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Random Variables

2.1 Introduction

Statistics and data mining are concerned with data. How do we link sample
spaces and events to data? The link is provided by the concept of a random
variable.

2.1 Definition. A random variable is a mapping1

X : Ω → R

that assigns a real number X(ω) to each outcome ω.

At a certain point in most probability courses, the sample space is rarely
mentioned anymore and we work directly with random variables. But you
should keep in mind that the sample space is really there, lurking in the
background.

2.2 Example. Flip a coin ten times. Let X(ω) be the number of heads in the
sequence ω. For example, if ω = HHTHHTHHTT , then X(ω) = 6. �

1Technically, a random variable must be measurable. See the appendix for details.
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2.3 Example. Let Ω =
{

(x, y); x2 + y2 ≤ 1
}

be the unit disk. Consider

drawing a point at random from Ω. (We will make this idea more precise
later.) A typical outcome is of the form ω = (x, y). Some examples of random
variables are X(ω) = x, Y (ω) = y, Z(ω) = x + y, and W (ω) =

√
x2 + y2. �

Given a random variable X and a subset A of the real line, define X−1(A) =
{ω ∈ Ω : X(ω) ∈ A} and let

P(X ∈ A) = P(X−1(A)) = P({ω ∈ Ω; X(ω) ∈ A})

P(X = x) = P(X−1(x)) = P({ω ∈ Ω; X(ω) = x}).

Notice that X denotes the random variable and x denotes a particular value
of X.

2.4 Example. Flip a coin twice and let X be the number of heads. Then,
P(X = 0) = P({TT}) = 1/4, P(X = 1) = P({HT, TH}) = 1/2 and
P(X = 2) = P({HH}) = 1/4. The random variable and its distribution
can be summarized as follows:

ω P({ω}) X(ω)
TT 1/4 0
TH 1/4 1
HT 1/4 1
HH 1/4 2

x P(X = x)
0 1/4
1 1/2
2 1/4

Try generalizing this to n flips. �

2.2 Distribution Functions and Probability Functions

Given a random variable X, we define the cumulative distribution function
(or distribution function) as follows.

2.5 Definition. The cumulative distribution function, or cdf, is the
function FX : R → [0, 1] defined by

FX(x) = P(X ≤ x). (2.1)
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FIGURE 2.1. cdf for flipping a coin twice (Example 2.6.)

We will see later that the cdf effectively contains all the information about
the random variable. Sometimes we write the cdf as F instead of FX .

2.6 Example. Flip a fair coin twice and let X be the number of heads. Then
P(X = 0) = P(X = 2) = 1/4 and P(X = 1) = 1/2. The distribution function
is

FX(x) =




0 x < 0
1/4 0 ≤ x < 1
3/4 1 ≤ x < 2
1 x ≥ 2.

The cdf is shown in Figure 2.1. Although this example is simple, study it
carefully. cdf’s can be very confusing. Notice that the function is right contin-
uous, non-decreasing, and that it is defined for all x, even though the random
variable only takes values 0, 1, and 2. Do you see why FX(1.4) = .75? �

The following result shows that the cdf completely determines the distri-
bution of a random variable.

2.7 Theorem. Let X have cdf F and let Y have cdf G. If F (x) = G(x) for
all x, then P(X ∈ A) = P(Y ∈ A) for all A. 2

2.8 Theorem. A function F mapping the real line to [0, 1] is a cdf for some
probability P if and only if F satisfies the following three conditions:

(i) F is non-decreasing: x1 < x2 implies that F (x1) ≤ F (x2).
(ii) F is normalized:

lim
x→−∞ F (x) = 0

2Technically, we only have that P(X ∈ A) = P(Y ∈ A) for every measurable event A.
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and
lim

x→∞ F (x) = 1.

(iii) F is right-continuous: F (x) = F (x+) for all x, where

F (x+) = lim
y→x
y>x

F (y).

Proof. Suppose that F is a cdf. Let us show that (iii) holds. Let x be
a real number and let y1, y2, . . . be a sequence of real numbers such that
y1 > y2 > · · · and limi yi = x. Let Ai = (−∞, yi] and let A = (−∞, x]. Note
that A =

⋂∞
i=1 Ai and also note that A1 ⊃ A2 ⊃ · · ·. Because the events are

monotone, limi P(Ai) = P(
⋂

i Ai). Thus,

F (x) = P(A) = P

(⋂
i

Ai

)
= lim

i
P(Ai) = lim

i
F (yi) = F (x+).

Showing (i) and (ii) is similar. Proving the other direction — namely, that if
F satisfies (i), (ii), and (iii) then it is a cdf for some random variable — uses
some deep tools in analysis. �

2.9 Definition. X is discrete if it takes countably3many values
{x1, x2, . . .}. We define the probability function or probability mass
function for X by fX(x) = P(X = x).

Thus, fX(x) ≥ 0 for all x ∈ R and
∑

i fX(xi) = 1. Sometimes we write f

instead of fX . The cdf of X is related to fX by

FX(x) = P(X ≤ x) =
∑
xi≤x

fX(xi).

2.10 Example. The probability function for Example 2.6 is

fX(x) =




1/4 x = 0
1/2 x = 1
1/4 x = 2
0 otherwise.

See Figure 2.2. �

3A set is countable if it is finite or it can be put in a one-to-one correspondence with the
integers. The even numbers, the odd numbers, and the rationals are countable; the set of real
numbers between 0 and 1 is not countable.
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FIGURE 2.2. Probability function for flipping a coin twice (Example 2.6).

2.11 Definition. A random variable X is continuous if there exists a
function fX such that fX(x) ≥ 0 for all x,

∫∞
−∞ fX(x)dx = 1 and for

every a ≤ b,

P(a < X < b) =
∫ b

a

fX(x)dx. (2.2)

The function fX is called the probability density function (pdf). We
have that

FX(x) =
∫ x

−∞
fX(t)dt

and fX(x) = F ′
X(x) at all points x at which FX is differentiable.

Sometimes we write
∫

f(x)dx or
∫

f to mean
∫∞

−∞ f(x)dx.

2.12 Example. Suppose that X has pdf

fX(x) =
{

1 for 0 ≤ x ≤ 1
0 otherwise.

Clearly, fX(x) ≥ 0 and
∫

fX(x)dx = 1. A random variable with this density
is said to have a Uniform (0,1) distribution. This is meant to capture the idea
of choosing a point at random between 0 and 1. The cdf is given by

FX(x) =




0 x < 0
x 0 ≤ x ≤ 1
1 x > 1.

See Figure 2.3. �
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FIGURE 2.3. cdf for Uniform (0,1).

2.13 Example. Suppose that X has pdf

f(x) =
{

0 for x < 0
1

(1+x)2 otherwise.

Since
∫

f(x)dx = 1, this is a well-defined pdf. �

Warning! Continuous random variables can lead to confusion. First, note
that if X is continuous then P(X = x) = 0 for every x. Don’t try to think
of f(x) as P(X = x). This only holds for discrete random variables. We get
probabilities from a pdf by integrating. A pdf can be bigger than 1 (unlike
a mass function). For example, if f(x) = 5 for x ∈ [0, 1/5] and 0 otherwise,
then f(x) ≥ 0 and

∫
f(x)dx = 1 so this is a well-defined pdf even though

f(x) = 5 in some places. In fact, a pdf can be unbounded. For example, if
f(x) = (2/3)x−1/3 for 0 < x < 1 and f(x) = 0 otherwise, then

∫
f(x)dx = 1

even though f is not bounded.

2.14 Example. Let

f(x) =
{

0 for x < 0
1

(1+x) otherwise.

This is not a pdf since
∫

f(x)dx =
∫∞
0 dx/(1+x) =

∫∞
1 du/u = log(∞) = ∞.

�

2.15 Lemma. Let F be the cdf for a random variable X. Then:

1. P(X = x) = F (x) − F (x−) where F (x−) = limy↑x F (y);
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2. P(x < X ≤ y) = F (y) − F (x);

3. P(X > x) = 1 − F (x);

4. If X is continuous then

F (b) − F (a) = P(a < X < b) = P(a ≤ X < b)

= P(a < X ≤ b) = P(a ≤ X ≤ b).

It is also useful to define the inverse cdf (or quantile function).

2.16 Definition. Let X be a random variable with cdf F . The inverse
CDF or quantile function is defined by4

F−1(q) = inf
{

x : F (x) > q
}

for q ∈ [0, 1]. If F is strictly increasing and continuous then F−1(q) is the
unique real number x such that F (x) = q.

We call F−1(1/4) the first quartile, F−1(1/2) the median (or second
quartile), and F−1(3/4) the third quartile.

Two random variables X and Y are equal in distribution — written
X

d= Y — if FX(x) = FY (x) for all x. This does not mean that X and Y are
equal. Rather, it means that all probability statements about X and Y will
be the same. For example, suppose that P(X = 1) = P(X = −1) = 1/2. Let
Y = −X. Then P(Y = 1) = P(Y = −1) = 1/2 and so X

d= Y . But X and Y

are not equal. In fact, P(X = Y ) = 0.

2.3 Some Important Discrete Random Variables

Warning About Notation! It is traditional to write X ∼ F to indicate
that X has distribution F . This is unfortunate notation since the symbol ∼
is also used to denote an approximation. The notation X ∼ F is so pervasive
that we are stuck with it. Read X ∼ F as “X has distribution F” not as “X

is approximately F”.

4If you are unfamiliar with “inf”, just think of it as the minimum.
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The Point Mass Distribution. X has a point mass distribution at a,
written X ∼ δa, if P(X = a) = 1 in which case

F (x) =
{

0 x < a
1 x ≥ a.

The probability mass function is f(x) = 1 for x = a and 0 otherwise.

The Discrete Uniform Distribution. Let k > 1 be a given integer.
Suppose that X has probability mass function given by

f(x) =
{

1/k for x = 1, . . . , k
0 otherwise.

We say that X has a uniform distribution on {1, . . . , k}.

The Bernoulli Distribution. Let X represent a binary coin flip. Then
P(X = 1) = p and P(X = 0) = 1 − p for some p ∈ [0, 1]. We say that X has a
Bernoulli distribution written X ∼ Bernoulli(p). The probability function is
f(x) = px(1 − p)1−x for x ∈ {0, 1}.

The Binomial Distribution. Suppose we have a coin which falls heads
up with probability p for some 0 ≤ p ≤ 1. Flip the coin n times and let
X be the number of heads. Assume that the tosses are independent. Let
f(x) = P(X = x) be the mass function. It can be shown that

f(x) =

{ (
n
x

)
px(1 − p)n−x for x = 0, . . . , n

0 otherwise.

A random variable with this mass function is called a Binomial random
variable and we write X ∼ Binomial(n, p). If X1 ∼ Binomial(n1, p) and
X2 ∼ Binomial(n2, p) then X1 + X2 ∼ Binomial(n1 + n2, p).

Warning! Let us take this opportunity to prevent some confusion. X is a
random variable; x denotes a particular value of the random variable; n and p

are parameters, that is, fixed real numbers. The parameter p is usually un-
known and must be estimated from data; that’s what statistical inference is all
about. In most statistical models, there are random variables and parameters:
don’t confuse them.

The Geometric Distribution. X has a geometric distribution with
parameter p ∈ (0, 1), written X ∼ Geom(p), if

P(X = k) = p(1 − p)k−1, k ≥ 1.
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We have that
∞∑

k=1

P(X = k) = p

∞∑
k=1

(1 − p)k =
p

1 − (1 − p)
= 1.

Think of X as the number of flips needed until the first head when flipping a
coin.

The Poisson Distribution. X has a Poisson distribution with parameter
λ, written X ∼ Poisson(λ) if

f(x) = e−λ λx

x!
x ≥ 0.

Note that ∞∑
x=0

f(x) = e−λ
∞∑

x=0

λx

x!
= e−λeλ = 1.

The Poisson is often used as a model for counts of rare events like radioactive
decay and traffic accidents. If X1 ∼ Poisson(λ1) and X2 ∼ Poisson(λ2) then
X1 + X2 ∼ Poisson(λ1 + λ2).

Warning! We defined random variables to be mappings from a sample
space Ω to R but we did not mention the sample space in any of the distri-
butions above. As I mentioned earlier, the sample space often “disappears”
but it is really there in the background. Let’s construct a sample space ex-
plicitly for a Bernoulli random variable. Let Ω = [0, 1] and define P to satisfy
P([a, b]) = b − a for 0 ≤ a ≤ b ≤ 1. Fix p ∈ [0, 1] and define

X(ω) =
{

1 ω ≤ p
0 ω > p.

Then P(X = 1) = P(ω ≤ p) = P([0, p]) = p and P(X = 0) = 1 − p. Thus,
X ∼ Bernoulli(p). We could do this for all the distributions defined above. In
practice, we think of a random variable like a random number but formally it
is a mapping defined on some sample space.

2.4 Some Important Continuous Random Variables

The Uniform Distribution. X has a Uniform(a, b) distribution, written
X ∼ Uniform(a, b), if

f(x) =
{ 1

b−a for x ∈ [a, b]
0 otherwise
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where a < b. The distribution function is

F (x) =




0 x < a
x−a
b−a x ∈ [a, b]
1 x > b.

Normal (Gaussian). X has a Normal (or Gaussian) distribution with
parameters µ and σ, denoted by X ∼ N(µ, σ2), if

f(x) =
1

σ
√

2π
exp
{

− 1
2σ2 (x − µ)2

}
, x ∈ R (2.3)

where µ ∈ R and σ > 0. The parameter µ is the “center” (or mean) of the
distribution and σ is the “spread” (or standard deviation) of the distribu-
tion. (The mean and standard deviation will be formally defined in the next
chapter.) The Normal plays an important role in probability and statistics.
Many phenomena in nature have approximately Normal distributions. Later,
we shall study the Central Limit Theorem which says that the distribution of
a sum of random variables can be approximated by a Normal distribution.

We say that X has a standard Normal distribution if µ = 0 and σ = 1.
Tradition dictates that a standard Normal random variable is denoted by Z.
The pdf and cdf of a standard Normal are denoted by φ(z) and Φ(z). The
pdf is plotted in Figure 2.4. There is no closed-form expression for Φ. Here
are some useful facts:

(i) If X ∼ N(µ, σ2), then Z = (X − µ)/σ ∼ N(0, 1).

(ii) If Z ∼ N(0, 1), then X = µ + σZ ∼ N(µ, σ2).

(iii) If Xi ∼ N(µi, σ
2
i ), i = 1, . . . , n are independent, then

n∑
i=1

Xi ∼ N

(
n∑

i=1

µi,

n∑
i=1

σ2
i

)
.

It follows from (i) that if X ∼ N(µ, σ2), then

P (a < X < b) = P

(
a − µ

σ
< Z <

b − µ

σ

)

= Φ
(

b − µ

σ

)
− Φ
(

a − µ

σ

)
.

Thus we can compute any probabilities we want as long as we can compute
the cdf Φ(z) of a standard Normal. All statistical computing packages will
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FIGURE 2.4. Density of a standard Normal.

compute Φ(z) and Φ−1(q). Most statistics texts, including this one, have a
table of values of Φ(z).

2.17 Example. Suppose that X ∼ N(3, 5). Find P(X > 1). The solution is

P(X > 1) = 1 − P(X < 1) = 1 − P

(
Z <

1 − 3√
5

)
= 1 − Φ(−0.8944) = 0.81.

Now find q = Φ−1(0.2). This means we have to find q such that P(X < q) =
0.2. We solve this by writing

0.2 = P(X < q) = P

(
Z <

q − µ

σ

)
= Φ
(

q − µ

σ

)
.

From the Normal table, Φ(−0.8416) = 0.2. Therefore,

−0.8416 =
q − µ

σ
=

q − 3√
5

and hence q = 3 − 0.8416
√

5 = 1.1181. �

Exponential Distribution. X has an Exponential distribution with
parameter β, denoted by X ∼ Exp(β), if

f(x) =
1
β

e−x/β , x > 0

where β > 0. The exponential distribution is used to model the lifetimes of
electronic components and the waiting times between rare events.

Gamma Distribution. For α > 0, the Gamma function is defined by
Γ(α) =

∫∞
0 yα−1e−ydy. X has a Gamma distribution with parameters α and
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β, denoted by X ∼ Gamma(α, β), if

f(x) =
1

βαΓ(α)
xα−1e−x/β , x > 0

where α, β > 0. The exponential distribution is just a Gamma(1, β) distribu-
tion. If Xi ∼ Gamma(αi, β) are independent, then

∑n
i=1 Xi ∼ Gamma(

∑n
i=1 αi, β).

The Beta Distribution. X has a Beta distribution with parameters
α > 0 and β > 0, denoted by X ∼ Beta(α, β), if

f(x) =
Γ(α + β)
Γ(α)Γ(β)

xα−1(1 − x)β−1, 0 < x < 1.

t and Cauchy Distribution. X has a t distribution with ν degrees of
freedom — written X ∼ tν — if

f(x) =
Γ
(

ν+1
2

)
Γ
(

ν
2

) 1(
1 + x2

ν

)(ν+1)/2 .

The t distribution is similar to a Normal but it has thicker tails. In fact, the
Normal corresponds to a t with ν = ∞. The Cauchy distribution is a special
case of the t distribution corresponding to ν = 1. The density is

f(x) =
1

π(1 + x2)
.

To see that this is indeed a density:∫ ∞

−∞
f(x)dx =

1
π

∫ ∞

−∞

dx

1 + x2 =
1
π

∫ ∞

−∞

d tan−1(x)
dx

=
1
π

[
tan−1(∞) − tan−1(−∞)

]
=

1
π

[π
2

−
(
−π

2

)]
= 1.

The χ2 distribution. X has a χ2 distribution with p degrees of freedom
— written X ∼ χ2

p — if

f(x) =
1

Γ(p/2)2p/2 x(p/2)−1e−x/2, x > 0.

If Z1, . . . , Zp are independent standard Normal random variables then
∑p

i=1 Z2
i ∼

χ2
p.
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2.5 Bivariate Distributions

Given a pair of discrete random variables X and Y , define the joint mass
function by f(x, y) = P(X = x and Y = y). From now on, we write P(X =
x and Y = y) as P(X = x, Y = y). We write f as fX,Y when we want to be
more explicit.

2.18 Example. Here is a bivariate distribution for two random variables X

and Y each taking values 0 or 1:

Y = 0 Y = 1
X=0 1/9 2/9 1/3
X=1 2/9 4/9 2/3

1/3 2/3 1

Thus, f(1, 1) = P(X = 1, Y = 1) = 4/9. �

2.19 Definition. In the continuous case, we call a function f(x, y) a pdf
for the random variables (X, Y ) if

(i) f(x, y) ≥ 0 for all (x, y),

(ii)
∫∞

−∞
∫∞

−∞ f(x, y)dxdy = 1 and,

(iii) for any set A ⊂ R × R, P((X, Y ) ∈ A) =
∫ ∫

A
f(x, y)dxdy.

In the discrete or continuous case we define the joint cdf as FX,Y (x, y) =
P(X ≤ x, Y ≤ y).

2.20 Example. Let (X, Y ) be uniform on the unit square. Then,

f(x, y) =
{

1 if 0 ≤ x ≤ 1, 0 ≤ y ≤ 1
0 otherwise.

Find P(X < 1/2, Y < 1/2). The event A = {X < 1/2, Y < 1/2} corresponds
to a subset of the unit square. Integrating f over this subset corresponds, in
this case, to computing the area of the set A which is 1/4. So, P(X < 1/2, Y <

1/2) = 1/4. �
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2.21 Example. Let (X, Y ) have density

f(x, y) =
{

x + y if 0 ≤ x ≤ 1, 0 ≤ y ≤ 1
0 otherwise.

Then ∫ 1

0

∫ 1

0
(x + y)dxdy =

∫ 1

0

[∫ 1

0
x dx

]
dy +
∫ 1

0

[∫ 1

0
y dx

]
dy

=
∫ 1

0

1
2
dy +
∫ 1

0
y dy =

1
2

+
1
2

= 1

which verifies that this is a pdf �

2.22 Example. If the distribution is defined over a non-rectangular region,
then the calculations are a bit more complicated. Here is an example which I
borrowed from DeGroot and Schervish (2002). Let (X, Y ) have density

f(x, y) =
{

c x2y if x2 ≤ y ≤ 1
0 otherwise.

Note first that −1 ≤ x ≤ 1. Now let us find the value of c. The trick here is
to be careful about the range of integration. We pick one variable, x say, and
let it range over its values. Then, for each fixed value of x, we let y vary over
its range, which is x2 ≤ y ≤ 1. It may help if you look at Figure 2.5. Thus,

1 =
∫ ∫

f(x, y)dydx = c

∫ 1

−1

∫ 1

x2
x2y dy dx

= c

∫ 1

−1
x2
[∫ 1

x2
y dy

]
dx = c

∫ 1

−1
x2 1 − x4

2
dx =

4c

21
.

Hence, c = 21/4. Now let us compute P(X ≥ Y ). This corresponds to the set
A = {(x, y); 0 ≤ x ≤ 1, x2 ≤ y ≤ x}. (You can see this by drawing a diagram.)
So,

P(X ≥ Y ) =
21
4

∫ 1

0

∫ x

x2
x2 y dy dx =

21
4

∫ 1

0
x2
[∫ x

x2
y dy

]
dx

=
21
4

∫ 1

0
x2
(

x2 − x4

2

)
dx =

3
20

. �
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FIGURE 2.5. The light shaded region is x2 ≤ y ≤ 1. The density is positive over
this region. The hatched region is the event X ≥ Y intersected with x2 ≤ y ≤ 1.

2.6 Marginal Distributions

2.23 Definition. If (X, Y ) have joint distribution with mass function
fX,Y , then the marginal mass function for X is defined by

fX(x) = P(X = x) =
∑

y

P(X = x, Y = y) =
∑

y

f(x, y) (2.4)

and the marginal mass function for Y is defined by

fY (y) = P(Y = y) =
∑

x

P(X = x, Y = y) =
∑

x

f(x, y). (2.5)

2.24 Example. Suppose that fX,Y is given in the table that follows. The
marginal distribution for X corresponds to the row totals and the marginal
distribution for Y corresponds to the columns totals.

Y = 0 Y = 1
X=0 1/10 2/10 3/10
X=1 3/10 4/10 7/10

4/10 6/10 1

For example, fX(0) = 3/10 and fX(1) = 7/10. �
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2.25 Definition. For continuous random variables, the marginal densities
are

fX(x) =
∫

f(x, y)dy, and fY (y) =
∫

f(x, y)dx. (2.6)

The corresponding marginal distribution functions are denoted by FX and
FY .

2.26 Example. Suppose that

fX,Y (x, y) = e−(x+y)

for x, y ≥ 0. Then fX(x) = e−x
∫∞
0 e−ydy = e−x. �

2.27 Example. Suppose that

f(x, y) =
{

x + y if 0 ≤ x ≤ 1, 0 ≤ y ≤ 1
0 otherwise.

Then

fY (y) =
∫ 1

0
(x + y) dx =

∫ 1

0
x dx +

∫ 1

0
y dx =

1
2

+ y. �

2.28 Example. Let (X, Y ) have density

f(x, y) =
{ 21

4 x2y if x2 ≤ y ≤ 1
0 otherwise.

Thus,

fX(x) =
∫

f(x, y)dy =
21
4

x2
∫ 1

x2
y dy =

21
8

x2(1 − x4)

for −1 ≤ x ≤ 1 and fX(x) = 0 otherwise. �

2.7 Independent Random Variables

2.29 Definition. Two random variables X and Y are independent if,
for every A and B,

P(X ∈ A, Y ∈ B) = P(X ∈ A)P(Y ∈ B) (2.7)

and we write X � Y . Otherwise we say that X and Y are dependent
and we write X ������ Y .
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In principle, to check whether X and Y are independent we need to check
equation (2.7) for all subsets A and B. Fortunately, we have the following
result which we state for continuous random variables though it is true for
discrete random variables too.

2.30 Theorem. Let X and Y have joint pdf fX,Y . Then X � Y if and only
if fX,Y (x, y) = fX(x)fY (y) for all values x and y. 5

2.31 Example. Let X and Y have the following distribution:

Y = 0 Y = 1
X=0 1/4 1/4 1/2
X=1 1/4 1/4 1/2

1/2 1/2 1

Then, fX(0) = fX(1) = 1/2 and fY (0) = fY (1) = 1/2. X and Y are inde-
pendent because fX(0)fY (0) = f(0, 0), fX(0)fY (1) = f(0, 1), fX(1)fY (0) =
f(1, 0), fX(1)fY (1) = f(1, 1). Suppose instead that X and Y have the follow-
ing distribution:

Y = 0 Y = 1
X=0 1/2 0 1/2
X=1 0 1/2 1/2

1/2 1/2 1

These are not independent because fX(0)fY (1) = (1/2)(1/2) = 1/4 yet
f(0, 1) = 0. �

2.32 Example. Suppose that X and Y are independent and both have the
same density

f(x) =
{

2x if 0 ≤ x ≤ 1
0 otherwise.

Let us find P(X + Y ≤ 1). Using independence, the joint density is

f(x, y) = fX(x)fY (y) =
{

4xy if 0 ≤ x ≤ 1, 0 ≤ y ≤ 1
0 otherwise.

5The statement is not rigorous because the density is defined only up to sets of
measure 0.
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Now,

P(X + Y ≤ 1) =
∫ ∫

x+y≤1
f(x, y)dydx

= 4
∫ 1

0
x

[∫ 1−x

0
ydy

]
dx

= 4
∫ 1

0
x

(1 − x)2

2
dx =

1
6
. �

The following result is helpful for verifying independence.

2.33 Theorem. Suppose that the range of X and Y is a (possibly infinite)
rectangle. If f(x, y) = g(x)h(y) for some functions g and h (not necessarily
probability density functions) then X and Y are independent.

2.34 Example. Let X and Y have density

f(x, y) =
{

2e−(x+2y) if x > 0 and y > 0
0 otherwise.

The range of X and Y is the rectangle (0, ∞)×(0, ∞). We can write f(x, y) =
g(x)h(y) where g(x) = 2e−x and h(y) = e−2y. Thus, X � Y . �

2.8 Conditional Distributions

If X and Y are discrete, then we can compute the conditional distribution of
X given that we have observed Y = y. Specifically, P(X = x|Y = y) = P(X =
x, Y = y)/P(Y = y). This leads us to define the conditional probability mass
function as follows.

2.35 Definition. The conditional probability mass function is

fX|Y (x|y) = P(X = x|Y = y) =
P(X = x, Y = y)

P(Y = y)
=

fX,Y (x, y)
fY (y)

if fY (y) > 0.

For continuous distributions we use the same definitions. 6 The interpre-
tation differs: in the discrete case, fX|Y (x|y) is P(X = x|Y = y), but in the
continuous case, we must integrate to get a probability.

6We are treading in deep water here. When we compute P(X ∈ A|Y = y) in the
continuous case we are conditioning on the event {Y = y} which has probability 0. We
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2.36 Definition. For continuous random variables, the conditional
probability density function is

fX|Y (x|y) =
fX,Y (x, y)

fY (y)

assuming that fY (y) > 0. Then,

P(X ∈ A|Y = y) =
∫

A

fX|Y (x|y)dx.

2.37 Example. Let X and Y have a joint uniform distribution on the unit
square. Thus, fX|Y (x|y) = 1 for 0 ≤ x ≤ 1 and 0 otherwise. Given Y = y, X

is Uniform(0, 1). We can write this as X|Y = y ∼ Uniform(0, 1). �

From the definition of the conditional density, we see that fX,Y (x, y) =
fX|Y (x|y)fY (y) = fY |X(y|x)fX(x). This can sometimes be useful as in exam-
ple 2.39.

2.38 Example. Let

f(x, y) =
{

x + y if 0 ≤ x ≤ 1, 0 ≤ y ≤ 1
0 otherwise.

Let us find P(X < 1/4|Y = 1/3). In example 2.27 we saw that fY (y) =
y + (1/2). Hence,

fX|Y (x|y) =
fX,Y (x, y)

fY (y)
=

x + y

y + 1
2

.

So,

P

(
X <

1
4

∣∣∣∣∣ Y =
1
3

)
=
∫ 1/4

0
fX|Y

(
x

∣∣∣∣∣ 13
)

dx

=
∫ 1/4

0

x + 1
3

1
3 + 1

2

dx =
1
32 + 1

12
1
3 + 1

2

=
11
80

. �

2.39 Example. Suppose that X ∼ Uniform(0, 1). After obtaining a value of
X we generate Y |X = x ∼ Uniform(x, 1). What is the marginal distribution

avoid this problem by defining things in terms of the pdf. The fact that this leads to
a well-defined theory is proved in more advanced courses. Here, we simply take it as a
definition.
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of Y ? First note that,

fX(x) =
{

1 if 0 ≤ x ≤ 1
0 otherwise

and

fY |X(y|x) =
{ 1

1−x if 0 < x < y < 1
0 otherwise.

So,

fX,Y (x, y) = fY |X(y|x)fX(x) =
{ 1

1−x if 0 < x < y < 1
0 otherwise.

The marginal for Y is

fY (y) =
∫ y

0
fX,Y (x, y)dx =

∫ y

0

dx

1 − x
= −
∫ 1−y

1

du

u
= − log(1 − y)

for 0 < y < 1. �

2.40 Example. Consider the density in Example 2.28. Let’s find fY |X(y|x).
When X = x, y must satisfy x2 ≤ y ≤ 1. Earlier, we saw that fX(x) =
(21/8)x2(1 − x4). Hence, for x2 ≤ y ≤ 1,

fY |X(y|x) =
f(x, y)
fX(x)

=
21
4 x2y

21
8 x2(1 − x4)

=
2y

1 − x4 .

Now let us compute P(Y ≥ 3/4|X = 1/2). This can be done by first noting
that fY |X(y|1/2) = 32y/15. Thus,

P(Y ≥ 3/4|X = 1/2) =
∫ 1

3/4
f(y|1/2)dy =

∫ 1

3/4

32y

15
dy =

7
15

. �

2.9 Multivariate Distributions and iid Samples

Let X = (X1, . . . , Xn) where X1, . . . , Xn are random variables. We call X a
random vector. Let f(x1, . . . , xn) denote the pdf. It is possible to define
their marginals, conditionals etc. much the same way as in the bivariate case.
We say that X1, . . . , Xn are independent if, for every A1, . . . , An,

P(X1 ∈ A1, . . . , Xn ∈ An) =
n∏

i=1

P(Xi ∈ Ai). (2.8)

It suffices to check that f(x1, . . . , xn) =
∏n

i=1 fXi(xi).
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2.41 Definition. If X1, . . . , Xn are independent and each has the same
marginal distribution with cdf F , we say that X1, . . . , Xn are iid
(independent and identically distributed) and we write

X1, . . . Xn ∼ F.

If F has density f we also write X1, . . . Xn ∼ f . We also call X1, . . . , Xn

a random sample of size n from F .

Much of statistical theory and practice begins with iid observations and we
shall study this case in detail when we discuss statistics.

2.10 Two Important Multivariate Distributions

Multinomial. The multivariate version of a Binomial is called a Multino-
mial. Consider drawing a ball from an urn which has balls with k different
colors labeled “color 1, color 2, . . . , color k.” Let p = (p1, . . . , pk) where
pj ≥ 0 and

∑k
j=1 pj = 1 and suppose that pj is the probability of drawing

a ball of color j. Draw n times (independent draws with replacement) and
let X = (X1, . . . , Xk) where Xj is the number of times that color j appears.
Hence, n =

∑k
j=1 Xj . We say that X has a Multinomial (n,p) distribution

written X ∼ Multinomial(n, p). The probability function is

f(x) =
(

n

x1 . . . xk

)
px1
1 · · · pxk

k (2.9)

where (
n

x1 . . . xk

)
=

n!
x1! · · ·xk!

.

2.42 Lemma. Suppose that X ∼ Multinomial(n, p) where X = (X1, . . . , Xk)
and p = (p1, . . . , pk). The marginal distribution of Xj is Binomial (n,pj).

Multivariate Normal. The univariate Normal has two parameters, µ

and σ. In the multivariate version, µ is a vector and σ is replaced by a matrix
Σ. To begin, let

Z =




Z1
...

Zk
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where Z1, . . . , Zk ∼ N(0, 1) are independent. The density of Z is 7

f(z) =
k∏

i=1

f(zi) =
1

(2π)k/2 exp


−1

2

k∑
j=1

z2
j




=
1

(2π)k/2 exp
{

−1
2
zT z

}
.

We say that Z has a standard multivariate Normal distribution written Z ∼
N(0, I) where it is understood that 0 represents a vector of k zeroes and I is
the k × k identity matrix.

More generally, a vector X has a multivariate Normal distribution, denoted
by X ∼ N(µ,Σ), if it has density 8

f(x; µ,Σ) =
1

(2π)k/2|(Σ)|1/2 exp
{

−1
2
(x − µ)T Σ−1(x − µ)

}
(2.10)

where |Σ| denotes the determinant of Σ, µ is a vector of length k and Σ is a
k × k symmetric, positive definite matrix. 9 Setting µ = 0 and Σ = I gives
back the standard Normal.

Since Σ is symmetric and positive definite, it can be shown that there exists
a matrix Σ1/2 — called the square root of Σ — with the following properties:
(i) Σ1/2 is symmetric, (ii) Σ = Σ1/2Σ1/2 and (iii) Σ1/2Σ−1/2 = Σ−1/2Σ1/2 = I

where Σ−1/2 = (Σ1/2)−1.

2.43 Theorem. If Z ∼ N(0, I) and X = µ + Σ1/2Z then X ∼ N(µ,Σ).
Conversely, if X ∼ N(µ,Σ), then Σ−1/2(X − µ) ∼ N(0, I).

Suppose we partition a random Normal vector X as X = (Xa, Xb) We can
similarly partition µ = (µa, µb) and

Σ =
(

Σaa Σab

Σba Σbb

)
.

2.44 Theorem. Let X ∼ N(µ,Σ). Then:
(1) The marginal distribution of Xa is Xa ∼ N(µa, Σaa).
(2) The conditional distribution of Xb given Xa = xa is

Xb|Xa = xa ∼ N
(

µb + ΣbaΣ−1
aa (xa − µa), Σbb − ΣbaΣ−1

aa Σab

)
.

(3) If a is a vector then aT X ∼ N(aT µ, aT Σa).
(4) V = (X − µ)T Σ−1(X − µ) ∼ χ2

k.

7If a and b are vectors then aT b =
∑k

i=1 aibi.
8Σ−1 is the inverse of the matrix Σ.
9A matrix Σ is positive definite if, for all nonzero vectors x, xT Σx > 0.
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2.11 Transformations of Random Variables

Suppose that X is a random variable with pdf fX and cdf FX . Let Y = r(X)
be a function of X, for example, Y = X2 or Y = eX . We call Y = r(X) a
transformation of X. How do we compute the pdf and cdf of Y ? In the
discrete case, the answer is easy. The mass function of Y is given by

fY (y) = P(Y = y) = P(r(X) = y)

= P({x; r(x) = y}) = P(X ∈ r−1(y)).

2.45 Example. Suppose that P(X = −1) = P(X = 1) = 1/4 and P(X = 0) =
1/2. Let Y = X2. Then, P(Y = 0) = P(X = 0) = 1/2 and P(Y = 1) = P(X =
1) + P(X = −1) = 1/2. Summarizing:

x fX(x)
-1 1/4
0 1/2
1 1/4

y fY (y)
0 1/2
1 1/2

Y takes fewer values than X because the transformation is not one-to-one. �

The continuous case is harder. There are three steps for finding fY :

Three Steps for Transformations

1. For each y, find the set Ay = {x : r(x) ≤ y}.

2. Find the cdf

FY (y) = P(Y ≤ y) = P(r(X) ≤ y)

= P({x; r(x) ≤ y})

=
∫

Ay

fX(x)dx. (2.11)

3. The pdf is fY (y) = F ′
Y (y).

2.46 Example. Let fX(x) = e−x for x > 0. Hence, FX(x) =
∫ x

0 fX(s)ds =
1 − e−x. Let Y = r(X) = log X. Then, Ay = {x : x ≤ ey} and

FY (y) = P(Y ≤ y) = P(log X ≤ y)

= P(X ≤ ey) = FX(ey) = 1 − e−ey

.

Therefore, fY (y) = eye−ey

for y ∈ R. �
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2.47 Example. Let X ∼ Uniform(−1, 3). Find the pdf of Y = X2. The
density of X is

fX(x) =
{

1/4 if − 1 < x < 3
0 otherwise.

Y can only take values in (0, 9). Consider two cases: (i) 0 < y < 1 and (ii) 1 ≤
y < 9. For case (i), Ay = [−√

y,
√

y] and FY (y) =
∫

Ay
fX(x)dx = (1/2)

√
y.

For case (ii), Ay = [−1,
√

y] and FY (y) =
∫

Ay
fX(x)dx = (1/4)(

√
y + 1).

Differentiating F we get

fY (y) =




1
4
√

y if 0 < y < 1
1

8
√

y if 1 < y < 9

0 otherwise. �

When r is strictly monotone increasing or strictly monotone decreasing then
r has an inverse s = r−1 and in this case one can show that

fY (y) = fX(s(y))
∣∣∣∣ds(y)

dy

∣∣∣∣ . (2.12)

2.12 Transformations of Several Random Variables

In some cases we are interested in transformations of several random variables.
For example, if X and Y are given random variables, we might want to know
the distribution of X/Y , X + Y , max{X, Y } or min{X, Y }. Let Z = r(X, Y )
be the function of interest. The steps for finding fZ are the same as before:

Three Steps for Transformations

1. For each z, find the set Az = {(x, y) : r(x, y) ≤ z}.

2. Find the cdf

FZ(z) = P(Z ≤ z) = P(r(X, Y ) ≤ z)

= P({(x, y); r(x, y) ≤ z}) =
∫ ∫

Az

fX,Y (x, y) dx dy.

3. Then fZ(z) = F ′
Z(z).
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2.48 Example. Let X1, X2 ∼ Uniform(0, 1) be independent. Find the density
of Y = X1 + X2. The joint density of (X1, X2) is

f(x1, x2) =
{

1 0 < x1 < 1, 0 < x2 < 1
0 otherwise.

Let r(x1, x2) = x1 + x2. Now,

FY (y) = P(Y ≤ y) = P(r(X1, X2) ≤ y)

= P({(x1, x2) : r(x1, x2) ≤ y}) =
∫ ∫

Ay

f(x1, x2)dx1dx2.

Now comes the hard part: finding Ay. First suppose that 0 < y ≤ 1. Then Ay

is the triangle with vertices (0, 0), (y, 0) and (0, y). See Figure 2.6. In this case,∫ ∫
Ay

f(x1, x2)dx1dx2 is the area of this triangle which is y2/2. If 1 < y < 2,
then Ay is everything in the unit square except the triangle with vertices
(1, y − 1), (1, 1), (y − 1, 1). This set has area 1 − (2 − y)2/2. Therefore,

FY (y) =




0 y < 0
y2

2 0 ≤ y < 1

1 − (2−y)2

2 1 ≤ y < 2

1 y ≥ 2.

By differentiation, the pdf is

fY (y) =




y 0 ≤ y ≤ 1

2 − y 1 ≤ y ≤ 2

0 otherwise. �

2.13 Appendix

Recall that a probability measure P is defined on a σ-field A of a sample
space Ω. A random variable X is a measurable map X : Ω → R. Measurable
means that, for every x, {ω : X(ω) ≤ x} ∈ A.

2.14 Exercises

1. Show that
P(X = x) = F (x+) − F (x−).
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0 1
0

1

(0, y)

(y, 0)

�

�

This is the case 0 ≤ y < 1.

0 1
0

1

(1, y − 1)

(y − 1, 1)

�

�

This is the case 1 ≤ y ≤ 2.

FIGURE 2.6. The set Ay for example 2.48. Ay consists of all points (x1, x2) in the
square below the line x2 = y − x1.

2. Let X be such that P(X = 2) = P(X = 3) = 1/10 and P(X = 5) = 8/10.
Plot the cdf F . Use F to find P(2 < X ≤ 4.8) and P(2 ≤ X ≤ 4.8).

3. Prove Lemma 2.15.

4. Let X have probability density function

fX(x) =




1/4 0 < x < 1
3/8 3 < x < 5
0 otherwise.

(a) Find the cumulative distribution function of X.

(b) Let Y = 1/X. Find the probability density function fY (y) for Y .
Hint: Consider three cases: 1

5 ≤ y ≤ 1
3 , 1

3 ≤ y ≤ 1, and y ≥ 1.

5. Let X and Y be discrete random variables. Show that X and Y are
independent if and only if fX,Y (x, y) = fX(x)fY (y) for all x and y.

6. Let X have distribution F and density function f and let A be a subset
of the real line. Let IA(x) be the indicator function for A:

IA(x) =
{

1 x ∈ A
0 x /∈ A.

Let Y = IA(X). Find an expression for the cumulative distribution of
Y . (Hint: first find the probability mass function for Y .)
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7. Let X and Y be independent and suppose that each has a Uniform(0, 1)
distribution. Let Z = min{X, Y }. Find the density fZ(z) for Z. Hint:
It might be easier to first find P(Z > z).

8. Let X have cdf F . Find the cdf of X+ = max{0, X}.

9. Let X ∼ Exp(β). Find F (x) and F−1(q).

10. Let X and Y be independent. Show that g(X) is independent of h(Y )
where g and h are functions.

11. Suppose we toss a coin once and let p be the probability of heads. Let
X denote the number of heads and let Y denote the number of tails.

(a) Prove that X and Y are dependent.

(b) Let N ∼ Poisson(λ) and suppose we toss a coin N times. Let X and
Y be the number of heads and tails. Show that X and Y are independent.

12. Prove Theorem 2.33.

13. Let X ∼ N(0, 1) and let Y = eX .

(a) Find the pdf for Y . Plot it.

(b) (Computer Experiment.) Generate a vector x = (x1, . . . , x10,000) con-
sisting of 10,000 random standard Normals. Let y = (y1, . . . , y10,000)
where yi = exi . Draw a histogram of y and compare it to the pdf you
found in part (a).

14. Let (X, Y ) be uniformly distributed on the unit disk {(x, y) : x2 +y2 ≤
1}. Let R =

√
X2 + Y 2. Find the cdf and pdf of R.

15. (A universal random number generator.) Let X have a continuous, strictly
increasing cdf F . Let Y = F (X). Find the density of Y . This is called
the probability integral transform. Now let U ∼ Uniform(0, 1) and let
X = F−1(U). Show that X ∼ F . Now write a program that takes
Uniform (0,1) random variables and generates random variables from
an Exponential (β) distribution.

16. Let X ∼ Poisson(λ) and Y ∼ Poisson(µ) and assume that X and Y are
independent. Show that the distribution of X given that X + Y = n is
Binomial(n, π) where π = λ/(λ + µ).
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Hint 1: You may use the following fact: If X ∼ Poisson(λ) and Y ∼
Poisson(µ), and X and Y are independent, then X+Y ∼ Poisson(µ+λ).

Hint 2: Note that {X = x, X + Y = n} = {X = x, Y = n − x}.

17. Let

fX,Y (x, y) =
{

c(x + y2) 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1
0 otherwise.

Find P
(
X < 1

2 | Y = 1
2

)
.

18. Let X ∼ N(3, 16). Solve the following using the Normal table and using
a computer package.

(a) Find P(X < 7).

(b) Find P(X > −2).

(c) Find x such that P(X > x) = .05.

(d) Find P(0 ≤ X < 4).

(e) Find x such that P(|X| > |x|) = .05.

19. Prove formula (2.12).

20. Let X, Y ∼ Uniform(0, 1) be independent. Find the pdf for X − Y and
X/Y .

21. Let X1, . . . , Xn ∼ Exp(β) be iid. Let Y = max{X1, . . . , Xn}. Find the
pdf of Y . Hint: Y ≤ y if and only if Xi ≤ y for i = 1, . . . , n.


