
xi

Preface

This book is an introductory text on mathematical logic and type theory.
It is aimed primarily at providing an introduction to logic for students of
mathematics, computer science, or philosophy who are at the college junior,
senior, or introductory graduate level. It can also be used as an introduction
to type theory by researchers at more advanced levels.

The first part of the book (Chapters 1 and 2, supplemented by parts of
Chapters 3 and 4) is suitable for use as a text in a one-semester introduction
to mathematical logic, and the second part (Chapters 5 – 7) for a second
semester course which introduces type theory (more specifically, typed λ-
calculus) as a language for formalizing mathematics and proves the classical
incompleteness and undecidability theorems in this context. Persons who
wish to learn about type theory and have had a prior introduction to logic
will have no difficulty starting with Chapter 5.

The book is oriented toward persons who wish to study logic as a ve-
hicle for formal reasoning. It may be particularly useful to those who are
interested in issues related to the problem of constructing formal proofs as
models of informal reasoning or for use in computerized systems which in-
volve automated deduction. Proofs, which are often the chief end products
and principal manifestations of mathematical reasoning, constitute highly
significant pathways to truth and are a central concern of this book. Our
choice of the title To Truth Through Proof is motivated by the consideration
that while in most realms one needs more than logic to achieve an under-
standing of what is true, in mathematics the primary and ultimate tool for
establishing truth is logic.

Of course, the study of logic involves reasoning about reasoning, and it
is not surprising that complex questions arise. To achieve deep understand-
ing and proper perspective, one must study a variety of logical systems as
mathematical objects and look at them from a variety of points of view. We
are thus led to study the interplay between syntax and semantics, questions
of consistency and independence, formal rules of reasoning, various formats
for proofs and refutations, ways of representing basic mathematical concepts
in a formal system, the notion of computability, and the completeness, in-
completeness, and undecidability theorems which illuminate both the power
and the limitations of logic.

One of the basic tasks of mathematical logic is the formalization of math-
ematical reasoning. Both type theory (otherwise known as higher-order
logic) and axiomatic set theory can be used as formal languages for this

xii PREFACE

purpose, and it is really an accident of intellectual history that at present
most logicians and mathematicians are more familiar with axiomatic set
theory than with type theory. It is hoped that this book will help to remedy
this situation.

In logic as in other realms, there is a natural tendency for people to prefer
that with which they are most familiar. However, those familiar with both
type theory and axiomatic set theory recognize that in some ways the former
provides a more natural vehicle than the latter for formalizing what mathe-
maticians actually do. Both logical systems are necessarily more restrictive
than naive axiomatic set theory with the unrestricted Comprehension Ax-
iom, since the latter theory is inconsistent. Axiomatic set theory achieves
consistency by restricting the Comprehension Axiom and introducing the
distinction between sets and classes. Mathematicians often find this distinc-
tion unnatural, ignore the technicalities about existence axioms, and leave
it to the specialists to show that their reasoning can be justified. Type the-
ory achieves consistency by distinguishing between different types of objects
(such as numbers, sets of numbers, collections of sets of numbers, functions
from numbers to numbers, sets of such functions, etc.). Mathematicians
make such distinctions too, and even use different letters or alphabets to
help them distinguish between different types of objects, so the restrictions
which type theory introduces are already implicit in mathematical practice.
While some formulations of type theory may seem cumbersome, the formu-
lation Q0 introduced in Chapter 5 is a very rich and expressive language,
with functions (which need not be regarded as sets of ordered pairs) of all
types as primitive objects, so most of what mathematicians write can be
translated into Q0 very directly. Q0 is a version of typed λ-calculus, and
the availability of λ-notation in Q0 enables definitions to be handled very
conveniently and eliminates the need for axioms asserting the existence of
sets and functions.

One’s choice of a formal language will generally depend on what one
wishes to do with it. If one is choosing a language for expressing mathematics
in computerized systems which deal with mathematics on a theoretical level
(such as mathematically sophisticated information retrieval systems, proof
checkers, or deductive aids), there are several reasons why type theory may
be preferable to set theory. First, the primitive notation of set theory is so
economical that this language is only practical to actually use if one expands
it by introducing various abbreviations. This is usually done in an informal
way (i.e., in the meta-language), but in an automated system it is important
that the formal language be the one actually used to express mathematical
statements, since this is the language which must be studied rigorously and

PREFACE xiii

manipulated systematically. Thus, the formal language should not only be
adequate in principle for expressing mathematical ideas, but it should also be
convenient in practice. Indeed, the translation from familiar mathematical
notations to the formal language should be as simple and direct as possible.
Second, in set theory one can write all sorts of expressions which are not
legal in type theory, and which a mathematician would reject as nonsense
almost instinctively. A computer program for manipulating mathematical
expressions would certainly be very awkward and inefficient if it did not have
some way of distinguishing between different types of mathematical objects
and rejecting nonsensical expressions. Third, one of the basic operations in
automated theorem proving is that of finding appropriate substitutions for
variables, and an understanding of the types of various entities allows one
to avoid much useless search. Finally, it has been found (see [Andrews et

al., 1984] [Andrews et al., 1996]) that unification algorithms for type theory
(such as [Huet, 1975] and [Jensen and Pietrzykowski, 1976]) are powerful
tools in automating the proofs of simple mathematical theorems.

As noted in [Hanna and Daeche, 1985], [Hanna and Daeche, 1986], and
[Gordon, 1986], typed λ-calculus is particularly well suited for specifying
and verifying hardware and software. Familiarity with typed λ-calculus also
provides fundamental background for the study of denotational semantics
for functional programming languages.

While Gödel’s Completeness Theorem guarantees that all valid wffs of
first-order logic have proofs in first-order logic, extraordinary reductions in
the lengths of such proofs can sometimes be achieved by using higher-order
logic. (See §54.)

It is easy to discuss the semantics of type theory, and to explain the
crucial distinction between standard and nonstandard models which sheds
so much light on the mysteries associated with the incompleteness theorems,
Skolem’s paradox, etc. As will be seen in Chapter 7, in the context of
the language Q0 it is easy to present the incompleteness theorems very
elegantly and to show that their significance extends far beyond the realm
of formalizing arithmetic.

Obviously, serious students of mathematical logic ought to know about
both type theory and axiomatic set theory. Pedagogically, it makes good
sense to introduce them to elementary logic (propositional calculus and first-
order logic), then type theory, then set theory. In spite of the superficial
appearance of simplicity possessed by set theory, its models are more compli-
cated, and from a logical point of view it is a more powerful and complex lan-
guage. In [Marshall and Chuaqui, 1991] it is argued that the set-theoretical
sentences which are preserved under isomorphisms are of fundamental im-

xiv PREFACE

portance, and it is shown that these are the sentences which are equivalent
to sentences of type theory.

A brief explanation of the labeling system used in this book may be
helpful. The sections in Chapter 1 (for example) are labeled §10, §11, . . . ,
§16. Of course, an alternative labeling would be §1.0, §1.1, . . . , §1.6, but
the periods are quite redundant once one understands the labeling system.
These tags should be regarded as labels, not numbers, although they do have
a natural ordering. Similarly, the theorems in §11 (for example) are labeled
1100, 1101, 1102, . . . , rather than 1.1.00, 1.1.01, 1.1.02, Exercises are
labeled in a similar way, but their labels start with an X. Thus, the exercises
for section 11 are labeled X1100, X1101, X1102, Labeling starts with 0
rather than 1 because 0 is the initial ordinal. (Chapter 0 is the Introduction.)

The reader should examine the table of contents in parallel with the
discussion of the individual chapters below. Much that is in this book is
simply what one would expect in an introductory text on mathematical
logic, so the discussion will concentrate on features one might not expect.

Chapter 1 introduces the student to an axiomatic system P of proposi-
tional calculus and later to more general considerations about propositional
calculus. In §14 a convenient two-dimensional notation is introduced to rep-
resent wffs in negation normal form. This enables one to readily comprehend
the structure of such wffs, find disjunctive and conjunctive normal forms by
inspection, and check whether the wffs are contradictory by examining the
“vertical paths” through them.

Chapter 2 contains what everyone ought to know about first-order logic.
Students can learn a great deal about how to construct proofs by doing the
exercises at the end of §21. The discussion of prenex normal form in §22
shows students how to pull out the quantifiers of a wff all at once as well
as how to bring them out past each connective one step at a time. This
discussion is facilitated by the use of the notation for the ambiguous
quantifier.

In §25 Gödel’s Completeness Theorem is proved by an elegant gener-
alization of Henkin’s method due to Smullyan. The notion of consistency
in Henkin’s proof is replaced by abstract consistency, and with very lit-
tle extra effort a proof is obtained for Smullyan’s Unifying Principle, from
which readily follow Gödel’s Completeness Theorem in §25, Gentzen’s Cut-
Elimination Theorem in §31, the completeness of the method of semantic
tableaux in §32, the completeness of a method for refuting universal sen-
tences in §34, and the Craig–Lyndon Interpolation Theorem in §41. In their
first encounter with the proof of Gödel’s Completeness Theorem, students
may need a less abstract approach than that of Smullyan’s Unifying Prin-

PREFACE xv

ciple, so as an alternative in §25A an elegant and direct simplified proof
of the Completeness Theorem is given. It actually parallels the abstract
approach very closely and provides a good introduction to the abstract ap-
proach. The Löwenheim–Skolem Theorem and the Compactness Theorem
are derived in the usual way from the Completeness Theorem. It is shown
how the Compactness Theorem can be applied to extend the Four Color
Theorem of graph theory from finite to infinite graphs and to prove the
existence of nonstandard models for number theory.

Chapter 3 is concerned with the logical principles underlying various
techniques for proving or refuting sentences of first-order logic, and provides
an introduction to the fundamental ideas used in various approaches to
automated theorem proving.

The chapter starts in §30 with a system of natural deduction which is
essentially a summary of the most useful derived rules of inference that were
obtained in §21. Methods of proving existential formulas are discussed. A
cut-free system of logic and semantic tableaux are then introduced in §31 and
§32 as systems in which one can search more systematically for a proof (or
refutation). When one constructs a semantic tableau, one often notices that
it would be nice to postpone deciding how to instantiate universal quantifiers
by just instantiating them with variables for which substitutions could be
made later. This is facilitated when one eliminates existential quantifiers to
obtain a universal sentence by Skolemization, which is the topic of §33. It
is noted that several methods of Skolemization can be used.

§34 introduces a method for refuting universal sentences which avoids
the branching on disjunctions of semantic tableaux and uses the cut rule to
reduce formulas to the contradictory empty disjunction. This method has
many elements in common with the resolution method [Robinson, 1965] of
automated theorem-proving. Students are often successful at establishing
theorems by this method even though they were unable to find proofs for
them in natural deduction format.

The proof methods just discussed all yield highly redundant proof struc-
tures in which various subformulas may occur many times. §35 introduces
a version of Herbrand’s Theorem which enables one to establish that a wff
is contradictory simply by displaying a suitable compound instance of it.

One of the basic processes of theorem-proving in first- or higher-order
logic is that of substituting terms for variables (or instantiating quantified
variables) in such a way that certain expressions become the same. §36
provides a description of Robinson’s Unification Algorithm for first-order
logic and a proof of its correctness. Since substitutions have been defined
(in §10) to be functions of a certain sort which map formulas to formulas,

xvi PREFACE

certain facts about substitutions (such as the associativity of composition)
can be used without special justification.

Chapter 4 discusses a few additional topics in first-order logic. In §40
the topic of Duality is introduced with a parable about two scholars who
argue about an ancient text on logic because of a fundamental ambiguity
in the notations for truth and falsehood. Of course, much of this material
could appropriately be discussed immediately after §14.

Chapter 5 introduces a system Q0 of typed λ-calculus which is essen-
tially the system introduced by Alonzo Church in [Church, 1940], except
that (following [Henkin, 1963]) equality relations rather than quantifiers and
propositional connectives are primitive. Type theory is first introduced in
§50 with a discussion of a rather traditional formulation Fω of type theory
in which propositional connectives and quantifiers are primitive. It is shown
that equality can be defined in such a system in two quite natural ways. It
is then shown that this system can be simplified to obtain naive axiomatic
set theory, which is inconsistent because Russell’s paradox can be derived in
it. Thus, one needs some device such as type distinctions or restrictions on
the Comprehension Axiom to obtain a consistent formalization of naive set
theory. The discussion turns to finding as simple, natural, and expressive a
formulation of type theory as possible. (The choice of equality as the primi-
tive logical notion is influenced not only by the desire for simplicity but also
by the desire for a natural semantics, as discussed at the end of [Andrews,
1972].) This leads to an exposition of the basic ideas underlying Q0. While
these ideas usually come to be regarded as very natural, they often seem
novel at this stage, and need to be absorbed thoroughly before one proceeds
to the next section.

By the end of §52 the student should be ready to prove theorems in Q0,

so notations for some simple but basic mathematical ideas are introduced,
and in the exercises the student is asked to give formal proofs of some simple
mathematical theorems about sets and functions. An exercise in §53 asks
for a proof of a concise type-theoretic formulation of Cantor’s Theorem.

Henkin’s Completeness Theorem is proved for Q0 in §55. Skolem’s para-
dox (which was first discussed in §25) is discussed again in the context of
type theory and resolved with the aid of the important distinction between
standard and nonstandard models. It is shown that theories which have
infinite models must have nonstandard models.

Chapter 6 is intended to make it clear that mathematics really can be
formalized within the system Q∞

0
which is the result of adding an axiom of

infinity to Q0. It is shown how cardinal numbers can be defined, Peano’s
Postulates can be derived, and recursive functions can be represented very

PREFACE xvii

elegantly in Q∞

0
. Proofs of theorems of Q∞

0
are presented in sufficient detail

so that students should have no difficulty providing formal justifications for
each step. Naturally, each teacher will decide how (or whether) to treat these
proofs in class. It is good experience for students to present some proofs,
or parts of proofs, in class. By the end of this chapter students should have
a firm grasp of the connection between abbreviated formal proofs and the
informal proofs seen in other mathematics courses, and should therefore be
much more confident in dealing with such proofs.

Chapter 7 presents the classical incompleteness, undecidability and un-
definability results for Q∞

0
. In §70 it is shown that the numerical functions

representable in any consistent recursively axiomatized extension of Q∞

0
are

precisely the recursive functions, and this leads to an argument for Church’s
Thesis. In §71 Gödel’s First and Second Incompleteness Theorems are pre-
sented for Q∞

0
, along with Löb’s Theorem about the sentence which says “I

am provable”. A number of consequences of Gödel’s Second Incompleteness
Theorem are discussed. In §72 the Gödel–Rosser Incompleteness Theorem
is presented for Q∞

0
, and it is shown how this implies that there is no re-

cursively axiomatized extension of Q0 whose theorems are precisely the wffs
valid in all standard models. §73 is concerned with the unsolvability of the
decision problems for Q0 and Q∞

0
, and the undefinability of truth. §74 is a

brief epilogue reflecting on the elusiveness of truth.
The exercises at the end of each section generally provide opportunities

for using material from that section. However, students need to learn how to
decide for themselves what techniques to use to solve problems. Therefore,
at the end of the book there is a collection of Supplementary Exercises which
are not explicitly tied to any particular section.

Some exercises (see §21 and §52, for example) involve applying rules
of inference to prove theorems of the formal system being discussed. A
computer program called ETPS (which is reviewed in [Goldson and Reeves,
1993] and [Goldson et al., 1993]) has been developed to facilitate work on
such exercises. The student using ETPS issues commands to apply rules of
inference in specified ways, and the computer handles the details of writing
the appropriate lines of the proof and checking that the rules can be used in
this way. Proofs, and the active lines of the proof, are displayed using the
special symbols of logic in proof windows which are automatically updated
as the proof is constructed. The program thus allows students to concentrate
on the essential logical problems underlying the proofs, and it gives them
immediate feedback for both correct and incorrect actions. Experience shows
that ETPS enables students to construct rigorous proofs of more difficult
theorems than they would otherwise find tractable.

xviii PREFACE

ETPS permits students to work forwards, backwards, or in a combina-
tion of these modes, and provides facilities for rearranging proofs, deleting
parts of proofs, displaying only those parts of proofs under active considera-
tion, saving incomplete proofs, and printing proofs on paper. A convenient
formula editor permits the student to extract needed formulas which occur
anywhere in the proof, and build new formulas from them. Teachers who
set up ETPS for use by a class can take advantage of its facilities for keeping
records of completed exercises and processing information for grades.

Information about obtaining ETPS without cost can be obtained from
http://gtps.math.cmu.edu/tps.html; alternatively, connect to the web page
http://www.cmu.edu/ for Carnegie Mellon University or
http://www.cs.cmu.edu/afs/cs/project/pal/www/pal.html for CMU’s Pure
and Applied Logic Program and from there find the author’s web page.

I have used versions of this book for a course in mathematical logic at
Carnegie Mellon University for about thirty years. Experience has shown
that students are best prepared for the course if they have had at least one
rigorous mathematics course or a course in philosophy or computer science
that has prepared them to appreciate the importance of understanding the
nature of deductive reasoning and the art of proving theorems. I have found
that if one covers the material rather thoroughly in class, it is difficult to
cover all of Chapters 1 – 4 in the first semester, so I normally cover Chapter
1, most of Chapter 2 (using §25A and omitting §24 and most of §26), and
also §30, §33, and §34. Naturally, in a course primarily composed of graduate
students, or students with more previous exposure to logic, one could move
faster, ask students to read some material outside class, and cover all of
Chapters 1 – 4 in one semester. In the second semester I normally cover
Chapters 5 – 7 fairly completely.

A few comments about notation may be helpful. “U is a subset of V ”
is written as “U ⊆ V ”, and “U is a proper subset of V ” as “U ⊂ V ”. The
composition of functions f and g is written “f ◦ g”. “iff” is an abbreviation
for “if and only if”. Ends of proofs are marked with the sign .

I wish to thank the many people who contributed directly or indirectly
to the development of this book. Alonzo Church, John Kemeny, Raymond
Smullyan, and Abraham Robinson taught me logic. It will be obvious
to all who have read them that this book has been deeply influenced by
[Church, 1940] and [Church, 1956]. Numerous students at Carnegie Mel-
lon helped shape the book with their questions, comments, and interests.
Special thanks go to Ferna Hartman for her heroic work typing the difficult
manuscript.

Bibliography

[Andrews et al., 1984] Peter B. Andrews, Dale A. Miller, Eve Longini Co-
hen, and Frank Pfenning. Automating Higher-Order Logic. In W. W.
Bledsoe and D. W. Loveland, editors, Automated Theorem Proving: Af-

ter 25 Years, Contemporary Mathematics series, vol. 29, pages 169–192.
American Mathematical Society, 1984.

[Andrews et al., 1996] Peter B. Andrews, Matthew Bishop, Sunil Issar, Dan
Nesmith, Frank Pfenning, and Hongwei Xi. TPS: A Theorem Prov-
ing System for Classical Type Theory. Journal of Automated Reasoning,
16:321–353, 1996.

[Andrews, 1972] Peter B. Andrews. General Models and Extensionality.
Journal of Symbolic Logic, 37:395–397, 1972.

[Church, 1940] Alonzo Church. A Formulation of the Simple Theory of
Types. Journal of Symbolic Logic, 5:56–68, 1940.

[Church, 1956] Alonzo Church. Introduction to Mathematical Logic. Prince-
ton University Press, Princeton, N.J., 1956.

[Goldson and Reeves, 1993] Doug Goldson and Steve Reeves. Using Pro-
grams to Teach Logic to Computer Scientists. Notices of the American

Mathematical Society, 40:143–148, 1993.

[Goldson et al., 1993] Douglas Goldson, Steve Reeves, and Richard Bornat.
A Review of Several Programs for the Teaching of Logic. The Computer

Journal, 36:373–386, 1993.

[Gordon, 1986] Mike Gordon. Why higher-order logic is a good formalism
for specifying and verifying hardware. In G. J. Milne and P. A. Subrah-
manyam, editors, Formal Aspects of VLSI Design, pages 153–177. North-
Holland, 1986.

xix

xx PREFACE

[Hanna and Daeche, 1985] F. K. Hanna and N. Daeche. Specification and
Verification using Higher-Order Logic. In Koomen and Moto-oka, editors,
Computer Hardware Description Languages and their Applications, pages
418–433. North Holland, 1985.

[Hanna and Daeche, 1986] F. K. Hanna and N. Daeche. Specification and
Verification Using Higher-Order Logic: A Case Study. In G. J. Milne and
P. A. Subrahmanyam, editors, Formal Aspects of VLSI Design, pages
179–213. North-Holland, 1986.

[Henkin, 1963] Leon Henkin. A Theory of Propositional Types. Fundamenta

Mathematicae, 52:323–344, 1963.

[Huet, 1975] Gérard P. Huet. A Unification Algorithm for Typed λ-
Calculus. Theoretical Computer Science, 1:27–57, 1975.

[Jensen and Pietrzykowski, 1976] D.C. Jensen and T. Pietrzykowski. Mech-
anizing ω-Order Type Theory Through Unification. Theoretical Computer

Science, 3:123–171, 1976.

[Marshall and Chuaqui, 1991] M. Victoria Marshall and Rolando Chuaqui.
Sentences of type theory: the only sentences preserved under isomor-
phisms. Journal of Symbolic Logic, 56:932–948, 1991.

[Robinson, 1965] J. A. Robinson. A Machine-Oriented Logic Based on the
Resolution Principle. Journal of the ACM, 12:23–41, 1965.

