
Foreword

The increasing cooperation and convergence of various kinds of computing
entities, i.e., computers, cellphones, personal digital assistants, house appliances,
etc., is fundamentally changing the way we view computers and software. The
size, increasing complexity and the great potential of future applications for
change (e.g., community support, collaborative work and supervision) make
centralized and direct control by the programmer nearly impossible. It is thus
natural to delegate more autonomy and initiative to various software modules and
to provide them with cooperation abilities. Multi-agent systems have been
proposed as a conceptual framework to help design and construct such large-scale
autonomous and cooperative computing systems.

We can analyze multi-agent systems as a programming paradigm in terms of
the evolution of programming in general. We may for instance observe three
dimensions of progress: (1) higher levels of abstraction for entities processed
or/and exchanged � from bits, and then objects and messages, to agents,
intentions and plans; (2) later binding times, i.e., deferring the decision regarding
what actual code is to be executed � from procedure call, and then method
invocation, to action selection by an autonomous agent; and (3) more flexible
coupling between software modules � from procedures, and then objects,
components and events, to knowledge-based organizations of agents. Multi-agent
systems may thus be seen as an integral part of the evolution of programming.

There is currently a growing body of experience on how to construct multi-
agent architectures and platforms based on more conventional technology,
objects, Java and components. Interoperability has recently been an important
concern, notably through the FIPA Agent Communication Language standard,
which builds on object interoperability standards (such as CORBA) and extends
their levels of abstraction (e.g., expliciting interaction patterns and protocols, as
well as ontologies of knowledge, within a communication). We also see now
various attempts and studies for using novel approaches and technologies such as
Model Driven Architecture (MDA) and Aspect-Oriented Programming (AOP) in
the design and construction of multi-agent systems. Last, the inherent
decentralization and autonomy of multi-agent systems also raise new questions
about dependability and security.

From the software engineering perspective, we believe the challenges are
perhaps even bigger. The decentralized, autonomous and adaptive nature of
agents, combined with the large scale, mobility and general dynamicity of their
environment support (e.g., ad hoc networks, with associated security and
robustness concerns), make it difficult to rely on traditional assumptions of
software predictability. In other words, the traditional �defensive/pessimistic�
approach � statically safeguarding as much as possible the behavior of the
program (through specifications, types, assertions, etc.) � reaches its limits and
should be complemented (and not replaced!) by a �proactive/optimistic�

VI Foreword

approach, providing the agents with abilities to adapt to unexpected individual
and collective behaviors. Another concern is to include also the users, as agents,
from the initial stages of the design. Indeed, our ultimate goal is to provide a
symbiotic collaboration between artificial agents and human agents, as opposed to
confining users, either as supervisers with explicit control or as end-users with
little initiative.

For designing practical methodologies, there is still a debate in the community
on whether agent-oriented methodologies should be affiliated to current (object-
oriented) methodologies or should be deeply restated (for instance by focusing
analysis on social concepts such as roles and organization rather than on
individual objects or agents). In any case, future methodologies will still need
steps (such as analysis, design, modeling, measurements, etc.) as well as related
techniques (such as requirements analysis, meta-modeling, notations and metrics).
As a consequence, there is currently much activity in studying how such steps or
techniques may be partly reused from current technology, adapted or completely
rethought.

As a conclusion, in order to achieve these challenges, we need to organize a
research community at the crossing of software engineering, programming and
multi-agent systems, with a concern for scalability of solutions. This book, the
third volume of the very good series on �Software Engineering for Large-Scale
Multi-agent Systems,� includes several important studies and proposals along the
lines of the various perspectives we just sketched, and thus represents a very good
contribution to that research agenda.

Jean-Pierre Briot
Paris, December 2004

Preface

Advances in networking technology in the last few years have turned agent tech-
nologies into a promising paradigm for engineering complex distributed software
systems. So far they have been applied to a wide range of application domains,
including e-commerce, human-computer interfaces, telecommunications, and
concurrent engineering. Multi-agent systems (MASs) and their underlying theo-
ries provide a more natural support for ensuring important properties, such as
autonomy, mobility, environment heterogeneity, organization and openness. Nev-
ertheless, a software agent is an inherently more complex abstraction, posing new
challenges for software engineering. Without adequate development techniques
and methods, MASs will not be sufficiently dependable, trustworthy and extensi-
ble, thus making their wide adoption by the industry more difficult.

Large MASs are complex in many ways. When a set of agents interact over
heterogeneous environments, several problems emerge. This makes their coordi-
nation and management more difficult and increases the probability of excep-
tional situations, security holes and unexpected global effects. Moreover, as users
and software engineers delegate more autonomy to their MASs and put more trust
in their results, new concerns arise in real-life applications. Yet many of the exist-
ing agent-oriented solutions are far from ideal; in practice, systems are often built
in an ad hoc manner, are error-prone, not scalable, not dynamic, and not generally
applicable to large-scale environments. If agent-based applications are to be suc-
cessful software engineering approaches will be needed to enable effective scal-
able deployment.

The papers selected for this volume present advances in software engineering
approaches to the development of realistic multi-agent systems, demonstrating a
broad range of techniques and methods used to cope with the complexity of sys-
tems like these and to facilitate the construction of high-quality MASs. Further-
more, the power of agent-based software engineering is illustrated using examples
that are representative of real-world applications. These papers describe experi-
ences and techniques associated with large MASs in a variety of problem do-
mains.

A comprehensive selection of case studies and software engineering solutions
for MASs applications, this book provides a valuable resource for a vast audience
of readers. The main target readers for this book are researchers and practitioners
who want to keep up with the progress of software engineering in MASs, indi-
viduals keen to understand the interplay between agents and objects in software
development, and those interested in experimental results from MAS applications.
Software engineers involved with particular aspects of MASs as part of their work
may find it interesting to learn about using software engineering approaches in
building real systems. A number of chapters in the book discuss the development
of MASs from requirements and architecture specifications to implementation.

VIII Preface

One key contribution of this volume is the description of the latest approaches to
reasoning about complex MASs.

This book brings together a collection of 16 papers addressing a wide range of
issues in software engineering for MASs, reflecting the importance of agent prop-
erties in today�s software systems. The papers presented describe recent devel-
opments in specific issues and practical experience. The research issues addressed
include (i) integration of agent abstractions with other software engineering ab-
stractions and techniques (such as objects, roles, components, aspects and pat-
terns), (ii) specification and modelling approaches, (iii) innovative approaches for
security and robustness, (iv) MAS frameworks, and (v) approaches to ensuring
quality attributes for large-scale MASs, such as dependability, scalability, reus-
ability, maintainability and adaptability. At the end of each chapter, the reader
will find a list of interesting references for further reading. The book is organized
into four parts, which deal with topics related to (i) Agent Methodologies and
Processes, (ii) Requirements Engineering and Software Architectures, (iii) Model-
ling Languages, and (iv) Dependability and Coordination.

This book is a continuation of two previous volumes1,2. The main motivation
for producing this book was the 3rd International Workshop on Software Engi-
neering for Large-Scale Multi-agent Systems (SELMAS 2004)3, organized in as-
sociation with the 26th International Conference on Software Engineering, held in
Edinburgh, UK, in May 2004. SELMAS 2004 was our attempt to bring together
software engineering practitioners and researchers to discuss the multifaceted is-
sues arising when MASs are used to engineer complex systems. It was later de-
cided to extend the workshop scope, inviting several of the workshop participants
to write chapters for this book based on their original position papers, as well as
other leading researchers in the area to prepare additional chapters. Following an
extensive reviewing process involving more than 40 reviewers, we selected the
papers that appear in this volume.

We are confident that this book will be of considerable use to the software en-
gineering community by providing many original and distinct views on such an
important interdisciplinary topic, and by contributing to a better understanding
and cross-fertilization among individuals in this research area. It is only natural
that the choice of contributors to this book reflects the personal views of the book
editors. We believe that, despite the volume of papers and work on software engi-
neering for MASs, there are still many interesting challenges to be explored. The
contributions to this book are only the beginning. Our thanks go to all our au-

1 Garcia, A., Lucena, C., Castro, J., Zambonelli, F., Omicini, A. (eds.): Software Engineering

for Large-Scale Multi-agent Systems. Lecture Notes in Computer Science, vol. 2603,
Springer, April 2003.

2 Lucena, C., Garcia, A., Romanovsky, A., Castro, J., Alencar, P. (eds.): Software Engineering
for Multi-agent Systems II. Lecture Notes in Computer Science, vol. 2940, Springer, Febru-
ary 2004.

3 Choren, R. el al.: Software Engineering for Large-Scale Multi-agent Systems � SELMAS
2004 (Workshop Report). ACM Software Engineering Notes, Vol. 29, N°. 5, September
2004.

Preface IX

thors, whose work made this book possible. Many of them also helped during the
reviewing process. We would like to express our gratitude to Alfred Hofmann
from Springer for recognizing the importance of publishing this book. We also
acknowledge the support and cooperation of Anna Kramer and Judith Freuden-
berger, who helped us in the preparation of this volume. In addition, we would
like to thank the members of the Evaluation and Program Committee who were
generous with their time and effort when reviewing the submitted papers.

December 2004 Ricardo Choren

Alessandro Garcia
Carlos Lucena

Alexander Romanovsky

	Foreword
	Preface

