <map> (pardon us) is similar to mapping a list:

<map name="images" lazy="true" table="ITEM_IMAGE">
 <key column="ITEM_ID"/>
 <index column="IMAGE_NAME" type="string"/>
 <element type="string" column="FILENAME" not-null="true"/>
</map>

The primary key consists of the ITEM_ID and IMAGE_NAME columns. The IMAGE_NAME
column stores the keys of the map. Again, duplicate elements are allowed; see fig-
ure 6.4 for a graphical view of the tables.

This Map is unordered. What if we want to always sort our map by the name of
the image?

ITEM

ITEM_ID NAME

1
2
3

Foo
Bar
Baz

ITEM_IMAGE

ITEM_ID FILENAME

1
1
1

fooimage1.jpg
fooimage1.jpg
fooimage2.jpg

POSITION

0
1
2

Figure 6.3
Tables for a list with
positional elements

ITEM

ITEM_ID NAME

1
2
3

Foo
Bar
Baz

ITEM_IMAGE

ITEM_ID FILENAME

1
1
1

fooimage1.jpg
fooimage1.jpg
fooimage2.jpg

IMAGE_NAME

Foo Image 1
Foo Image One
Foo Image 2

Figure 6.4
Tables for a map,
using strings as
indexes and elements

Mapping collections of value types 215

Sorted and ordered collections
In a startling abuse of the English language, the words sorted and ordered mean dif-
ferent things when it comes to Hibernate persistent collections. A sorted collection is
sorted in memory using a Java comparator. An ordered collection is ordered at the
database level using an SQL query with an order by clause.

Let’s make our map of images a sorted map. This is a simple change to the map-
ping document:

<map name="images"
 lazy="true"
 table="ITEM_IMAGE"
 sort="natural">
 <key column="ITEM_ID"/>
 <index column="IMAGE_NAME" type="string"/>
 <element type="string" column="FILENAME" not-null="true"/>
</map>

By specifying sort="natural", we tell Hibernate to use a SortedMap, sorting the
image names according to the compareTo() method of java.lang.String. If you
want some other sorted order—for example, reverse alphabetical order—you can
specify the name of a class that implements java.util.Comparator in the sort
attribute. For example:

<map name="images"
 lazy="true"
 table="ITEM_IMAGE"
 sort="auction.util.comparator.ReverseStringComparator">

 <key column="ITEM_ID"/>
 <index column="IMAGE_NAME" type="string"/>
 <element type="string" column="FILENAME" not-null="true"/>
</map>

The behavior of a Hibernate sorted map is identical to java.util.TreeMap. A
sorted set (which behaves like java.util.TreeSet) is mapped in a similar way:

<set name="images"
 lazy="true"
 table="ITEM_IMAGE"
 sort="natural">
 <key column="ITEM_ID"/>
 <element type="string" column="FILENAME" not-null="true"/>
</set>

Bags can’t be sorted (there is no TreeBag, unfortunately), nor may lists; the order
of list elements is defined by the list index.

216 CHAPTER 6

Advanced mapping concepts

Alternatively, you might choose to use an ordered map, using the sorting capa-
bilities of the database instead of (probably less efficient) in-memory sorting:

<map name="images"
 lazy="true"
 table="ITEM_IMAGE"
 order-by="IMAGE_NAME asc">
 <key column="ITEM_ID"/>
 <index column="IMAGE_NAME" type="string"/>
 <element type="string" column="FILENAME" not-null="true"/>
</map>

The expression in the order-by attribute is a fragment of an SQL order by clause.
In this case, we order by the IMAGE_NAME column, in ascending order. You can even
write SQL function calls in the order-by attribute:

<map name="images"
 lazy="true"
 table="ITEM_IMAGE"
 order-by="lower(FILENAME) asc">
 <key column="ITEM_ID"/>
 <index column="IMAGE_NAME" type="string"/>
 <element type="string" column="FILENAME" not-null="true"/>
</map>

Notice that you can order by any column of the collection table. Both sets and bags
accept the order-by attribute; but again, lists don’t. This example uses a bag:

<idbag name="images"
 lazy="true"
 table="ITEM_IMAGE"
 order-by="ITEM_IMAGE_ID desc">
 <collection-id type="long" column="ITEM_IMAGE_ID">
 <generator class="sequence"/>
 </collection-id>
 <key column="ITEM_ID"/>
 <element type="string" column="FILENAME" not-null="true"/>
</idbag>

Under the covers, Hibernate uses a LinkedHashSet and a LinkedHashMap to imple-
ment ordered sets and maps, so this functionality is only available in JDK 1.4 or
later. Ordered bags are possible in all JDK versions.

In a real system, it’s likely that we’d need to keep more than just the image name
and filename; we’d probably need to create an Image class for this extra informa-
tion. We could map Image as an entity class; but since we’ve already concluded that
this isn’t absolutely necessary, let’s see how much further we can get without an
Image entity (which would require an association mapping and more complex life-
cycle handling).

Mapping collections of value types 217

In chapter 3, you saw that Hibernate lets you map user-defined classes as compo-
nents, which are considered to be value types. This is still true even when compo-
nent instances are collection elements.

Collections of components
Our Image class defines the properties name, filename, sizeX, and sizeY. It has a sin-
gle association, with its parent Item class, as shown in figure 6.5.

As you can see from the aggregation association style (the black diamond),
Image is a component of Item, and Item is the entity that is responsible for the life-
cycle of Image. References to images aren’t shared, so our first choice is a Hibernate
component mapping. The multiplicity of the association further declares this asso-
ciation as many-valued—that is, many (or zero) Images for the same Item.

Writing the component class
First, we implement the Image class. This is just a POJO, with nothing special to con-
sider. As you know from chapter 3, component classes don’t have an identifier
property. However, we must implement equals() (and hashCode()) to compare the
name, filename, sizeX, and sizeY properties, to allow Hibernate’s dirty checking to
function correctly. Strictly speaking, implementing equals() and hashCode() isn’t
required for all component classes. However, we recommend it for any component
class because the implementation is straightforward and “better safe than sorry” is
a good motto.

The Item class hasn’t changed: it still has a Set of images. Of course, the objects
in this collection are no longer Strings. Let’s map this to the database.

Mapping the collection
Collections of components are mapped similarly to other collections of value type
instances. The only difference is the use of <composite-element> in place of the
familiar <element> tag. An ordered set of images could be mapped like this:

Figure 6.5
Collection of Image components in Item

218 CHAPTER 6

Advanced mapping concepts

<set name="images"
 lazy="true"
 table="ITEM_IMAGE"
 order-by="IMAGE_NAME asc">
 <key column="ITEM_ID"/>
 <composite-element class="Image">
 <property name="name" column="IMAGE_NAME" not-null="true"/>
 <property name="filename" column="FILENAME" not-null="true"/>
 <property name="sizeX" column="SIZEX" not-null="true"/>
 <property name="sizeY" column="SIZEY" not-null="true"/>
 </composite-element>
</set>

This is a set, so the primary key consists of the key column and all element columns:
ITEM_ID, IMAGE_NAME, FILENAME, SIZEX, and SIZEY. Since these columns all appear
in the primary key, we declare them with not-null="true". (This is clearly a disad-
vantage of this particular mapping.)

Bidirectional navigation
The association from Item to Image is unidirectional. If the Image class also
declared a property named item, holding a reference back to the owning Item,
we’d add a <parent> tag to the mapping:

<set name="images"
 lazy="true"
 table="ITEM_IMAGE"
 order-by="IMAGE_NAME asc">
 <key column="ITEM_ID"/>
 <composite-element class="Image">
 <parent name="item"/>
 <property name="name" column="IMAGE_NAME" not-null="true"/>
 <property name="filename" column="FILENAME" not-null="true"/>
 <property name="sizeX" column="SIZEX" not-null="true"/>
 <property name="sizeY" column="SIZEY" not-null="true"/>
 </composite-element>
</set>

True bidirectional navigation is impossible, however. You can’t retrieve an Image
independently and then navigate back to its parent Item. This is an important
issue: You’ll be able to load Image instances by querying for them, but components,
like all value types, are retrieved by value. The Image objects won’t have a reference
to the parent (the property is null). You should use a full parent/child entity asso-
ciation, as described in chapter 3, if you need this kind of functionality.

Still, declaring all properties as not-null is something you should probably
avoid. We need a better primary key for the IMAGE table.

Mapping collections of value types 219

Avoiding not-null columns
If a set of Images isn’t what we need, other collection styles are possible. For exam-
ple, an <idbag> offers a surrogate collection key:

<idbag name="images"
 lazy="true"
 table="ITEM_IMAGE"
 order-by="IMAGE_NAME asc">
 <collection-id type="long" column="ITEM_IMAGE_ID">
 <generator class="sequence"/>
 </collection-id>
 <key column="ITEM_ID"/>
 <composite-element class="Image">
 <property name="name" column="IMAGE_NAME"/>
 <property name="filename" column="FILENAME" not-null="true"/>
 <property name="sizeX" column="SIZEX"/>
 <property name="sizeY" column="SIZEY"/>
 </composite-element>
</idbag>

This time, the primary key is the ITEM_IMAGE_ID column, and it isn’t important that
we implement equals() and hashCode() (at least, Hibernate doesn't require it).
Nor do we need to declare the properties with not-null="true". They may be nul-
lable in the case of an idbag, as shown in figure 6.6.

We should point out that there isn’t a great deal of difference between this bag
mapping and a standard parent/child entity relationship. The tables are identical,
and even the Java code is extremely similar; the choice is mainly a matter of taste.
Of course, a parent/child relationship supports shared references to the child
entity and true bidirectional navigation.

We could even remove the name property from the Image class and again use the
image name as the key of a map:

<map name="images"
 lazy="true"
 table="ITEM_IMAGE"
 order-by="IMAGE_NAME asc">
 <key column="ITEM_ID"/>

ITEM_IMAGE

ITEM_ID FILENAME

1
1
2

fooimage1.jpg
fooimage1.jpg
barimage1.jpg

ITEM_IMAGE_ID

1
2
3

IMAGE_NAME

Foo Image 1
Foo Image 1
Bar Image 1

Figure 6.6
Collection of Image
components using a bag
with a surrogate key

220 CHAPTER 6

Advanced mapping concepts

 <index type="string" column="IMAGE_NAME"/>
 <composite-element class="Image">
 <property name="filename" column="FILENAME" not-null="true"/>
 <property name="sizeX" column="SIZEX"/>
 <property name="sizeY" column="SIZEY"/>
 </composite-element>
</map>

As before, the primary key is composed of ITEM_ID and IMAGE_NAME.
A composite element class like Image isn’t limited to simple properties of basic

type like filename. It may contain components, using the <nested-composite-ele-
ment> declaration, and even <many-to-one> associations to entities. It may not own
collections, however. A composite element with a many-to-one association is useful,
and we’ll come back to this kind of mapping later in this chapter.

We’re finally finished with value types; we’ll continue with entity association
mapping techniques. The simple parent/child association we mapped in chapter
3 is just one of many possible association mapping styles. Most of them are consid-
ered exotic and are rare in practice.

6.3 Mapping entity associations

When we use the word associations, we’re always referring to relationships between
entities. In chapter 3, we demonstrated a unidirectional many-to-one association,
made it bidirectional, and finally turned it into a parent/child relationship (one-
to-many and many-to-one).

One-to-many associations are easily the most important kind of association. In
fact, we go so far as to discourage the use of more exotic association styles when a
simple bidirectional many-to-one/one-to-many will do the job. In particular, a
many-to-many association may always be represented as two many-to-one associa-
tions to an intervening class. This model is usually more easily extensible, so we
tend not to use many-to-many associations in our applications.

Armed with this disclaimer, let’s investigate Hibernate’s rich association map-
pings starting with one-to-one associations.

6.3.1 One-to-one associations

We argued in chapter 3 that the relationships between User and Address (the user
has both a billingAddress and a homeAddress) were best represented using <com-
ponent> mappings. This is usually the simplest way to represent one-to-one rela-
tionships, since the lifecycle of one class is almost always dependent on the lifecycle
of the other class, and the association is a composition.

Mapping entity associations 221

But what if we want a dedicated table for Address and to map both User and
Address as entities? Then, the classes have a true one-to-one association. In this
case, we start with the following mapping for Address:

<class name="Address" table="ADDRESS">
 <id name="id" column="ADDRESS_ID">
 <generator class="native"/>
 </id>
 <property name="street"/>
 <property name="city"/>
 <property name="zipcode"/>
</class>

Note that Address now requires an identifier property; it’s no longer a compo-
nent class. There are two different ways to represent a one-to-one association to
this Address in Hibernate. The first approach adds a foreign key column to the
USER table.

Using a foreign key association
The easiest way to represent the association from User to its billingAddress is to
use a <many-to-one> mapping with a unique constraint on the foreign key. This may
surprise you, since many doesn’t seem to be a good description of either end of a
one-to-one association! However, from Hibernate’s point of view, there isn’t much
difference between the two kinds of foreign key associations. So, we add a foreign
key column named BILLING_ADDRESS_ID to the USER table and map it as follows:

<many-to-one name="billingAddress"
 class="Address"
 column="BILLING_ADDRESS_ID"
 cascade="save-update"/>

Note that we’ve chosen save-update as the cascade style. This means the Address
will become persistent when we create an association from a persistent User. Prob-
ably, cascade="all" makes sense for this association, since deletion of the User
should result in deletion of the Address. (Remember that Address now has its own
entity lifecycle.)
Our database schema still allows duplicate values in the BILLING_ADDRESS_ID col-
umn of the USER table, so two users could have a reference to the same address. To
make this association truly one-to-one, we add unique="true" to the <many-to-
one> element, constraining the relational model so that there can be only one user
per address:

<many-to-one name="billingAddress"
 class="Address"

222 CHAPTER 6

Advanced mapping concepts

 column="BILLING_ADDRESS_ID"
 cascade="all"
 unique="true"/>

This change adds a unique constraint to the BILLING_ADDRESS_ID column in the
DDL generated by Hibernate—resulting in the table structure illustrated by
figure 6.7.

But what if we want this association to be navigable from Address to User in Java?
From chapter 3, you know how to turn it into a bidirectional one-to-many collec-
tion—but we’ve decided that each Address has just one User, so this can’t be the
right solution. We don’t want a collection of users in the Address class. Instead, we
add a property named user (of type User) to the Address class, and map it like so
in the mapping of Address:

<one-to-one name="user"
 class="User"
 property-ref="billingAddress"/>

This mapping tells Hibernate that the user association in Address is the reverse
direction of the billingAddress association in User.

In code, we create the association between the two objects as follows:

Address address = new Address();
address.setStreet("646 Toorak Rd");
address.setCity("Toorak");
address.setZipcode("3000");

Transaction tx = session.beginTransaction();
User user = (User) session.get(User.class, userId);
address.setUser(user);
user.setBillingAddress(address);
tx.commit();

<<Table>>
Address

ADDRESS_ID <<PK>>
STREET
ZIPCODE
CITY

<<Table>>
User

USER_ID <<PK>>
BILLING_ADDRESS_ID <<FK>>
FIRSTNAME
LASTNAME
USERNAME
PASSWORD
EMAIL
RANKING
CREATED

Figure 6.7
A one-to-one association with an
extra foreign key column

Mapping entity associations 223

To finish the mapping, we have to map the homeAddress property of User. This is
easy enough: we add another <many-to-one> element to the User metadata, map-
ping a new foreign key column, HOME_ADDRESS_ID:

<many-to-one name="homeAddress"
 class="Address"
 column="HOME_ADDRESS_ID"
 cascade="save-update"
 unique="true"/>

The USER table now defines two foreign keys referencing the primary key of the
ADDRESS table: HOME_ADDRESS_ID and BILLING_ADDRESS_ID.

Unfortunately, we can’t make both the billingAddress and homeAddress associ-
ations bidirectional, since we don’t know if a particular address is a billing address
or a home address. (We can’t decide which property name—billingAddress or
homeAddress—to use for the property-ref attribute in the mapping of the user
property.) We could try making Address an abstract class with subclasses HomeAd-
dress and BillingAddress and mapping the associations to the subclasses. This
approach would work, but it’s complex and probably not sensible in this case.

Our advice is to avoid defining more than one one-to-one association between
any two classes. If you must, leave the associations unidirectional. If you don’t have
more than one—if there really is exactly one instance of Address per User—there
is an alternative approach to the one we’ve just shown. Instead of defining a for-
eign key column in the USER table, you can use a primary key association.

Using a primary key association
Two tables related by a primary key association share the same primary key values.
The primary key of one table is also a foreign key of the other. The main difficulty
with this approach is ensuring that associated instances are assigned the same pri-
mary key value when the objects are saved. Before we try to solve this problem, let’s
see how we would map the primary key association.

For a primary key association, both ends of the association are mapped using the
<one-to-one> declaration. This also means that we can no longer map both the bill-
ing and home address, only one property. Each row in the USER table has a
corresponding row in the ADDRESS table. Two addresses would require an addi-
tional table, and this mapping style therefore wouldn’t be adequate. Let’s call this
single address property address and map it with the User:

<one-to-one name="address"
 class="Address"
 cascade="save-update"/>

224 CHAPTER 6

Advanced mapping concepts

Next, here’s the user of Address:

<one-to-one name="user"
 class="User"
 constrained="true"/>

The most interesting thing here is the use of constrained="true". It tells Hiber-
nate that there is a foreign key constraint on the primary key of ADDRESS that refers
to the primary key of USER.

Now we must ensure that newly saved instances of Address are assigned the same
identifier value as their User. We use a special Hibernate identifier-generation strat-
egy called foreign:

<class name="Address" table="ADDRESS">
 <id name="id" column="ADDRESS_ID">
 <generator class="foreign">
 <param name="property">user</param>
 </generator>
 </id>
 ...
 <one-to-one name="user"
 class="User"
 constrained="true"/>
</class>

The <param> named property of the foreign generator allows us to name a one-to-
one association of the Address class—in this case, the user association. The foreign
generator inspects the associated object (the User) and uses its identifier as the
identifier of the new Address. Look at the table structure in figure 6.8.

The code to create the object association is unchanged for a primary key associ-
ation; it’s the same code we used earlier for the many-to-one mapping style.

<<Table>>
Address

ADDRESS_ID <<PK>> <<FK>>
STREET
ZIPCODE
CITY

<<Table>>
User

USER_ID <<PK>>
FIRSTNAME
LASTNAME
USERNAME
PASSWORD
EMAIL
RANKING
CREATED

Figure 6.8
The tables for a one-to-one association
with shared primary key values

Mapping entity associations 225

There is now just one remaining entity association multiplicity we haven’t dis-
cussed: many-to-many.

6.3.2 Many-to-many associations

The association between Category and Item is a many-to-many association, as you
can see in figure 6.9.

In a real system, we might not use a many-to-many association. In our experi-
ence, there is almost always other information that must be attached to each link
between associated instances (for example, the date and time when an item was set
in a category), and the best way to represent this information is via an intermediate
association class. In Hibernate, we could map the association class as an entity and
use two one-to-many associations for either side. Perhaps more conveniently, we
could also use a composite element class, a technique we’ll show you later.

Nevertheless, it’s the purpose of this section to implement a real many-to-many
entity association. Let’s start with a unidirectional example.

A unidirectional many-to-many association
If you only require unidirectional navigation, the mapping is straightforward. Uni-
directional many-to-many associations are no more difficult than the collections of
value type instances we covered previously. For example, if the Category has a set
of Items, we can use this mapping:

<set name="items"
 table="CATEGORY_ITEM"
 lazy="true"
 cascade="save-update">
 <key column="CATEGORY_ID"/>
 <many-to-many class="Item" column="ITEM_ID"/>
</set>

Figure 6.9
A many-to-many valued
association between
Category and Item

226 CHAPTER 6

Advanced mapping concepts

Just like a collection of value type instances, a many-to-many association has its own
table, the link table or association table. In this case, the link table has two columns:
the foreign keys of the CATEGORY and ITEM tables. The primary key is composed of
both columns. The full table structure is shown in figure 6.10.

We can also use a bag with a separate primary key column:

<idbag name="items"
 table="CATEGORY_ITEM”
 lazy="true"
 cascade="save-update">
 <collection-id type="long" column="CATEGORY_ITEM_ID">
 <generator class="sequence"/>
 </collection-id>
 <key column="CATEGORY_ID"/>
 <many-to-many class="Item" column="ITEM_ID"/>
</idbag>

As usual with an <idbag> mapping, the primary key is a surrogate key column,
CATEGORY_ITEM_ID. Duplicate links are therefore allowed; the same Item can be
added twice to a particular Category. (This doesn’t seem to be a very useful feature.)

We can even use an indexed collection (a map or list). The following example
uses a list:

<list name="items"
 table="CATEGORY_ITEM”
 lazy="true"
 cascade="save-update">
 <key column="CATEGORY_ID"/>
 <index column="DISPLAY_POSITION"/>
 <many-to-many class="Item" column="ITEM_ID"/>
</list>

<<Table>>
CATEGORY

CATEGORY_ID <<PK>>
PARENT_CATEGORY_ID <<FK>>
NAME
CREATED

<<Table>>
ITEM

ITEM_ID <<PK>>
NAME
DESCRIPTION
INITIAL_PRICE
...

<<Table>>
CATEGORY_ITEM

CATEGORY_ID <<PK>> <<FK>>
ITEM_ID <<PK>> <<FK>>

Figure 6.10
Many-to-many entity
association mapped to
an association table

Mapping entity associations 227

The primary key consists of the CATEGORY_ID and DISPLAY_POSITION columns. This
mapping guarantees that every Item knows its position in the Category.

Creating an object association is easy:

Transaction tx = session.beginTransaction();
Category cat = (Category) session.get(Category.class, categoryId);
Item item = (Item) session.get(Item.class, itemId);

cat.getItems().add(item);

tx.commit();

Bidirectional many-to-many associations are slightly more difficult.

A bidirectional many-to-many association
When we mapped a bidirectional one-to-many association in chapter 3 (section 3.7,
“Introducing associations”), we explained why one end of the association must be
mapped with inverse="true". We encourage you to review that explanation now.

The same principle applies to bidirectional many-to-many associations: each row
of the link table is represented by two collection elements, one element at each
end of the association. An association between an Item and a Category is repre-
sented in memory by the Item instance belonging to the items collection of the
Category but also by the Category instance belonging to the categories collection
of the Item.

Before we discuss the mapping of this bidirectional case, you must be aware that
the code to create the object association also changes:

cat.getItems.add(item);
item.getCategories().add(category);

As always, a bidirectional association (no matter of what multiplicity) requires that
you set both ends of the association.

When you map a bidirectional many-to-many association, you must declare one
end of the association using inverse="true" to define which side’s state is used to
update the link table. You can choose for yourself which end that should be.

Recall this mapping for the items collection from the previous section:

<class name="Category" table="CATEGORY">
 ... <
 set name="items"
 table="CATEGORY_ITEM"
 lazy="true"
 cascade="save-update">
 <key column="CATEGORY_ID"/>

228 CHAPTER 6

Advanced mapping concepts

 <many-to-many class="Item" column="ITEM_ID"/>
 </set>
</class>

We can reuse this mapping for the Category end of the bidirectional association.
We map the Item end as follows:

<class name="Item" table="ITEM">
 ...
 <set name="categories"
 table="CATEGORY_ITEM"
 lazy="true"
 inverse="true"
 cascade="save-update">
 <key column="ITEM_ID"/>
 <many-to-many class="Item" column="CATEGORY_ID"/>
 </set>
</class>

Note the use of inverse="true". Once again, this setting tells Hibernate to ignore
changes made to the categories collection and use the other end of the associa-
tion (the items collection) as the representation that should be synchronized with
the database if we manipulate the association in Java code.

We’ve chosen cascade="save-update" for both ends of the collection; this isn’t
unreasonable. On the other hand, cascade="all", cascade="delete", and cas-
cade="all-delete-orphans" aren’t meaningful for many-to-many associations,
since an instance with potentially many parents shouldn’t be deleted when just one
parent is deleted.

What kinds of collections may be used for bidirectional many-to-many associa-
tions? Do you need to use the same type of collection at each end? It’s reasonable
to use, for example, a list at the end not marked inverse="true" (or explicitly set
false) and a bag at the end that is marked inverse="true".

You can use any of the mappings we’ve shown for unidirectional many-to-many
associations for the noninverse end of the bidirectional association. <set>,
<idbag>, <list>, and <map> are all possible, and the mappings are identical to those
shown previously.

For the inverse end, <set> is acceptable, as is the following bag mapping:

<class name="Item" table="ITEM">
 ...
 <bag name="categories"
 table="CATEGORY_ITEM”
 lazy="true"
 inverse="true" cascade="save-update">

Mapping entity associations 229

 <key column="ITEM_ID"/>
 <many-to-many class="Item" column="CATEGORY_ID"/>
 </bag>
</class>

This is the first time we’ve shown the <bag> declaration: It’s similar to an <idbag>
mapping, but it doesn’t involve a surrogate key column. It lets you use a List (with
bag semantics) in a persistent class instead of a Set. Thus it’s preferred if the non-
inverse side of a many-to-many association mapping is using a map, list, or bag
(which all permit duplicates). Remember that a bag doesn’t preserve the order of
elements, despite the List type in the Java property definition.

No other mappings should be used for the inverse end of a many-to-many asso-
ciation. Indexed collections (lists and maps) can’t be used, since Hibernate won’t
initialize or maintain the index column if inverse="true". This is also true and
important to remember for all other association mappings involving collections:
an indexed collection (or even arrays) can’t be set to inverse="true".

We already frowned at the use of a many-to-many association and suggested the
use of composite element mappings as an alternative. Let’s see how this works.

Using a collection of components for a many-to-many association
Suppose we need to record some information each time we add an Item to a Cat-
egory. For example, we might need to store the date and the name of the user who
added the item to this category. We need a Java class to represent this information:

public class CategorizedItem {
 private String username;
 private Date dateAdded;
 private Item item;
 private Category category;

}

(We omitted the accessors and equals() and hashCode() methods, but they would
be necessary for this component class.)

We map the items collection on Category as follows:

<set name="items" lazy="true" table="CATEGORY_ITEMS">
 <key column="CATEGORY_ID"/>
 <composite-element class="CategorizedItem">
 <parent name="category"/>
 <many-to-one name="item"
 class="Item"
 column="ITEM_ID"
 not-null="true"/>
 <property name="username" column="USERNAME" not-null="true"/>

230 CHAPTER 6

Advanced mapping concepts

 <property name="dateAdded" column="DATE_ADDED" not-null="true"/>
 </composite-element>
</set>

We use the <many-to-one> element to declare the association to Item, and we use
the <property> mappings to declare the extra association-related information. The
link table now has four columns: CATEGORY_ID, ITEM_ID, USERNAME, and DATE_ADDED.
The columns of the CategorizedItem properties should never be null: otherwise
we can’t identify a single link entry, because they’re all part of the table’s primary
key. You can see the table structure in figure 6.11.

In fact, rather than mapping just the username, we might like to keep an
actual reference to the User object. In this case, we have the following ternary
association mapping:

<set name="items" lazy="true" table="CATEGORY_ITEMS">
 <key column="CATEGORY_ID"/>
 <composite-element class="CategorizedItem">
 <parent name="category"/>
 <many-to-one name="item"
 class="Item"
 column="ITEM_ID"
 not-null="true"/>
 <many-to-one name="user"
 class="User"
 column="USER_ID"
 not-null="true"/>
 <property name="dateAdded" column="DATE_ADDED" not-null="true"/>
 </composite-element>
</set>

<<Table>>
CATEGORY

CATEGORY_ID <<PK>>
PARENT_CATEGORY_ID <<FK>>
NAME
CREATED

<<Table>>
ITEM

ITEM_ID <<PK>>
NAME
DESCRIPTION
INITIAL_PRICE
...

<<Table>>
CATEGORY_ITEM

CATEGORY_ID <<PK>> <<FK>>
ITEM_ID <<PK>> <<FK>>
USERNAME <<PK>>
DATE_ADDED <<PK>>

Figure 6.11
Many-to-many entity
association table using
a component

Mapping entity associations 231

This is a fairly exotic beast! If you find yourself with a mapping like this, you should
ask whether it might be better to map CategorizedItem as an entity class and use
two one-to-many associations. Furthermore, there is no way to make this mapping
bidirectional: a component (such as CategorizedItem) can’t, by definition, have
shared references. You can’t navigate from Item to CategorizedItem.

We talked about some limitations of many-to-many mappings in the previous
section. One of them, the restriction to nonindexed collections for the inverse end
of an association, also applies to one-to-many associations, if they’re bidirectional.
Let’s take a closer look at one-to-many and many-to-one again, to refresh your
memory and elaborate on what we discussed in chapter 3.

One-to-many associations
You already know most of what you need to know about one-to-many associations
from chapter 3. We mapped a typical parent/child relationship between two entity
persistent classes, Item and Bid. This was a bidirectional association, using a <one-
to-many> and a <many-to-one> mapping. The “many” end of this association was
implemented in Java with a Set; we had a collection of bids in the Item class. Let’s
reconsider this mapping and walk through some special cases.

Using a bag with set semantics
For example, if you absolutely need a List of children in your parent Java class,
it’s possible to use a <bag> mapping in place of a set. In our example, first we
have to replace the type of the bids collection in the Item persistent class with a
List. The mapping for the association between Item and Bid is then left essen-
tially unchanged:

<class
 name="Bid"
 table="BID">
 ...
 <many-to-one
 name="item"
 column="ITEM_ID"
 class="Item"
 not-null="true"/>

</class>

<class
 name="Item"
 table="ITEM">
 ...
 <bag
 name="bids"

232 CHAPTER 6

Advanced mapping concepts

 inverse="true"
 cascade="all-delete-orphan">

 <key column="ITEM_ID"/>
 <one-to-many class="Bid"/>
 </bag>

</class>

We renamed the <set> element to <bag>, making no other changes. Note, however,
that this change isn’t useful: the underlying table structure doesn’t support dupli-
cates, so the <bag> mapping results in an association with set semantics. Some tastes
prefer the use of Lists even for associations with set semantics, but ours doesn’t, so
we recommend using <set> mappings for typical parent/child relationships.

The obvious (and wrong) solution would be to use a real <list> mapping for
the bids with an additional column holding the position of the elements. Remem-
ber the Hibernate limitation we introduced earlier in this chapter: you can’t use
indexed collections on an inverse side of an association. The inverse="true" side
of the association isn’t considered when Hibernate saves the object state, so Hiber-
nate will ignore the index of the elements and not update the position column.

However, if your parent/child relationship will only be unidirectional (naviga-
tion is only possible from parent to child), you could even use an indexed collec-
tion type (because the “many” end would no longer be inverse). Good uses for
unidirectional one-to-many associations are uncommon in practice, and we don’t
have one in our auction application. You may remember that we started with the
Item and Bid mapping in chapter 3, making it first unidirectional, but we quickly
introduced the other side of the mapping.

Let’s find a different example to implement a unidirectional one-to-many asso-
ciation with an indexed collection.

Unidirectional mapping
For the sake of this section, we now suppose that the association between Category
and Item is to be remodeled as a one-to-many association (an item now belongs to
at most one category) and further that the Item doesn’t own a reference to its cur-
rent category. In Java code, we model this as a collection named items in the Cat-
egory class; we don’t have to change anything if we don’t use an indexed collection.
If items is implemented as a Set, we use the following mapping:

<set name="items" lazy="true">
 <key column="CATEGORY_ID"/>
 <one-to-many class="Item"/>
</set>

Mapping entity associations 233

Remember that one-to-many association mappings don’t need to declare a table
name. Hibernate already knows that the column names in the collection mapping
(in this case, only CATEGORY_ID) belong to the ITEM table. The table structure is
shown in figure 6.12.

The other side of the association, the Item class, has no mapping reference to
Category. We can now also use an indexed collection in the Category—for exam-
ple, after we change the items property to List:

<list name="items" lazy="true">
 <key>
 <column name="CATEGORY_ID" not-null="false"/>
 </key>
 <index column="DISPLAY_POSITION/>
 <one-to-many class="Item"/>
</list>

Note the new DISPLAY_POSITION column in the ITEM table, which holds the position
of the Item elements in the collection.

There is an important issue to consider, which, in our experience, puzzles many
Hibernate users at first. In a unidirectional one-to-many association, the foreign
key column CATEGORY_ID in the ITEM must be nullable. An Item could be saved with-
out knowing anything about a Category—it’s a stand-alone entity! This is a consis-
tent model and mapping, and you might have to think about it twice if you deal
with a not-null foreign key and a parent/child relationship. Using a bidirectional
association (and a Set) is the correct solution.

Now that you know about all the association mapping techniques for normal
entities, we still have to consider inheritance and associations to the various levels
of an inheritance hierarchy. What we really want is polymorphic behavior. Let’s see
how Hibernate deals with polymorphic entity associations.

<<Table>>
CATEGORY

CATEGORY_ID <<PK>>
PARENT_CATEGORY_ID <<FK>>
NAME
CREATED

<<Table>>
ITEM

ITEM_ID <<PK>>
CATEGORY_ID <<FK>>
NAME
DESCRIPTION
INITIAL_PRICE
...

Figure 6.12
A standard one-to-many
association using a
foreign key column

234 CHAPTER 6

Advanced mapping concepts

6.4 Mapping polymorphic associations

Polymorphism is a defining feature of object-oriented languages like Java. Support
for polymorphic associations and polymorphic queries is a basic feature of an ORM
solution like Hibernate. Surprisingly, we’ve managed to get this far without need-
ing to talk much about polymorphism. Even more surprisingly, there isn’t much to
say on the topic—polymorphism is so easy to use in Hibernate that we don’t need
to spend a lot of effort explaining this feature.

To get an overview, we’ll first consider a many-to-one association to a class that
might have subclasses. In this case, Hibernate guarantees that you can create links
to any subclass instance just as you would to instances of the superclass.

6.4.1 Polymorphic many-to-one associations

A polymorphic association is an association that may refer to instances of a subclass of
the class that was explicitly specified in the mapping metadata. For this example,
imagine that we don’t have many BillingDetails per User, but only one, as shown
in figure 6.13.

We map this association to the abstract class BillingDetails as follows:

<many-to-one name="billingDetails"
 class="BillingDetails"
 column="BILLING_DETAILS_ID"
 cascade="save-update"/>

But since BillingDetails is abstract, the association must refer to an instance of
one of its subclasses—CreditCard or BankAccount—at runtime.

All the association mappings we’ve introduced so far in this chapter support
polymorphism. You don’t have to do anything special to use polymorphic associa-
tions in Hibernate; specify the name of any mapped persistent class in your

CreditCard
type : int
expMonth : String
expYear : String

BankAccount
bankName: String
bankSwift: String

BillingDetails
owner : String
number: String
created : Date

User
firstname : String
lastname : String
username : String
password : String
email : String
ranking : int
created : Date

Figure 6.13
The user has only one billing
information object.

Mapping polymorphic associations 235

association mapping (or let Hibernate discover it using reflection); then, if that
class declares any <subclass> or <joined-subclass> elements, the association is
naturally polymorphic.

The following code demonstrates the creation of an association to an instance
of the CreditCard subclass:

CreditCard cc = new CreditCard();
cc.setNumber(ccNumber);
cc.setType(ccType);
cc.setExpiryDate(ccExpiryDate);

Session session = sessions.openSession();
Transaction tx = session.beginTransaction();

User user = (User) session.get(User.class, uid);
user.setBillingDetails(cc);

tx.commit();
session.close();

Now, when we navigate the association in a second transaction, Hibernate automat-
ically retrieves the CreditCard instance:

Session session = sessions.openSession();
Transaction tx = session.beginTransaction();

User user = (User) session.get(User.class, uid);
// Invoke the pay() method on the actual subclass
user.getBillingDetails().pay(paymentAmount);

tx.commit();
session.close();

There is one thing to watch out for: if BillingDetails was mapped with
lazy="true", Hibernate would proxy the billingDetails association. In this case,
we wouldn’t be able to perform a typecast to the concrete class CreditCard at run-
time, and even the instanceof operator would behave strangely:

User user = (User) session.get(User.class, uid);
BillingDetails bd = user.getBillingDetails();
System.out.println(bd instanceof CreditCard); // prints "false"
CreditCard cc = (CreditCard) bd; // ClassCastException!

In this code, the typecast fails because bd is a proxy instance. When a method is
invoked on the proxy, the call is delegated to an instance of CreditCard that is
fetched lazily. To perform a proxysafe typecast, use Session.load():

User user = (User) session.get(User.class, uid);
BillingDetails bd = user.getBillingDetails();
// Get a proxy of the subclass, doesn't hit the database
CreditCard cc =

236 CHAPTER 6

Advanced mapping concepts

 (CreditCard) session.load(CreditCard.class, bd.getId());
expiryDate = cc.getExpiryDate();

After the call to load, bd and cc refer to two different proxy instances, which both
delegate to the same underlying CreditCard instance.

Note that you can avoid these issues by avoiding lazy fetching, as in the following
code, using a query technique discussed in the next chapter:

User user = (User) session.createCriteria(User.class)
 .add(Expression.eq("id", uid))
 .setFetchMode("billingDetails", FetchMode.EAGER)
 .uniqueResult();
// The user's billingDetails were fetched eagerly
CreditCard cc = (CreditCard) user.getBillingDetails();
expiryDate = cc.getExpiryDate();

Truly object-oriented code shouldn’t use instanceof or numerous typecasts. If you
find yourself running into problems with proxies, you should question your design,
asking whether there is a more polymorphic approach.

One-to-one associations are handled the same way. What about many-valued
associations?

6.4.2 Polymorphic collections

Let’s refactor the previous example to its original form in CaveatEmptor. If User
owns many BillingDetails, we use a bidirectional one-to-many. In Billing-
Details, we have the following:

<many-to-one name="user"
 class="User"
 column="USER_ID"/>

In the Users mapping, we have this:

<set name="billingDetails"
 lazy="true"
 cascade="save-update"
 inverse="true">
 <key column="USER_ID"/>
 <one-to-many class="BillingDetails"/>
</set>

Adding a CreditCard is easy:

CreditCard cc = new CreditCard();
cc.setNumber(ccNumber);
cc.setType(ccType);
cc.setExpiryDate(ccExpiryDate);

Session session = sessions.openSession();

Mapping polymorphic associations 237

Transaction tx = session.beginTransaction();

User user = (User) session.get(User.class, uid);
// Call convenience method that sets both "ends"
user.addBillingDetails(cc);

tx.commit();
session.close();

As usual, addBillingDetails() calls getBillingDetails().add(cc) and cc.set-
User(this).

We can iterate over the collection and handle instances of CreditCard and
BankAccount polymorphically (we don’t want to bill users multiple times in our
final system, though):

Session session = sessions.openSession();
Transaction tx = session.beginTransaction();

User user = (User) session.get(User.class, uid);
Iterator iter = user.getBillingDetails().iterator();
while (iter.hasNext()) {
 BillingDetails bd = (BillingDetails) iter.next();
 // Invoke CreditCard.pay() or BankAccount.pay()
 bd.pay(ccPaymentAmount);
}

tx.commit();
session.close();

In the examples so far, we’ve assumed that BillingDetails is a class mapped
explicitly in the Hibernate mapping document, and that the inheritance mapping
strategy is table-per-hierarchy or table-per-subclass. We haven’t yet considered the
case of a table-per-concrete-class mapping strategy, where BillingDetails

wouldn’t be mentioned explicitly in the mapping file (only in the Java definition
of the subclasses).

6.4.3 Polymorphic associations and table-per-concrete-class

In section 3.6.1, “Table per concrete class,” we defined the table-per-concrete-class
mapping strategy and observed that this mapping strategy makes it difficult to rep-
resent a polymorphic association, because you can’t map a foreign key relationship
to the table of the abstract superclass. There is no table for the superclass with this
strategy; you only have tables for concrete classes.

Suppose that we want to represent a polymorphic many-to-one association from
User to BillingDetails, where the BillingDetails class hierarchy is mapped using
this table-per-concrete-class strategy. There is a CREDIT_CARD table and a

238 CHAPTER 6

Advanced mapping concepts

BANK_ACCOUNT table, but no BILLING_DETAILS table. We need two pieces of informa-
tion in the USER table to uniquely identify the associated CreditCard or BankAccount:

■ The name of the table in which the associated instance resides

■ The identifier of the associated instance

The USER table requires the addition of a BILLING_DETAILS_TYPE column, in
addition to the BILLING_DETAILS_ID. We use a Hibernate <any> element to map
this association:

<any name="billingDetails"
 meta-type="string"
 id-type="long"
 cascade="save-update">
 <meta-value value="CREDIT_CARD" class="CreditCard"/>
 <meta-value value="BANK_ACCOUNT"class="BankAccount"/>
 <column name="BILLING_DETAILS_TYPE"/>
 <column name="BILLING_DETAILS_ID"/>
</any>

The meta-type attribute specifies the Hibernate type of the BILLING_DETAILS_TYPE
column; the id-type attribute specifies the type of the BILLING_DETAILS_ID col-
umn (CreditCard and BankAccount must have the same identifier type). Note that
the order of the columns is important: first the type, then the identifier.

The <meta-value> elements tell Hibernate how to interpret the value of the
BILLING_DETAILS_TYPE column. We don’t need to use the full table name here—we
can use any value we like as a type discriminator. For example, we can encode the
information in two characters:

<any name="billingDetails"
 meta-type="string"
 id-type="long"
 cascade="save-update">
 <meta-value value="CC" class="CreditCard"/>
 <meta-value value="CA" class="BankAccount"/>
 <column name="BILLING_DETAILS_TYPE"/>
 <column name="BILLING_DETAILS_ID"/>
</any>

An example of this table structure is shown in figure 6.14.
Here is the first major problem with this kind of association: we can’t add a for-

eign key constraint to the BILLING_DETAILS_ID column, since some values refer to
the BANK_ACCOUNT table and others to the CREDIT_CARD table. Thus, we need to
come up with some other way to ensure integrity (a trigger, for example).

Summary 239

Furthermore, it’s difficult to write SQL table joins for this association. In particular,
the Hibernate query facilities don’t support this kind of association mapping, nor
may this association be fetched using an outer join. We discourage the use of <any>
associations for all but the most special cases.

As you can see, polymorphism is messier in the case of a table-per-concrete-class
inheritance mapping strategy. We don’t usually use this mapping strategy when
polymorphic associations are required. As long as you stick to the other inherit-
ance-mapping strategies, polymorphism is straightforward, and you don’t usually
need to think about it.

6.5 Summary

This chapter covered the finer points of ORM and techniques needed to solve the
structural mismatch problem. We can now fully map all the entities and associa-
tions in the CaveatEmptor domain model.

The Hibernate type system distinguishes entities from value types. An entity
instance has its own lifecycle and persistent identity; an instance of a value type is
completely dependant on an owning entity.

Hibernate defines a rich variety of built-in value mapping types. When the pre-
defined types are insufficient, you can easily extend them using custom types or

<<Table>>
CREDIT_CARD

CREDIT_CARD_ID <<PK>>
OWNER
...

<<Table>>
BANK_ACCOUNT

BANK_ACCOUNT_ID <<PK>>
OWNER
...

<<Table>>
USER

USER_ID <<PK>>
BILLING_DETAILS_TYPE <<Discriminator>>
BILLING_DETAILS_ID <<Any>>
FIRSTNAME
LASTNAME
USERNAME
...

Figure 6.14 Using a discriminator column with an any association

240 CHAPTER 6

Advanced mapping concepts

component mappings and even implement arbitrary conversions from Java to SQL
data types.

Collection-valued properties are considered to be of value type. A collection
doesn’t have its own persistent identity and belongs to a single owning entity.
You’ve seen how to map collections, including collections of value-typed instances
and many-valued entity associations.

Hibernate supports one-to-one, one-to-many, and many-to-many associations
between entities. In practice, we recommend against the overuse of many-to-many
associations. Associations in Hibernate are naturally polymorphic. We also talked
about bidirectional behavior of such relationships.

M A N N I N GM A N N I N G $44.95 US/$62.95 Canada

H
ibernate practically exploded on the Java scene. Why is this open-source
tool so popular? Because it automates a tedious task: persisting your Java
objects to a relational database. The inevitable mismatch between your

object-oriented code and the relational database requires you to write code
that maps one to the other. This code is often complex, tedious and costly to
develop. Hibernate does the mapping for you.

Not only that, Hibernate makes it easy. Positioned as a layer
between your application and your database, Hibernate
takes care of loading and saving of objects. Hibernate appli-
cations are cheaper, more portable, and more resilient to
change. And they perform better than anything you are
likely to develop yourself.

Hibernate in Action carefully explains the concepts you need,
then gets you going. It builds on a single example to show
you how to use Hibernate in practice, how to deal with
concurrency and transactions, how to efficiently retrieve
objects and use caching.

The authors created Hibernate and they field questions from
the Hibernate community every day—they know how to
make Hibernate sing. Knowledge and insight seep out of
every pore of this book.

A member of the core Hibernate developer team, Christian Bauer maintains
the Hibernate documentation and website. He is a senior software engineer
in Frankfurt, Germany. Gavin King is the Hibernate founder and principal
developer. He is a J2EE consultant based in Melbourne, Australia.

JAVA

HIBERNATE IN ACTION
Christian Bauer and Gavin King

“The Bible of Hibernate”
—Ara Abrahamian, XDoclet Lead Developer

,!7IB9D2-djebfd!:p;o;O;t;P
ISBN 1-932394-15-X

Christian Bauer
Gavin King

M A N N I N G

HIBERNATE
IN ACTIO

HIBERNATE
IN ACTION

Bauer
King

What’s Inside

■ ORM concepts

■ Getting started

■ Many real-world tasks

■ The Hibernate application
development process

The ultimate Hibernate reference

Ask the Authors Ebook edition

AUTHOR
✔

ONLINE

✔

www.manning.com/bauer

