
Chapter 8

DC conductivities

8.1. ELECTRON SCATTERING BY IMPURITIES

This chapter is mostly concerned with the methods for calculating the electrical conductivity.

Four different methods are discussed: (1) solving the Boltzmann equation, (2) evaluating the

Kubo formula for the current±current correlation function, (3) evaluating the force±force

correlation function, and (4) solving the quantum Boltzmann equation. For scattering from

®xed impurities they all give the same answer. For scattering by phonons two different

answers are obtained. One is called the Ziman (1960) formula, and the other the Holstein

(1964) formula. Two criteria are important in comparing these methods: which is the easiest

to use, and which gives the most accurate answer?

The electrical resistivity, or conductivity, from impurity scattering is an important topic.

From the experimental viewpoint, all solids have impurities which make a contribution to the

total resistivity. In many metals and semiconductors, the low-temperature resistivity is

dominated by impurities, since all other contributions are temperature dependent and vanish

at low temperature. In metals, the resistivity from impurity scattering is largely temperature

independent, except for temperature variations on the scale of the Fermi temperature

TF � EF=kB. The subject is important, on the theoretical side, because it was one of the

earliest evaluations of the Kubo formula. The importance of vertex corrections became

apparent. Indeed, the derivation showed that vertex corrections are usually very important and

should be assumed important until shown otherwise. This conclusion, and message, continues

to be relevant even for calculations of other quantities.

The present chapter is really about vertex corrections.

8.1.1. Boltzmann equation

The electrical resistivity from impurity scattering is easily derived by using the Boltz-

mann equation. This derivation is presented for several reasons. First, it is the easiest way to

get the answer. Second, the resistivity was ®rst found this way; the Green's function evaluation

of the Kubo formula only con®rmed the result known earlier from transport theory. The

Green's function derivation is complicated and subtle, and it is useful to know and believe the

right answer in order to recognize it when it is ®nally derived.
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Our objective is to derive a formula for the electrical resistivity with the least possible

fuss. The simplest possible model is adopted for the solid. It is a homogeneous system except

for randomly located impurities. The electron states are plane waves except for occasional

scattering from isolated impurities. The impurities are very dilute, so that interference

between successive scatterings can be neglected. In the Boltzmann theory, the electrons are

described by a classical distribution function f (r, k, t). The time rate of change of this

distribution function is governed by the Boltmann equation

0 � df

df
� @f
@f
� v ?HHr f � @k

@t
?HHk f � df

dt

� �
collisions

�8:1�

The last term is the time rate of change due to collisions with the impurities. There is no r

dependence in f (r, k, t) since the material is assumed to be homogeneous. Also, for the dc

conductivity, there is no time dependence. The system has a weak external electric ®eld and

the current ¯ows in a steady-state fashion. The distribution function is only a function of wave

vector f (k) and obeys the equation

0 � @k
@t

?HHk f � df

dt

� �
collisions

�8:2�

In a solid, the factor @k=@t is equivalent to an acceleration which is equal to the forces on the

electron (see Kittel, 1963):

@k

@t
� ÿeEÿ e

c
v�H0 �8:3�

In the present problem, there is an electric ®eld E and no magnetic ®eld H0 � 0, so that

eE ?HHk f �k� � df

dt

� �
collisions

�8:4�

The collision term is the most interesting. It is evaluated in the relaxation time approximation.

This approximation assumes that collisions seek to return the system to the equilibrium

con®guration f0�k�, which is the con®guration the system would have in the absence of an

electric ®eld. The rate of change of f (k) due to collisions is assumed to be proportional to the

degree that f (k) is different from f0�k�:
df

dt

� �
collisions

� ÿ � f �k� ÿ f0�k��
tt�k�

�8:5�

f0�k� �
2

ebxk � 1
�8:6�

The factor of two in f0 is due to the spin degeneracy. The above equation de®nes the transport

relaxation time tt�k�. A more detailed derivation can be found in Ziman (1960). Here an

equation for tt�k� is derived and solved. Then the distribution function is

f �k� � f0�k� ÿ ett�k�E ?HHk f �k� �8:7�
When the electric ®eld is small, only a small amount of current ¯ows. The system is only

slightly out of equilibrium. The distribution function f �k� � f0�k� � f1�k�, where the change

f1�k� is small. It is only necessary to retain terms of O(E). Iterate the above equation, which
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effectively replaces f by f0 on the right-hand side. Then f (k) is evaluated to O(E).

Furthermore, it is assumed that the system is isotropic and f0�k� ÿ f0�k�

f �k� � f0�k� ÿ ett�k�E ?HHk f0�k� �8:8�

� f0�k� ÿ ett�k�
E ? k

m

df0�k�
dek

�8:9�

The electrical current density J is the product of the electron charge e, the electron's density

n0, and the average velocity hvi, which is obtained by averaging over the electron distribution:

J � en0hvi � e

�
d3k

�2p�3 f �k� hk

m
�8:10�

n0 �
�

d3k

�2p�3 f �k� �8:11�

The distribution function f (k) is normalized to give the electron density n0. By using the result

(8.9) for f (k), the term f0 gives an average hvi of zero, since no current ¯ows when there is no

electric ®eld; as many electrons are going one way as another. The current is proportional to

the second term, and it is proportional to the electric ®eld:

J � e2

�
d3k

�2p�3 tt�k�vk�vk ? E� ÿ df0�k�
dek

� �
�8:12�

In a homogeneous, isotropic system, the current J ¯ows in the direction of E. The quantity

f0�k� is independent of k direction. The only angular factors are vk�vk ? E�. The angular

integrals will average this to v2
kE=3 in three dimensions. The conductivity s is the ratio of J to

E:

s � e2

3

�
d3k

�2p�3 tt�k�v2
k ÿ

df0�k�
dek

� �
�8:13�

It is a positive quantity since df0=dek is always negative. Equation (8.13) is the basis of all the

calculations. There remains the important task of deriving a formula for the relaxation time

tt�k�. It is not just the time between scattering events, which is derived from the imaginary

part of the retarded self-energy. This distinction is important, since it makes life dif®cult. The

relaxation time in the Boltzmann equation is a special quantity.

The impurities are assumed to be static, ®xed, objects with a spherically symmetric

potential. They have no internal excitations, so the electron scatters from them elastically. The

impurity causes the electron in state k to scatter to k0, which has the same energy, so that

jkj � jk0j and ek � ek 0 . The net rate of scattering out of the state k is the rate of going from k

to k0, which is proportional to f �k��1ÿ f �k0�� minus the rate from k0 to k, which is

proportional to f �k0��1ÿ f �k��:

ÿ df

dt

� �
collisions

� � f �k� ÿ f0�k��
tt�k�

� 2pni

�
d3k 0

�2p�3 d�ek ÿ ek 0 �

� fjTkk0 j2f �k��1ÿ f �k0�� ÿ jTk0kj2f �k0��1ÿ f �k��g �8:14�
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where ni is the concentration of impurities. The quantity Tkk0, is the T-matrix element for

scattering from k to k0 which was de®ned in Sec. 4.1. It is symmetric in its indices

Tkk0 � Tk0k, which simpli®es the above equation

� f �k� ÿ f0�k��
tt�k�

� 2pni

�
d3k 0

�2p�3 d�ek ÿ ek 0 �jTkk0 j2� f �k� ÿ f �k0�� �8:15�

The integrand contains the factor f �k� ÿ f �k0�. The integral is evaluated by assuming the form

in (8.9), which is written as

f �k� � f0�k� � k ? EC�k� �8:16�
f �k0� � f0�k� � k0 ? EC�k� �8:17�

f �k� ÿ f �k0� � �k ÿ k0� ? EC�k� �8:18�

Since jkj � jk0j then and f0�k 0� � f0�k�. The quantities f (k) and f �k0� differ only in the

angular part of the second term. The angular part is treated as follows: de®ne a coordinate

system in which the ẑ direction is k̂, so that

k̂ ? Ê � cos y �8:19�
k̂ ? k̂ 0 � cos y0 �8:20�
k̂ 0 ? Ê � cos y cos y0 � sin y sin y0 cosf �8:21�

where the law of cosines is used in the last identity. The difference of the two distribution

functions is now

f �k� ÿ f �k0� � kEC�k��cos y�1ÿ cos y0� ÿ sin y sin y0 cosf� �8:22�

The last term on the right, which contains the factor cosf, will vanish when doing the integralR
df. There is no other f dependence in the integrand of (8.15), and the average of cosf is

zero. The remaining term may be written as

�
dok 0 � f �k� ÿ f �k0�� � kEC�k� cos y

�
dok 0 �1ÿ cos y0� �8:23�

� � f �k� ÿ f0�k��
�

dok 0 �1ÿ cos y0� �8:24�

The term f �k� ÿ f0�k� is factored from both sides of (8.15), which leaves the de®nition for the

reciprocal of the relaxation time:

1

tt�k�
� 2pni

�
d3k 0

�2p�3 d�ek ÿ ek 0 �jTkk0 j2�1ÿ cos y0� �8:25�
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The important factor in the integrand is �1ÿ cos y0� � 1ÿ k ? k0=k2. It makes the relaxation

time in the Boltzmann equation different from the usual relaxation time t�k�, which is the

time between scattering events. The latter quantity is simply

1

t�k� � 2pni

�
d3k 0

�2p�3 d�ek ÿ ek 0 �jTkk0 j2 �8:26�

� 4pni

mk

P
l

�2l � 1� sin2 dl�k� � vknis�k� �8:27�

s�k� � 4p
k2

P
l

�2l � 1� sin2 dl�k� �8:28�

The usual inverse relaxation time is just the scattering cross section s�k� times the particle

velocity vk times the impurity density ni. An equivalent result may be obtained for the

relaxation time tt�k� of the Boltzmann equation. The T matrix is expanded as in (4.47) and

(4.52) for the case where jkj � jk0j,

Tkk0 � ÿ
2p
mk

P
l

�2l � 1�Pl�cos y�eidl�k� sin�dl�k� �8:29�
1

tt�k�
� 4pni

mk

P
l�1

l sin2�dl�k� ÿ dlÿ1�k�� �8:30�

where y is the angle between k̂ and k̂ 0. The angular integrals in (8.25) are straightforward but

cumbersome, so only the result for tt is just listed. The formula for 1=tt has a different

combination of phase shifts than the formula for the cross section.

The factor �1ÿ cos y0� weights the amount of scattering of the electron by the impurity.

Small-angle scattering, where cos y0 � 1, is relatively unimportant in contributing to 1=tt.

These events do little to impede the ¯ow of electrons and so contribute little to the resistivity.

The factor �1ÿ cos y0� obviously favors large-angle scattering events, which are more

important for the electrical resistivity. The relaxation time in the transport equation is not

identical to the average scattering rate because there is an additional factor to weight the

amount of scattering.

An example of evaluating the conductivity in (8.13) is given for a free-electron metal. At

low temperature the distribution function (8.6) becomes a delta function in energy which sets

k � kF

ÿ df0
dxk

� �
� 2d�xk� �8:31�

The angular integrals have already been done, so that

s � 2e2

3

4p

�2p�3 v2
FmkFtt�kF � �

e2n0tt�kF �
m

�8:32�

where n0 � k3
F=3p

2. The relevant relaxation time is for electrons at the Fermi surface. Yet the

conductivity is proportional to the density n0 of all conduction electrons and not just to those

at the Fermi surface. This surprising result is quite reasonable once the physics is understood.

When the electric ®eld is ®rst imposed, the equation k � ÿeE shows that all electrons in the

Fermi sea start accelerating equally. The Fermi sea is translationally shifted in wave vector

space. The scattering tends to relax the Fermi distribution back to its undisturbed con®g-

uration. As shown in Fig. 8.1, electrons in the leading edge of the displaced Fermi distribution

Sec. 8.1 � Electron scattering by impurities 503



are scattered back to the rear regions. Only those electrons at the Fermi surface can scatter.

The electrons well below the Fermi surface cannot elastically scatter, since all states with the

same energy are already occupied with other electrons. Above the Fermi surface there are no

thermally excited electrons. Only electrons at the Fermi surface are available to elastically

scatter to other points on the Fermi surface. The lifetime only involves tt�kF �.
The conductivity is relatively insensitive to temperature as long as the density of states of

the metal is a smooth function of energy near the Fermi surface. The resistivity r � 1=s is the

inverse of the conductivity, and is proportional to the concentration of impurities. This

proportionality is experimentally veri®ed.

Since impurity scattering is elastic, it does not change the energy of the electron. As the

current of electrons moves through the solid, each electron gains energy from the electric

®eld. How does the electron lose this energy, if it only scatters elastically? The next few

paragraphs will answer this question.

Let n � cos y, where y is the angle between k and E. In order to keep the discussion

simple, it is assumed that the distribution f (k) is isotropic in the absence of a ®eld. When the

®eld is present, the distribution function can be expanded in a Legendre series in n. The ®rst

few terms are

f �k� � fs � nfp�k� � P2�n� fd�k� � � � � �8:33�

where fs�k� is the isotropic part of the distribution while fp�k� is the l � 1 part of the

distribution. Note that fs�k� is not the equilibrium part of the distribution, which is f0�k�. The

electrical current is determined by the distribution fp.

The conduction process can be viewed as having the following steps:

1. For t < 0, E � 0 and the initial distribution is f0.

2. At t � 0 the ®eld E is switched on. It accelerates the particles and creates the

distribution fp.

3. The elastic scattering takes the particles from the p distribution fp to the s distribution

fs. This step has a time constant tt.

4. The isotropic distribution fs relaxes back to the equilibrium distribution f0. This step

has a different time constant.

The energy relaxation occurs in the last step where fs is brought to equilibrium. The

electrons can lose energy to their heat bath, usually phonons. This process has a very different

time constant than tt and is usually much slower. The relaxation time tt from elastic scattering

determines the rate at which particles scatter out of the p distribution fp into other distributions

such as fs and fd . The current is determined by tt since it gives the steady state amplitude of fp.

FIGURE 8.1 The circle represents the Fermi sea, which begins to move in response to an applied electric ®eld.

Steady state is maintained by relaxation back to other points on the Fermi surface.
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The energy relaxation occurs elsewhere in the chain of events. The rate for energy relaxation

te is calculated below.

8.1.2. Kubo formula: approximate solution

The electrical conductivity can be calculated from the Kubo formula by using the

technique described in (3.390)±(3.393). The correlation function is evaluated for nonzero

temperatures and frequencies:

p�ion� � ÿ
1

3n

�b
0

dteionthTtj�t� ? j�0�i �8:34�

The retarded function tret�o� is obtained by letting ion ! o� id, and the dc conductivity is

given by the limit of o! 0:

s � ÿ lim
o!0

Im�pret�o��
o

� �
�8:35�

This correlation function for s is evaluated for the same model system described in Sec.

8.1.1. There is a free-particle system with a dilute concentration of simple scattering centers.

Equation (8.34) is evaluated for the following Hamiltonian and current operator:

H �P
ps

xpCypsCps � V �8:36�

V � 1

n

P
q

V �q�ri�q�r�q� �8:37�

ri�q� �
P

j

eiq ? Rj �8:38�

r�q� �P
ps

C
y
p�q;sCps �8:39�

j � e

m

P
ps

pCypsCps �8:40�

The impurities are at positions Rj, and an average will be taken over the possible distributions

of impurity positions. This averaging technique was described earlier in Sec. 4.1.4.

The theoretical calculation is divided into two parts. The ®rst part, in this section, is

simply to reproduce the Boltzmann result which was derived above. How is a conductivity

derived which is proportional to the relaxation time tt? The derivation entails a summation

over a set of vertex diagrams. The treatment is kept as introductory as possible, since it is one

of the ®rst summations over vertex diagrams. A formally exact solution to the correlation

function due to Langer (1960) is presented in Sec. 8.1.3.

The logical way to evaluate the correlation function (8.34) is as a power series in the

concentration of impurities. Averages over the impurity density operators in (4.91) are

expressed as a power series in the number of impurities Ni:

fn�q1; . . . ; qn� � hri�q1�ri�q2� � � � ri�qn�i
� Nid

P
qj
� N2

i d
P

qi
dP

j
qj
� � � � �8:41�
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At ®rst sight it appears possible to evaluate (8.34) by just expanding the S matrix and

collecting all terms proportional to Ni, then N2
i , etc. A simple expansion in powers of Ni does

not work, as is apparent from the desired answer. It has s / tt / 1=ni. The ®rst term has the

conductivity inversely proportional to ni, which is impossible to obtain as a simple series in Ni

except by summing a set of diagrams. The expected answer is only going to be obtained by

summing a series of diagrams.

The correlation function (8.34) is written in the interaction representation as

p�ion� � ÿ
1

3n

�b
0

dteionthTtS�b�etH0 jeÿtH0 ? ji �8:42�

The logical way to evaluate this expression is to expand the S matrix and consider each term.

The ®rst term has S � 1, and this correlation function is called p0:

p0�ion� � ÿ
e2

3m2n

�b
0

dteiont
P

pp0ss0
p ? p0hTtC

y
ps�t�Cps�t�Cyp0s0 �0�Cp0s0 �0�i

� 2e2

3m2n

�b
0

dteiont
P
p

p2

�b
0

dteiontg�0��p; t�g�0��p;ÿt�
�8:43�

This expression is zero unless ion � 0, since the number operators C
y
psCps are t-indepen-

dent. The t-integral gives zero unless ion � 0 and then it gives b. The term p0 gives a

conductivity of zero. The result is not surprising, since it is the correlation function of

noninteracting particles, and they have zero resistivity. Perhaps a better answer is the corre-

lation function for the conductivity is in®nity. The zero is suf®cient to alert us that a

nonsensical question was asked, and a nonsensical answer was obtained. A resistive system

requires putting damping into the particle motion.

The next logical step is to replace all g�0� by g. The self-energy of the particles, from

impurity scattering, is included in all the particle Green's functions. Of course, g is obtained

by summing a series of diagrams, which is Dyson's equation. The self-energy S�p; ipn� from

impurity scattering was evaluated in Sec. 4.1 in the limit of low ni. It is a retarded function

with real and imaginary parts, where the imaginary parts are due to the damping of the

particle motion. The step of replacing g�0�, by g does put in damping of the particle motion.

The ®rst correlation function which will be evaluated is shown in Fig. 8.2. It is a simple

bubble diagram, with the smooth lines denoting g and the two vertices having the vector

vertex p. This correlation function is called p�0��io�:

p�0��ion� �
2e2

3m2n

P
p

p2 1

b

P
ip

g�p; ip� io�H�p; ip� �8:44�

The wiggly lines at the two ends of the bubble, which are connected to the vertices, represent

the incoming frequency ion. The ®rst step is to evaluate the summation over Matsubara

frequencies.

FIGURE 8.2
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The procedure for doing this summation was described in Sec. 3.5. The easiest way is to

represent the interacting Green's functions by the Lehmann representation

S�ion� �
1

b
P
ip

g�p; ip� io�g�p; ip�

�
�

de1

2p
A�p; e1�

�
de2

2p
A�p; e2�

1

b
P
ipm

1

ipm � ion ÿ e1

1

ipm ÿ e2

�8:45�

�
�

de1

2p
A�p; e1�

�
de2

2p
A�p; e2�

nF �e2� ÿ nF �e1�
ion � e2 ÿ e1

�8:46�

The next step is to convert to a retarded function �ion ! o� id� and then to take the

imaginary part:

Im�S�o�� � ÿp
�

de1

2p
A�p; e1�

�
de2

2p
A�p; e2�fnF �e2� ÿ nF �e1�gd�o� e2 ÿ e1�

� ÿ
�

de2

4p
A�p; e2�A�p; e2 � o�fnF �e2� ÿ nF �e2 � o�g �8:47�

Im�p�0�ret �o�� � ÿ
e2

3m2n
P
p

p2

�
de2

2p
A�p; e2�A�p; e2 � o�fnF �e2� ÿ nF �e2 � o�g

The next step in the derivation (8.35) is to divide by o and then to take the limit o! 0. The

important frequency dependence is in the last factor:

lim
o!0

1

o
fnF �e2� ÿ nF �e2 � o�g � ÿ dnF �e2�

de2

�8:48�

and the conductivity from this contribution is called s�0�

s�0� � e2

3m2

�
d3p

�2p�3 p2

�
de
2p

A2�p; e� ÿ dnF �e�
de

� �
�8:49�

In the last step, the limit n!1 changed the summation over p into a continuous integral.

The right-hand side is positive since dnF=de is negative. Before discussing this result, it is

useful to review the order of the steps in the derivation. They will be used in all evaluations of

the Kubo formula:

1. Do all summations over Matsubara frequencies ipn.

2. Analytically continue io! o� id to get the retarded function pret�o�.
3. Take the imaginary part Im�pret�o��.
4. Divide by o, and then take the limit o! 0.

These steps cannot be taken out of order. Equation (8.49) for s�0� has several interesting

features. The factor dnF=de � ÿd�e� at zero temperature, which is rather convenient, since it

serves to eliminate the integral over de. The sharp step in nF �e� is in contrast to the

momentum distribution (3.135),

np �
�

de
2p

nF �e�A�p; e� �8:50�
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which no longer has a discontinuous step at p � kF since the impurity scattering causes a

general smearing of this distribution. However, the energy distribution nF �e� is always a sharp

function of e at zero temperature regardless of the interactions.

Another crucial feature of (8.49) is that the spectral function is squared, A�p; e�2. That

this is important may be shown by examining the limit as the impurity concentration ni

vanishes. Since the self-energy is proportional to ni, it will vanish in this limit. De®ne

D � ÿIm�S�, and then

lim
ni!0

A�p; e� � lim
D!0

2D

�eÿ xp ÿ Re�S��2 � D2
� 2pd�eÿ xp� �8:51�

The spectral function becomes a delta function when ni ! 0. This limiting behavior is

reasonable, since in the absence of self-energy effects, the particles are all free, and the

spectral function is indeed a delta function. The question at hand is what happens to A2 as

ni ! 0, since it appears to go as the square of a delta function. In fact, A2 does diverge as

ni ! 0, which makes the conductivity diverge to in®nity when ni ! 0. A method is needed

for handling this divergence. The answer is provided by considering the integrals�1
ÿ1

do
2p

2D

o2 � D2
� 1 �8:52��1

ÿ1

do
2p

2D

o2 � D2

� �2

� 1

D
�8:53�

where o � eÿ xp ÿ Re�S�. The ®rst integral has the right behavior as D! 0, since it gives

the same result as does A � 2D=�o2 � D2� � 2pd�o�. The second integral suggests the

replacement

lim
D!0

a2 � lim
D!0

2D

o2 � D2

� �2

� lim
D!0

2pd�o�
D

�8:54�

which will give the right behavior as D! 0. The replacement A2 ! 2pd�o�=D will be made

in the limit as ni ! 0. Furthermore, the quantity 2D is recognized as the inverse scattering

time of electrons on the Fermi surface,

2D�kF ; e � 0� � 1

t�kF �
� ÿ2 Im�S� �8:55�

The conductivity formula may now be written as

s�0� � 2e2

3m2

�
d3p

�2p�3 d�xp�p2t�p� �8:56�

This equation looks like the right answer for s since it seems to have exactly the same

combination of factors as (8.13). But there is a very important difference between (8.56) and

the Boltzmann result (8.13)Ðin the relaxation time. The formula (8.56) has a relaxation time

without the �1ÿ cos y0� factor, since the relaxation time in (8.56) is from Im�S�, which is just

the average time between scattering events. The �1ÿ cos y0� factor was important for

weighting the large-angle scattering processes, which were important for the resistivity. The

preliminary answer (8.56) is not the Boltzmann result and has serious de®ciencies.

The above derivation has one achievement. It succeeds in deriving a term in s which is

inversely proportional to ni. The relaxation time t�p�, although the wrong one for the
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conductivity, at least has the virtue that it is inversely proportional to ni, which makes s�0�

also inversely proportional to ni.

The calculation has not yet yielded the right result. More diagrams need to be evaluated.

Among those remaining, there must be a subset which, when evaluated, will give the right

answer. The S matrix is expanded for impurity scattering, and the remaining terms contain

higher powers in the impurity interaction V. At ®rst it appears that higher powers in the

impurity interaction must imply that the additional terms are higher powers in the impurity

concentration ni. This conclusion is false, as is obvious from the answer. The ®nal s is

proportional to 1=ni, while our preliminary term s�0� is also proportional to 1=ni. The

important correction terms in the S-matrix expansion must also yield terms in the conductivity

which are proportional to 1=ni. The S-matrix expansion is examined to ®nd the terms which

cause s to diverge as 1=ni when ni ! 0, although these terms must come from higher terms

in the S-matrix expansion. Higher-order terms in S can be proportional to 1=ni if they also

contain higher powers of the spectral function An.

The correlation function s�0�, contained Green's functions g which include all self-

energy effects. The remaining diagrams are called vertex corrections. They are de®ned as

diagrams in which the impurity scattering links the Green's functions on both sides of the

bubble. Some vertex diagrams are shown in Fig. 8.3(a). There is a single impurity with a

varying number of scattering events from the electron line on either side of the bubble. If

there were no scattering line connecting one side of the bubble, the diagram would be a self-

energy term on the other side. A diagram in which the two electron lines, on both sides of the

bubble, scatter from the same impurity cannot be a self-energy diagram of either one and so is

called a vertex diagram. Figure 8.3(a) only shows vertex diagrams with a single impurity

participating in the scattering. Vertex diagrams can occur with scattering from several

impurities. These are equally important and are considered later.

FIGURE 8.3
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The sum of all the diagrams in Fig. 8.3(a) can be evaluated in a simple way and gives the

correlation function:

W
�1�
pp0 �ip; ip� io� � niTpp0 �ip�Tp0p�ip� io� �8:57�

p�1��io� � 2e2

3m2n2

P
pp0

1

b

P
ip

p ? p0g�p; ip�g�p; ip� io�g�p0; ip�

� g�p0; ip� io�W �1�pp0 �ip; ip� io� �8:58�
Equation (8.58) is easy to prove once the rules are recalled for scattering from a single

impurity: (1) total momentum is conserved, and (2) energy is not changed from ip or ip� io.

The second rule says that all electron lines in one string, say the top, are at the same energy ip,

while the ones on the bottom are at ip� io. The momentum conservation requires that the

momentum transfer on the top electron line be pÿ p0, which is exactly the opposite of the

other: p0 ÿ p. The evaluation is easy, since the two sides decouple, as is illustrated sche-

matically in Fig. 8.3(b). The effective interaction W �1� is represented by a diamond in the

®gures, which is illustrated to the right of Fig. 8.3(a). The diamond is the total vertex scat-

tering from a single impurity.

Figure 8.3(c) shows the sum of correlation functions which have increasing numbers of

diamonds in them. These contributions are called ladder diagrams. Summing the ladder

diagrams achieves the objective of a relaxation time with the factor �1ÿ cos y0�. It is

important to realize that the sum of diagrams in Fig. 8.3(c) is not the only contribution with

scattering from several impurity sites. An example of a nonladder diagram is shown in Fig.

8.3(d). This contribution is not included in the series shown in Fig. 8.3(c). It is of order O�n2
i �

and is neglected. The sum of ladder diagrams omits many terms. However, the omitted terms

are not as important in the limit where ni ! 0.

The ®rst two terms in the sum of ladder diagrams have already been derived; they are

p�0�, and p�1�, in (8.44) and (8.58). The superscript denotes the number of ladders. The

superscript (L) denotes sum of ladder diagrams. The series of terms in the ladder sum can be

generated by representing them as a vector vertex function G�L�:

p�L��io� � 2e2

3m2n

P
p

1

b

P
ip

p ? G�L��p; ip; ip� io�g�p; ip�g�p; ip� io� �8:59�

G�L��p; ip; ip� io� � p� 1

n
P
p0

G�L��p0; ip; ip� io�W �1�pp0 �ip; ip� io�

� g�p0; ip�g�p0; ip� io� �8:60�
Repeated iteration of (8.60) will generate the series of terms in the ladder summation shown

in Fig. 8.3(c). The ladder summation will be evaluated, approximately, in order to obtain the

factor of �1ÿ cos y0� in the relaxation time.

The correlation function is a function of ip and io in the combination ip and ip� io.

De®ne the quantity

P�ip; ip� io� � 2e2

3m2n

P
p

p ? G�L��p; ip; ip� io�g�p; ip�g�p; ip� io�

p�L��io� � 1

b
P
ip

P�ip; ip� io�
�8:61�
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The summation over Matsubara frequencies ip is evaluated, as usual, by examining the

contour integral
R

dznF �z�P�z; z� io�. The integrand has the poles of nF �z�, which give the

summation over ip, and also branch cuts along the two axes z � e and z � e� io, where e is

real. These cuts are shown in Fig. 8.4. The integral equals the contribution from the two

branch cuts, where one has to subtract the parts above and below each cut:

p�L��ion� � ÿ
�1
ÿ1

de
2pi

nF �e��P�e� id; e� ion� ÿ P�eÿ id; e� ion�

� P�eÿ ion; e� id� ÿ P�eÿ ion; eÿ id�� �8:62�
The in®nitesimal part �id is unnecessary when there is a term with �ion. Next ®nd the

retarded function from the analytical continuation ion ! o� id. A variable change

e! e� o in the last two terms brings us to the point

p�L�ret �o� �
�1
ÿ1

de
2pi
f�nF �e� ÿ nF �e� o��P�eÿ id; e� o� id�

ÿ nF �e�P�e� id; e� o� id� � nF �e� o�P�eÿ id; e� oÿ id�g �8:63�
The next step is to take the imaginary part of this expression. Because of the factor of i in the

denominator 2pi, this step gives the real part of the integrand. The subsequent step is to take

the limit that o! 0. The function P�eÿ id; e� o� id� becomes P�eÿ id; e� id� at zero

frequency, which is real. It is real because the function is symmetric in its arguments,

P�z1; z2� � P�z2; z1�, so that the complex conjugate of P�eÿ id; e� id� equals itself. The past

two factors of P in the above equation are complex conjugates of each other. Taking the real

part of the integrand removes their imaginary parts, and the real parts are equal.

The limit o! 0 again only involves �nF �e� ÿ nF �e� o��=o. These steps brings us to a

formal expression for the dc conductivity:

s � ÿ lim
o!0

Im�p�L�ret �
o

 !

�
�1
ÿ1

de
2pi
ÿ dnF �e�

de

� �
fP�eÿ id; e� id� ÿ Re�P�e� id; e� id��g

There are only two functions which need to be found, P�eÿ id; e� id� and P�e� id; e� id�.
At zero temperature, where ÿdnF=de � d�e�, they need to be found only at e � 0. These two

functions have quite different behavior and are obtained by different methods. Both are

usually important, but the most singular is P�eÿ id; e� id�, and this term leads to the factor

of �1ÿ cos y0� in the lifetime.

FIGURE 8.4 Branch cuts in the contour integral.
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Consider the de®nition of P in (8.61):

P�eÿ id; e� id� � 2e2

3m2n
P
p

p ? G�L��p; eÿ id; e� id�g�p; eÿ id�g�p; e� id�

The product of Green's functions is entirely real:

g�p; eÿ id�g�p; e� id� � Gadv�pe�Gret�p; e� �
1

o2 � D2

� A�p; e�
2D�p; e� �8:65�

o � eÿ xp ÿ Re�S�p; e��; D � ÿIm�S�
�8:66�

P�eÿ id; e� id� � e2

3m2

�
d3p

�2p�3
A�p; e�
D�p; e� p ? G�L��p; eÿ id; e� id�

The combination GadvGret is rigorously de®ned as the spectral function A�p; e� divided by

2D�p; e�. There is no assumption that A2 � A=2D. The same combination is found in the

equation for the vertex function:

G�L��p; eÿ id; e� id� � p�
�

d3p0

�2p�3 G�L��p0; eÿ id; e� id�

�W
�L�
pp0 �eÿ id; e� id�Gadv�p0; e�Gret�p0; e� �8:67�

The vector function G must point in the direction of p since that is the only vector in its

function arguments. It is convenient to de®ne an integral equation for the scalar function:

pg�p; e� � G�L��p; eÿ id; e� id� �8:68�

g�p; e� � 1�
�

d3p0

�2p�3
A�p0; e�

2D�p0; e�
p ? p0

p2
W
�L�
pp0 �eÿ id; e� id�g�p0; e� �8:69�

P�eÿ id; e� id� � e2

3m2

�
d3p

�2p�3
A�p; e�
D�p; e� p

2g�p; e� �8:70�

Equation (8.69) is a one-dimensional integral equation for the scalar function g�p; e�, where p0

is the integration variable. The angular integrals dop0 just average the quantity p ? p0W �L�pp0 over

angles to provide the kernel for the integral equation. The integral equation should not be

dif®cult to solve with modern computers for realistic self-energies and T-matrices.

The Boltzmann result is obtained in the twin limits T ! 0 �e! 0� and ni ! 0, where

A�p0; 0� ! 2pd�xp0 �. Equation (8.69) then reduces to the integral equation

g�p; e� � 1�
�

d3P0

�2p�3
2pd�xp0 �
2D�p0; e�

p ? p0

p2
nijTpp0 j2g�p0; e� �8:71�

g�kF � � 1� g�kF �
Dÿ D1

D
�8:72�

2D1 � 2pni

�
d3p0

�2p�3 d�xp0 � 1ÿ p ? p0

p2

� �
jTpp0 j2 �

1

tt

�8:73�
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which is easily solved to give

g�kF � �
D
D1

�8:74�

The factor �1ÿ p ? p0=p2� � �1ÿ cos y0� since jp0j � jpj. The solution g � D=D1 is put into

(8.65) to give

P�eÿ id; e� id� � e2

3m2

�
d3p

�2p�3 p2 A�p; e�
D1�p; e�

�8:75�

which gives the same conductivity as (8.13) when put into (8.64). The term P�eÿ id; e� id�
leads to the important contribution as T ! 0 and ni ! 0.

The other term P�e� id; e� id� should not be neglected. It is complex but not very

singular in the limit where ni ! 0. As is evident from the de®nition (8.61) the singular parts

should arise from the Green's function product:

G�p; e� id�2 � Gret�p; e�2 �
1

�oÿ iD�2 �
o2 ÿ D2 ÿ 2ioD

�o2 � D2�2 �8:76�

� 1

o2 � D2
ÿ 2D2

�o2 � D2�2 ÿ
2ioD

�o2 � D2�2 �8:77�

� A

2D
ÿ 1

2
A2 ÿ i Re�G�A �8:78�

As ni ! 0 then A2 ! A=D and the real part of this expression vanishes. The imaginary part

becomes od�o�, which is also zero. The singular parts of this expression vanish as ni ! 0.

The vertex corrections to P�e� id; e� id� are not of order unity but of order O�ni�. In this

case, the vertex corrections may actually be a series of terms which are successively smaller,

so that the vertex corrections may be obtained by just evaluating the ®rst few. The situation is

quite different than for P�eÿ id; e� id�, where one has to solve the vertex equation and sum

all the ladder diagrams.

One can evaluate P�e� id; e� id� by solving a vertex equation similar to (8.69). De®ne

the scalar vertex g0 by G�L��p; e� id; e� id� � pg0�p; e�, and then

g0�p; e� � 1� ni

�
d3p0

�2p�3
p ? p0

p2
Tpp0 �e�2g0�p0; e�Gret�p0; e�2 �8:79�

The vertex function g0�p; e� is complex, as is the vertex Tpp0 �e�2, and the product Gret�p0; e�2.

There are two coupled equation for the real and imaginary parts. It may be obtained from the

Ward identity (1950),

G�p; e� id; e� id� � p� mHHpS�p; e� id� �8:80�
which is an exact identity between the exact vertex function G�p; e� id; e� id� and the exact

retarded self-energy S�p; e� id� from impurity scattering. This self-energy is not the one

derived in Sec. 4.1, since that was only for scattering from a single impurity and only had

unperturbed Green's functions g�0� as the internal lines in the scattering equation. The exact

self-energy is found from scattering from all numbers of impurities and using exact Green's

functions as internal lines of diagramÐalthough this procedure must be done carefully in

order not to count the same contribution twice. The Ward identity is very convenient, since it

Sec. 8.1 � Electron scattering by impurities 513



permits the vertex function to be obtained from the self-energy function by a simple opera-

tion. It will be proved in the next section.

The present derivation has an approximate vertex function which contains only the

ladder diagrams. In that case the Ward identity is still valid as long as the self-energy is found

using only diagrams where an electron scatters from one impurity at a time.

The Green's function derivation of this result is certainly harder than the transport

equation of Sec. 8.1.1. The one advantage of the Green's function method is that there is no

need to make the approximation that ni ! 0. The ni ! 0 limit is made implicitly in solving

the Boltzmann equation when it is assumed the particles are plane waves except for occa-

sional scattering events from isolated impurities.

There are several lessons to be learned from this summation of ladder diagrams. The

ladder diagrams, although they appear in a higher order of perturbation theory, do not lead to

terms in the ®nal answer which are smaller than lower-order terms. A term is not necessarily

small if it occurs in a higher order of perturbation theory. It is this feature of vertex

corrections which means they can never be dismissed without an investigation. They may be

small, but one should always check. It would be nice to have some rules of thumb which

would establish whether vertex corrections are important. The way to tell is to examine the

scattering process which causes the vertex functions. If the two particle states, on each side of

the bubble, can scatter quasielastically so that their relative energy changes little, then vertex

corrections are large. The vertex correction is basically a potential divided by an energy

denominator V=DE, where DE is the change in energy of the two particles. If it is small, the

small denominator will compensate for the small potential V, so that vertex corrections

become sizable. Repeated scatterings, as in a series of ladder diagrams, just cause additional

powers of the factor �V=DE�n. Vertex corrections are large when the scattering by the potential

causes only a small change in the relative energy of the two particles.

8.1.3. Ward identities

The evaluation of a two-particle correlation function, such as the Kubo formula for the

conductivity, often requires an evaluation of a vertex function. The Ward (1950) identity is an

exact relationship between the vertex and self-energy functions in the problem. As an

example, two types of Ward identities permit the evaluation of the scalar vertex function

G�p; ip� or the vector vertex function G�p; ip� which satisfy the equations

G�p; ip� � 1�
�

d3p0

�2p�3 G�p
0; ip�g�p0; ip�2Wpp0 �ip; ip� �8:81�

G�p; ip� � p�
�

d3p0

�2p�3 G�p0; ip�g�p0; ip�2Wpp0 �ip; ip� �8:82�

The Ward identity states that these two functions are given by

G�p; ip� � 1ÿ @S�p; z�
@z

� �
z�ip

�8:83�

G�p; ip� � p� mHHpS�p; ip� �8:84�

An evaluation of the self-energy function S�p; ip� permits an easy evaluation of these two

vertex functions. These relationships are proved below.

514 Chap. 8 � DC conductivities



An important point regarding the Ward identities is that they are not useful for evaluating

all vertex functions. An example is provided in the last section, where the Ward identities

were useful for ®nding P�e� id; e� id� but not P�eÿ id; e� id�. The Ward identities cannot

be applied blindly; they must be used only when appropriate. These circumstances are

delineated after the identities are proved.

The Ward identities for impurity scattering were derived by Langer (1961). The similar

theorems for the electron±phonon interaction were derived by Engelsberg and Schrieffer

(1963) We shall prove the result for the ladder diagrams obtained by scattering from a single

impurity. In this case, the self-energy diagram is that for scattering from a single impurity:

S�p; ip� � ni Vpp �
�

d3p0

�2p�3 Vpp0Vp0pg�p0; ip�
�
�
�

d3p0d3p00

�2p�6 Vpp0Vp0p00Vp00p0g�p0; ip�g�p00; ip� � � � �
�

�8:85�

An important condition is that the Green's functions in this self-energy diagram are those

calculated with the self-energy g � 1=�ipÿ xp ÿ S�. Equation (8.85) is a self-consistent

equation for the self-energy S, since it depends functionally on itself. Unfortunately, the Ward

identities do not let one avoid solving an integral equation. Instead, one integral equation is

exchanged for another. In this sense the Ward identities are not very useful in practice.

Rather than prove the two separate identities (8.83) and (8.84), a general theorem is

proved for which these are two limiting cases. The general theorem is obtained by subtrac-

ting the expressions (8.85) for S�p; ip� � S�p� by the same result for

S�p� q; ip� io� � S�p� q�:

S�p� q� ÿ S�p� � ni

�
d3p1

�2p�3 Vpp1
Vp1p�g�p1 � q� ÿ g�p1��

� ni

�
d3p1d3p2

�2p�6 Vpp1
Vp1p2

Vp2p�g�p1 � q�g�p2 � q� ÿ g�p1�g�p2��

� ni

�
d3p1d3p2d3p3

�2p�9 Vpp1
Vp1p2

Vp2p3
Vp3p

� �g�p1 � q�g�p2 � q�g�p3 � q� ÿ g�p1�g�p2�g�p3�� � � � � �8:86�
By purely algebraic manipulations, this series can be shown to be identical to

S�p� q� ÿ S�p� � ni

�
d3p1

�2p�3 Tpp1
�ip�Tp1�q;p�q�ip� io��g�p1 � q�g�p1��

� �S�p1 � q� ÿ S�p1� � xp1�q ÿ xp1
ÿ io� �8:87�

� ni

�
d3p1

�2p�3 Tpp1
�ip�Tp1�q;p�q�ip� io��g�p1 � q� ÿ g�p1�� �8:88�

This rather startling result may be demonstrated term by term. The ®rst nonvanishing term has

the integrand

Vpp1
Vp1p�g�p1 � q� ÿ g�p1�� � Vpp1

Vp1pg�p1 � q�g�p1�
� �S�p1 � q� ÿ S�p1� � xp1�q ÿ xp1

ÿ io� �8:89�
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which is just the vertex diagram shown in Fig. 8.5(a). The next term in the series (8.86) has

the integrand

Vpp1
Vp1p2

Vp2p�g�p1 � q�g�p2 � q� ÿ g�p1�g�p2�� �8:90�
The Green's function factors in brackets may be rearranged into

g�p1 � q�g�p2 � q� ÿ g�p1�g�p2� � g�p1 � q��gp2 � q� ÿ g�p2��
ÿ g�p2��g�p1 � q� ÿ g�p1� �8:91�

The ®rst bracket on the right is the ®rst diagram in Fig. 8.5(b). The factor Vpp1
Vp1p2

g�p1 � q�
is just the multiple scattering from the impurity by the electron on the lower line. Similarly,

the second term in (8.91) corresponds to the second diagram in Fig. 8.5(b), where the factor

Vp1p2
Vp2pg�p2� is the multiple scattering of the top electron line. These terms are just the ®rst

in the series which generates the T-matrices. The further terms in (8.86) provide the remaining

terms. In this manner, one can establish the validity of (8.88).

Equation (8.87) shows the quantity

L�p; p� q� � S�p� q� ÿ S�p� � xp�q ÿ xp ÿ io �8:92�
obeys the vertex equation

L�p; p� q� � xp�q ÿ xp ÿ io

� ni

�
d3p1

�2p�3 g�p1�g�p1 � q�Tpp1
Tp1�q;p�qL�p1; p1 � q� �8:93�

The two equations (8.92) and (8.93) provide the most general type of Ward identity. They are

useful, since any equation which can be cast into the form of (8.93) has the solution (8.92).

Langer (1961) and Engelsberg and Schrieffer (1963) show that this equation is related to the

equation of continuity HH ? j� _r � 0.

The ®rst Ward identity (8.83) is obtained by taking the limit q � 0 and then dividing

Eqn. (8.93) by ÿio with the result

L�p; ip; ip� io�
ÿio

� 1� ni

�
d3p1

�2p�3 g�p1; ip�g�p1; ip� io�

� Tpp1
�ip�Tp1p�ip� io�L�p1; ip; ip� io�

ÿio
�8:94�

The quantity G�p; ip� in (8.81) obeys the same equation as L=�ÿio� in the limit io! 0 so

they are equal. From (8.92) one has the solution

G�p; ip� � lim
io!0

L�p; ip; ip� io�
ÿio

� �
� 1ÿ @S�p; Z�

@Z

� �
Z�ip

�8:95�

which proves the Ward identity (8.83).

FIGURE 8.5
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The other Ward identity is found as the limit io � 0, followed by letting q! 0. The

latter limit is taken slowly, so that one can retain terms proportional to q. In this limit Eqns.

(8.92) and (8.93) become

lim
q!0

L � q ? p

m
� q ?HHpS�p; ip� �8:96�

� q ? p

m
� ni

�
d3p1

�2p�3 g�p1; ip�g�p1 � q; ip�Tpp1
Tp1�q;p�qL�p1; p1 � q� �8:97�

The vertex function L is proportional to q, so de®ne the vector vertex function by the limit

�io � 0�:

lim
q!0

L � 1

m
q ? G�p; ip� �8:98�

Then the preceding two equations can be expressed in terms of this vector vertex function:

G�p; ip� � p� mHHpS�p; ip� �8:99�

G�p; ip� � p� ni

�
d3p1

�2p�3 g�p1; ip�2jTpp1
�ip�j2G�p1; ip� �8:100�

This equation is the same as (8.82), which proves the other Ward identity (8.84). Both are

now understood to be limiting cases of the general result (8.93). The Ward identities are

useful anytime one can cast the vertex equation into the form (8.93).

The factor �1ÿ @S=@S� is recognized as the inverse of the renormalization Z de®ned

earlier and discussed, for example, in Sec. 5.8.1. This quantity is sometimes called the

effective charge. Similarly, the vector vertex is one of the factors which give the effective

mass of the particle. The Ward identities relate the vertex corrections to a change in the

effective charge and mass of the particle, which is why they are related to the equation of

continuity.

8.2. MOBILITY OF FROÈ HLICH POLARONS

The FroÈhlich Hamiltonian between electrons and Einstein phonons �o0 � oLO� is

H �P
ps

epCypsCps � o0

P
q

ayqaq �
M0���
n
p P

pq

1

jqjC
y
p�q;sCps�aq � ayÿq�

�8:101�
M 2

0 �
4pah�ho0�3=2���������

2mB

p ; ep �
p2

2mB

a � e2

h

mB

2ho0

� �1=2
1

e1
ÿ 1

e0

� �
�8:102�

It was discussed in Sec. 7.1, where several important quantities were derived, such as the

effective mass m� and the ground state energy E0.

The effective mass m� of a particle can be measured by cyclotron resonance. Such

experiments have been done for polarons (Hodby, 1972). The effective mass m� is a function

of the band mass mB and the polar coupling constant a. A separate measurement of the two

dielectric functions e0 and e1, as well as oLO, permits a determination of the band mass mB
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and a from m�. This analysis takes a theory of the polaron mass m��mB; a�, which was

provided in Sec. 7.1. Another way to check the theory is to measure the mobility of electrons

in insulators. The mobility also depends upon mB and a.

A typical experimental result for the mobility is shown in Fig. 8.6. It shows the Hall

mobility of CdTe measured by Segall et al. (1963). The steep rise around 200 K is due to

optical mode scattering. At lower temperatures the mobility saturates because of the scattering

from impurities in the crystals. Impurity scattering varies from sample to sample, depending

on the concentration and type of impurity.

The average value of the current operator is the particle density n0 times the charge e

times the average velocity hvi. The average velocity hvi is proportional to the applied electric

®eld F, and the constant of proportionality is the mobility, where E > 0 so the electron charge

is ÿe:

hvi � mF �8:103�
J � ÿen0mF �8:104�

FIGURE 8.6 The temperature dependence of the electron mobility of several samples of n-type CdTe. Different

samples have different kinds and concentrations of defects or impurities. The solid line is the theoretical mobility

from optical mode scattering, including the temperature dependence of the static dielectric constant. The dashed line

neglects this change. Source: Segall et al. (1963) (used with permission).
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The mobility m is the average velocity of each electron per unit applied electric ®eld. Of

course, it is strictly de®ned in the limit of vanishing electric ®eld. Since the electrical

conductivity s � n0e2tt=m � ÿemn0 is the ratio of the current J to the ®eld F, then

m � ÿett=m.

The theories of the electron mobility in insulating materials, such as alkali halides and

II±VI semiconductors, treat it as a property of a single electron. The electron lifetime is

calculated for the scattering from impurities and by acoustical and optical phonons. The

electron±electron interactions can be ignored in the limit where the concentration of electrons

is very low. Spin is also unimportant, and the spin index is omitted in this section.

There are just as many different ways to calculate the polaron mobility as there are to

calculate the effective mass m� or ground state energy E0. Each theoretical technique was

applied to the mobility as well as to the other quantities. As summarized by Langreth (1967),

these various methods usually agree in the limit of weak coupling �a� 1� and low

temperature kBT � ho0. In this case

lim
T!0

m � ÿ et0

mB

� m0 �8:105�

1

t0

� 2aN0o0; N0 �
1

ebo0 ÿ 1
�8:106�

The lifetime t0 is the result obtained in (7.46) as 1=t0 � ÿ2 Im�S�1��p; e�� in the limit where

p! 0 and e! 0, where S�1� is the one-phonon self-energy. This limit is appropriate, since at

very low temperatures the electrons are in states within kBT � ho0 of the bottom of the band.

These low-energy particles cannot emit phonons, since this event is prevented by energy

conservation. They can only absorb them, and the rate of absorption is proportional to the

thermal average density of phonons N0. The factor N0 makes the mobility increase expo-

nentially with decreasing temperature, since the electron scattering becomes less likely as the

number density of phonons declines. The exponential increase in the mobility is evident in the

experimental data of Fig. 8.6. The behavior of large polarons is opposite to that of small

polarons, whose mobility increases with increasing temperature.

One feature of the mobility formula (8.105) is that it is proportional to the inverse of a.

Our starting point for the theoretical calculation is again the Kubo formula, which will be

evaluated for using electron±phonon interactions. The expansion of the S matrix for this

potential will generate a series in the parameter a. To obtain a leading term in the inverse

power of a requires the summation of a subset of diagrams. The situation is similar to the

mobility from impurity scattering, where diagrams were summed to get the conductivity

inversely proportional to the impurity concentration ni. There are important differences

between the lifetime from opical phonon scattering and that of impurity scattering. This

conclusion is evident from the result presented in (8.105). Here the relaxation time is not

calculated with the factor of �1ÿ cos y0� in the angular average. The polaron mobility is

calculated in a different way than the scattering from impurities. Actually it is calculated in

the same way, but a different result is obtained. This difference arises from the inelastic nature

of the polaron scattering as ®rst shown by Howarth and Sondheimer (1953).

Langreth and Kadanoff (1964) showed that the polaron mobility m is a power series in a,

with the leading term in (8.105) of order 1=a:

m � aÿ1

a
� a0a

0 � a1a
1 � � � � �8:107�
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They tried to calculate the coef®cient aÿ1, a0in this series in the limit of low temperature. This

objective is simple but has slippery aspects (Mahan, 1966). It is a subtle procedure to examine

each term in the S-matrix expansion and to determine its leading term in a. The situation is

similar to that for impurity scattering. Each term in the series (8.107) is obtained by summing

subsets of diagrams.

The ®rst term of Langreth and Kadanoff �aÿ1� is quite simple, and it is probably

worthwhile to state it in advance. De®ne m0 as the result (8.105) for the limits a! 0, T ! 0.

They found

m
m0

� 1ÿ a
6
� O�a2� �8:108�

They observed that m0=m is precisely the expansion in a given by the equations

m � ÿ et
m�

�8:109�
t
t0

� 1� O�a2� �8:110�

m�

mB

� 1� a
6
� O�a2� �8:111�

The ballistic formula m � ÿet=m� supports the quasiparticle picture that the particle acts as if

it has an effective mass m� and lifetime t. They speculate that the quasiparticle picture would

be valid for all values of a and that the inclusion of all terms in a would just reproduce the

product series of m� and t.

Before the derivation of the electron mobility, it is necessary to derive some single-

particle properties. These will be needed in the limit of zero temperature. All terms are

dropped of order N0 compared to unity. Many of these single-particle properties were derived

in Sec. 7.1. The ®rst self-energy term, proportional to a, is the one-phonon result in (7.15):

Re�S�1��p;o�� � ÿao
3=2�����ep
p sinÿ1

ep

o0 ÿ o� ep

 !1=2

�8:112�

At zero temperature, this self-energy is evaluated at small ep and small o,

Re�S�1��p;o�� � ÿa�o0 � 1
2
oÿ 1

3
ep � O�o2; e3

p;oep�� �8:113�
This expansion permits a quick derivation of the effective mass m� and the renormalization

coef®cient Z. The zero subscript means p � 0, o � 0:

Z0 � 1ÿ @S
@o

� �ÿ1

0

� 1

1� a=2
� 1ÿ a

2
� O�a2� �8:114�

mB

m�
� �

0
� Z0 1� @S

@ep

 !
� 1� a=3

1� a=2
� 1ÿ a

6
� O�a2� �8:115�

Another important quantity is the lifetime t which is de®ned as

1

t�p� � Z�p�fÿ2 Im�S�p;Ep��g �8:116�
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where Z(p) is the renormalization coef®cient evaluated at o � Ep, which is the ground state

energy. The ground state energy is only needed to order a, which is the simple result

Ep � ÿao0 � p2=2m� � O�p4�.
Equation (8.116) shows that the renormalization coef®cient Z(p) enters into the de®ni-

tion of the lifetime. The argument for this is as follows. The spectral function is de®ned as

A�p;o� � ÿ2 Im�Gret�p;o�� �8:117�

� ÿ2 Im�S�p;o��
foÿ ep ÿ Re�S�p;o��g2 � fIm�S�p;o��g �8:118�

A suitable de®nition of t�p� is obtained by examining this limit more carefully when Im�S� is

small but not in®nitesimal. In the vicinity of the peak o � Ep of the spectral function the term

in the denominator is

oÿ ep ÿ Re�S�p;o�� � oÿ ep ÿ Re�S�p;Ep�� ÿ �oÿ Ep�
@ Re S
@o

� �oÿ Ep� 1ÿ @ Re S
@o

� �
� �oÿ Ep�

Z�p� �8:119�

so that the spectral function is approximately

A�p;o� � ÿ2 Im�S�p;o��
�oÿ Ep�2=Z�p�2 � �Im�S��2

�8:120�

� Z�p� 1=t�p�
��oÿ Ep�2 � �1=2t�2

 !
�8:121�

The last step used the de®nition (8.116) of the relaxation time. The relaxation time t�p� is

treated as a function of p but not o. This form for the spectral function is used in the Green's

function (Problem 6 in Chapter 3),

Gret�p; t� � Y�t�
�1
ÿ1

do
2pi

eÿotA�p;o� �8:122�

� ÿiZ�p�Y�t� exp�ÿitEp ÿ t=�2t�� �8:123�

The relaxation time is de®ned from the decay of the Green's function. It has the desired form,

with the relaxation time t�p� determining the decay of the excitation.

There is another way to understand the factor Z in the de®nition (8.116) of t�p�. The

quantity ÿ2 Im�S� is the rate of decay of a state �p;o�. The factor Z is the fraction of the

quasiparticle strength at the value �p;o�. The rest of the quasiparticle strength is usually

dispersed throughout the spectrum.
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The one-phonon self-energy is evaluated for the quasiparticle lifetime. The imaginary

self-energy is evaluated at the quasiparticle energy o � E0 � ÿao0 and is multiplied by the

factor of Z given in (8.115). The imaginary self-energy is calculated from the expression

ÿ2 Im�S�p;o�� � 2p
�

d3q

�2p�3
M2

0

q2
�8:124�

� �N0d�o� o0 ÿ eq�p� � �N0 � 1�d�oÿ o0 ÿ eq�p��
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���� ���������������
o� o0
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p���������������
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p ÿ �����ep
p
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� �N0 � 1�Y�oÿ o0� ln
���� ���������������
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p � �����ep
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oÿ o0

p ÿ �����ep
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����
#

�8:125�

Expanding for small o < o0 and small ep gives

ÿ2 Im�S�0;o�� � 2aN0o
3=2
0���������������

o0 � o
p � 2aN0�o0 ÿ 1

2
o� � � �� �8:126�

ÿ 2 Im�S�0;o � ÿao0�� � 2aN0o0

�
1� a

2
� O�a2�

�
�8:127�

1

t
� Z�ÿ2 Im�S�� � 1
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1ÿ a
2

� �
1� a

2

� �
� 1

t0

�1� O�a2�� �8:128�

The ®rst correction terms in a from Z � 1ÿ a=2 and Im�S� � 1� a=2 cancel to order O�a�.
The one-phonon term provides no correction term to t of O�a�.

The electron mobility is evaluated be the same method which was used for impurity

scattering. Starting from the Kubo formula for the electrical conductivity, the ®rst important

diagram is the bubble with interacting Green's functions shown in Fig. 8.7(a). The solid lines

are total Green's functions g�p; ipm� which include the self-energies

p�io� � ÿ
�b

0

dteionthTtj�t� ? j�0�i �8:129�

p�0��io� � 2e2

3m2
B

�
d3p

�2p�3 p2 1

b

P
ipm

g�p; ipm�g�p; ipm � ion� �8:130�

The solid lines are total Green's functions g�p; ipm� which include the self-energies. The

evaluation of this term is identical to that used for the same bubble diagram for impurity

FIGURE 8.7
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scattering. The contribution to the Kubo formula contains the two Green's functions as in

Eqn. (8.44), which are evaluated by the standard series of steps to yield Eqn. (8.49):

s�0� � e2

3m2
B

�
d3p

�2p�3 p2

�
de
2p

A�p; e�2 ÿ dnF �e�
de

� �
�8:131�

In the present application, the self-energies in the Green's functions are evaluated from the

FroÈhlich Hamiltonian rather than impurity scattering. In a more realistic model of a solid, both

self-energy expressions should be included: from phonons and impurity scattering.

An approximate evaluation of this contribution to the conductivity is obtained in the

limit where a� 1. The electron distribution is assumed to be Maxwell±Boltzmann:

nF �e� � eb�mÿe� � n0

2

2pb
m�

� �3=2

eÿbe �8:132�

where nF �e� is the energy distribution for each spin state, while n0 is the total concentration

for both spin states. This term in the conductivity is divided by ÿen0 to get the corresponding

term in the mobility of each electron:

m�0� � ÿ eb
6m2

B

2pb
m�

� �3=2�
d3p

�2p�3 p2

�
de
2p

A�p; e�2eÿbe �8:133�

Using the expression (8.121) for the spectral function, the square of the spectral function is

A�p; e�2 � �Z=t�2
f�eÿ Ep�2 � �2t�ÿ2g2 � AptZ2d�eÿ Ep� �8:134�

The electron lifetime t is inversely proportional to a, so that the mobility m�0� is inversely

proportional to a. The preceding integral is evaluated in the limit where the temperature

T ! 0. The integral is easy if it is assumed at low T that Z(p) and t�p� are evaluated at p � 0

m�0� � ÿetZ2 m�

m2
B

� ÿ et0

mB

�1ÿ 5
6
a� O�a2�� �8:135�

where Z�0� � 1ÿ a=2 and m�=mB � 1� a=6. The result (8.135) is the contribution from the

simple bubble diagram of Fig. 8.8(a). This result does not resemble (8.108). The differences

disappear when higher-order diagrams are considered, such as those in Fig. 8.7.

Other contributions to m can be derived from the other diagrams, which are the vertex

corrections. In the limits T ! 0 and a� 1 the vertex corrections do not contribute to the

mobility a term which goes as O�1=a�. The simple bubble result is the ®nal answer at low

temperature and weak coupling. This conclusion is quite different from the situation for

impurity scattering. There a series of ladder diagrams was summed in order to derive the ®nal

answer, and each ladder diagram gave a term which was the same inverse power of the

coupling constant the impurity concentration ni. The vertex diagrams for optical phonon

scattering are less important because of the inelastic nature of the phonon scattering. Mahan

(1966) showed that the two-phonon ladder diagrams in Fig. 8.7(c) provide the largest vertex

corrections, which are of O�T=o0�.
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8.3. ELECTRON±PHONON RELAXATION TIMES

This section is concerned with the calculation of electron relaxation times in semi-

conductors from the scattering by acoustical phonons. The prior sections have introduced two

different relaxation times for the electron in a solid. One of these is the average time between

scattering events and is denoted as t�k�. The mean-free-path (mfp) for this relaxation time is

denoted as l�k� � vkt�k�. The energy bands in the solid are assumed to be isotropic, so that

the relaxation time and mfp depend only upon the magnitude of the wave vector. The other

relaxation time tt enters into the electrical conductivity �s � n0e2tt=m
��. The equivalent

quantity, before averaging over wave vector, is called the momentum relaxation time and is

denoted with the subscript `̀ t'' since it is used in transport of current. The equivalent mfp is

lt�k� � vktt�k�.
To further confuse the topic, the transport lifetimes tt for scattering from impurities had

a factor of �1ÿ cos y0� in the integrand of the scattering integral. The scattering from optical

phonons did not have such a factor. The difference is that at low temperature, impurity

scattering is elastic, while optical phonon is highly inelastic. Vertex corrections are relatively

unimportant for inelastic scattering.

In writing the Boltzmann equation, the last term in the time development is the rate of

change of the distribution function from collisions. The discussion of the lifetime from

impurity scattering in Sec. 8.1.1 started with this collision term. Here the similar collision

FIGURE 8.8 Resistivity as a function of temperature for Na and K. The solid line is experiment, and points are

theory. Source: Dynes and Carbotte (1968) (used with permission).
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term is presented from the scattering due to the electron±phonon interaction:

@f �p�
@t

� �
ep

� 2p
h

�
d3q

�2p�3 jMqj2ff �p��1ÿ f �p� q��

� ��Nq � 1�d�ep ÿ ep�q ÿ hoq� � Nqd�ep ÿ ep�q � hoq��
ÿ f �p� q��1ÿ f �p����Nq � 1�d�ep ÿ ep�q � hoq� � Nqd�ep ÿ ep�q ÿ hoq��g

�8:136�
The integrand has four terms. The ®rst two correspond to an electron initially in state p

scattering to p� q by either the emission �Nq � 1� or absorption �Nq� of a phonon. This term

is multiplied by the occupation factors f �p��1ÿ f �p� q�� which ensures that the initial state p

is occupied and the ®nal state is empty. The other two terms correspond to processes whereby

electrons initially in p� q scatter back into the state p by either phonon emission or

absorption. The back scattering has the occupation factors of f �p� q��1ÿ f �p��. The above

expression vanishes when the system is in thermal equilibrium and f �p� � nF �xp�;
Nq � nB�oq�.

An immediate simpli®cation of the above formula is attained by grouping together the

terms with the same delta function for energy conservation

@f �p�
@t

� �
ep

� 2p
h

�
d3q

�2p�3 jMqj2

� �d�ep ÿ ep�q ÿ hoq�ff �p��Nq � 1ÿ f �p� q�� ÿ Nqf �p� q�g
� d�ep ÿ ep�q � hoq��ff �p��Nq � f �p� q�� ÿ f �p� q��Nq � 1�g� �8:137�

The above expression is quite general.

The terms which multiply f (p)are those which de®ne the relaxation time 1=tp�p�.
1

tp�k�
� 2p

h

�
d3q

�2p�3 jMqj2fd�ek ÿ ek�q � hoq��N1 � 1ÿ nF �ek�q��

� d�ek ÿ ek�q � hoq��N1 � nF �ek�q��g �8:138�
1

tpt�k�
� 2p

h

�
d3q

�2p�3 jMqj2 ÿ
q ? k

k2

� �
� fd�ek ÿ ek�q ÿ hoq��Nq � 1ÿ nF �ek�q���
� d�ek ÿ ek�q � hoq��Nq � nF �ek�q��g �8:139�

jMqj2 � D2 hq2

2roq

�8:140�

Nq � nB�oq� �8:141�
The subscript `̀ p'' denotes scattering by phonons. In Eqn. (8.138) the relaxation time from

phonon scattering is all of the terms which multiply f (p) in (8.137). It is identical to the

expression obtained from the imaginary part of the electron self-energy, as calculated in the

one-phonon approximation. The occupation factors f �p� q�, Nq are represented by their

values in thermal equilibrium. The matrix element is from deformation potential interactions.

The transport lifetime tpt from the electron scattering by phonons is de®ned in (8.140). It

has an additional factor of �ÿq ? k=k2� in the integrand. If the scattering were elastic, then this
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factor equals �1ÿ cos y0�. The difference between the impurity scattering times ti, and tit, is

the factor of �1ÿ cos�y�� in the integrand of 1=tit, where y is the scattering angle

k̂ ? p̂ � cos�y�.

1

ti�k�
� 2pni

h

�
d3p

�2p�3 jTkpj2d�ek ÿ ep� �8:142�

1

tit�k�
� 2pni

h

�
d3p

�2p�3 jTkpj2�1ÿ k̂ ? p̂�d�ek ÿ ep� �8:143�

The identical factor is used to calculate the momentum relaxation �tpt� from scattering by

phonons. If p � k � q then the angular factor �1ÿ cos�y�� � ÿq ? k=k2. The identity is exact

if p � k. Using this factor of �1ÿ cos y� in the impurity scattering is rigorously correct. Using

this factor in the scattering by phonons is not rigorously correct. The difference is that

the scattering by phonons is inelastic. Instead, the correct result is found by solving the

Boltzmann equation, which is done in Sec. 8.4. However, the above approximation is actually

quite good, and therefore is useful. The lifetimes for scattering by phonons are evaluated

below.

Besides these two relaxation times, there are several others which are occasionally

useful. The most important is the scattering by electron±electron interactions in a metal. The

formulas for this case are derived in Chapter 11 in the discussion of Fermi liquid theory. Two

others are the relaxation times for temperature, and the relaxation times for energy. These two

are discussed below.

The relaxation time for energy determines the rate at which the electron loses or gains

energy from the scattering. Since impurity scattering is elastic, the electron does not change

its energy. There is no contribution to energy relaxation from impurity scattering. However,

in the scattering by phonons the electron changes its energy by ek�q ÿ ek � �hoq. One

process gains energy ��hoq� while the other loses energy �ÿhoq�. There is a net gain or loss

of energy if one process dominates over the other. For example, if an energetic electron

is injected into the solid, it will gradually lose energy until it equilibrates thermally. The

process of coming to thermal equilibrium requires that it emit more phonons than it

absorbs.

The rate of energy relaxation is calculated by starting from (8.138) and inserting the

energy change ek�q ÿ ek into the integrand

dE

dt

� �
pe

� ÿ 2p
h

�
d3q

�2p�3 jMqj2hoqfd�ek ÿ ek�q ÿ hoq��Nq � 1ÿ nF �ek�q��

ÿ d�ek ÿ ek�q � hoq��Nq � nF �ek�q��g �8:144�

Converting this expression to a relaxation time �tpe� and mfp �lpe� is done below.

The evaluation of the relaxation times for the electron±phonon systems is done for

metals and semiconductors. In metals, the evaluation assumes the existence of a Fermi

surface. The electron±phonon scattering affects those few electrons within about kBT of the

Fermi surface. In semiconductors, the interesting effects are for a single electron in the band,

and the reference energy is the band edge. These two cases are different and are treated

separately.
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8.3.1. Metals

In metals the derivation is simpli®ed by introducing the McMillan function denoted as

a2F�o�. In this function are collected all of the complicated parts of the phonon dispersion,

and the matrix element (see Sec. 7.4)

a2F�E;o� �
�

d3q

�2p�3 jMqj2d�oÿ oq�d�E ÿ ek�q� �8:145�

a2
t �E;o� �

�
d3q

�2p�3 jMqj2 ÿ
q ? k

k2

� �
d�oÿ oq�d�E ÿ ek�q� �8:146�
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dofa2

�t�F�ek ÿ o;o��nB�o� � nF �oÿ ek��

� a2
�t�F�ek � o;o��nB�o� � nF �o� ek��g �8:147�

The dimensionless functions a2
�t�F�E;o� depends upon the variable E. However, this

dependence is similar to the variation in the density of states at the Fermi surface. The

variation with E is usually smooth on the energy scale of the Debye energy, which is all that is

relevant for interactions with phonons. The important variation is

a2
�t�F�ek � o;o� � a2

�t�F�ek;o� � o
@

@ek

a2
�t�F�ek;o� � � � � �8:148�

The second term is usually smaller than the ®rst by a factor of ho=W , where ho is a phonon

energy while W is an electronic bandwidth. The usual approximation is to neglect the

dependence upon the factor of E The above expression is rewritten as

1

tp�t��k�
� 2p

h

�oD

0

doa2
�t�F�o��2nB�o� � nF �oÿ ek� � nF �o� ek�� �8:149�

High temperature is de®ned as T greater than the Debye temperature. Most solids have

Debye temperatures less than room temperature, so that T � 300 K is a high temperature. In

this limit, the largest term in the bracket is nB�o� � kBT=ho and the lifetimes have the simple

expression

h

tp

� 2plkBT �8:150�

h

tpt

� 2pltkBT �8:151�

l�t� � 2

�oD

0

do
o

a2
�t�F�o� �8:152�

The inverse lifetime is proportional to temperature, and the constant of proportionality is

the dimensionless electron±phonon coupling constant l�t�. The resistivity of metals

�r � m=�e2n0tt�� at high temperature is linear in T, and the slope is given by lt. A

measurement of r�T �, gives lt, which can then be used to predict the transition temperature

for superconductivity in that metal. This process works quite well.
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The equation for energy relaxation is

dE

dt

� �
pe

� 2ph

�oD

0

dooa2F�o��1ÿ nF �ek ÿ o� ÿ nF �ek � o��

� �1ÿ 2nF �ek��hplho2i �8:153�

lho2i � 2

�oD

0

dooa2F�o� �8:154�

The frequency integrals go from zero to the Debye frequency oD � kBYD=h. The occupation

numbers were expanded nF �ek � o� � nF �ek� � on0F . The ®rst derivative terms cancel and

the second derivative terms are small and are neglected. The factor �1ÿ 2nF �ek�� is one for

electrons and minus one for holes. The energy relaxation always takes the particle to the

chemical potential.

The energy relaxation (dE=dt) is governed by the quantity lho2i. It is a single function,

although the notation gives the impression that it is a product of two functions. The quantity

hlho2i has the units of Watts. In this case there is no obvious lifetime tpe nor mfp �lpe). The

phonons give a constant value to the energy relaxation as long as the electron's energy

x � ek ÿ m > hoD.

8.3.2. Semiconductors

The relaxation time for a semiconductor is calculated assuming that there is only one

electron in the band. Most semiconductors have electrons or hole in one or several band

minimum. In order to keep the discussion simple, the present calculation will be done

assuming there is a single conduction band at the center of the Brillouin zone. This situation

applies to GaAs and other III±V and II±VI semiconductors. The phonon wave vectors are

rather small. An electron with energy ek � kBT has a small wave vector k. If it emits or

absorbs a phonon and goes to energy ek�q � hoq, then jk � qj is a small wave vector. The

consequence is that q is also a small wave vector. At small wave vectors, it is a good

approximation to represent acoustical phonons by the Debye model �oq � csq� and optical

phonons by an Einstein model �oq � o0�. The results for acoustical phonons are derived here.

The case of optical phonons is assigned as problems, although the derivation is similar to that

for FroÈhlich polarons in the last section.

The wave vector integrals can be done analytically since the Debye approximation is

accurate. De®ne

a2F ����k;o� �
�

d3q

�2p�3 jMqj2d�ek ÿ ek�q � hoq�d�oÿ oq� �8:155�

� D2m�

8p2h2rkc4
s

o2jol<o<ou
�8:156�

ou � 2cs�k � ks�; ol � 2cs��ks ÿ k� �8:157�
ks � m�cs=h �8:158�
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The lower limit ol can be set equal to zero since the factor of o2 makes this contribution

negligible. The lifetime is

1

tp�k� � 2p
�

dofa2F �ÿ��k;o��nB�o� � 1� � a2F ����k;o�nB�o�g

There are two interesting limits to this expression. The ®rst is at zero temperature where the

phonon occupation numbers nB�o� � 0. The particle is assumed to be energetic so that

k � ks. In this case the answer is

1

tp�k�
� gpek �8:159�

gp �
4

3p
D2m�2

h4rcs

�8:160�

The lifetime depends upon the value of kinetic energy. The second case is at high temperature,

where nB � kBT=ho so the result is proportional to temperature. In this case the natural

quantity is the mfp �lp�k� � vktp�k��

1

tp�k�
� vk

lp
�8:161�

1

lp
� D2kBTm�2

ph4rc2
s

�8:162�

Another mfp for the electron is called lf. The symbol f denotes the phase of the electron. The

value of lf is the distance over which the electron travels before it breaks its phase coherence.

For electrons in a pure semiconductor, where there are no electron±electron interactions, then

lf � lp. The distance for phase coherence is given by the mfp for scattering by phonons. The

phonon can carry away an arbitrary amount of phase, so such scattering does change the

phase of the electron in a random fashion. In contrast, the scattering by impurities does not

change the phase coherence. Impurity scattering changes the phase of the electron, but it

changes the phase of each electron by the same amount. So coherence is maintained in

scattering by impurities, while it is not maintained in the scattering by phonons. The impu-

rities are just part of the one-electron potential which guides the electron as it wanders

through the crystal. Electron±electron interactions also break phase coherence.

A calculation similar to ®nding lp can be done for the momentum relaxation

a2
t F ����o� �

�
d3q

�2p�3 jMqj2�ÿk ? q=k2�d�ek ÿ ek�q � hoq�d�oÿ oq�

� D2m�

16p2h2rk3c6
s

o4jol<o<ou

1

tpt�k�
� 2p

�oD

0

dofa2
t F �ÿ��o��nB�o� � 1� � a2

t F ����o�nB�o�g
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The results are at low temperature

1

tpt�k�
� gptek �8:163�

gpt �
8

5p
D2m�2

h4rcs

� 6
5
gp �8:164�

and at high temperature

1

lpt

� D2kBTm�2

ph4rc2
s

� 1

lp
�8:165�

The results are the same at high temperatures for the transport and regular scattering mfp:

lpt � lp. This equality is expected for the following reason. At high temperatures, the wave

vector dependence of the interaction is effectively

jMqj2
hoq

� D2q2

2ro2
q

� D2

2rc2
s

�8:166�

The interaction is independent of wave vector, so the scattering is isotropic. The angular

factor of cos�y� averages to zero for isotropic scattering, and the two mfp's are identical.

Some numerical results are presented in Table 8.1 for the high-temperature case using

T � 300 K. The factor of rc2
s � C11, where C11 is the elastic constant for LA phonons. The

values for lpt are several microns.

Also included are data for the polar scattering by optical phonons, which produces a

lifetime t0, which can be converted to a mfp using the thermal velocity vT �
������������������
2kBT=m�

p
.

Energy relaxation in semiconductors is discussed using the formula (8.144)

dE

dt

� �
� ÿ2p

�oD

0

doofa2F �ÿ��k;o��nB�o� � 1� ÿ a2F ����k;o�nB�o�g

At low temperature the phonon occupation number nB � 0 and the only process is phonon

emission. Assuming that the particle has enough energy to emit phonons, the above formula

gives

dE

dt

� �
� D2m�k3

ph2r
� ÿ vkek

lpe

�8:167�

dE

dx

� �
� 1

vk

dE

dt

� �
� ÿ ek

lpe

�8:168�

1

lpe

� 2D2m�3

ph4r
�8:169�

The mfp path for energy relaxation lpe from phonons is quite long. Some values are shown in

Table 8.1. Typical distances are millimeters. Most semiconductor devices are much smaller

than these length scales, so that electrons do not achieve energy relaxation in traversing most

devices unless there is suf®cient impurities to cause them to random walk this distance.

The other interesting case is for high temperature. Expand nB � kBT=oq ÿ 1
2

and ®nd

dE

dt

� �
� ÿ2p

�oD

0

doo
kBT

ho
�a2F �ÿ� ÿ a2F ���� � 1

2
�a2F ��� � a2F ����

� �
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The last term gives the same mfp lpe as was found for zero temperature. The ®rst term, which

is proportional to kBT , is nonzero when the limits to the frequency integrals are taken to be

2cs�k � ks�, so the integral is�2cs�kÿks�
doo2 ÿ

�2cs�k�ks�
doo2 � �8:170�

ÿ 1
3
�2cs�3��k � ks�3 ÿ �k ÿ ks�3� � ÿ16k2m�c4

s �8:171�
dE

dx

� �
� ÿ 1

lpe

�ek ÿ 2kBT � �8:172�

The energy relaxation has the same formula lpe for the mfp at room temperature as at low

temperature. The only change at higher temperature is that the energy ek relaxes to the value

2kBT , which was zero at zero temperature.

8.3.3. Temperature relaxation

The relaxation time for temperature is required when the electron temperature Te and the

phonon temperature Tp are different. The electron±phonon interaction will allow energy

exchange between these two systems, and gradually bring them to the same temperature. The

rate at which they equilibrate de®nes the temperature relaxation time. The result for metals

was introduced by Allen (1987). The same quantity is important in semiconductors. There are

several situations where an experimentalist might encounter Tp 6� Te. Since the electrons

absorb electromagnetic radiation, an intense laser pulse could raise Te above Tp. Similarly, a

strong dc electric ®eld could accelerate electrons to have an average kinetic energy well above

the phonon temperature, and then the two systems would mutually relax to the same

temperature.

The starting expression for this calculation is the collision term (8.137) in the Boltzmann

equation. The expression is simpli®ed with the following assumptions:

TABLE 8.1 Electron mfp data at T � 300 K. The top lines have material constants. The second group of lines has

estimated mpf from optical phonon scattering. The last two lines are from deformation potential scattering by LA

phonons

Units GaAs InP InAs InSb

m� me 0.064 0.078 0.027 0.013

e0 12.8 12.5 15.15 17.7

e1 10.9 9.5 12.25 15.7

C11 GPa 118 101 83 66.7

r g=cm3 5.32 4.81 5.67 5.78

hoLO meV 35.4 42.8 29.6 23.6

D eV 8.0 6.4 6.0 14.0

a 0.067 0.125 0.055 0.020

t0 ps 0.80 0.51 0.85 2.09

vT km=s 378 341 581 837

vT t0 mm 0.30 0.18 0.50 1.75

lpt mm 2.0 1.8 13.9 8.8

lpe mm 3.2 2.5 80 134
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� The electrons are in thermal equilibrium among themselves with an effective

temperature Te, be � 1=kBTe and distribution function f �p� � nF �xp�. This relative

equilibrium is maintained by rapid electron±electron scattering.
� The phonons are in thermal equilibrium among themselves with an effective

temperature Tp, bp � 1=kBTp which is maintained by rapid anharmonic phonon±

phonon scattering. They are described by a distribution function nB�oq�.
� The electrons and phonons exchange energy according to (8.137).

Always keep in mind that the boson distribution function nB�o� is at a different temperature

than the electron distribution functions nF �e�, nF �e0�. The expression can be further simpli®ed

by using the function a2F�o� to express the integrals over the phonon states

@f �e�
@t

� �
ep

� 2p
�

doa2F�o�
�

de0

� fd�eÿ e0 ÿ o��nF �e��1ÿ nF �e0���nB�o� � 1� ÿ nF �e0�nB�o��1ÿ nF �e���
� d�eÿ e0 � o��nF �e�nB�o��1ÿ nF �e0�� ÿ nF �e0��nB�o� � 1��1ÿ nF �e���g

�8:173�

where e � ep, e0 � ep�q. Next, the change in the internal energy is calculated. The change in

energy is accomplished by inserting under in the integral the factor of e0 ÿ e � �ho.

@E�e�
@t

� �
ep

� ÿ2ph

�
doa2F�o�o

�
de0�8:174�

� fd�eÿ e0 ÿ o��nF �e��1ÿ nF �e0���nB�o� � 1� ÿ nF �e0�nB�o��1ÿ nF �e���
ÿ d�eÿ e0 � o��nF �e�nB�o��1ÿ nF �e0�� ÿ nF �e0��nB�o� � 1��1ÿ nF �e���g

� ÿ2ph

�
doa2F�o�o

� fnF �e��1ÿ nF �eÿ o���nB�o� � 1� ÿ nF �eÿ o�nB�o��1ÿ nF �e��
ÿ nF �e�nB�o��1ÿ nF �e� o�� � nF �e� o��nB�o� � 1��1ÿ nF �e��g �8:175�

In order to average over the entire system of electrons, it is necessary to also integrate over de.
If N �e� is the density of states for the electron system, the energy change in the electron

system is

dU

dt
� C

dTe

dt
�
�

deN �e� @E�e�
@t

� �
ep

�8:176�

where C is the heat capacity. The integrals over de all converge within a thermal energy of the

chemical potential. On this small energy scale, the density of states N �e� can be taken to be a

constant N(0), where the zero of energy is the chemical potential. Then all of the integrals

over de have the typical form

I �o� �
�

denF �e��1ÿ nF �eÿ o�� � o
ebeo ÿ 1

� onBe�o� �8:177�
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The subscript `̀ e'' is added to the boson occupation function nBe�o� to emphasize that it is

evaluated at the electron temperature Te. The above result can be derived by changing vari-

ables of integration to s � exp�bee�, ds � sbede, t � exp�beo� which changes the integral to

I �o� � kBTe

�1
0

ds

�s� 1��s� t� �
kBTe

ebeo ÿ 1
ln

s� 1

s� t

� �1
0

� onBe�o�

The other integrals over de are evaluated in a similar fashion. The result for the energy

relaxation is

C
dTe

dt
� ÿ4ph2N �0�

�oD

0

doo2a2F�o��nBe�o� ÿ nBp�o�� �8:178�

The ®nal formula is quite simple. The right-hand side of this equation obviously vanishes in

equilbrium when Te � Tp. Another simpli®cation occurs because the heat capacity is

proportional to the density of states C � p2k2
BTN �0�=3 which simpli®es the expression to

dTe

dt
� ÿ 12h2

pk2
BTe

�oD

0

doo2a2F�o��nBe�o� ÿ nBp�o�� �8:179�

The only factor which relates to the particular solid is a2F�o�.
There are two interesting limits when evaluating this expression. The ®rst is at very low

temperature, Te;p � Y, where the Debye temperature is Y. Then the integral over o has its

main contribution at small values of o. The small values of frequency come from sound

waves, where it is suitable to use the Debye approximation. The evaluation of a2F�o� in this

limit is identical to the semiconductor case, which gives that a2F � go2 where g is a

constant. The frequency limits can be extended to in®nity, which gives the expression

dTe

dt
� ÿG�T 5

e ÿ T5
p � �8:180�

G � 12k3
Bg

pTeh3
I4 �8:181�

I4 �
�1

0

dxx4

ex ÿ 1
� 4!z�5� �8:182�

The relaxation obeys a T 5 law, which means very little heat is exchanged between electrons

and phonons at low temperatures.

The other interesting limit is at room temperature, or at least above the Debye

temperature. Then the boson occupation factors can be expanded nB � kBT=ho which gives

the simple result

dTe

dt
� ÿ �Te ÿ Tp�

tpT

�8:183�

1

tpT

� 6h

pkBTe

lho2i �8:184�

At high temperature the temperature relaxation is determined by the temperature difference

dT � Te ÿ Tp, as well as by the function lho2i. The latter function also determines the

energy relaxation.

The temperature relaxation is measured by lasers using pulse-probe techniques. The ®rst

laser pulse is absorbed by the electrons, which thermally excites them, which causes their
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temperature to differ from the phonons. The time-delayed probe measurement determines

how some property, such as the refractive index, varies with the time interval after the initial

pulse. An observation of an exponential relaxation curve is a measurement of tpT .

The above result is valid for a metal. A similar derivation can be done for a semi-

conductor, which is assigned in the problems. The same calculation for scattering of electrons

in a semiconductor, by optical phonons, can be done in a interesting and rigorous way. For

optical phonon scattering in a semiconductor, all of the phonons have the same energy ho0 so

there is no need for an integral over frequency. In fact, just set

a2F�o� � lo0

2
d�oÿ o0� �8:185�

where l is the dimensionless coupling constant. Starting from (8.173) gives

@f �e�
@t

� �
� ÿplo0f� f �e��N0 � 1� ÿ N0f �eÿ o0��Y�eÿ o0�

� f �e�N0 ÿ f �e� o0��N0 � 1�g �8:186�

The states f �e� lo0� can be regarded as a ladder of energy states, where each level is

separated by o0. The above equation can be solved exactly by matrix methods. De®ne

fl � f �e� lo0� where the energy e is now limited to the range 0 < e < o0. The vector ~f has

fl as its elements. The above equation can now be cast into a matrix equation, where N0 is

the occupation number of the optical phonons.

d

dt
~f � ÿ 1

toT

m ? ~f �8:187�

m �
N0 ÿ�N0 � 1� 0 � � �
ÿN0 2N0 � 1 ÿ�N0 � 1� � � �

0 ÿN0 2N0 � 1 � � �

0B@
1CA �8:188�

1

toT

� plo0 �8:189�

The matrix m has tridiagonal form. Only three rows are shown, but its dimensionality is

in®nite. All row except the ®rst have elements: ÿN0, 2N0 � 1, ÿ�N0 � 1� to the left of the

diagonal, on the diagonal, and to the right of the diagonal. If the matrix m has eigenvalues ej

and eigenfunctions cj then the solution is

~f �t� �P
j

ajcje
ÿej t=toT �8:190�

where the coef®cients aj are determined by the initial conditions. The equilibrium distribution

is given by e0 � 0, c0 � exp�ÿlbo0�, where b is determined by the phonon temperature. The

system relaxes towards the equilibrium distribution, which is why its eigenvalue has to be

zero. The other eigenvalues and eigenvectors are given by Mahan (1985).
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8.4. ELECTRON±PHONON INTERACTIONS IN METALS

8.4.1. Force±force correlation function

In pure metals the electrical resistivity has two components. There is usually a constant

resistivity from electron scattering by impurities, which is the largest part of the resistance at

small temperatures. There is also a resistivity from electron scattering by phonons, which is

temperature dependent and becomes large at high temperature. `̀ Matthiessen's rule'' (1862) is

that these two contributions to the resistance are additive. It should be regarded as a rule of

thumb, rather than an ironclad rule. There are enough `̀ deviations from Matthiessen's rule'' to

make the abbreviation DMR a familiar acronym (Bass, 1982).

Electron scattering by acoustical phonons presents a hard problem in transport theory.

The scattering is slightly inelastic. This problem is solved using neither the elastic scattering

theory of Sec. 8.1 nor the inelastic scattering theory of Sec. 8.2. Instead an integral equation

must be derived and solved for the energy dependence of the scattering process. The slightly

inelastic nature of the scattering process makes this calculation much harder than the previous

cases.

Two methods for obtaining the electrical conductivity are emphasized in this book. One

uses equilibrium methods and evaluates the Kubo formula for the current±current correlation

function. The resistivity from phonons will be found using this method, which follows the

original derivation by Holstein (1964). The second method utilizes the quantum Boltzmann

equation (QBE), which is a nonequilibrium theory. Mahan and Hansch (1983) used the QBE

to derive the Holstein formula. Both of these derivations are complicated. They end by

deriving the same integral equation for the scattering function, which must be solved by

further work. Their virtue is that they are formally exact starting points, although approx-

imations are made in obtaining the solution.

Other methods for obtaining the resistivity have been proposed, partly to avoid all of the

work associated with the exact methods. These other methods are approximate. However,

often the theories are both simple and accurate, which make them useful approximations. One

of them is the force±force correlation function. If F(t) is the ¯uctuating force that acts on the

electron, then de®ne R�io� as the force±force correlation function:

R�io� � ÿ 1

3

�b
0

dteionthTtF�t� ? F�0�i �8:191�

r � 1

e2n2
0

lim
o!0

Im Rret�o�
o

� �
�8:192�

This formula is just the quantum analogy of the Nyqvist theorem (Kubo et al., 1985). After

calculating this correlation function, the retarded function is obtained by letting io! o� id.

The resistance r is found by dividing by o and taking the limit of o! 0. For example,

assume that the force on the electron has two terms: Fi from impurities and Fph from phonons.

If they are uncorrelated, then the correlation function has no cross terms. Symbolically write

R � h�Fi � Fph� ? �Fi � Fph�i � hFi ? Fii � hFph ? Fphi �8:193�

In this case the resistivities from impurities and phonons are additive, in agreement with

Matthiessen's rule.
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As an example, the resistivity is calculated from impurity scattering. The potential

energy of the electron scattering from the impurities at Ri is discussed in Sec. 4.1.5

V �r� �P
i

Vei�rÿ Ri� �
1

n
P
iq

V �q� exp�iq ? �rÿ Ri�� �8:194�

The force F is the gradient of the potential. The factor of exp�iq ? r� can also be written as the

electron density operator r�q�. The factor of exp�ÿiq ? Ri� can be written as the impurity

density operator ri�ÿq�

F�r� � ÿ i

n
P
iq

qV �q� exp�iq ? �rÿ Ri�� � ÿ
i

n
P
iq

qV �q�r�q�ri�ÿq�

The next step is to evaluate the force±force correlation function R�io�. In correlating F with

itself, there are two separate factors. One is hri�ÿq�ri�ÿq0�i, which equals the number of

impurities Ni if q � ÿq0 The other is the electron density±density correlation function, which

is given exactly in terms of the inverse dielectric function

Ri�io� � ÿ
Ni

3n2

P
q

q2

vq

V �q�2 1

e�q; io� ÿ 1

� �
�8:195�

The next step is to take the imaginary part of the retarded function. The only retarded function

on the right-hand side of the above equation is the inverse dielectric function e � e1 � ie2. Its

imaginary part is ÿe2=�e2
1 � e2

2�. At low frequency e2 � 2oe2m2=q3. Dividing by o eliminates

the factor of frequency. The formula for the resistivity from impurity scattering is

r � nim
2

6pn2
0e2

�
d3q

�2p�3 q

����V �q�
e�q�

����2 �8:196�

This formula is the exact result for the zero-temperature resistivity from impurity scattering,

when the scattering is calculated in the second Born approximation. If V �q�=e�q� is replaced

by the T matrix for scattering, then it is the exact result, period. It is the formula

r � m=�n0e2tt�, where tt is de®ned in (8.25). It even includes the factor of �1ÿ cos y0�,
although this assertion is not immediately obvious. One has to perform the angular integral in

(8.25), which eliminates the delta function, in order to show its equivalence with the above

formula for the resistivity.

The force±force correlation function gives the right resistivity for impurity scattering. No

vertex correction or integral equation was needed in the derivation. The ease of derivation has

made this approach popular.

Several caveats are needed. One is that impurity scattering is the only known example

where the force±force correlation function gives the correct answer. In other cases it give an

approximate answer. The second caveat is that the right answer is obtained by a wrong

derivation. The derivation contains two important limits. One is setting the volume n!1,

while the second is o! 0. The above answer is obtained by taking these limits in the wrong

order. If they had been done correctly, in the right order, a different answer is obtained. Using

the right order in evaluating the force±force correlation function gives a zero result as o! 0.

These points are discussed by Argyres and Sigel (1974), Huberman and Chester (1975), Kubo

et al. (1985), and Fishman (1989).
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The force±force correlation function may also be evaluated for the electron scattering by

phonons. The result is

r�T � � C0
P
l

�
qd3qjW �q�j2�x̂l ? q�2 ÿ dnB�o�

do

� �
�8:197�

C0 � 3hn0

16Me2v2
Fk4

F

�8:198�

Here W �q� is the screened electron±ion interaction and n0 is the unit cell volume. This

formula was ®rst derived by Ziman (1960) as a variational solution to the Boltzmann equa-

tion. It is the formula that is most often evaluated when calculating the temperature depen-

dence of the resistivity of metals. Figure 8.8 shows a theoretical calculation of Dynes and

Carbotte (1968) compared with experiments for Na and K. An important feature of these

calculations is numerically integrating over the Brillouin zone for all the phonon states, while

employing accurate values for the phonon frequencies ol�q� and polarization vectors x̂.

8.4.2. Kubo formula

A rigorous theory of the dc electrical conductivity is calculated for the scattering of

electrons by all phonons: acoustical and optical. The starting point is the Kubo formula, and

the derivation follows the original one by Holstein (1964). His theory sums the ladder

diagrams for phonons and reduces the vertex function to an integral equation which is solved

numerically. So far a solution is available only for a spherical Fermi surface, so that the result

is the Kubo formula analogy of (8.198). The results are expressed in terms of the McMillan

function a2F�o� and a similar function a2
t F�o�, which is used in transport theory.

The goal is to evaluate the current±current correlation function in the presence of the

electron±phonon interaction. This correlation function can always be expressed as a product

of two Green's functions and the vertex function. The Green's function g�p; ip� used here

represents fully interacting particles, with a self-energy found from the electron±phonon

interaction plus any additional interactions of interest. The Feynman diagram for the corre-

lation function is shown in Fig. 8.9 where the vertex function is put only at one end of the

bubble in order not to overcount the vertex terms:

p�io� � ÿ 1

3n

�b
0

dteionthTtj�t� ? j�0�i

� ÿ e2

3m2n
P

pp0ss0
p ? p0

�b
0

dteionthTtC
y
ps�t�Cps�t�Cyp0s0 �0�Cp0s0 �0�i �8:199�

p�io� � 2e2

3m2

�
d3p

�2p�3
1

b
P
ip

g�p; ip�g�p; ip� io�p ? G�p; ip; ip� io� �8:200�

FIGURE 8.9
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The dc conductivity is found by the same steps used in Secs. 8.1 and 8.2. One evaluates the

correlation function for values of io and analytically continues io! o� id to ®nd the

retarded function. The dc conductivity is the imaginary part of the retarded function divided

by o, in the limit where o! 0.

The vertex function G�p; ip; ip� io� is evaluated below. It depends on both the

frequency variables ip and io, which is written in the combination �ip; ip� io�. The two

arguments ip and ip� io come from the electron Green's functions which have the same

frequency arguments. In a homogeneous electron gas, the vector vertex function

G�p; ip; ip� io� must point in the vector direction p, although in real metals the crystalline

potential de®nes other possible directions. However, the approximation of treating the Fermi

surface as strictly spherical is equivalent to neglecting crystal directions, so assume G points

in the direction p. It is convenient to introduce the scalar function g�p; ip; ip� io�, which is

the amplitude of the vector vertex function:

G�p; ip; ip� io� � pg�p; ip; ip� io� �8:201�

p�io� � 2e2

3m2

�
d3p

�2p�3 p2S�p; io� �8:202�

S�p; io� � 1

b
P
ip

g�p; ip�g�p; ip� io�g�p; ip; ip� io� �8:203�

The scalar function g is not the same as the scalar vertex function in (8.81).

The next step is to evaluate the summation over Matsubara frequencies ip to obtain

S�p; io�. To this end, construct the usual contour integral which has cuts along the axes where

ip! real and also ip� io! real. These series of algebraic operations are the same as used

to derive (8.64) for impurity scattering. That earlier result can be used here by identifying

P � GGg

Im�Sret�p;o�� � Re

(�1
ÿ1

de
2p
�nF �e� o� ÿ nF �e��

� �Gadv�p; e�Gret�p; e� o�g�p; eÿ id; e� o� id�

ÿ Gret�p; e�Gret�p; e� o�g�p; e� id; e� o� id��
)

�8:204�

and the conductivity is

s � 2e2

3m2

�
d3p

�2p�3 p2

�1
ÿ1

de
2p
ÿ dnF �e�

de

� �
� fjGret�p; e�j2g�p; eÿ id; e� id� ÿ Re�Gret�p; e�2g�p; e� id; e� id��g �8:205�

Equation (8.205) is exact for the exact vertex function. It is expressed in terms of the two

functions g�p; eÿ id; e� id� and g�p; e� id; e� id�. These two functions are expected to

be quite different, as they were in Sec. 8.1 for impurity scattering. The function

g�p; e� id; e� id� could be obtained from a Ward identity. That is true here, as ®rst shown
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for the electron±phonon system in metals by Englesberg and Schrieffer (1963). This Ward

identity can be expressed in terms of G�p; e� id; e� id� or the scalar g�p; e� id; e� id�:

G�p; e� id; e� o� id� � p� mHHpS�p; e� �8:206�

g�p; e� id; e� o� id� � 1� @

@xp

S�p; e� �8:207�

Gret�p; e�2g�p; e� id; e� o� id� � @

@xp

Gret�p; e� �8:208�

For metals, the electron±phonon system has the feature that the self-energy function S�p; e� is
not very p dependent, and the derivative of S�p; e� with respect to xp is small:

dS=dxp � S=EF � 1. A good approximation is to set g�p; e� id; e� id� � 1.

There is another result which is even stronger, since it applies for all values of e near the

Fermi energy. Since the self-energy S�p; e� does not have signi®cant p dependence near

p � kF , call it S�kF ; e� � Re�S�e�� ÿ iG�e� where the p notation is suppressed. The function

G�e� � ÿIm�S�kF ; e��. The retarded and advanced Green's function have their important

dependence on p through the kinetic energy term, x � xp. De®ne O�e� � eÿ Re�S�e��:

Gret�p; e� �
1

eÿ xÿ Re�S�e�� � iG�e� �
1

O�e� ÿ x� iG�e� �8:209�

Gadv�p; e� �
1

eÿ xÿ Re�S�e�� ÿ iG�e� �
1

O�e� ÿ xÿ iG�e� �8:210�

Similarly, the vertex function g�p; eÿ id; e� o� id� is assumed to not have a signi®cant

dependence upon p except on the order of kF . This assumption will be justi®ed later. The

second term in brackets in (8.205) can be neglected; it vanishes by doing the kinetic energy

integration. By neglecting terms of order O�x=EF � then

d3pp2 � 4pp4dp � 4pmk3
Fdx�1� O�x=EF �� � 12pmn0dx �8:211�

where the electron density is n0 � k3
F=3p

2. When the kinetic energy integral is evaluated, the

only x variation is in the Green's functions. Of the three combinations which occur, only one

makes a nonzero contribution:�1
ÿ1

dxGret�p; e�Gret�p; e0� � 0 �8:212��1
ÿ1

dxGret�p; e�Gadv�p; e0� �
2pi

O�e� ÿ O�e0� � i�G�e� � G�e0�� �8:213��1
ÿ1

dxGadv�p; e�Gadv�p; e0� � 0 �8:214�

Each integral is evaluated by closing the contour at in®nity. The two integrals which vanish

have both their poles in the same half plane (upper or lower), so the integration contour can be

chosen to avoid them both, which encircles no poles and hence gives zero. The integral over

the combination GadvGret has one pole in each plane. Closing the contour always picks up one
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pole whose residue produces the result. By using these integration results, the dc conductivity

(8.205) becomes

s � e2n0

2m

�1
ÿ1

de
L�e�
G�e� ÿ

d

de
nF �e�

� �
�8:215�

L�e� � g�kF ; eÿ id; e� id� �8:216�
G�e� � ÿ2 Im�S�kF ; e�� �8:217�

Equation (8.215) is the ®nal result of the formal derivation. There only remains the evaluation

of the vertex function L�e� and the imaginary self-energy G�e�. If the vertex function were

absent �L � 1�, then the evaluation would be easy. The imaginary self-energy G�e� has been

evaluated for many metals, and a result was given in Fig. 7.14 for Pb. The quantity

1=2G � t�e�, where t�e� is the relaxation time de®ned as the average time between scattering

events. The result (8.215) when L � 1, is just the average of the relaxation time over the

thermally smeared Fermi distribution. Of course, the earlier solution for impurity scattering

showed that the neglect of L�e� is a serious error. The vertex function L�e� serves the

important role of weighting the scattering events and favoring those at high momentum

transfer. For impurity scattering, L � G=Gt or L=G � 1=Gt, where Gt is the scattering rate

which contains the equivalent of �1ÿ cos y0�.
The vertex equation for phonon scattering is now solved to derive Gt. Since the phonon

scattering is inelastic, the results are not identical to those for impurity scattering. In summing

the ladder diagrams for the vertex function, however, the vertex contributions are found to be

important and signi®cantly different from unity. Migdal's (1958) theorem, which asserts that

vertex terms are unimportant, is contradicted.

The vertex function G�p; ip; ip� io� is calculated by solving the integral equation

G�p; ip; ip� io� � p� 1

b

P
iq;l

�
d3q

�2p�3 Ml�q�2d�q; iq�g�p� q; ip� iq�

� g�p� q; ip� iq� io�G�p� q; ip� iq; ip� iq� io� �8:128�

This vertex sums the ladder diagrams for phonons. It is illustrated in Fig. 8.10. Iteration of

Eqn. (8.218) produces a series in which each additional term has one more ladder diagram.

The solution to the integral equation produces an expression which contains all terms with

any number of phonon ladder diagrams. This solution is not an exact evaluation of the vertex

function G�p; ip; ip� io�, since other vertex contributions occur which are not ladders but

have the phonon lines crossed. One expects these terms to be smaller, but detailed calcula-

tions are lacking, so this is only a supposition.

FIGURE 8.10
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It is unfortunate that the vertex function is a vector. The scalar vertex function obtained

by replacing p by 1 in Eqn. (8.218) is easily obtained from a Ward identity:

G�p; ip; ip� io� � 1� 1

b
P
iq;l

�
d3q

�2p�3 Ml�q�2d�q; iq�g�p� q; ip� iq�

� g�p� q; ip� iq� io�G�p� q; ip� iq; ip� iq� io�

� 1ÿ 1

io
�S�p; ip� io� ÿ S�p; ip�� �8:219�

The Ward identity is not helpful for our problem with a vector vertex function. The integral

equation must be attacked and solved.

De®ne the scalar function g�p; ip; ip� io� as the scalar amplitude of the vector vertex

function G � pg. It obeys the integral equation

g�p; ip; ip� io� � 1� 1

b
P
iq;l

�
d3q

�2p�3 Ml�q�2d�q�
p ? �p� q�

p2

� g�p� q�g�p� q� io�G�p� q; ip� iq; ip� iq� io�
This equation is not the same one which is obeyed by the scalar vertex function in (8.219),

and these two functions are quite different.

First do the integrals over angles and wave vector. First write d3q � 2pq2dqdn, where

n � cos y is the angle between p and q. The angle variable is changed to p1, de®ned as

p2
1 � �p� q�2 � p2 � q2 � 2pqn �8:220�

dn � p1dp1

pq
�8:211��

d3q � 2p
p

�1
0

qdq

�jp�qj

jpÿqj
p1dp1 �

2p
v0

�1
0

qdq

�xp�q

xpÿq

dx1 �8:222�

Next uncouple the limits of integration. Only electrons at the Fermi surface contribute, so that

values of x1 � ep1
ÿ m � 0 and xp � 0 are important in the integration process. Approximate

vp � vF as the Fermi velocity. Similarly, the integral qdq is understood to be over the spherical

Fermi surface from one point p to all other points p1, where p and p1 both have magnitude kF :�
d3q! 1

vF

�
d2q

�1
ÿ1

dx1 �8:223�

The limits on the dx1 integral are extended between �1, since most of the integrand has

large q values, where the actual limits on x1 are from a very negative number to a very

positive one. Since the main contribution is in the region x1 � 0, this error is small. Consider

the other angular factors in the integrand:

p ? �p� q�
p2

� 1� qv

p
� 1� 1

2p2
�p2

1 ÿ p2 ÿ q2� �8:224�

� 1ÿ q2

2k2
F

� O
x1

EF

;
xp

EF

� �
�8:225�

The terms x1=EF , xp=EF are neglected, since it is expected that x1 and xp will be smallÐon

the order of a Debye energy. On the other hand, the factor q2=2k2
F need not be small, since the
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integration over phonon states has a signi®cant contribution from high values of q near the

edge of the Brillouin zone. This term must be retained. The difference in treating the factor

�p2
1 ÿ p2�=k2

F , which is neglected, and q2=k2
F, which is retained, is that the former enters the

average over electron states and the latter over phonon states. The integrals over the phonon

wave vector can be expressed in terms of the function a2F�o�, which was introduced in Sec.

7.4:

a2F�o� � 1

vF

P
l

�
d3q

�2p�3 Ml�q�2d�oÿ ol�q�� �8:226�

a2
t F�o� � 1

vF

P
l

d3q

�2p�3 Ml�q�2
q2

2k2
F

d�oÿ ol�q�� �8:227�

The ®rst of these is just the McMillan function, which was de®ned in Sec. 7.4. Since the

Fermi surface has been assumed to be spherical, a2F has the same value at each point on the

surface, and the p subscript is omitted. The other form of coupling a2
t F is called the

`̀ transport form of alpha-squared-F,'' which was introduced by Allen (1971). It differs from

the McMillan form by having the additional factor of q2=2k2
F in the integrand, which gives

more weight to the scattering processes at large wave vector. The factor of q2=2k2
F is identical

to �1ÿ cos y0� when the scattering is elastic.

After completing all these angular and wave vector integrations, the vertex function

g�p; ip; ip� io� is found to be not very dependent on p. The only variation is as a function of

p, which can be set equal to kF with an error of only xp=EF. De®ne g�ip; ip� io� �
g�kF ; ip; ip� io� and arrive at the equations:

g�ip; ip� io� � 1�
�oD

0

du�a2F�u� ÿ a2
t F�u��

�
�1
ÿ1

dx1S�x1; u; ip; ip� io� �8:228�

S�x; u; ip; ip� io� � 1

b
P
iq

2u

�iq�2 ÿ u2
g�ip� iq; ip� iq� io�

� g�x; ip� iq�g�x; ip� iq� io� �8:229�
This integral equation is not too dif®cult to solve. The basic approximation has been to

decouple the integrations over dq and dx1, which permits all the phonon information to be

collected into the functions a2F, a2
t F. The primary assumption in this decoupling is that the

Fermi degeneracy EF is very much larger than other energies such as kBT or hoD. The present

integral equation is actually much easier to solve than the one for polarons in Sec. 8.2, since

there the integration variables cannot be accurately decoupled in the same way.

The preceding is the basic integral equation which needs to be solved for the vertex

function. The x dependence of S is only in the Green's functions g�x; ip� iq� and

g�x; ip� iq� io�. This integral is done later, using the result (8.213) that only the integral

over the pair GretGadv � jGretj2 is nonzero. The factor 2u=��iq�2 ÿ u2� is the phonon Green's

function for a phonon of energy u. The next step in the derivation is to do the summation over

Matsubara frequency iq, which is done in the usual way by constructing a contour integral.�
dz

2pi

2u

z2 ÿ u2
nB�z�g�z� ip; z� ip� io�G�z� ip�G�ip� io�

542 Chap. 8 � DC conductivities



The contour in integration is a circle at in®nity. The integrand has poles from the phonon

Green's functions at z � �u and cuts along the axes where the electron Green's functions are

real, z � ÿip� e0 and z � ÿipÿ io� e0. The contour integral from these three contributions

are

S � S1 � S2 � S3 �8:230�
S1 � nB�u�g�ip� u; ip� io� u�G�ip� u�G�ip� io� u�
� �nB�u� � 1�g�ipÿ u; ip� ioÿ u�G�ipÿ u�G�ip� ioÿ u� �8:231�

S2 �
�

de0

2pi

2u

�e0 ÿ ip�2 ÿ u2
G�e0 � io��g�e0 � id; e0 � io�Gret�e0�

ÿ g�e0 ÿ id; e0 � io�Gadv�e0�� �8:232�

S2 �
�

de0

2pi

2u

�e0 ÿ ipÿ io�2 ÿ u2
G�e0 ÿ io��g�e0 ÿ io; e0 � id�Gret�e0�

ÿ g�e0 ÿ io; e0 ÿ id�Gadv�e0�� �8:233�
The next step is to perform the analytic continuations. The ®nal result should be L�e� �
g�eÿ id; e� id�. First set ip! eÿ id. The next step is to set ip� io! e� io!
e� o� id! e� id, since o! 0. The Green's functions become advanced or retarded

according to the side of the cut, so this analytical continuation produces

S � nB�u�L�e� u�jGret�x; e� u�j2 � �nB�u� � 1�L�eÿ u�jGret�x; eÿ u�j2

�
�

de0

2pi
nF �e0� jGret�x; e0�j2L�e0�

2u

e0 ÿ eÿ id�2 ÿ u2
ÿ 2u

�e0 ÿ e� id�2 ÿ u2

� ��
� O�G2

ret;G2
adv�

�
�8:234�

The next step is to do the integration over dx1. According to (8.213), this integral eliminates

all combinations of the Green's functions except GretGadv � jGretj2, which removes the terms

O�G2
ret;G2

adv�. Also note that the factor below is the phonon spectral function

2u

�e0 ÿ eÿ id�2 ÿ u2
ÿ 2u

�e0 ÿ e� id�2 ÿ u2
� 2p�d�e0 ÿ eÿ u� ÿ d�e0 ÿ e� u��

which eliminates the integral over de0. These manipulations provide the ®nal form of the

integral equation for L�e�. It was ®rst derived by Holstein (1964), although his result is

modi®ed by expressing it in the a2F formalism:

L�e� � 1� p
�oD

0

du�a2F�u� ÿ a2
t F�u��

� �nB�u� � nF �e� u��L�e� u�
G�e� u� � �nB�u� � 1ÿ nF �eÿ i��L�eÿ u�

G�eÿ u�
� �

s � n0e2

2m

�1
ÿ1

de
L�e�
G�e�

dnF �e�
de

� � �8:235�

The integral (8.215) for the dc conductivity was rewritten in order to present the two

important results together. The integral equation for the vertex function L�e� must be solved,

and the solution is used in the integral over e for the conductivity. Recall that L�e� is a real
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function, so the integral equation is not complicated. The form of the equations suggests the

unknown quantity is actually �t�e� � 2L=G, which might be called the effective relaxation

time for transport.

The energy uncertainty G�e� of the electron from the electron±phonon interaction was

given previously in (7.305). The equivalent result for the transport kernel is:

G�e� � ÿIm�S� � p
�oD

0

dua2F�u��2nB�u� � nF �u� e� � nF �uÿ e��

Gt�e� � p
�oD

0

dua2Ft�u��2nB�u� � nF �e� u� � nF �uÿ e��
�8:236�

If the self-energy function G and the vertex function L�e� were both constants and inde-

pendent of e, the solution of the vertex equation (8.235) would be easy:

L � 1� L
G
�Gÿ Gt� �8:237�

� G
Gt

�8:238�

This model gives L=G � 1=Gt, so that the conductivity integral has only the transport form of

the relaxation time. The earlier solution to impurity scattering also assumed that L=G � 1=Gt.

For impurity scattering the functions G�e� and L�e� are usually insensitive to e near e � 0; the

exception is when the impurity has a scattering resonance near the Fermi surface or if the

density of states is not smooth. However, for the electron±phonon interaction in metals, it is

not a good approximation to treat G�e�, Gt�e� or L�e� as constants. The calculated results in

Sec. 7.4, shown in Fig. 7.14 for Pb, illustrate that G�e� has substantial energy variations near

the Fermi energy. The vertex function does also.

Takegahara and Wang (1977) evaluated (8.235) and (8.215) for metallic rubidium and

cesium. Their results are shown in Fig. 8.11. In each case the solid line is calculated assuming

that the ratio G=Gt is a constant, while the dashed line is calculated by solving (8.235) for the

e dependence of L�e�. The latter curve is in very good agreement with the experiments, which

are indicated by the points. The differences between the solid and dashed curves are similar to

the differences between the Ziman formula (8.198) and the Holstein formula (8.235). Note

that there is no region with a well-de®ned T 5 law for the resistivity in these metals.

8.4.3. Mass enhancement

The electron±phonon mass enhancement factor l was introduced in Sec. 7.4. It is from

the real part of the electron self-energy due to the electron±phonon interaction. Since this self-

energy was found to be energy dependent but not very wave vector dependent, the electron

effective mass m� is approximated by

l�o� � ÿ @

@o
S�kF ;o� �8:239�

m�

m
� 1� l�o� � 1

Z�o� �8:240�

The mass enhancement factor is also related to the quasiparticle renormalization factor Z�o�.
The values of these quantities at the Fermi energy o � 0 are l and ZF . The mass renor-
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malization factor l can also be expressed as an average over the Fermi surface of a weighted

average over the phonon density of states. This de®nition is given in Sec. 7.4. Values of l in

real metals range from 0.1 to 3.

An important question is the role which l plays in the dc transport properties. The most

obvious approximation is to use the effective mass m� � m�1� l� in transport formulas

whenever classical theory says to use m. This substitution would make sense, since m� is the

effective mass which governs the motion of electrons on the Fermi surface, and these are

involved in dc transport properties. However, this sensible procedure is wrong in most cases.

The important point is that the factor 1� l can enter the ®nal formulas in several ways. It

changes the effective mass, relaxation time, and quasiparticle renormalization factor ZF. The

formula for the transport coef®cient will have a number of factors of 1� l. Often they all

cancel, which is the case for the electrical conductivity.

Prange and Kadanoff (1964) investigated which transport measurements were in¯uenced

by the electron±phonon mass enhancement factor 1� l. They concluded that the enhance-

ment did affect the following measurements: speci®c heat, low-®eld cyclotron resonance, and

the amplitude of the deHaas±van Alphen effect. The following measurements are not affected:

dc electrical conductivity, thermoelectric power, thermal conductivity, the period of the

deHaas±van Alphen effect, spin susceptibility, and the electron tunneling rate. Their

conclusion on the thermoelectric power was challenged by Opsal et al. (1976), who detected

a dependence on 1� l. The list of quantities which are affected is much shorter than the

list of quantities which are not affected. The usual case is that the transport property

is not in¯uenced by the mass enhancement factor; see Grimvall (1981) for a further

discussion.

FIGURE 8.11 Calculated constant volume phonon limited electrical resistivity for (a) Rb and (b) Cs. Solid lines are

calculations that treat L�e� as a constant. Dashed lines are full solution to integral equation for L�e�. Points are

experimental values. Source: Takegahara and Wang (1977) (used with permission).
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8.4.4. Thermoelectric power

The thermoelectric power is a subject which is seldom discussed in most solid-state

courses, as the lecturer is busy treating subjects which are more fashionable. This tendency is

regretable, since it is an important measurement. Experiments show that diverse behaviors are

found for simple metals, and even the sign of this quantity shows no regularity. The low-

temperature theory in metals is poorly understood, although there has been extensive work.

The thermoelectric power was introduced brie¯y in Sec. 3.8. It is a simple measurement,

at least conceptually. A conducting bar is insulated so electrical currents cannot exit from its

ends, and then a temperature difference DT is maintained along the length of the bar. The two

ends of the bar are found to have a voltage difference DV which is proportional to DT . The

constant of proportionality is the thermoelectric power S:

S � ÿDV

DT
� ÿ 1

T

L�12�

L�11� �8:241�

L�11� � kBT

3ion

�b
0

dteionthTtj�t� ? j�0�i �8:242�

L�12� � kBT

3ion

�b
0

dteionthTtjQ�t� ? j�0�i �8:243�

The thermopower is de®ned theoretically as the ratio of two correlation functions. One is just

proportional to the dc electrical conductivity s � bL�11�, which has already been evaluated for

several models. The other correlation function has the argument of heat current jQ and the

electrical current j, where jQ � jE ÿ �m=e�j. Equation (8.241) differs by a factor of charge e

from its earlier version in Sec. 3.9, since earlier j meant the particle current, whereas now it is

the electrical current. They differ by the unit of charge, which causes the change in (8.241).

The correlation function L�12� is now evaluated for its dc value. Both correlation func-

tions are evaluated for values of io; then analytically continue io! o� id. Finally take the

limit o! 0 of the imaginary part of the retarded function.

In the evaluation of most correlation functions, there is usually a leading term which

provides the dominant part of the answer. There are numerous small correction terms which

can usually be ignored. In calculating the correlation function L�12� for the thermoelectric

power, the dominant term vanishes, and one is left with obtaining all the numerous small

correction terms. This feature makes it dif®cult to obtain an accurate answer.

The heat current operator has many terms. The one which is expected to provide the

dominant term is from the kinetic energy of the electron: jQ �
P

vpxpC
y
psCps. This heat

current operator is used in most theories. Similarly, for the electrical current the operator is

j � e
P

vpC
y
psCps. The correlation function is called L�12a�:

L�12a� � 1

nbio
e

3m2

P
kps

k ? pxp

�b
0

dteionthTtC
y
ks�t�Cks�t�CypsCpsi

The important feature of this correlation function is the bracket containing four electron

operators. This type of operator sequence was encountered in earlier sections of this chapter.

It is evaluated as

L�12a� � 1

nb2io

2e

3m2

P
k

xk

P
ik

k ? G�k; ik; ik � io�g�k�g�k � io�
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where G�k; ik; ik � io� is the vector vertex function of the bubble diagram. This same vertex

function enters into the correlation function for the conductivity. Write it again as G � kg.

There is the same summation over Matsubara frequency ik which was done in the previous

section for the correlation function L�11�. The result was given in (8.204). The retarded form

of this correlation function is

Im�L�12a�
ret � � ÿ

2e

3bm2o

�
d3k

�2p�3 k2xk

�1
ÿ1

de
2p
�nF �e� o� ÿ nF �e��

� fGadv�k; e�Gret�k; e� o�g�k; eÿ id; e� o� id�
ÿ Re�Gret�k; e�Gret�k; e� o�g�k; e� id; e� o� id��g

The next step is to take the limit o! 0, which causes the electron occupation factors to

become dnF �e�=de. The integral over wave vector is changed to an integral over

k2d3k � 12p3mn0dxk :

Im�L�12a�
ret � �

en0

bm

�1
ÿ1

de
2p
ÿ dnF �e�

de

� ��1
ÿ1

dxxfjGret�k; e�j2

� g�k; e� ÿ id; e� id� ÿ Re�Gret�k; e�2g�k; e� id; e� id��g �8:244�

Again it is assumed that the retarded and advanced Green's functions are signi®cantly

dependent only on x in their kinetic energy term and that the self-energy and vertex functions

have negligible dependence on x. Then the following integrals are evaluated by a contour

integration in analogy with (8.213):�1
ÿ1

dxxGret�x; e�2 � ip�1
ÿ1

dxxjGret�x; e�j2 �
pO�e�
G�e��1

ÿ1
dxxGadv�x; e�2 � ÿip

�8:245�

Two of the integrals equal �ip, which comes from the semicircle closing the contour at

in®nity. These integrals give zero when taking the real part. The important contribution must

arise from the combination jGret�x; e�j2, since it has a nontrivial contribution from the integral

over dx:

Im�L�12a�
ret � �

en0

2bm

�1
ÿ1

de ÿ dnF �e�
de

� �
O�e�L�e�
G�e� � 0 �8:246�

This integral is zero after one evaluates the integral de. It vanishes because the integrand is an

antisymmetric function of e. The quantities dnF �e�=de, L�e�, and G�e� are all symmetric

functions of e, while O�e� is an antisymmetric function. The correlation function L�12a� is zero.

The integral vanishes because of the single power of x in the dx integral. It makes the

single power of O�e� in the integral over de. The single power of x comes from the heat

current operator.
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A nonzero result for the correlation function is obtained by repeating this derivation and

retaining all the correction terms. One important term is from the argument of the wave vector

integration:

k2d3k � 2pk3dk2 � 3pmdxk �k2
F � �k2 ÿ k2

F ��3=2

� 4pk3
Fdxk 1� 3xk

2EF

� �
�8:247�

The second term in parentheses makes a nonzero contribution to the thermopower. This term

is now evaluated. Kinetic energy integrals such as (8.245) must now be done, except there is a

factor of x2 in the integrand which multiplies the Green's functions. The evaluation of the

integrand is tricky, since technically the integral diverges. At large values of x, then G � 1=x
and �xG�2 � 1. The integrand does not fall off at large values of x, and taking the limits to

�1 gives an in®nite integral. Usually this problem is solved by ignoring it. The product

jGretj2 � A=2G � pd�xÿ e�=G is replaced by a delta function for energy conservation. The

integral over �xGret�2 is set equal to zero:�
dxx2jGret�x; e�j2 �

pe2

G�e� �8:248�

The term in e2 is thermally averaged according to (8.244) using G&R 3.531(3);�1
ÿ1

dee2 ÿ dnF �e�
de

� �
� p2

3
�8:249�

Im�L�12a�
ret � �

p2en0tt

3bmEF

Z�T � �8:250�

S � ÿ kB

s

� �
Im�L�12a�

ret � � ÿ
p2k2

BT

3eEF

Z�T � �8:251�

where the conductivity is s � n0e2tt=m. The dimensions of S are volts per degree. The

parameter Z�T � is dimensionless. So far Z � 3
2

from the coef®cient of x=EF in (8.247). Other

contributions to Z�T � are derived below.

Taylor and MacDonald (1986) evaluated this expression for the alkali metals at high

temperature. Rather good agreement is obtained, as shown below. First it is necessary to ®nd

more contributions to Z�T �. At high temperature it is a good approximation to set tt � tpt,

where the transport lifetime is entirely from phonons, and is given by the transport form of

alpha-squared-f in (8.226):

1

tpt�k�
� m

�2p�2k3

�2k

0

q3dq

�2p

0

df
P
l

M2
l �q�fnB�ol�q�� � nF �ol�q��g

Contributions to Z�T � are obtained by expanding k about kF and keeping the ®rst-order terms

in �k ÿ kF �=kF � x=2EF . The prefactor of kÿ3 gives another contribution of Z � 3
2

to Z. The

integration limit of 2k gives a contribution to Z of

2q�T � � 2m

p2
tpt

�2p

0

df
P
l

M 2
l �2kF �fnB�ol�2kF �� � nF �ol�2kF ��g

Another contribution to Z�T � comes from the matrix element Ml�q�. It is usually calculated

using a screened pseudopotential for the electron±ion interaction. The better pseudopotentials

are nonlocal, which means they depend upon Ml�k; k � q� rather than just on q. This k
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dependence can also be expanded around the point kF . The pseudopotential gives another

contribution to Z�T � which is called r�T �. The contributions to Z�T � are

Z�T � � 3ÿ 2q�T � ÿ 1
2

r�T � �8:252�
Table 8.2 shows the evaluation of these terms for the alkali metals at various temperatures.

The comparison with the experimental data is good for Na, K, and Rb. The high-temperature

thermopower seems to be understood in these cases. Both q(T) and r(T) are small for Na

because the electron±ion pseudopotential is nearly zero at q � 2kF. The thermopower is

easier to evaluate at high rather than at low temperature. At high temperature the resistance is

dominated by the electron±phonon interaction, which is well approximated by using the

transport form of alpha-squared-f. At low temperatures one also has to include the k

dependence of impurity scattering, as well as the ordinary form of alpha-squared-f while

solving (8.235). In addition, phonon drag is important at low temperature.

8.5. QUANTUM BOLTZMANN EQUATION

There are several different methods of doing transport theory. The theory used in the

preceding sections uses the Kubo relation for the conductivity and is called `̀ linear response.''

One assumes that currents are proportional to ®elds. The proportionality constants can be

evaluated in equilibrium. This method works because one assumes that the applied ®elds are

small, and the system is only in®nitesimally disturbed from equilibrium.

A second method of transport theory is discussed in this section. One assumes the

existence of a distribution function f, which describes the behavior of the particles. One writes

a differential equation for the motion of f through phase space. The differential equation is a

Boltzmann equation. One then tries to solve the Boltzmann equation for a system out of

equilibrium. For ®elds that are small, the system is only slightly out of equilibrium, and one

reproduces the linear response solutions described earlier. The advantage of the Boltzmann

equation method is that one can also try to solve the equation when the system is far from

equilibrium.

The original Boltzmann equation described the behavior of a distribution function

f (v, R, t) of three variables: velocity, position, and time. The Wigner distribution function

(WDF) was introduced in Sec. 3.7. It is equivalent to a distribution function f �k;o; R; t� with

four variables: wave vector k, energy o, position R, and time t. This latter distribution

function is the one needed for many-particle systems. Since f �k;o; R; t� is not positive

TABLE 8.2 Thermoelectric parameters in the alkali metals.

Z � 3ÿ 2qÿ r=2 (Taylor and MacDonald, 1986, used with permis-

sion).

Metal T(K) 2q(T) r(T)=2 Z

Theory Experiment

Li 424 9.26 ÿ1.43 ÿ5.33 ÿ6.3

Na 300 0.04 ÿ0.09 3.05 2.9

K 200 0.83 ÿ1.87 4.04 4.0

Rb 100 4.78 ÿ4.49 2.71 2.8

Cs 100 9.32 ÿ7.15 0.83 0.0
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de®nite, calling it a `̀ distribution function'' is probably misleading. This phrase is used since

it is widespread, but the warning should be kept in mind.

The differential equation obeyed by f �k;o; R; t� is called the quantum Boltzmann

equation, which is abreviated QBE. It is derived rigorously in the following sections. Here a

quick derivation is provided using semiclassical arguments. According to the Liouville

theorem a distribution function f �qi; t� is stationary when it obeys the equation

df � 0 � @f
@t
�P

i

@f

@qi

_qi �
@f

@t

� �
s

�8:253�

where the last term is from scattering. For the WDF, _k � F (force), _R � v (velocity), and
_o � v ? F (Joule heating). The QBE is

0 � @

@t
� v ?HHR � F ?HHk � v ? F

@

@o

� �
f � @f

@t

� �
2

�8:254�

This equation has nearly the right form. It is derived rigorously in the next section, which

produces a few more terms from self-energy contributions. That derivation also provides a

prescription for obtaining the scattering term.

Equation (8.254) has one feature that is important. The additional variable o also causes

a new driving term on the left of the form v ? F@=@o. This term was ®rst derived by Mahan

and Hansch (1983). The semiclassical distribution function f (v, R, t) lacks this driving term

since it lacks the energy variable o. The QBE for the WDF is a different equation from the

traditional Boltzmann equation.

8.5.1. Derivation of the QBE

The QBE is the equation of motion for the Green's function G<. The method of deriving

transport equations was pioneered by Kadanoff and Baym (1962). Recall from Sec. 3.7 that

f �r; t; R; T � � ÿiG<�r; t; R; T �, where �r; t� are the relative variables and �R; T � are the

position and time in center-of-mass. The Green's function was de®ned in terms of the ®eld

operator as

G<�r; t; R; T � � ihcy�R ÿ 1
2

r; T ÿ 1
2

t�c�R � 1
2

r; T � 1
2

t�i �8:255�

The next step is to Fourier transform the relative variables �r; t� into �k;o�:

G<�k;o; R; T � �
�

d3reÿik ? r

�
dteiotG<�r; t; R; T � �8:256�

The QBE will be derived for a particle in a weak electric ®eld. The intent is to describe

interacting many-particle systems that have a small current ¯owing in response to a small

electric ®eld. The derivation will be suf®ciently general to include any kind of particles and

nearly any kind of interactions.

The electric ®eld can be introduced as either a scalar or a vector potential. The QBE is

independent of this choice, as required by gauge invariance. Here both are included, in order

to provide the most general derivation. There will be an electric ®eld Ev; which is from a

vector potential, and another electric ®eld Es from a scalar potential. The ®nal version of the
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QBE will include only the total electric ®eld E � Ev � Es. The scalar potential is introduced

through the interaction term

HE � ÿeEs ?
P

j

rj �8:257�

The vector potential is introduced by changing the momentum of each charged particle to

�pÿ eA=c�, where the vector potential is A � ÿcEvt. A vector potential proportional to time

could occur in a wire loop with a slowly varying magnetic ¯ux through the center. The present

theory is for a dc electric ®eld.

Equations (3.331) and (3.332) are equations of motion for the four Green's functions in

the 2� 2 matrix for ~G. The two electric ®eld terms are added to the left-hand side of these

equationsÐthey are included in H0. The derivation of the QBE involves several algebraic

manipulations on the left-hand side of these equations. In order to avoid a lot of cumbersome

notation, the right-hand side of these equations are not written during these steps. On the left,

the steps are the same for all six of the real-time Green's functions. The generic symbol G

applies to any one of them.

The two equations for G in (3.331) and (3.332) are ®rst added and then subtracted:

i
@

@t1
ÿ @

@t2

� �
ÿ H1 ÿ H2

� �
G � �8:258�

i
@

@t1
� @

@t2

� �
ÿ H1 � H2

� �
G � �8:259�

where H1 � H0�r1; p1� and H2 � H0�r2;ÿp2�. The two equations contain time derivatives

that relate either to the relative or center-of-mass motion

@

@t1
� @

@t2
� @

@T
;

@

@t1
ÿ @

@t2
� 2

@

@t
�8:260�

For particles with parabolic band dispersion, the sum and difference of the two Hamiltonians

produce simple expressions in relative coordinates. As a ®rst step, consider what happens to

the two momentum terms which are in the form of �pÿ eA=c�

p1 � eEvt1 � �p� eEvT � � 1
2
�P� eEvt� �8:261�

p2 ÿ eEvt2 � ÿ�p� eEvT � � 1
2
�P� eEvt� �8:262�

where p and P are the relative and center-of-mass momentum. It is important to understand all

of the various plus and minus signs. Since A � ÿcEvt then �pÿ eA=c� ÿ �p� eEvt� for p1.

However, in H2 the momentum enters as ÿp2 which explains the sign change on the bottom.

On the right one uses t1;2 � T � t=2 and p1;2 � �p� P=2. These results make it easy to see

the form of H1 � H2:

H1 � H2 �
1

m
�p� eEvT �2 �

1

4m
�P� eEvt�2 ÿ 2eEs ? R �8:263�

H1 ÿ H2 �
1

m
�p� eEvT � ? �P� eEvt� ÿ eEs ? r �8:264�
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Divide the top equation by two, and obtain the following two equations for the Green's

function:

2 i
@

@t
ÿ 1

2m
�p� eEvT �2 ÿ

1

m
�P� eEvt�2 � eEs ? R

� �
G � �8:265�

i
@

@T
ÿ 1

m
�p� eEvT � ? �P� eEvt� � eEs ? r

� �
G � �8:266�

These two equations describe the relative and center-of-mass motion of the function

G�r; t; R; T �. The goal is to derive the QBE for the WDF G<�k;o; R; T �. Fourier transform

the variables (r, t) to the set �q;O� as in (8.256). This transform changes p to q, r to iHHq, d=dt

to ÿiO, and t to ÿi@=@O. The two transformed equations are

2 O� eEs ? R ÿ 1

2m
�q� eEvT �2 �

1

8m
HHR � eEv

@

@O

� �2
" #

G�q;O; R; T � �

i
@

@T
� 1

m
�q� eEvT � ? HHR � eEv

@

@O

� �
� eEs ?HHq

� �
G�q;O; R; T � �

�8:267�

The second of these equations has, on the left-hand side, exactly the same terms as are found

in the Boltzmann equation. This similarity suggests that the QBE is the same as the BE.

However, this conclusion is incorrect. The above set of equations have several things wrong

with them

1. There is the term eEs ? R. This term seems to combine with O to produce a center-of

mass energy o � O� eEs ? R. Together they suggest that the energy of a particle

depends upon its location. The energy is different at one end of a sample than at the

other. However, this behavior is contrary to common sense. When there is a small

electric ®eld along the sample, and a small current ¯owing, we expect the system to

be uniform. There is the same particle density, current density, etc. at each point in the

solid. There is no dependence upon R. This undesirable term has to be eliminated.

2. The relative momentum seems to enter in the combination of q� eEvT . It depends

upon the center-of-mass time T. This feature is also unphysical, and needs to be

eliminated.

3. The result is not gauge invariant, since the two ®elds Es and Ev enter differently.

All of these problems can be eliminated through a variable transformation. Of course, this

transformation also causes some derivatives to change:

O� eEs ? R) o

q� eEvT ) k

HHR ) HHR � eEs

@

@o
@

@T
) @

@T
� eEv ?HHk

�8:268�
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These transformations cause the two equations in (8.267) for the Green's function to now have

the form

oÿ ek �
1

8m
HHR � eE

@

@o

� �2
" #

G�k;o; R; T � �

i
@

@T
� vk ?HHR � eE ? HHk � vk

@

@o

��
G�k;o; R; T � �

�� �8:269�

The notation on the Green's function has been changed again. The arguments �q;O� have

been changed to �k;o�. The left-hand sides of these two equations are now in the form that is

useful. The lower equation has exactly the same terms as in (8.254), and is the quantum

Boltzmann equation. The electric ®eld is E � Ev � Es. Both electric ®elds contribute in the

same way, and the result is now gauge invariant.

The above variable transformation makes the QBE gauge invariant. The results are valid

for dc electric ®elds. A more complicated variable transformation is required for ac electric

®elds (Levanda and Fleurov, 1994).

Now it is time to restore the scattering terms to the right-hand side of the equal sign. The

scattering terms for G< and Gret are in (3.341). They are the most important Green's functions

in applications using real time. The self-energy terms on the right are found by following the

same steps to bring the left-hand side to (8.269). In doing these operations, keep in mind that

the scattering terms are of the form

�
dx3S�x1; x3�G�x3; x2�

First add and subtract the two equations for each Green's function. There follows a series of

variable transformations. They can be understood by examining just one term in the right-

hand side of Eqn. (8.269). The various variable arguments yield a fairly complicated

expression, which is derived by the following steps:

1. Change the two sets of variables �x1; x3��x3; x2� to the center-of-mass grouping

�x1 ÿ x3; �x1 � x3�=2��x3 ÿ x2; �x3 � x2�=2�.
2. Change the integration variable from x3 to y � x1 ÿ x3, so the variable grouping

become �y; x1 ÿ y=2��x1 ÿ x2 ÿ y; �x1 � x2 ÿ y�=2�.
3. Change to center of mass variables x � �x1 ÿ x2�;X � �x1 � x2�=2, which produces

the variable grouping �y;X � �xÿ y�=2��xÿ y;X ÿ y=2�.
4. Change the integration variable x to z � xÿ y which produces the ®nal arguments of

�y;X � z=2��z;X ÿ y=2�.

Below are the full scattering equations for G< and Gret. The explicit variables in the scattering

terms are only written out in the ®rst term, but are identical for the other three. The order of

the terms in the scattering integral is important. The ®rst one always has argument

�y;X � z=2� while the second one has argument �z;X ÿ y=2�. The four-vector in the exponent
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is q � �k;o�:

oÿ ek �
1

8m
HHR � eE

@

@o

� �2
" #

Gret�k;o; R; T �

� 1� 1

2

�
dzeÿiq

�
dyeÿiq�Sret�y;X � z=2�Gret�z;X ÿ y=2�

� Gret�y;X � z=2�Sret�z;X ÿ y=2�� �8:270�

i
@

@T
� vk ?HHR � eE ? HHk � vk

@

@o

� �� �
Gret�k;o; R; T �

�
�

dzeÿiq

�
dyeÿiq�SretGret ÿ GretSret� �8:271�

oÿ ek �
1

8m
HHR � eE

@

@o

� �2
" #

G<�k;o; R; T �

� 1

2

�
dzeÿiq

�
dyeÿiq�StG

< ÿ S<G�t � GtS
< ÿ G<S�t� �8:272�

i
@

@
� vk ?HHR � eE ? HHk � vk

@

@o

� �� �
G<�k;o; R; T �

�
�

dzeÿiq

�
dyeÿiq�StG

< ÿ S<G�t ÿ GtS
< � G<S�t� �8:273�

These four equations are the important ones for nonequilibrium calculations. Although one

primarily wants to ®nd G<, it is always necessary to ®rst ®nd Gret. These equations were ®rst

derived by Fleurov and Kozlov (1978).

So far no approximations have been made, and the equations are exact. The QBE has a

linear term in the electric ®eld E. However, the equation is exact to all powers of E, not just to

the ®rst power.

8.5.2. Gradient expansion

Equations (8.271) are usually too hard to solve because the scattering terms on the right

have a complicated form. Some sort of approximation has to be introduced to simplify the

right side. The approximation described below is only valid to ®rst order in the ®eld.

Kadanoff and Baym (1962) introduced an approximation for evaluating these scattering

terms, which is called the `̀ gradient expansion.'' They assume that the center-of-mass time T

is very large, and take the limit that T !1. At large values of T, they assume that the system

is approaching its asymptotic limit, so that variations with respect to T are small. Obviously

the gradient expansion is not suitable for studying transients, since it is poor at small values of

T. Neither is it useful for steady-state ac phenomena (Mahan, 1987). Indeed, the T dependence

is so poorly described in the gradient approximation that it should not be used and the T

derivative terms should be dropped from the QBE. Nevertheless, the gradient expansion is

used since it is applicable for homogeneous (small R dependence) steady state (small T

dependence) systems.

The center-of-mass variables are all in the form �R � DR; T � DT �, which are expanded

in a Taylor series about the point X � �R; T �. The integrals can be done for each term in the
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series. These integrals usually cause further derivatives. The gradient expansion is shown

below for a typical scattering term:

I �
�

dzeÿiq

�
dyeÿiqS�y;X � z=2�G�z;X ÿ y=2� �8:274�

�
�

dzeÿiq

�
dyeÿiq

�
S�y;X �G�z;X �

� z

2

@S�y;X �
@X

G�z;X � ÿ S�y;X � y
2

@G�z;X �
@X

� � � �
�

�8:275�

� S�q;X �G�q;X � � i

2
��HqS�HX G ÿ �HXS�HqG� � � � � �8:276�

The ®rst term on the right are usually the largest. It is customary to retain the ®rst derivative

terms and ignore higher derivatives. They can be expressed using a Poisson bracket notation:

�S;G� � �HqS�HX G ÿ �HXS�HqG �8:277�

� @S
@O
@G

@T
ÿ @G
@O
@S
@T
ÿ HHqS ?HHRG � HHqG ?HHRS �8:278�

These frequency derivatives are with respect to the O variables, since the variable change

�k � q� eEvT ;o � O� eEs ? R� has not yet been made. If this step is taken now, the

derivatives get altered according to Eqn. (8.268), which changes the Poisson brackets to

�C;D� ) �C;D� � eE ?
@C

@o

� �
HHkDÿ @D

@o

� �
HHkC

� �
�8:279�

where E is again the total electric ®eld. This analysis ®nally derives from (8.271) the

following expression for the nonequilibrium retarded Green's function in an electric ®eld,

when Gret and Sret depend upon �k;o; R; T �:

oÿ ek �
1

8m
HHR � eE

@

@o

� �2

ÿSret

" #
Gret�k;o; R; T � � 1 �8:280�

i

�
@

@T
� vk ?HHR � eE ? 1ÿ @Sret

@o

� �
HHk � �vk � HHkSret�

@

@o

� ��
Gret � i Sret;Gret�; �8:281��

The additional terms from the Poisson bracket, which are linear in the ®eld E, have been

transferred to the left of the equal sign.

These equations simplify for nonequilibrium systems which are both homogeneous

�HHR � 0� and steady state �@=@T � 0). The Poisson brackets vanish, as do several terms on

the left. Also ignored are terms nonlinear in the electric ®eld O�E2�, and ®nd for the above

two equations

�oÿ ek ÿ Sret�Gret � 1 �8:282�

ieE ? 1ÿ @Sret

@o

� �
HHk � �vk � HHkSret�

@

@o

� �
Gret � 0 �8:283�

The ®rst equation is easily solved, to yield

Gret�k;o� �
1

oÿ ek ÿ Sret�k;o�
� O�E2� �8:284�
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The retarded Green's function appears to have no ®rst-order term in the electric ®eld. It

actually does, since the self-energy Sret has a term linear in the ®eld due to the electron±

phonon interaction. This term is small and seems to have little effect. If it is ignored then the

retarded Green's function is unchanged from its value in equilibrium. This result considerably

simpli®es the solution to the QBE. The solution (8.284) also satis®es the equation (8.283).

Related quantities such as the advanced function Gadv � G�ret and the spectral function

A�k;o� are also unchanged to ®rst order in the electric ®eld. This completes the discussion of

the retarded Green's function in a static electric ®eld.

Next the gradiant expansion is applied to (8.271) for the equations for G<. Again

keeping only ®rst-order derivatives, the ®nal results are the quantum Boltzmann equation

(QBE):

oÿ ek �
1

8m
HHR � eE

@

@o

� �2
" #

G< � G< Re�Sret� � Sret Re�Gret�

� i

4
�S>;G<� ÿ i

4
�S<;G>� � i

4
eE ?

@S>

@o
ÿ @S

<

@o

� �
HHkG<

�
� @G>

@o
ÿ @G

<

@W

� �
HHkS

<

�
�8:285�

i

�
@

@T
� vk ?HHR � eE ? 1ÿ @Sret

@o

� �
HHk � �vk � HHkSret�

@

@o

� ��
G<

ÿ ieE ?
@S<

@o
HHk Re�Gret� ÿ

@Gret

@o
HHkS

<

� �
� S>G< ÿ S<G>

� i�Re�Sret�;G<� � i�S<;Re�Gret�� �8:286�
Standard relationships have been used in deriving this equation, such as Gt ÿ G�t � 2 Re�Gret�
and Gt � G�t � G< � G>.

Equation (8.286) is the quantum Boltzmann equation. It is rather formidable. It is also

dif®cult to solve, since it is usually an integral equation. Sometimes it is nonlinear in the

particle density because the self-energy functions S< and S> are also functions of G< and

G>.

The QBE also contains the functions G> and S>. Similar equations for these functions

can be derived by starting from the general equations (3.331) and (3.332). This derivation

shows that the equation for G> is almost identical to the one for G<. In fact, one can prove

that the following identities are valid:

G> � G< ÿ iA �8:287�
S> � S< � i Im�Sret� � S< ÿ 2iG �8:288�

These relations are trivial to show for equilibrium, but they are also valid for nonequilibrium

situations. These identities will be used often to simplify expressions. For example, the main

scattering term in the QBE can be immediately simpli®ed to

S>G< ÿ S<G> � ÿif2GG< ÿ S<Ag �8:289�
This result will be employed in the calculations. The quantities G< and S< are generally

proportional to the density of particles, while retarded functions are only indirectly dependent

upon the density of particlesÐonly through the self-energy function Sret. In the QBE, each
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term has one factor that is either G< or S<, so each term is proportional to the density of

particles. This equation does have the character of a transport equation.

The QBE simpli®es for the treatment of systems that are homogeneous �HHR � 0� and

steady �@=@T � 0�. These derivatives are dropped, as well as the Poisson brackets, since the

latter contain similar derivatives. In this case the QBE is

eE ? 1ÿ @Sret

@o

� �
HHk � �vk � HHkSret�

@

@o

� �
G<

ÿ ieE ?
@S<

@o
HHk Re�Gret� ÿ

@Gret

@o
HHkS

<

� �
� S<Aÿ 2GG< �8:290�

This equation can be simpli®ed. The QBE is only valid to ®rst power in the electric ®eld, since

terms of O�E2� have systematically been ignored. For example, in the gradient expansion the

second derivative terms would give contributions of O�E2� were they retained. So the

equation is exact to ®rst order in the electric ®eld, but is not exact to higher orders in the ®eld.

This fact is utilized to simplify the left-hand side of the equation. Since the ®eld multiplies

each term, on this side of the equal sign the Green's functions can be taken to have E � 0. Of

course, these expressions are just the equilibrium quantities in Sec. 3.7.

Consider the frequency derivatives of the left-hand side of the equation. Write the

spectral function in the shorthand notation

A � 2G

s2 � G2
; G � ÿ2 Im�Sret�; s � oÿ ek ÿ Re�Sret� �8:291�

The left-hand side will have three types of frequency derivatives: @nF=@o, @g=@o, @s=@o. The

coef®cients of the latter two vanish, which leaves only terms in @nF=@o. All of the terms

proportional to nF vanish, leaving only terms multiplied by @nF=@o:

A�k;o�2 @nF

@o
eE ? f�vk � HHk Re�Sret��G� sHHkGg � S>G< ÿ S<G> �8:292�

The factor of A�k;o�2 appears in each term, and was taken outside. The left-hand side of this

equation now contains only known quantities, which can be calculated in equilibrium. The

scattering terms remain on the right-hand side. Finding them still involves work, usually in the

form of an integral equation. This ®nal form for the QBE is exact for transport which is linear

in the ®eld, and for steady state, homogeneous systems. It is quite analogous to the similar

expression for the classical BE, which is

ÿeE ? vk

@f �0�

@o
� S>G< ÿ S<G> �8:293�

The classical equation has @f �0�=@o, while (8.292) has @nF=@o.

Equation (8.292) is the steady state, homogeneous form of the QBE. It should be the

starting point for many transport calculations. It is exact, and is an alternative to using the

Kubo formalism, which is also exact. The derivation of this equation has been complicated,

and has entailed some work. However, once derived, it is often the easiest starting point for

deriving the transport coef®cients. Calculations using Eqn. (8.292) entail less work in getting

to the answer than any other formalism.
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8.5.3. Electron scattering by impurities

The quantum Boltzmann equation (QBE) (8.292) will be solved for the electron scat-

tering by impurities. This case was solved in Sec. 8.1 using the Kubo formula. This exercise is

useful for two reasons: (1) producing the known result demonstrates the correctness of the

QBE; and (2) this case is the easiest one to solve, and provides an introduction to the

techniques for solving the QBE. The present example makes two assumptions that are

intended to make the solution as easy as possible: (1) the impurities are dilute, so that the

simultaneous scattering from several impurities can be neglected; and (2) the impurities have

no internal degrees of freedom, such as spin or vibrations, which can be altered by the

electron scattering. The second assumption implies that impurity is a simple potential that

elastically scatters the electron. The impurities are randomly located in the solid. The method

of Sec. 4.1.5 is employed for averaging over the random distributions.

The ®rst step in solving the QBE is to ®nd the retarded functions. For impurity scattering

they are independent of the electric ®eld, at least for small ®elds. The retarded self-energy for

scattering from impurities of density ni is given in Sec. 4.1

Sret�k;o� � niTkk�o� �8:294�
The T matrix is energy dependent, and hence off-shell.

The next step is to express the self-energies S< and S> in terms of the Green's functions

G< and G>. The retarded functions Gret and Sret are known, since they are unchanged by the

electric ®eld. However, G< and G> are, at this point, unknown since they are affected by the

electric ®eld. The self-energy functions are

S<;>�k;o� � ni

�
d3p

�2p�3 jTpk�o�j2G<;>�p;o� �8:295�

This result is derived below. The off-diagonal T matrix is the one in Eqn. (4.111), which also

depends upon the energy o.

Equation (8.295) is now derived. An impurity at R � 0 is represented by an electron

potential V(r), whose Fourier transform is V(q). The self-energy S from a single scattering

event is

~S0�x1; x2� � V �r1�d4�x1 ÿ x2�~I �8:296�

where ~I is the unit tensor. This self-energy is inserted into (2.157). That equation is iterated in

order to ®nd the effects of repeated scattering from the same impurity. The resulting self-

energy series is rewritten in a symbolic notation, where the product of two functions implies

an integral over dx. Iteration of these equations gives the series for S:

~S � ~S0�~I � ~G0
~S0 � ~G0

~S0
~G0

~S0 � � � �� �8:297�

After summing this series, the matrix ~S is examined for its individual components. The ones

for S<;> are

S<;> � �1� GretSret�S<;>0 �1� SadvGadv� � SretG
<;>Sadv �8:298�

Note the analogy with the equation for G< in (2.159). The resemblance is expected, since the

series for S has the same mathematical structure as the one for G.
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For impurity scattering, the unperturbed self-energies S<;>0 � 0 are zero. There is only

the last term in (8.298). Since the self-energies Sret and Sadv are T matrices, (8.298) gives the

result in (8.295). The damping function G�k;o� and other self-energy S>�k;o� are

2G�k;o� � ni

�
d3p

�2p�3 jTpkj2A�p;o� �8:299�

S> � S< ÿ 2iG �8:300�
For dilute impurities, it is suf®cient to retain only those terms that are ®rst order in the

impurity concentration ni. The broadening due to the spectral function A�p;o� is from

impurity scattering. Since the self-energy is multiplied by ni, one can replace the spectral

function A�p;o� � 2pd�oÿ ep�. This expression is then equal to the imaginary part of the T

matrix: 2G � nivksT , where sT is the total cross section from impurity scattering in Sec. 4.1.

The starting point for solving the QBE is (8.292). On the left of the equals sign is the

factor of

��vk � HHkRe�Sret��G� sHHkG�A�k;o�2 �8:301�
This expression is simpli®ed by neglecting terms of O�n2

i � such as G Re�Sret�. The term in

s � oÿ ek ÿ Re�Sret� is small since the factor of A�k;o�2 tends to force s � 0. The above

expressions can be approximated by vkGA�k;o�2:

A�k;o�2 dnF �o�
do

eE ? vkGÿ 2iGG< ÿ iS<A �8:302�

These steps complete the derivation of the left-hand side of the QBE.

On the right side of (8.302) the scattering terms vanish in equilibrium since S< � 2inFG
and G< � inFA. Since current is ¯owing in response to the ®eld, the system is slightly out of

equilibrium. The right-hand side is expected to have factors similar to those on the left. This

discussion suggests the following ansatz for the nonequilibrium Green's function

G< � iA�k;o� nF �o� ÿ
dnF �o�

do

� �
eE ? vkL�k;o�

� �
�8:303�

The function L�k;o� is unknown, and needs to be determined by solving the QBE. The

factors that multiply L are for later convenience. The above choice does not make any

assumptions for the value of L. Using this ansatsz in the self-energy function gives

S< � ini

�
d3p

�2p�3 jTkpj2A�p;o� nF �o� ÿ
dnF �o�

do

� �
eE ? vpL�p;o�

� �
� 2iGnF ÿ ini

dnF

do
ni

�
d3p

�2p�3 jTkpj2A�p;o�eE ? vpL�p;o� �8:304�

Putting these two expressions into the right-hand side of (8.302), the equilibrium terms

cancel, and the remaining terms each have the common factor of �dnF=do�A:

A2 dnF �o�
do

eE ? vkG � ÿ
dnF �o�

do

� �
A2GeE ? vkL

ÿ ni

�
d3p

�2p�3 jTkpj2A�p;o�eE ? vpL�p;o� �8:305�
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After canceling all of the common factors, there is an integral equation for the unknown

function L�k;o�:

vkL�k;o� � 1
2

A�k;o�vk �
ni

2G

�
d3p

�2p�3 jTkpj2A�p;o�vpL�p;o� �8:306�

This integral equation for L�K;o� is nearly identical to the one found in solving the

conductivity from the Kubo relation. The quantity vkL�k;o� is similar to the factor of

G�k;oÿ id;o� id� in Sec. 8.1.3. As the derivation proceeds, the differences between these

quantities disappears, and the two approaches give the same resistivity.

After solving this equation for L�k;o�, the Green's function G< in (8.303) is known. It

is used in (3.340) for the current. The ®rst term in (8.303) for G< gives a zero current. The

second term gives a current proportional to the ®eld E, and this proportionality de®nes the

electrical conductivity

smn � e2

�
d3p

�2p�3
�1
ÿ1

do
2p

vpmvpn ÿ
dnF �o�

do

� �
A�p;o�L�p;o� �8:307�

The two equations (8.306) and (8.307) provide the solution for the conductivity from the

QBE.

For electrons in metals, with a spherical Fermi surface, the conductivity from impurity

scattering is found easily from these equations. First, do the integral over do in (8.307). At

low temperature the factor �ÿdnF=do� is nearly a delta function which sets o � 0. At low

temperature

smn � e2

�
d3p

�2p�3 vpmvpnA�p; 0�L�p; 0� �8:308�

The equation is reduced as far as possible. Next one must solve the equation (8.306) for L.

Adopt a vector coordinate system where the ẑ direction is k̂. Then the various scalar products

of vectors can be found from the law of cosines:

k̂ ? Ê � cos�y0�; k̂ ? p̂ � cos�y� �8:309�
p̂ ? Ê � cos�y0� cos�y� � sin�y� sin�y0� cos�f� �8:310�

Equation (8.306) is multiplied by the vector Ê. The integral over the df part of d3p makes the

cos�f� term vanish. Each of the remaining terms has a factor of cos�y0� which can be

canceled. Then one ®nds the scalar equation

L�k; 0� � 1
2

A�k; 0� � ni

2G

�
d3p

�2p�3 jTkpj2A�p; 0�L�p; 0� cos�y� �8:311�

The spectral functions A(k,0) and A(p,0) force k � p � kF . The factor of L�p; 0� under the

integral can be set equal to L�kF ; 0� and taken out of the integral. Then the above equation

can be solved to ®nd

L�kF ; 0� � tt

2t
A�kF ; 0� �8:312�
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where t � 1=2G is the time between scattering from impurities, while tt is the lifetime which

is important for resistivity; it has the factor of �1ÿ cos y0�:

s � ne2tt

m
�8:313�

1

tt

� ni

�
d3p

�2p�3 jTkpj2A�p;o��1ÿ cos�y�� �8:314�

This formula for the resistivity is identical to (8.25). The QBE gives the same formula for the

resistivity as found earlier from the Kubo formula. The two methods are also in exact

agreement for much more complex cases, such as electron±phonon scattering at nonzero

temperatures and frequency. Most of the steps in the derivation were spent in getting to

(8.302). This equation is the starting point for any calculation for homogeneous systems. The

number of steps between this equation and the ®nal resistivity is small. The QBE is an

ef®cient method of ®nding the resistivity or other transport coef®cients.

8.6. QUANTUM DOT TUNNELING

8.6.1. Electron tunneling

Cohen et al. (1962) introduced the concept of the tunneling Hamiltonian, which has

become universally adopted for the discussion of tunneling. Their idea was to write the

Hamiltonian as three terms:

H � HR � HL � HT �8:315�
HT �

P
kps
�TkpC

y
ksCps � hc� �8:316�

The ®rst term HR is the Hamiltonian for particles on the right side of the tunneling junction. It

contains all many-body interactions. Similarly, HL has all the physics for particles on the left

side of the junction. These two are considered to be strictly independent. Not only do these

two operators commute, �HL;HR� � 0, but they commute term by term. The Hamiltonian on

the right can be expressed in terms of one set of operators Cks and those on the left by another

set Cps, and these operators are independent fCks;C
y
psg � 0. This assumption is probably

reasonable. They further assumed that the tunneling is caused by the term HT in (8.316). The

tunneling matrix element Tkp can transfer particles through an insulating junction. This

transfer rate is assumed to depend only on the wave vectors on the two sides k and p and not

on other variables, such as the energy or spin of the particles.

The theory of electron tunneling was mainly applied to superconductors. It developed

very rapidly and was entirely based on the tunneling Hamiltonian. The theory showed

excellent agreement with the many experiments. The history books were written describing

this satisfactory situation, and the scientists in this ®eld wandered off to do something else.

About this time there began a serious investigation, starting with Zawadowski (1967), Caroli

et al. (1975), and Feuchtwang (1975), about the validity of the tunneling Hamiltonian. Of

course it was found to be a poor approximation, since the tunneling rate depends on the

energy of the particle as well as its wave vector. What does this turn of events do to the lovely

agreement between theory and experiment for tunneling in superconductors? Actually, it

probably changes none of it. The tunneling in superconductors takes place over a very narrow

Sec. 8.6 � Quantum dot tunneling 561



span of energies in the metal, i.e., within a Debye energy of the Fermi surface. Also, all the

electrons involved have their wave vector very near the Fermi wave vectors kF and pF on the

two sides of the junction. It is an adequate approximation to treat the transfer rate Tkp as a

constant T0 which is evaluated at kF and pF, because the variations in Tkp with energy must be

on the scale E=EF which are negligible for E � D � 1 meV. Similarly, the variation of Tkp

with p or k is on the scale of the Fermi wave vectors. One can treat the transfer rate T0 as a

constant if the energies involved are small. The tunneling Hamiltonian is believed to be an

improper formalism only when the applied voltages are large, say 1 eV.

For quantum dots the energy scales are also rather small, and are near to the chemical

potentials of the metal electrodes. Here the tunneling Hamiltonian is also thought to be a valid

formalism.

The general model of a tunneling junction is shown in Fig. 8.12. It describes a non-

equilibrium situation, since the chemical potential on the left-hand side mL is not the same as

mR on the right. They differ by the applied voltage eV � mL ÿ mR. The potential drop of eV

occurs in the insulating region between the electrodes.

The tunneling Hamiltonian (8.316) is used to derive a correlation function for electron

tunneling currents. This correlation function has the form of a Kubo formula, except for an

important difference. The Kubo formula for the conductivity in Sec. 3.7 expresses the ratio

between the current and the voltage (actually electric ®eld). In tunneling theory, the corre-

lation function gives the current as a function of voltage.

The tunneling current through the insulating region is expressed as the rate of change of

the number of particles on, for example, the left-hand side of the junction NL. This rate is

found from the commutator of NL �
P

C
y
psCps with the tunneling Hamiltonian. Only the

term HT fails to commute with NL,

_NL � i�H;NL� � i�HT ;NL� � i
P
kps
�TkpC

y
ksCps ÿ T�kpCypsCks �8:317�

The total current I through the tunneling interface is de®ned as the average value of this

operator:

I �t� � ÿeh _NL�t�i �8:318�

The average value of h _NL�t�i is obtained by following the same steps used to derive the Kubo

formula in Sec. 3.8. The total Hamiltonian is written as H � H 0 � HT , where H 0 � HR � HL.

Go to the interaction representation, where the tunneling term HT is treated as the interaction

and everything else H 0 is H0. Then the S matrix is expanded in terms of the perturbation HT .

FIGURE 8.12 Tunneling between two normal metals. The arrow shows the electron path through the oxide interface.
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The objective is to obtain a formula where I / jTkpj2, so only the ®rst term needs to be

retained in the expansion of the S matrix. These steps bring us to the formula

I �t� � ÿei

�t

ÿ1
dt0h� _NL�t�;HT �t0��i �8:319�

HT �t0� � eiH 0t0HT eÿiH 0t0 �8:320�
_NL�t� � eiH 0t _NLeÿiH 0t �8:321�

where the time dependence of HT �t� and _NL�t� is governed by H 0.
An important step in the calculation is to insert the chemical potentials mL and mR for the

two sides of the junction. This insertion must be done with more care than usual, because the

chemical potential is not the same on the two sides of the system. The initial Hamiltonian

(8.316) has been written to not include the chemical potentials, so the energy is measured on

an absolute scale rather than relative to the chemical potentials. However, now insert the

chemical potentials into the time developments, so that the energy can be measured with

respect to the different chemical potentials on each side of the tunnel junction. The symbols

KR and KL denote the Hamiltonian with respect to the respective chemical potentials:

KR � HR ÿ mRNR �8:322�
KL � HL ÿ mLNL �8:323�
K 0 � KR � KL �8:324�

For a free-particle system, KR �
P

xkC
y
ksCks, while HR �

P
ekC

y
ksCks since xk � ek ÿ mR.

Since the number operators commute with H 0, it is possible to write H 0 � K 0 � mRNR � mLNL

and exp�iH 0t� � exp�iK 0t� exp�it�mLNL � mRNR�� since the exponentials can be separated

when the operators commute. The time development of HT is

HT �t� � eiH 0tHT eÿiH 0t � eiK 0t eit�mLNL�mRNR�HT eÿit�mRNR�mLNL�� �
eÿitK 0

� eiK 0t P
kps

Tkpeit�mRÿmL�CyksCps � eit�mLÿmR�T�kpCypsCks

h i
eÿitK 0

The commutator of HT with the number operators produces the factor mL ÿ mR � eV , which

is identi®ed as the applied voltage, as in Fig. 8.12. The applied voltage appears in the

correlation function. The correlation function will now be evaluated by assuming that both

sides of the junction are in separate thermodynamic equilibrium.

The current operator in (8.319) now becomes

I �t� � e

�t

ÿ1
dt0
� P

kps
�TkpeÿieVtC

y
ks�t�Cps�t� ÿ T�kpeieVtCyps�t�Cks�t��;

P
k0p0s0
�Tk0p0e

ÿieVt0C
y
k0s0 �t0�Cp0s0 �t0� � T�k0p0e

ieVt0C
y
p0s0 �t0�Ck0s0 �t0��

�
From now on the time development of Cks operators is governed by Cks�t� � eiKRtCkseÿiKRt

and Cps operators by Cps�t� � eiKLtCpseÿiKLt. De®ne the operator A as

A�t� � P
kps

TkpC
y
ks�t�Cps�t� �8:325�
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and the current is written as the summation of two currents

I � IS � IJ �8:326�

IS�t� � e

�1
ÿ1

dt0Y�t ÿ t0�feieV �t0ÿt�h�A�t�;Ay�t0��i ÿ eieV �tÿt0�h�Ay�t�; �t0��ig �8:327�

IJ �t� � e

�1
ÿ1

dt0Y�t ÿ t0�feÿieV �t0�t�h�A�t�;A�t00��i ÿ eÿieV �t�t0�h�Ay�t�;Ay�t0��ig �8:328�

The term IS is for single-particle tunneling, which is important for quantum dots. The other

term IJ describes the tunneling currents associated with the Josephson effect in super-

conductors. It is evaluated in Chapter 10.

The terms in IS have just the right combination of factors to be a retarded Green's

function. The integrand depends only on the difference of�t ÿ t0�, so set t0 � 0:

�Uret�t� � ÿiY�t�h�A�t�;Ay�0��i �8:329�

Uret�ÿeV � �
�1
ÿ1

dteÿieVt �Uret�t� �8:330�

The second term in IS is the Hermitian conjugate of Uret�ÿeV � except for a sign. But the

Hermitian conjugate of the retarded function is just the advanced function. The single-particle

tunneling current is written as;

IS � ie�Uret�ÿeV � ÿ Uadv�ÿeV �� �8:331�
� ÿ2e Im�Uret�ÿeV �� �8:332�

It is twice the imaginary part of a retarded correlation function, which has the form of a

spectral density function. Using the relationship between the Matsubara and the retarded

correlation functions discussed in Sec. 3.3, the way to calculate the single-particle tunneling is

to evaluate in the Matsubara formalism the correlation function

U �io� � ÿ
�b

0

dteionthTtA�t�Ay�0�i

� ÿP
kps

P
k0p0s0

TkpT�k0p0
�b

0

dteionthTtC
y
ks�t�Cps�t�Cyp0s0Ck0s0 i �8:333�

The single-particle tunneling current is just the spectral function of this operator evaluated at

the real frequency ÿeV=h, as shown in (8.330). The Matsubara frequency on � 2np=b is

boson, since the correlation function has pairs of fermion operators. In the tunneling

Hamiltonian, the right- and left-hand sides of the tunneling junction are independent. Then

the correlation function factors into a product of the Green's functions for the right and left

sides of the junction:

U �io� � P
kps
jTkpj2

�b
0

dteionthTtCks�0�Cyks�t�ihTtCps�t�Cyps�0�i

� P
kps
jTkpj2

�b
0

dteiontgR�k;ÿt�gL�p; t�

� P
kps
jTkpj2

1

b

P
ip

gR�k; ipÿ io�gL�p; ip� �8:334�
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The only terms which enter are those for k � k0, p � p and s � s0. A type of Feynman

diagram is shown in Fig. 8.13. The symbols T in circles are the tunneling vertices. The

vertical dashed line is meant to divide the right from the left side of the junction. The solid

lines are the interacting Green's functions gR and gL.

The correlation function is the product of the two Green's functions for the two sides of

the junction. Such a simple result is obtained only when one can neglect the vertex diagrams

of the correlation function. The argument for neglecting them in tunneling is that vertex

corrections require some interaction between electrons on the two sides of the junction, which

is improbable. Actually, there is another case where vertex corrections are needed in

tunneling, and that is to account for processes where the tunneling electron can excite

vibrations or other excitations in the interface. That happens in quantum dot tunneling.

The ®rst example of solving (8.334) will be for the tunneling between two normal

metals. The experiments show the tunneling is linear in voltage V for small values of V, and

becomes slowly nonlinear at larger values of V. The latter behavior is a failure of the tunneling

Hamiltonian, which predicts only linear behavior. The present discussion is limited to small

voltages, for which the tunneling Hamiltonian formalism is valid.

For a normal system, consider the electrons to be simple quasiparticles, and approximate

the Green's functions by g�0�R and g�0�L . The Matsubara summation is then familiar:

1

b
P
ip

g�0�L �p; ip�g�0�R �k; ipÿ io� � nF �xk� ÿ nF �xp�
io� xk ÿ xp

�8:335�

U �io� � P
kps
jTkpj2

nF �xk� ÿ nF �xp�
io� xk ÿ xp

�8:336�

I � ÿ2e Im�Uret�eV ��
� 4pe

P
kp

jTkpj2�nF �xk� ÿ nF �xp��d�eV � xk ÿ xp�

The energies xk and occupation factor nF �xk� refer to the right side of the junction, and xp and

nF �xp� refer to the left side. An additional factor of two in front is for the summation over

spins. The spin is usually preserved in tunneling. The summations over k and p are just over

wave vectors. For small voltages, only electrons very near to the Fermi energy are involved in

FIGURE 8.13 Feynman diagram for tunneling, where the Ts are the vertices which link the right (R) and left (L)

sides of the junction.
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tunneling. For these small energies, the density of states on both sides is assumed to be a

constant: P
k

!
�

d3k

�2p�3 ! NR

�
dxR �8:337�

P
p

!
�

d3p

�2p�3 ! NL

�
dxL �8:338�

I � 4peNRNLjT j2
�

dxL

�
dxR�nF �xR� ÿ nF �xL��d�eV � xR ÿ xL�

� 4peNRNLjT j2
�

dxR�nF �xR� ÿ nF �xR � eV �� �8:339�

At zero temperature, the occupation numbers are step functions, so (8.339) becomes

I � 4peNRNLjT j2
�0

ÿeV

dxR � s0V �8:340�

s0 � 4pe2NRNLjT j2 �8:341�
The tunneling device behaves as a simple resistor, with a conductance (inverse resistance)

given by s0. With a little more care, one can show that the integral in (8.339) also equals eV at

nonzero temperatures, since the thermal smearing cancels between nF �x� and nF �x� eV �.
The result is temperature independent, at least for a range of low temperatures kBT � EF .

A formal expression for the tunneling current can also be derived when interacting

Green's functions gR, gL are retained in the Matsubara summation. This type of summation

was evaluated in Sec. 7.1 using the Lehmann representation

X �io� � 1

b
P
ip

gL�p; ip�gR�k; ipÿ io�

�
�

deL

2p
AL�p; eL�

�
deR

2p
Ar�k; eR�S �8:342�

S � 1

b

P
ip

1

ipÿ eL

1

ipÿ ioÿ eR

� nF �eR� ÿ nF �eL�
io� eR ÿ eL

�8:343�

The retarded function is obtained by the analytical continuation io! eV � id and then take

the imaginary part.

ÿ2 Im�Xret�eV �� �
�

deR

2p
AL�p; eR � eV �AR�k; eR��nF �eR� ÿ nF �eR � eV ��

These steps bring us to the formula for the tunneling current of Schrieffer et al. (1963):

I � 2e
P
kp

jTkpj2
�

deR

2p
AL�p; eR � eV �AR�k; eR��nF �eR� ÿ nF �eR � eV �� �8:344�

Again a factor of two is added for the spin summation. The tunneling current is expressed in

terms of the spectral functions on the two sides of the junction. Equation (8.344) is the exact

formula for I within the model of the tunneling Hamiltonian. The earlier expression (8.339)

is recovered with the free-quasiparticle approximation AR � 2pd�eR ÿ xk� and AL �
2pd�eL ÿ xp�. The virtue of (8.344) is that it contains all many-body effects on the two sides

of the junction. Its drawback is that it is based on the tunneling Hamiltonian formalism.
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If the tunneling matrix element Tkp can be approximated as a constant, then the

summations over wave vectors give the interacting density of states

P
k

AR�k; eR� � 2pNR�eR� �8:345�P
p

AL�p; eL� � 2pNL�eL� �8:346�

I � 4pejT j2
�

deNR�e�NL�e� eV ��nF �e� ÿ nF �e� eV ��

which is a useful formula for describing many-body effects in tunneling which occur on a

small energy scale near to the Fermi surface.

A useful formula for quantum dots is to calculate the rate of electron tunneling in each

direction: left-to-right �``LR'') and right-to-left �``RL''):

IRL � 2e
P
kp

jTkpj2
�

deR

2p
AL�p; eR � eV �AR�k; eR�nF �eR��1ÿ nF �eR � eV ��

� 4pejT j2NRNL

�
denF �e��1ÿ nF �e� eV �� � s0V

1ÿ eÿbeV
�8:347�

ILR � 2e
P
kp

jTkpj2
�

deR

2p
AL�p; eR � eV �AR�k; eR�nF �eR � eV ��1ÿ nF �eR��

� 4pejT j2NRNL

�
denF �e� eV ��1ÿ nF �e�� �

s0V

EbeV ÿ 1
�8:348�

IRL ÿ ILR � s0V �8:349�

The previous result is obtained by subtracting the currents in the two directions.

8.6.2. Quantum dots

Figure 8.14 shows the typical geometry with a quantum dot (QD). There are two metal

electrodes on the right and left, and a spherical metal particle between them. The sphere is

imbedded in an insulating material through which the electron can tunnel. The tunneling of

electrons from the right to the left electrode is facilitated by the QD. The tunneling becomes a

two-step process: the electron tunnels from one electrode to the QD, and then tunnels from the

QD to the other electrode. There is also coherent tunneling from one electrode to the other

through the states of the QD, which act as virtual intermediate states. The ®rst experiments of

this type were done by Giaever and Zeller (1968), and they have become popular recently.

Now the QD and electrodes might be composed of semiconductors, where the nanostructure

is made by lithography.

First examine the properties of the QD. Assume it is a sphere of radius a in atomic units:

the dimensional radius R � aa0 where a0 � 0:05292 nm is the Bohr radius. The volume of

the sphere is V0 � 4pR3=3. The number of electrons is N � n0V0, where the density

n0 � k3
F=3p

2 is assumed to be the same as in the bulk metal. The density of states per spin is

NF � mkF=�2p2h2�. The quantity NFV0 has the units of inverse energy: it is the number of
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electrons per unit energy. Conversely, its inverse is the average separation between energy

levels on the QD

DE � 1

NFV0

� 3p
Ery

�kFa0�a3
�8:350�

U � eVc �
e2

2R
� Ery

a
�8:351�

The quantity U is called the charging energy. It is the energy required to add a charge of e to a

neutral metal sphere. All of the charge collects on the surface, and the energy is just

U � e2=2R. Table 8.3 compares these two energies as a function of sphere radius. The

energies are given in terms of electron volts. The two energy scales are interesting. The

charging energy is large compared to the thermal energy kBT, regardless of which temperature

is used. If �n is the number of electrons on the QD for it to be charge neutral, then the energy

for n electrons on the QD is

En � DE�nÿ �n� � U �nÿ �n�2 �8:352�

FIGURE 8.14 Geometry for quantum dot tunneling.

Table 8.3 Number of electrons N, charging

energy U, and energy level separation DE of a

quantum dot of radius a in atomic units.

Energies in units of electron volts. A value of

rs � 3:96 (sodium) is assumed

a N U DE

5 2 2.72 2.116

10 16 1.36 0.265

15 54 0.91 0.078

20 129 0.68 0.033

25 252 0.54 0.017

30 435 0.45 0.010

35 690 0.39 0.006

40 1030 0.34 0.004

568 Chap. 8 � DC conductivities



The system behaves as an Anderson model, in that the energy of the QD depends quad-

ratically upon the total number of electrons n. The energy is for a many-electron system. The

energy U is due to electron±electron interactions. A many-electron description is required for

treating the QD.

The other energy DE is also interesting. It is much smaller than the charging energy for

typical systems with N � 10±1000 electrons. Here the relevent question is whether DE is

greater or smaller than the thermal energy kBT. Of course, this comparison depends upon the

temperature of the experiment: whether it is at 300 K, 1 K, or 1 mK. If bDE � 1 then the

energy levels on the QD can be treated as a continuum, and no error is made by replacing the

summation over states by a continuous integral. However, if bDE � 1, the states are well

separated in energy compared to kBT . The summation over states must remain a discrete

summation. Either condition could apply, depending upon the size of the QD and the

temperature of the experiment. Different theories in the literature assume one case or the

other. Some simple statistical calculations are presented of the ¯uctuation of the number of

electrons on quantum dots. These ¯uctuations are important for controlling, or else not

controlling, the ¯ow of current onto the quantum dot. These ¯uctuations play a role in the

phenomena called `̀ Coulomb Blockade''. The two different formulas in the literature for the

tunneling rate are obtain as two limits of the ¯uctuations.

The statistical averaging over the states n of the quantum dot includes both the single-

electron states �nÿ �n�DE and the charging energy U �nÿ �n�2. Sometimes they can be

decoupled. There are, in fact, many con®gurations of one-electron energy states. Denote their

quantum numbers by a, so that the energy without the charging energy is Ea.

Calculate the partition function for the electrons on the quantum dot. Assume there are a

number of single-electron energy levels with energy Ea as well as a charging energy

U �nÿ �n�2. Let na be zero or one, and it denotes whether an electron is, or is not, in the state a.

Then the total energy of the system is

n �P
a

na �8:353�

E �P
a

naEa � U �nÿ �n�2 �8:354�

The label a includes the spin and other quantum numbers. Many combinations of states may

have the same value of n. In this case, the partition function can be written exactly as

Z �P
n

eÿbU �nÿ�n�2
�2p

0

dy
2p

einyPa
P1

na�0

eÿna�b�Eaÿm��iy� �8:355�

�P
n

eÿbU �nÿ�n�2
�2p

0

dy
2p

einyS�y� �8:356�

S�y� � Pa�1� eÿb�Eaÿm�ÿiy�� �8:357�

For y � 0 then S(0) is just the usual Fermi±Dirac distribution function. The integral over y
selects out the terms with a certain value of n. If U � 0 then the summation over n gives a

delta function at y � 0 and the partition function reverts to being a usual product of Fermi±

Dirac distributions for noninteracting electrons.
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The role of the ¯uctuations is determined by the function S�y�. This function is evaluated

by breaking the summation over a into two parts depending upon whether xa � Ea ÿ m is

positive or negative, i.e., whether exp�ÿbxa� is less than or larger than one.

ln�S�y�� � P
xa<0

ln�eÿiy�eiy � eÿbxa�� � P
xa>0

ln

�
�1� eÿbxa �

�
1� eÿbxa�eÿiy ÿ 1�

1� eÿbxa

��
� ln�S�0�� ÿ iy�n� dS�y� �8:358�

�n � P
xa<0

1 �8:359�

~na �
1

ebxa � 1
� nF �xa� �8:360�

dS�y� � P
xa<0

ln�1� �1ÿ ~na��eiy ÿ 1�� � P
xa>0

ln�1� ~na�eÿiy� ÿ 1�� �8:361�

where �n is the number of electrons below the chemical potential, and ~na is the Fermi±Dirac

distribution of electrons for the state a.

First evaluate dS for the case that the energy separation between the states of energy Ea
is less than the thermal energy kBT � 1=b. Then the summation over a can be replaced by a

continuous integral. Let NF �x�V0 � rD�x�, rD�0� � 1=DE be the density of energy states on

the dot. Then one gets thatP
xa

� V0

�
NF �x�dx �

�
dxrD�x� �8:362�

dS �
�0

ÿW

dxrD�x� ln�1� nF �ÿx��eiy ÿ 1�� �
�W

0

dxrD�x� ln�1� nF �x��eÿiy ÿ 1�� �8:363�

dS � ÿP
l�1

al�1ÿ cos�ly�� �8:364�

dS � ÿ2g�1ÿ cos�y�� �8:365�

g � kBTrD�0� ln 2 � kBT

DE
ln�2� �8:366�

The integral has been approximated by expanding the log function in a Taylor series and

keeping the ®rst term. Higher terms �l > 1� in the series for dS are much smaller: the series

converges rapidly. In general g > 1 means that kBT > DE.

With this approximation the partition function can be expressed in closed form

Z � ZFDZC �8:367�
ZFD � Pa�1� eÿbxa � �8:368�
ZC �

P
n
jn�g�eÿbUn2 �8:369�

n � nÿ �n �8:370�

jn�g� �
�2p

0

dy
2p

einyÿ2g�1ÿcos�y�� �8:371�

� eÿ2gIn�2g� �
1

2
������
pg
p eÿn

2=4g �8:372�
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This formula is an important result. It shows that the Fermi±Dirac statistics of the states

labeled a are decoupled from the charging of the QD, which is given by the last term ZC.

When g > 1, then for small values of n the factor of jn�g� is independent of n, and the

averaging over the value of n involves only the term exp�ÿbUn2�. This result is assumed by

most theoretical papers. The charging is treated as a separate statistical process from the

Fermi±Dirac statistics of the electrons on the QD.

The other case is to evaluate dS�y� while assuming that the separation between energy

levels is greater than the thermal energy. In that case this function is evaluated as

dS � ÿg<�1ÿ eiy� ÿ g>�1ÿ eÿiy� �8:373�
g< � P

xa<0

nF �ÿxa� �8:374�

g> � P
xa>0

nF �xa� �8:375�

jn � eÿ�g
<�g>� g>

g<

� �n=2

In�2
�����������
g<g>
p � �8:376�

Z � ZFDZC �8:377�
ZC �

P
n
jneÿbUn2 �8:378�

Here g < 1. The formulas for the two cases become identical when g � g< � g>.

However, if g < 1 then jn does depend upon g and this factor should be included in the

analysis. Our derivation shall assume that g > 1, so that the energy levels on the QD can be

considered to be continuous. The thermodynamic averaging over the charging energy is

accomplished by including the factor of exp�ÿbUn2�. In this case, the system is a type of

Hubbard model.

8.6.3. Rate equations

The Coulomb blockade is derived using a set of rate equation, which describe how an

electron hops on or off the QD. De®ne fn as the probability of there being n electrons on the

QD. If the number is �n in equilibrium, then we expect the probability to be something like

fn �
1

ZQD

exp�ÿb�nÿ �n�Dÿ b�nÿ �n�2U � �8:379�

1 �P
n

fn �8:380�

where D is the energy to put a single electron on the QD, irrespective of the charging energy.

It is convenient to change the notation and to de®ne n0 � nÿ �n as the number of excess

electrons �n0 > 0� or holes �n0 < 0� on the QD. Similarly, the label on the site probability is

changed to fn0 . The subscript denotes the deviations from neutrality.

De®ne RL�m; n� as the probability that the number of electrons on the QD changes from

n to m by a jump to the electrode to the left. Similarly, RR�m; n� is the probability of going
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from n to m by a jump to the electrode on the right. Since only single jumps are considered,

then m � n� 1. These quantities are given earlier as IRL;LR in Eqn. (8.347) and (8.348).

RL�n� 1; n� � xLEL�n�
ebEL�n� ÿ 1

�8:381�

RL�nÿ 1; n� � xLEL�nÿ 1�
1ÿ eÿbEL�nÿ1� �8:382�

RR�n� 1; n� � xRER�n�
ebER�n� ÿ 1

�8:383�

RR�nÿ 1; n� � xRER�nÿ 1�
1ÿ eÿbER�nÿ1� �8:384�

xR;L � 4pjTL;Rj2NL;RNQD �8:385�
EL�n� � eVQD � U �2n� 1� �8:386�
ER�n� � e�VQD ÿ V � � U �2n� 1� �8:387�

The left electrode is taken to have zero voltage, while the right one has a voltage of V. The

quantum dot has a voltage of VQD. The voltage differences VQD and VQD ÿ V are the

differences in the chemical potential between the left electrode and the QD, and between the

QD and the right electrode. The factor of �2n� 1� � �n� 1�2 ÿ n2 is the difference between

the charging energies before and after a hop that adds an electron to the QD. The factors of

NL, NR, NQD are the density of states at the chemical potential for the left and right electrodes,

and for the QD.

As an example, consider the subsystem of just the QD and the left electrode. The rate

equation for the process of having electrons hop between the QD and the electrode is

d

dt
fn � ÿfn�RL�n� 1; n� � RL�nÿ 1; n�� � fn�1RL�n; n� 1� � fnÿ1RL�n; nÿ 1� �8:388�

The ®rst term on the right of the equals sign is from events where the system starts in state n

and changes by having an electron hop either on to or off of the QD. The remaining two terms

are events where the QD starts with either n� 1 electrons and gets to n by a hop. In equi-

librium, the average rate of change is zero. Set the right-hand side of the above equation to

zero. This step can be accomplished with the identities

fnRL�n� 1; n� � fn�1RL�n; n� 1� �8:389�
fnÿ1RL�n; nÿ 1� � fnRL�nÿ 1:n� �8:390�

Adding these two equation gives the right-hand side of (8.388). However, the above two

equations are actually identical. The second is the same as the ®rst by changing n! nÿ 1

everywhere. Only consider the solution to the ®rst equation, which can be manipulated to

write it as

fn�1

fn
� RL�n� 1; n�

RL�n; n� 1� � exp�ÿbEL�n�� �8:391�

fn � f0 exp�ÿeVQDnÿ bUn2� �8:392�
The second equation above is the solution deduced from the ®rst. The result is expected for

thermal equilibrium.
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The case for the QD tunneling is different. There is a voltage V across the device, and a

current ¯owing, so that the system is not in thermal equilibrium. The relationship among the

factors of fn must be derived anew. The rate equation for this case, including both electrodes,

is

dfn
dt
� ÿfn�RL�n� 1; n� � RL�nÿ 1; n� � RR�n� 1; n�
� RR�nÿ 1; n� � fn�1�RL�n; n� 1� � RR�n; n� 1��
� fnÿ1�RL�n; nÿ 1� � RR�n; nÿ 1�� �8:393�

In steady state, the average derivative is zero, and the right-hand side vanishes. As in the

above case, this constraint is accomplished by

fn�RL�n� 1; n� � RR�n� 1; n�� � fn�1�RL�n; n� 1� � RR�n; n� 1��
fn�1

fn
� RL�n� 1; n� � RR�n� 1; n�

RL�n; n� 1�RR�n; n� 1�
�8:394�

The above equation determines the occupation numbers fn for the quantum dot. Another

important equation is for the current. One can count either the electrons leaving the ®rst

electrode, or else those arriving at the second one. These two expressions for the current are

IL � e
P
n

fn�RL�n� 1; n� ÿ RL�nÿ 1; n��

� e
P � fn� fnRL�n� 1; n� ÿ fn�1RL�n; n� 1�� �8:395�

IR � e
P
n

fn�RR�nÿ 1; n� ÿ RR�n� 1; n��

� e
P
n

� fn�1RR�n; n� 1� ÿ fnRR�n� 1; n�� �8:396�

In the second equal sign we changed n! n� 1 in one of the terms, which is permitted since

there is a summation over n. In steady state the two currents are identical: IL � IR. This

identity is automatically satis®ed by Eqn. (8.394).

As a simple example, consider the case that the charging energy U � 0. In that case the

solution to the rate equations is that

xLEL � ÿxRER �8:397�
xLeVQD � ÿxRe�VQD ÿ V � �8:398�

VQD � V
xR

xR � xL

�8:399�

Putting this result into Eqn. (8.394) gives that the ratio fn�1=fn � 1. All of the occupation

numbers fn are the same. An evaluation of the current gives that

I � ÿe2V
xLxR

xL � xR

�8:400�

This result is the same as that obtained by two resistors in series. A simple tunnel junction acts

like a resistor. A series of two junction behaves as two resistors in series. The net resistance is

the sum of the two resistances. In the present problem, the resistance for each connection are

rL;R � 1=�e2xL;R�. The above formula shows that the net resistance of the two-step tunneling
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is the same as adding the two resistances. This result is expected once the energy levels in the

QD are treated as continuous, and the charging energy U is neglected.

The Coulomb blockade is obtained by including the charging energy. The example is

simpli®ed by assuming that the two electrodes are identical, so xL � xR. Furthermore, it is

assumed that the QD is exactly midway between the two electrodes. Then one must choose

VQD � V=2 by symmetry. For each value of V the ratio (8.394) is solved for the relevent

number of n-values. De®ne this ratio as r�2n� 1�. By normalizing all occupation numbers to

f0, we ®nd for the partition function and the current

ZQD � f0

�
1� r�1��1� r�3��1� � � ���

� 1

r�ÿ1�
�

1� 1

r�ÿ3� �1� � � ��
�

�8:401�

I � f0
ZQD

fRL�1; 0� ÿ RL�ÿ1; 0� � r�1��RL�2; 1� ÿ RL�0; 1��

� 1

r�ÿ1� �RL�0;ÿ1� ÿ RL�ÿ2;ÿ1�� � � � �
�

�8:402�

A typical result from this formula is shown in Fig. 8.15. The current is an asymmetric

function of the voltage. The onset of current begins at ejV j � 2U since the current can only

occur if ejV j=2 > U . Electrons can only hop from either electrode on to the QD if the voltage

difference supplies the charging energy U. Since the QD is in the middle of the space between

the electrodes, a voltage of V gives only V=2 between the QD and either electrode. Note that

there is a second weak threshold when ejV j=2 � 3U at ejV j � 0:6 eV. This point is the

threshold for having two extra electrons on the QD: the factor of three is 22 ÿ 12.

Since the geometry is perfectly symmetric, the current can also proceed by the

generation of holes �n < 0�. In this case, the ®rst step is for an electron to hop from the QD to

FIGURE 8.15 Current±voltage characteristic for a quantum dot placed symmetrically between two electrodes.

U � 0:1 eV and T � 10 K.
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the left electrode, making a hole on the QD. The second step is for an electron to tunnel from

the right electrode to the QD, which ®lls this hole state.

This example is typical for the case that the QD is large enough that its electron states

can be considered to be continuous. A much different case, for a small QD, is when the

energy levels are large compared to the thermal energy. Then the conductance is a series of

steps, where each step is another available energy state on the QD.

An interesting experiment has a magnetic impurity in the QD (Goldhaber-Gordon et al.,

1998). The tunneling becomes a type of spectroscopy which can measure the density of states

of the magnetic impurity. The experiment allows a test of solutions to the Anderson model.

8.6.4. Quantum conductance

Ballistic transport is the case where an electron carries current without any scattering

(Landauer, 1981, 1989). There are several relevent length scales: the length L of the sample,

and the mean-free-path l of the electron. Earlier in this chapter it was shown there are

separate values of the mfp for: momentum scattering, energy scattering, electron±electron

interactions, etc. Here the most relevant mfp is that for momentum scattering �lt�, since it

enters into the de®nition of the electrical conductivity. If L < lt then the current is carried

across the material without much chance of scattering. In this case the transport is called

ballistic.

A special formula is needed for the current from ballistic transport. One cannot employ

the Boltzmann equation or the Kubo formula, since they all assume a system with quasi-

equilibrium, which means that the mfp is smaller than the dimensions of the sample. Instead,

the correct picture is from simple quantum mechanics. Consider a particle moving to the right

in one dimension, with a wave vector k. The number of particles per unit distance with wave

vector k is

dk

2p
nF �xk� �8:403�

The Fermi±Dirac occupation number is for the source of electron on the left electrode.

Assume there is another electrode on the right which is at a voltage V with respect to the one

on the left. Then the number of electrons going from right to left is given by

dk

2p
nD�xk � eV � �8:404�

The net current is obtained by subtracting these two formula, and multiplying by evk, where vk

is the velocity

I � e

2p

�
dkvk �nf �xk� ÿ nF �xk � eV �� �8:405�

� e

2ph

�
dxk �nf �xk� ÿ nF �xk � eV �� �8:406�

I � s0V �8:407�

s0 �
e2

h
�8:408�

The quantity e2=h is the quantized conductance. Its units are interesting. In cgs units, e2=hc is

dimensionless, so that e2=h has the units of velocity. That is not the correct result here.

Sec. 8.6 � Quantum dot tunneling 575



Instead, in SI units e has the units of Coulombs, and Planck's constant has the units of Joule-

second, which gives that s0 has the units of Siemens, which is the inverse of the Ohm. The

approximate value is s0 � 38:8 mS.

The above derivation applies to a single channel of electrons. Consider the conduction

down a quantum wire. Treat the wire as a type of wave guide, which has many conducting

modes, although each new one occurs at higher energy. The number of conducting modes as a

function of energy is de®ned as Nc�E�. This quantity is a series of step functions as each new

mode opens up along the quantum wire. Then the current is actually given by the expression

I � 2s0Nc�eV �V �8:409�
The factor of two in front is for spin degeneracy. Each orbital mode usually has spin

degeneracy. This symmetry is broken in a magnetic ®eld. Some writers prefer to de®ne 2s0 as

the quantum of conductance.

PROBLEMS

1. Use the piezoelectric electron±Phonon interaction in Sec. 1.3 to calculate the temperature

dependence of the electrical conductivity in a semiconductor.

2. Consider the self-energy of an electron from unscreened exchange,

S�p� � 1

bn
P
q

vq

P
ip

g�p� q; ip� �8:410�

which was evaluated in Sec. 5.1.6. Derive the Ward identity for this self-energyÐthe equivalent of

(8.81). Use this result to show that the Coulomb ladder diagrams have negligible effect upon the basic

polarization P�1��q; io� in the limit where q! 0.

3. The correlation function

w�q; io� � ÿ
�b

0

dteiothTtr�q; t�r�ÿq; 0�i �8:411�

vanishes when q! 0. Show that the bare bubble P�1��q; io� has this feature. Use the Ward identity to

show that it still vanishes when self-energy functions and vertex functions are included in the evaluation.

4. Derive the rate of temperature relaxation in a semiconductor due to the deformation potential

scattering of electrons by acoustical phonons. Give the answer for high and low temperatures. Evaluate

the numerical value of the lifetimes using the data in Table 8.1.

5. Use polar coupling to optical phonons to calculate the rates of relaxation for an electron in a

semiconductor: (a) for momentum, (b) for energy, and (c) temperature.

6. Use deformation coupling to optical phonons to calculate the rates of relaxation for an electron in a

semiconductor: (a) for momentum, (b) for energy, and (c) for temperature.

7. Use (8.228) to evaluate g�e� id; e� id�, and show that it equals unity, in agreement with the Ward

identity.

8. Derive the Ward identity (8.219) for the phonon ladder diagrams.
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9. Solve the scalar vertex equation (8.219) using the same techniques used to solve

g�p; e� id; e� id�. Show that G�e� id; e� id� � 1ÿ @S=@e but that G�e� id; eÿ id� does not obey

the Ward identity. Furthermore, show for every solution R�e� � G�e� id; eÿ id� to its vertex equation

that R�e� � a Im�S�e�� is also a solution, where a is an arbitrary constant.

10. Write down the collision rate �@f =@t� for electron±electron interactions. Evaluate it for a

semiconductor where the few conduction electrons obey Maxwell±Boltzmann statistics. Use Debye

screening for the dielectric function.

11. Show that the leading term in the thermopower for a free-electron gas is

S � p2k2
BT

2eEF

�8:412�

12. Evaluate the correlation function L�22� for the thermal conductivity of a metal. Use the free-electron

heat current operator, and show that the integral diverges for the ®rst term in the vertex summation.

13. Solve Eqns. (8.215) and (8.235) in the limit of small temperature and show that the resistivity

r � T 5 from phonons. Assume that a2
trF�u� � gu2 at small u, where g is a constant.

14. Compare the relaxation time for transport deduced from the force-balance theory (8.198) with that

given by (8.236). How do they differ? Show they become identical in the limit of high T.

15. Write down the rate equations for current between two electrodes separated by two identical

quantum dots in series. What is the minimum voltage for current to ¯ow at zero temperature?
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