

For online information and ordering of this and other Manning books, go to
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact:

Special Sales Department
Manning Publications Co.
209 Bruce Park Avenue Fax: (203) 661-9018
Greenwich, CT 06830 email: orders@manning.com

©2003 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form or by means electronic, mechanical, photocopying, or otherwise, without
prior written permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial
caps or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to
have the books they publish printed on acid-free paper, and we exert our best efforts to that
end.

Manning Publications Co. Copyeditor: Liz Welch
209 Bruce Park Avenue Typesetter: Denis Dalinnik
Greenwich, CT 06830 Cover designer: Leslie Haimes

ISBN 1-930110-93-6

Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – VHG – 05 04 03 02

brief contents

PART 1 UNDERSTANDING AOP AND ASPECTJ.............................1

1 ■ Introduction to AOP 3

2 ■ Introducing AspectJ 32

3 ■ AspectJ: syntax basics 64

4 ■ Advanced AspectJ 100

PART 2 BASIC APPLICATIONS OF ASPECTJ................................143

5 ■ Monitoring techniques: logging, tracing,
and profiling 145

6 ■ Policy enforcement: system wide contracts 178

7 ■ Optimization: pooling and caching 202

PART 3 ADVANCED APPLICATIONS OF ASPECTJ......................243

8 ■ Design patterns and idioms 245

9 ■ Implementing thread safety 286

10 ■ Authentication and authorization 323
vii

viii BRIEF CONTENTS
11 ■ Transaction management 356

12 ■ Implementing business rules 391

13 ■ The next step 425

A ■ The AspectJ compiler 438

B ■ Understanding Ant integration 447

■ resources 455

■ index 461

3AspectJ: syntax basics
This chapter covers
■ Pointcuts and advice
■ Static crosscutting
■ Simple examples that put it all together
64

Pointcuts 65
In chapter 2, we presented a high-level view of the AspectJ programming language
and introduced the concepts of aspects and join points. In this chapter, we con-
tinue with a more detailed discussion of the constructs of pointcuts and advice,
their syntax, and their usages. We also examine a few simple programs that will
help strengthen your understanding of the AspectJ constructs. Then we discuss
static crosscutting. After reading this chapter, you should be able to start writing
short programs in AspectJ.

 Although the AspectJ syntax may feel somewhat complex in the beginning,
once you understand the basic form, it’s quite natural for a seasoned Java pro-
grammer: An aspect looks like a class, a pointcut looks like a method declara-
tion, and an advice looks like a method implementation. Rest assured that the
AspectJ syntax is actually a lot easier than it appears.

3.1 Pointcuts

Pointcuts capture, or identify, join points in the program flow. Once you capture
the join points, you can specify weaving rules involving those join points—such
as taking a certain action before or after the execution of the join points. In addi-
tion to matching join points, certain pointcuts can expose the context at the
matched join point; the actions can then use that context to implement crosscut-
ting functionality.

 A pointcut designator identifies the pointcut either by name or by an expres-
sion. The terms pointcut and pointcut designator are often used interchangeably.
You can declare a pointcut inside an aspect, a class, or an interface. As with data
and methods, you can use an access specifier (public, private, and so forth) to
restrict access to it.

 In AspectJ, pointcuts can be either anonymous or named. Anonymous pointcuts,
like anonymous classes, are defined at the place of their usage, such as a part of
advice, or at the time of the definition of another pointcut. Named pointcuts are
elements that can be referenced from multiple places, making them reusable.

 Named pointcuts use the following syntax:

[access specifier] pointcut pointcut-name([args]) : pointcut-definition

Notice that the name of the pointcut is at the left of the colon and the pointcut
definition is at the right. The pointcut definition is the syntax that identifies the
join points where you want to insert some action. You can then specify what that
action is in advice, and tie the action to the pointcut there. (We discuss advice in
section 3.2.) Pointcuts are also used in static crosscutting to declare compile-time

66 CHAPTER 3
AspectJ: syntax basics
errors and warnings (discussed in section 3.3.3) as well as to soften exceptions
thrown by captured join points (see section 4.4).

 Let’s look at an example of a pointcut named accountOperations() in
figure 3.1 that will capture calls to all the methods in an Account class.

 You can then use the named pointcut in advice as follows:
before() : accountOperations() {
 ... advice body
}

An anonymous pointcut, on the other hand, is a pointcut expression that is
defined at the point of its usage. Since an anonymous pointcut cannot be refer-
enced from any place other than where it is defined, you cannot reuse such a
pointcut. Consequently, in practice, you should avoid using anonymous point-
cuts when the pointcut code is complicated. Anonymous pointcuts can be speci-
fied as a part of advice, as follows:

advice-specification : pointcut-definition

For example, the previous example of a named pointcut and advice could all be
replaced just by advice that includes an anonymous pointcut, like this:

before() : call(* Account.*(..)) {
 ... advice body
}

You can also use an anonymous pointcut as part of another pointcut. For exam-
ple, the following pointcut uses an anonymous within() pointcut to limit the
join points captured by calls to accountOperations() that are made from classes
with banking as the root package:

pointcut internalAccountOperations()
 : accountOperations() && within(banking..*);

Figure 3.1 Defining a named pointcut. A named pointcut is defined using the
pointcut keyword and has a name. The part after the colon defines the captured join
points using the pointcut type and signature.

Pointcuts 67
Anonymous pointcuts may be used in a similar manner as a part of static crosscutting.
 Regardless of whether a pointcut is named or anonymous, its functionality is

expressed in the pointcut definition, which contains the syntax that identifies the
join points. In the following sections, we examine this syntax and learn how
pointcuts are constructed.

NOTE There is a special form of named pointcut that omits the colon and the
pointcut definition following it. Such a pointcut does not match any join
point in the system. For example, the following pointcut will capture no
join point:

pointcut threadSafeOperation();

We will discuss the use of this form in section 8.5.3.

3.1.1 Wildcards and pointcut operators

Given that crosscutting concerns, by definition, span multiple modules and
apply to multiple join points in a system, the language must provide an eco-
nomical way to capture the required join points. AspectJ utilizes a wildcard-
based syntax to construct the pointcuts in order to capture join points that share
common characteristics.

 Three wildcard notations are available in AspectJ:

■ * denotes any number of characters except the period.
■ .. denotes any number of characters including any number of periods.
■ + denotes any subclass or subinterface of a given type.

Just like in Java, where unary and binary operators are used to form complex
conditional expressions composed of simpler conditional expressions, AspectJ
provides a unary negation operator (!) and two binary operators (|| and &&) to
form complex matching rules by combining simple pointcuts:

■ Unary operator—AspectJ supports only one unary operation—! (the nega-
tion)—that allows the matching of all join points except those specified by
the pointcut. For example, we used !within(JoinPointTraceAspect) in the
tracing example in listing 2.9 to exclude all the join points occurring
inside the JoinPointTraceAspect’s body.

■ Binary operators—AspectJ offers || and && to combine pointcuts. Combin-
ing two pointcuts with the || operator causes the selection of join points

68 CHAPTER 3
AspectJ: syntax basics
that match either of the pointcuts, whereas combining them with the &&
operator causes the selection of join points matching both the pointcuts.

The precedence between these operators is the same as in plain Java. AspectJ
also allows the use of parentheses with the unary and binary operators to over-
ride the default operator precedence and make the code more legible.

3.1.2 Signature syntax

In Java, the classes, interfaces, methods, and fields all have signatures. You use
these signatures in pointcuts to specify the places where you want to capture join
points. For example, in the following pointcut, we are capturing all the calls to
the credit() method of the Account class:

pointcut creditOperations() : call(void Account.credit(float));

When we specify patterns that will match these signatures in pointcuts, we refer
to them as signature patterns. At times, a pointcut will specify a join point using
one particular signature, but often it identifies join points specified by multiple
signatures that are grouped together using matching patterns. In this section, we
first examine three kinds of signature patterns in AspectJ—type, method, and
field—and we then see how they are used in pointcut definitions in section 3.1.3.

 Pointcuts that use the wildcards *, .., and + in order to capture join points
that share common characteristics in their signatures are called property-based
pointcuts. We have already seen an example of a signature that uses * and .. in
figure 3.1. Note that these wildcards have different usages in the type, method,
and field signatures. We will point out these usages as we discuss the signatures
and how they are matched.

Type signature patterns
The term type collectively refers to classes, interfaces, and primitive types. In AspectJ,
type also refers to aspects. A type signature pattern in a pointcut specifies the join
points in a type, or a set of types, at which you want to perform some crosscutting
action. For a set of types, it can use wildcards, unary, and binary operators. The *
wildcard is used in a type signature pattern to specify a part of the class, interface, or
package name. The wildcard .. is used to denote all direct and indirect subpack-
ages. The + wildcard is used to denote a subtype (subclass or subinterface).

 For example, the following signature matches JComponent and all its direct
and indirect subclasses, such as JTable, JTree, JButton, and so on:

javax.swing.JComponent+

Pointcuts 69
The javax.swing.JComponent portion matches the class JComponent in the
javax.swing package. The + following it specifies that the signature will match all
the subclasses of javax.swing.JComponent as well.

 Let’s look at a few examples. Note that when packages are not explicitly spec-
ified, the types are matched against the imported packages and the package to
which the defining aspect or class belongs. Table 3.1 shows simple examples of
matching type signatures.

In table 3.2, we combine type signatures with unary and binary operators.

Although certain pointcut definitions use only a type signature pattern by itself to
designate all join points in all types that match the pattern, type signature patterns

Table 3.1 Examples of type signatures

Signature Pattern Matched Types

Account Type of name Account.

*Account Types with a name ending with Account such as SavingsAccount and
CheckingAccount.

java.*.Date Type Date in any of the direct subpackages of the java package, such as
java.util.Date and java.sql.Date.

java..* Any type inside the java package or all of its direct subpackages, such as
java.awt and java.util, as well as indirect subpackages, such as
java.awt.event and java.util.logging.

javax..*Model+ All the types in the javax package or its direct and indirect subpackages
that have a name ending in Model and their subtypes. This signature would
match TableModel, TreeModel, and so forth, and all their subtypes.

Table 3.2 Examples of a combined type signature using unary and binary operators

Signature Pattern Matched Types

!Vector All types other than Vector.

Vector || Hashtable Vector or Hashtable type.

javax..*Model ||
javax.swing.text.Document

All types in the javax package or its direct and indirect subpack-
ages that have a name ending with Model or
javax.swing.text.Document.

java.util.RandomAccess+
&& java.util.List+

All types that implement both the specified interfaces. This signa-
ture, for example, will match java.util.ArrayList since it
implements both the interfaces.

70 CHAPTER 3
AspectJ: syntax basics
are also used within the method, constructor, and field signature patterns to fur-
ther refine the selection of join points. In figure 3.1, the pointcut uses the Account
type signature as a part of the method signature—* Account.*(..). For example,
if you want to identify all method call join points in a set of classes, you specify a
pointcut that includes a signature pattern matching all of the type signatures of
the classes, as well as the method call itself. Let’s take a look at how that works.

Method and constructor signature patterns
These kinds of signature patterns allow the pointcuts to identify call and execu-
tion join points in methods that match the signature patterns. Method and con-
structor signatures need to specify the name, the return type (for methods only),
the declaring type, the argument types, and modifiers. For example, an add()
method in a Collection interface that takes an Object argument and returns a
boolean would have this signature:

public boolean Collection.add(Object)

The type signature patterns used in this example are boolean, Collection, and
Object. The portion before the return value contains modifiers, such as the
access specification (public, private, and so on), static, or final. These modifi-
ers are optional, and the matching process will ignore the unspecified modifiers.
For instance, unless the final modifier is specified, both final and nonfinal
methods that match the rest of the signature will be selected. The modifiers can
also be used with the negation operator to specify matching with all but the spec-
ified modifier. For example, !final will match all nonfinal methods.

 When a type is used in the method signature for declaring classes, interfaces,
return types, arguments, and declared exceptions, you can specify the type signa-
ture discussed in tables 3.1 and 3.2 in place of specifying exact types.

 Please note that in method signatures, the wildcard .. is used to denote any
type and number of arguments taken by a method. Table 3.3 shows examples of
matching method signatures.

Table 3.3 Examples of method signatures

Signature Pattern Matched Methods

public void Collection.clear() The method clear() in the Collection class that has
public access, returns void, and takes no arguments.

public void
Account.debit(float) throws
InsufficientBalanceException

The public method debit() in the Account class that
returns void, takes a single float argument, and declares
that it can throw InsufficientBalanceException.

Pointcuts 71
A constructor signature is similar to a method signature, except for two differ-
ences. First, because constructors do not have a return value, there is no return
value specification required or allowed. Second, because constructors do not

public void Account.set*(*) All public methods in the Account class with a name start-
ing with set and taking a single argument of any type.

public void Account.*() All public methods in the Account class that return void
and take no arguments.

public * Account.*() All public methods in the Account class that take no argu-
ments and return any type.

public * Account.*(..) All public methods in the Account class taking any number
and type of arguments.

* Account.*(..) All methods in the Account class. This will even match
methods with private access.

!public * Account.*(..) All methods with nonpublic access in the Account class.
This will match the methods with private, default, and
protected access.

public static void
Test.main(String[] args)

The static main() method of a Test class with pub-
lic access.

* Account+.*(..) All methods in the Account class or its subclasses. This will
match any new method introduced in Account’s sub-
classes.

* java.io.Reader.read(..) Any read() method in the Reader class irrespective of
type and number of arguments to the method. In this case,
it will match read(), read(char[]), and
read(char[], int, int).

*
java.io.Reader.read(char[],..)

Any read() method in the Reader class irrespective of
type and number of arguments to the method as long as the
first argument type is char[]. In this case, it will match
read(char[]) and read(char[], int, int), but
not read().

* javax..*.add*Listener(Event-
Listener+)

Any method whose name starts with add and ends in Lis-
tener in the javax package or any of the direct and indi-
rect subpackages that take one argument of type
EventListener or its subtype. For example, it will match
TableModel.addTableModelListener(Table-
ModelListener).

* *.*(..) throws Remote-
Exception

Any method that declares it can throw RemoteException.

Table 3.3 Examples of method signatures (continued)

Signature Pattern Matched Methods

72 CHAPTER 3
AspectJ: syntax basics
have names as regular methods do, new is substituted for the method name in a
signature. Let’s consider a few examples of constructor signatures in table 3.4.

Field signature patterns
Much like the method signature, the field signature allows you to designate a
member field. You can then use the field signatures to capture join points corre-
sponding to read or write access to the specified fields. A field signature must
specify the field’s type, the declaring type, and the modifiers. Just as in method
and constructor signatures, you can use type signature patterns to specify the
types. For example, this designates a public integer field x in the Rectangle class:

public int java.awt.Rectangle.x

 Let’s dive straight into a few examples in table 3.5.

Table 3.4 Examples of constructor signatures

Signature Pattern Matched Constructors

public Account.new() A public constructor of the Account class taking
no arguments.

public Account.new(int) A public constructor of the Account class taking a
single integer argument.

public Account.new(..) All public constructors of the Account class taking
any number and type of arguments.

public Account+.new(..) Any public constructor of the Account class or its
subclasses.

public *Account.new(..) Any public constructor of classes with names end-
ing with Account. This will match all the public
constructors of the SavingsAccount and
CheckingAccount classes.

public Account.new(..) throws
InvalidAccountNumberException

Any public constructors of the Account class that
declare they can throw InvalidAccountNum-
berException.

Table 3.5 Examples of field signatures

Signature Pattern Matched Fields

private float Account._balance Private field _balance of the Account class

* Account.* All fields of the Account class regardless of an
access modifier, type, or name

Pointcuts 73
Now that you understand the syntax of the signatures, let’s see how to put them
together into pointcuts.

3.1.3 Implementing pointcuts

Let’s recap: Pointcuts are program constructs that capture a set of exposed join
points by matching certain characteristics. Although a pointcut can specify a sin-
gle join point in a system, the power of pointcuts comes from the economical way
they match a set of join points.

 There are two ways that pointcut designators match join points in AspectJ.
The first way captures join points based on the category to which they belong.
Recall from the discussion in section 2.4.1 that join points can be grouped into
categories that represent the kind of join points they are, such as method call
join points, method execution join points, field get join points, exception han-
dler join points, and so forth. The pointcuts that map directly to these categories
or kinds of exposed join points are referred as kinded pointcuts.

 The second way that pointcut designators match join points is when they are
used to capture join points based on matching the circumstances under which
they occur, such as control flow, lexical scope, and conditional checks. These
pointcuts capture join points in any category as long as they match the pre-
scribed condition. Some of the pointcuts of this type also allow the collection of
context at the captured join points. Let’s take a more in-depth look at each of
these types of pointcuts.

Kinded pointcuts
Kinded pointcuts follow a specific syntax to capture each kind of exposed join
point in AspectJ. Once you understand the categories of exposed join points, as
discussed in section 2.4.1, you will find that understanding kinded pointcuts is
simple—all you need is their syntax. Table 3.6 shows the syntax for each of the
kinded pointcuts.

 When you understand the pointcut syntax in table 3.6 and the signature syn-
tax as described in section 3.1.2, you will be able to write kinded pointcuts that

!public static * banking..*.* All nonpublic static fields of banking and its
direct and indirect subpackages

public !final *.* Nonfinal public fields of any class

Table 3.5 Examples of field signatures (continued)

Signature Pattern Matched Fields

74 CHAPTER 3
AspectJ: syntax basics
capture the weaving points in the system. Once you express the pointcuts in this
fashion, you can use them as a part of dynamic crosscutting in the advice con-
struct as well as in static crosscutting constructs. For example, to capture all pub-
lic methods in the Account class, you use a call() pointcut along with one of the
signatures in table 3.3 to encode the pointcut as follows:

call(public * Account.*())

Similarly, to capture all write accesses to a private _balance field of type float in
the Account class, you would use a set() pointcut with the signature described in
table 3.3 to encode the pointcut as follows:

set(private float Account._balance)

Let’s take a quick look at an example of how a pointcut is used in static crosscut-
ting. In the following snippet, we declare that calling the Logger.log() method
will result in a compile-time warning. The pointcut call(void Logger.log(..))
is a kinded pointcut of the method call category type. We will discuss the com-
pile-time error and warning declaration in section 3.3.3:

declare warning : call(void Logger.log(..))
 : "Consider Logger.logp() instead";

Now that we’ve examined the kinded pointcuts, let’s look at the other type of
pointcut—the ones that capture join points based on specified conditions

Table 3.6 Mapping of exposed join points to pointcut designators

Join Point Category Pointcut Syntax

Method execution execution(MethodSignature)

Method call call(MethodSignature)

Constructor execution execution(ConstructorSignature)

Constructor call call(ConstructorSignature)

Class initialization staticinitialization(TypeSignature)

Field read access get(FieldSignature)

Field write access set(FieldSignature)

Exception handler execution handler(TypeSignature)

Object initialization initialization(ConstructorSignature)

Object pre-initialization preinitialization(ConstructorSignature)

Advice execution adviceexecution()

Pointcuts 75
regardless of the kind of join point it is. This type of pointcut offers a powerful
way to capture certain complex weaving rules.

Control-flow based pointcuts
These pointcuts capture join points based on the control flow of join points cap-
tured by another pointcut. The control flow of a join point defines the flow of the
program instructions that occur as a result of the invocation of the join point.
Think of control flow as similar to a call stack. For example, the Account.debit()
method calls Account.getBalance() as a part of its execution; the call and the
execution of Account.getBalance() is said to have occurred in the Account.
debit() method’s control flow, and therefore it has occurred in the control flow
of the join point for the method. In a similar manner, it captures other methods,
field access, and exception handler join points within the control flow of the
method’s join point.

 A control-flow pointcut always specifies another pointcut as its argument.
There are two control-flow pointcuts. The first pointcut is expressed as
cflow(Pointcut), and it captures all the join points in the control flow of the
specified pointcut, including the join points matching the pointcut itself. The
second pointcut is expressed as cflowbelow(Pointcut), and it excludes the join
points in the specified pointcut. Table 3.7 shows some examples of the usage
of control-flow based pointcuts.

Table 3.7 Examples of control-flow based pointcuts

Pointcut Description

cflow(call(* Account.debit(..)) All the join points in the control flow of any
debit() method in Account that is called,
including the call to the debit() method itself

cflowbelow(call(* Account.debit(..)) All the join points in the control flow of any
debit() method in Account that is called, but
excluding the call to the debit() method itself

cflow(transactedOperations()) All the join points in the control flow of the join
points captured by the transactedOpera-
tions() pointcut

cflowbelow(execution(Account.
new(..))

All the join points in the control flow of any of the
Account’s constructor execution, excluding the
constructor execution itself

cflow(staticinitializer(Banking-
Database))

All the join points in the control flow occurring dur-
ing the class initialization of the BankingData-
base class

76 CHAPTER 3
AspectJ: syntax basics
The sequence diagram in figure 3.2 shows the graphical representation of the
cflow() and cflowbelow() pointcuts. Here, the area encompassing the cap-
tured join points is superimposed on a sequence diagram that shows an

Figure 3.2 Control-flow based pointcuts capture every join point occurring in the control flow of
join points matching the specified pointcut. The cflow() pointcut includes the matched join point
itself, thus encompassing all join points occurring inside the outer box, whereas cflowbelow()
excludes that join point and thus captures only join points inside the inner box.

Pointcuts 77
Account.debit() method that is called by an ATM object. The difference
between the matching performed by the cflow() and cflowbelow() pointcuts is
also depicted.

 One common usage of cflowbelow() is to select nonrecursive calls. For exam-
ple, transactedOperations() && !cflowbelow(transactedOperations()) will select
the methods that are not already in the context of another method captured by
the transactedOperations() pointcut.

Lexical-structure based pointcuts
A lexical scope is a segment of source code. It refers to the scope of the code as it
was written, as opposed to the scope of the code when it is being executed, which
is the dynamic scope. Lexical-structure based pointcuts capture join points
occurring inside a lexical scope of specified classes, aspects, and methods. There
are two pointcuts in this category: within() and withincode(). The within()
pointcuts take the form of within(TypePattern) and are used to capture all the
join points within the body of the specified classes and aspects, as well as any
nested classes. The withincode() pointcuts take the form of either within-
code(MethodSignature) or withincode(ConstructorSignature) and are used to
capture all the join points inside a lexical structure of a constructor or a method,
including any local classes in them. Table 3.8 shows some examples of the usage
of lexical-structure based pointcuts.

One common usage of the within() pointcut is to exclude the join points in the
aspect itself. For example, the following pointcut excludes the join points corre-
sponding to the calls to all print methods in the java.io.PrintStream class that
occur inside the TraceAspect itself:

call(* java.io.PrintStream.print*(..)) && !within(TraceAspect)

Table 3.8 Examples of lexical-structure based pointcuts

Pointcut Natural Language Description

within(Account) Any join point inside the Account class’s lexical scope

within(Account+) Any join point inside the lexical scope of the Account class
and its subclasses

withincode(*
Account.debit(..))

Any join point inside the lexical scope of any debit()
method of the Account class

withincode(* *Account.get-
Balance(..))

Any join point inside the lexical scope of the getBalance()
method in classes whose name ends in Account

78 CHAPTER 3
AspectJ: syntax basics
Execution object pointcuts
These pointcuts match the join points based on the types of the objects at execu-
tion time. The pointcuts capture join points that match either the type this,
which is the current object, or the target object, which is the object on which the
method is being called. Accordingly, there are two execution object pointcut des-
ignators: this() and target(). In addition to matching the join points, these
pointcuts are used to collect the context at the specified join point.

 The this() pointcut takes the form this(Type or ObjectIdentifier); it
matches all join points that have a this object associated with them that is of the
specified type or the specified ObjectIdentifier’s type. In other words, if you
specify Type, it will match the join points where the expression this instanceof
<Type> is true. The form of this pointcut that specifies ObjectIdentifier is used
to collect the this object. If you need to match without collecting context, you
will use the form that uses Type, but if you need to collect the context, you will
use the form that uses ObjectIdentifier. We discuss context collection in
section 3.2.6.

 The target() pointcut is similar to the this() pointcut, but uses the target of
the join point instead of this. The target() pointcut is normally used with a
method call join point, and the target object is the one on which the method is
invoked. A target() pointcut takes the form target(Type or ObjectIdentifier).
Table 3.9 shows some examples of the usage of execution object pointcuts.

Note that unlike most other pointcuts that take the TypePattern argument,
this() and target() pointcuts take Type as their argument. So, you cannot use
the * or .. wildcard while specifying a type. You don’t need to use the + wildcard
since subtypes that match are already captured by Java inheritance without +;
adding + will not make any difference.

 Because static methods do not have the this object associated with them, the
this() pointcut will not match the execution of such a method. Similarly,

Table 3.9 Examples of execution object pointcuts

Pointcut Natural Language Description

this(Account) All join points where this is instanceof Account. This will match all join
points like methods calls and field assignments where the current execution
object is Account, or its subclass, for example, SavingsAccount.

target(Account) All the join points where the object on which the method called is
instanceof Account. This will match all join points where the target object
is Account, or its subclass, for example, SavingsAccount.

Pointcuts 79
because static methods are not invoked on a object, the target() pointcut will
not match calls to such a method.

 There are a few important differences in the way matching is performed
between within() and this(): The former will match when the object in the lexi-
cal scope matches the type specified in the pointcut, whereas the latter will match
when the current execution object is of a type that is specified in the pointcut or
its subclass. The code snippet that follows shows the difference between the two
pointcuts. We have a SavingsAccount class that extends the Account class. The
Account class also contains a nested class: Helper. The join points that will be cap-
tured by within(Account) and this(Account) are annotated.

public class Account {

 ...

 public void debit(float amount)
 throws InsufficientBalanceException {
 ...
 }

 private static class Helper {
 ...
 }
}

public class SavingsAccount extends Account {

 ...

}

In this example, within(Account) will match all join points inside the definition of
the Account class, including any nested classes, but no join points inside its subclasses,
such as SavingsAccount. On the other hand, this(Account) will match all join points
inside the definition of the Account class as well as SavingsAccount, but will exclude
any join points inside either class’s nested classes. You can match all the join points in
subclasses of a type while excluding the type itself by using the this(Type) &&
!within(Type) idiom. Another difference between the two pointcuts is their context
collection capability: within() cannot collect any context, but this() can.

 Also note that the two pointcuts call(* Account.*(..)) and call(* *.*(..)) &&
this(Account) won’t capture the same join points. The first one will pick up all the
instance and static methods defined in the Account class and all the parent classes in
the inheritance hierarchy, whereas the latter will pick up the same instance methods
and any methods in the subclasses of the Account class, but none of the static methods.

Captured by
within(Account)

Captured by
this(Account)

Captured by
within(Account)

Captured by
this(Account)

80 CHAPTER 3
AspectJ: syntax basics
Argument pointcuts
These pointcuts capture join points based on the argument type of a join point.
For method and constructor join points, the arguments are simply the method and
constructor arguments. For exception handler join points, the handled exception
object is considered an argument, whereas for field write access join points, the
new value to be set is considered the argument for the join point. Argument-based
pointcuts take the form of args(TypePattern or ObjectIdentifier, ..).

 Similar to execution object pointcuts, these pointcuts can be used to capture
the context, but again more will be said about this in section 3.2.6. Table 3.10
shows some examples of the usage of argument pointcuts.

Conditional check pointcuts
This pointcut captures join points based on some conditional check at the join
point. It takes the form of if(BooleanExpression). Table 3.11 shows some exam-
ples of the usage of conditional check pointcuts.

We now have completed the overview of all the pointcuts supported in AspectJ.
In the next section, we study the dynamic crosscutting concept of advice. Writing
an advice entails first specifying a pointcut and then defining the action to be
taken at the join points captured by the pointcut. Later, in section 3.3, we discuss
using pointcuts for static crosscutting.

Table 3.10 Examples of argument pointcuts

Pointcut Natural Language Description

args(String,..,
int)

All the join points in all methods where the first argument is of type String
and the last argument is of type int.

args(Remote-
Exception)

All the join points with a single argument of type RemoteException. It
would match a method taking a single RemoteException argument, a field
write access setting a value of type RemoteException, or an exception
handler of type RemoteException.

Table 3.11 Examples of conditional check pointcuts

Pointcut Natural Language Description

if(System.currentTimeMillis() >
triggerTime)

All the join points occurring after the current time has
crossed the triggerTime value.

if(circle.getRadius() < 5) All the join points where the circle’s radius is smaller
than 5. The circle object must be a context collected by
the other parts of the pointcut. See section 3.2.6 for
details about the context-collection mechanism.

Advice 81
3.2 Advice

Advice is the action and decision part of the crosscutting puzzle. It helps you
define “what to do.” Advice is a method-like construct that provides a way to
express crosscutting action at the join points that are captured by a pointcut. The
three kinds of advice are as follows:

■ Before advice executes prior to the join point.
■ After advice executes following the join point.
■ Around advice surrounds the join point’s execution. This advice is special in

that it has the ability to bypass execution, continue the original execution,
or cause execution with an altered context.

Figure 3.3 Various points in a program flow where you can advise the join point (not all possible
points are shown). Each circle represents an opportunity for before or after advice. The passage
between the matching circles on each lifeline represents an opportunity for around advice.

82 CHAPTER 3
AspectJ: syntax basics
Join points exposed by AspectJ are the only points where you apply an advice.
Figure 3.3 shows various join points in an execution sequence at which you can
introduce a new behavior via advice.

3.2.1 Anatomy of advice

Let’s look at the general syntactical structure of an advice. We will study the
details of each kind of advice—before, after, and around—in subsequent sec-
tions. An advice can be broken into three parts: the advice declaration, the point-
cut specification, and the advice body. Let’s look at two examples of these three
parts. Both examples will use the following named pointcut:

pointcut connectionOperation(Connection connection)
 : call(* Connection.*(..) throws SQLException)
 && target(connection);

This named pointcut consists of two anonymous pointcuts. The method call
pointcut captures calls to any method of the Connection class that takes any argu-
ment and returns any type. The target() pointcut captures the target object of
the method calls. Now let’s look at an example of before and around advice
using the named pointcut:

before(Connection connection):
 connectionOperation (connection) {
 System.out.println("Performing operation on " + connection);
}

Object around(Connection connection) throws SQLException
 : connectionOperation (connection) {
 System.out.println("Operation " + thisJoinPoint
 + " on " + connection
 + " started at "
 + System.currentTimeMillis());

 proceed(connection);

 System.out.println("Operation " + thisJoinPoint
 + " on " + connection
 + " completed at "
 + System.currentTimeMillis());
}

The part before the colon is the advice declaration, which specifies when the
advice executes relative to the captured join point—before, after, or around it.
The advice declaration also specifies the context information available to the
advice body, such as the execution object and arguments, which the advice body

Advice declaration b
Pointcut specification c

 b
 c

Advice
body

 d

 d

 b

Advice 83
can use to perform its logic in the same way a method would use its parameters.
It also specifies any checked exceptions thrown by the advice.
The part after the colon is the pointcut; the advice executes whenever a join
point matching the pointcut is encountered. In our case, we use the named
pointcut, connectionOperation(), in the advice to log join points captured by
the pointcut.
Just like a method body, the advice body contains the actions to execute and is
within the {}. In the example, the before advice body prints the context collected
by the pointcut, whereas the around advice prints the start and completion time
of each connection operation. thisJoinPoint is a special variable available in
each join point. We will study its details in the next chapter, section 4.1. In
around advice, the proceed() statement is a special syntax to carry out the cap-
tured operation that we examine in section 3.2.4.

Let’s take a closer look at each type of advice.

3.2.2 The before advice

The before advice executes before the execution of the captured join point. In
the following code snippet, the advice performs authentication prior to the exe-
cution of any method in the Account class:

before() : call(* Account.*(..)) {
 ... authenticate the user
}

If you throw an exception in the before advice, the captured operation won’t exe-
cute. For example, if the authentication logic in the previous advice throws an
exception, the method in Account that is being advised won’t execute. The before
advice is typically used for performing pre-operation tasks, such as policy
enforcement, logging, and authentication.

3.2.3 The after advice

The after advice executes after the execution of a join point. Since it is often
important to distinguish between normal returns from a join point and those
that throw an exception, AspectJ offers three variations of after advice: after
returning normally, after returning by throwing an exception, and returning
either way. The following code snippet shows the basic form for after advice that
returns either way:

after() : call(* Account.*(..)) {
 ... log the return from operation
}

 c

 d

84 CHAPTER 3
AspectJ: syntax basics
The previous advice will be executed after any call to any method in the Account
class, regardless of how it returns—normally or by throwing an exception. Note
that an after advice may be used not just with methods but with any other kind of
join point. For example, you could advise a constructor invocation, field write-
access, exception handler, and so forth.

 It is often desirable to apply an advice only after a successful completion of
captured join points. AspectJ offers “after returning” advice that is executed
after the successful execution of join points. The following code shows the form
for after returning advice:

after() returning : call(* Account.*(..)) {
 ... log the successful completion
}

This advice will be executed after the successful completion of a call to any
method in the Account class. If a captured method throws an exception, the
advice will not be executed. AspectJ offers a variation of the after returning
advice that will capture the return value. It has the following syntax:

 after() returning(<ReturnType returnObject>)

You can use this form of the after returning advice when you want to capture the
object that is returned by the advised join point so that you can use its context in
the advice. Note that unless you want to capture the context, you don’t need to
supply the parentheses following returning. See section 3.2.6 for more details on
collecting the return object as context.

 Similar to after returning advice, AspectJ offers “after throwing” advice,
except such advice is executed only when the advised join point throws an excep-
tion. This is the form for after advice that returns after throwing an exception:

after() throwing : call(* Account.*(..)) {
 ... log the failure
}

This advice will be executed after a call to any method in the Account class that
throws an exception. If a method returns normally, the advice will not be exe-
cuted. Similar to the variation in the after returning advice, AspectJ offers a vari-
ation of the after throwing advice that will capture the thrown exception object.
The advice has the following syntax:

after() throwing (<ExceptionType exceptionObject>)

You can use this form of the after throwing advice when you want to capture the
exception that is thrown by the advised method so that you can use it to make

Advice 85
decisions in the advice. See section 3.2.6 for more details on capturing the
exception object.

3.2.4 The around advice

The around advice surrounds the join point. It has the ability to bypass the execu-
tion of the captured join point completely, or to execute the join point with the
same or different arguments. It may also execute the captured join points multiple
times, each with different arguments. Some typical uses of this advice are to per-
form additional execution before and after the advised join point, to bypass the
original operation and perform some other logic in place of it, or to surround the
operation with a try/catch block to perform an exception-handling policy.

 If within the around advice you want to execute the operation that is at the
join point, you must use a special keyword—proceed()—in the body of the
advice. Unless you call proceed(), the captured join point will be bypassed.
When using proceed(), you can pass the context collected by the advice, if any, as
the arguments to the captured operation or you can pass completely different
arguments. The important thing to remember is that you must pass the same
number and types of arguments as collected by the advice. Since proceed()
causes the execution of the captured operation, it returns the same value
returned by the captured operation. For example, while in an advice to a method
that returns a float value, invoking proceed() will return the same float value as
the captured method. We will study the details of returning a value from an
around advice in section 3.2.7.

 In the following snippet, the around advice invokes proceed() with a try/catch
block to handle exceptions. This snippet also captures the context of the opera-
tion’s target object and argument. We discuss that part in section 3.2.6:

void around(Account account, float amount)
 throws InsufficientBalanceException :
 call(* Account.debit(float) throws InsufficientBalanceException)
 && target(account)
 && args(amount) {
 try {
 proceed(account, amount);
 } catch (InsufficientBalanceException ex) {
 ... overdraft protection logic
 }
}

In the previous advice, the advised join point is the call to the Account.debit()
method that throws InsufficientBalanceException. We capture the Account

86 CHAPTER 3
AspectJ: syntax basics
object and the amount using the target() and args() pointcuts. In the body of
the advice, we surround the call to proceed() with a try/catch block, with the
catch block performing overdraft protection logic. The result is that when the
advice is executed, it in turn executes the captured method using proceed(). If
an exception is thrown, the catch block executes the overdraft protection logic
using the context that it captured in the target() and args() pointcuts.

3.2.5 Comparing advice with methods

As you can see, the advice declaration part looks much like a method signature.
Although it does not have a name, it takes arguments and may declare that it can
throw exceptions. The arguments form the context that the advice body can use
to perform its logic, just like in a method. The before and after advice cannot
return anything, while the around advice does and therefore has a return type.
The pointcut specification part uses named or anonymous pointcuts to capture
the join points to be advised. The body of advice looks just like a method body
except for the special keyword proceed() that is available in the around advice.

 By now, you might be thinking that advice looks an awful lot like methods.
Let’s contrast the two here. Like methods, advice:

■ Follows access control rules to access members from other types and aspects
■ Declares that it can throw checked exceptions
■ Can refer to the aspect instance using this

Unlike methods, however, advice:
■ Does not have a name
■ Cannot be called directly (it’s the system’s job to execute it)
■ Does not have an access specifier (this makes sense because you cannot

directly call advice anyway)
■ Has access to a few special variables besides this that carry information

about the captured join point: thisJoinPoint, thisJoinPointStaticPart,
and thisEnclosingJoinpointStaticPart (we examine these variables in
chapter 4)

One way to think of advice is that it overrides the captured join points, and in
fact, the exception declaration rules for advice actually do follow the Java specifi-
cation for overridden methods. Like overridden methods, advice:

■ Cannot declare that it may throw a checked exception that is not already
declared by the captured join point. For example, when your aspect is

Advice 87
implementing persistence, you are not allowed to declare that the advice
may throw SQLException unless the method that was captured by the join
point already declares that it throws it.

■ May omit a few exceptions declared by the captured join points.
■ May declare that it can throw more specific exceptions than those declared

by the captured join points.

Chapter 4 discusses the issue of dealing with additional checked exceptions in
more depth and shows a pattern for addressing the common situations.

3.2.6 Passing context from a join point to advice

Advice implementations often require access to data at the join point. For exam-
ple, to log certain operations, advice needs information about the method and
arguments of the operation. This information is called context. Pointcuts, there-
fore, need to expose the context at the point of execution so it can be passed to
the advice implementation. AspectJ provides the this(), target(), and args()
pointcuts to collect the context. You’ll recall that there are two ways to specify
each of these pointcuts: by using the type of the objects or by using ObjectIden-
tifier, which simply is the name of the object. When context needs to be passed
to the advice, you use the form of the pointcuts that use ObjectIdentifier.

 In a pointcut, the object identifiers for the collected objects must be specified
in the first part of the advice—the part before the colon—in much the same way
you would specify method arguments. For example, in figure 3.4, the anonymous
pointcut in the before advice collects all the arguments to the method executions
associated with it.

Figure 3.4 Passing an executing object and an argument context
from the join point to the advice body. The target object in this case is
captured using the target() pointcut, whereas the argument value
is captured using the args() pointcut. The current execution object
can be captured in the same way using this() instead of target().

88 CHAPTER 3
AspectJ: syntax basics
Figure 3.4 shows the context being passed between an anonymous pointcut and
the advice. The target() pointcut collects the objects on which the credit()
method is being invoked, whereas the args() pointcut captures the argument to
the method. The part of the advice before the colon specifies the type and name
for each of the captured arguments. The body of the advice uses the collected con-
text in the same way that the body of a method would use the parameters passed to
it. The object identifiers in the previous code snippet are account and amount.

 When you use named pointcuts, those pointcuts themselves must collect the
context and pass it to the advice. Figure 3.5 shows the collection of the same
information as in figure 3.4, but uses named pointcuts to capture the context and
make it available to the advice.

 The code in figure 3.5 is functionally identical to that in 3.4, but unlike figure
3.4, we use a named pointcut. The pointcut creditOperation(), besides match-
ing join points, collects the context so that the advice can use it. We collect the
target object and the argument to the credit() operation. Note that the pointcut
itself declares the type and name of each collected element, much like a method
call. In the advice to this pointcut, the first part before the colon is unchanged
from figure 3.4. The pointcut definition simply uses the earlier defined pointcut.
Note how the names of the arguments in the first part of the advice match those
in the pointcut definition.

 Let’s look at some more examples of passing context. In figure 3.6, an after
returning advice captures the return value of a method.

Figure 3.5 Passing an executing object and an argument captured by a named
pointcut. This code snippet is functionally equivalent to figure 3.4, but achieves
it using a named pointcut. For the advice to access the join point’s context, the
pointcut itself must collect the context, as opposed to the advice collecting the
context when using anonymous pointcuts.

Advice 89
In figure 3.6, we capture the return value of DriverManager.getConnection() by
specifying the type and the name of the return object in the returning() part of the
advice specification. We can use the return object in the advice body just like any
other collected context. In this example, the advice simply prints the return value.

 In figure 3.7, we capture the exception object thrown by any method that
declares that it can throw RemoteException by specifying the type and name of the
exception to the throwing() part of the advice specification. Much like the return
value and any other context, we can use this exception object in the advice body.

 Note that thisJoinPoint is a special type of variable that carries join point con-
text information. We will look at these types of variables in detail in chapter 4.

3.2.7 Returning a value from around advice
Each around advice must declare a return value (which could be void). It is typical
to declare the return type to match the return type of the join points that are
being advised. For example, if a set of methods that are each returning an integer
were advised, you would declare the advice to return an integer. For a field-read
join point, you would match the advice’s return type to the accessed field’s type.

Figure 3.6 Passing a return object context to an advice body. The return
object is captured in returning() by specifying the type and object ID.

Figure 3.7 Passing a thrown exception to an advice body. The
exception object is captured in throwing() by specifying the type and
object ID. The special variables such as thisJoinPoint are accessed
in a similar manner to this inside an instance method.

90 CHAPTER 3
AspectJ: syntax basics
 Invoking proceed() returns the value returned by the join point. Unless you
need to manipulate the returned value, around advice will simply return the
value that was returned by the proceed() statement within it. If you do not
invoke proceed(), you will still have to return a value appropriate for the
advice’s logic.

 There are cases when an around advice applies to join points with different
return types. For example, if you advise all the methods needing transaction sup-
port, the return values of all those methods are likely to be different. To resolve
such situations, the around advice may declare its return value as Object. In
those cases, if around returns a primitive type after it calls proceed(), the primi-
tive type is wrapped in its corresponding wrapper type and performs the oppo-
site, unwrapping after returning from the advice. For instance, if a join point
returns an integer and the advice declares that it will return Object, the integer
value will be wrapped in an Integer object and it will be returned from the
advice. When such a value is assigned, the object is first unwrapped to an integer.
Similarly, if a join point returns a non-primitive type, appropriate typecasts are
performed before the return value is assigned. The scheme of returning the
Object type works even when a captured join point returns a void type.

3.2.8 An example using around advice: failure handling
Let’s look at an example that uses around advice to handle system failures. In a
distributed environment, dealing with a network failure is often an important
task. If the network is down, clients often reattempt operations. In the following
example, we examine how an aspect with around advice can implement the func-
tionality to handle a network failure.

 In listing 3.1, we simulate the network and other failures by simply making
the method throw an exception randomly.

import java.rmi.RemoteException;

public class RemoteService {
 public static int getReply() throws RemoteException {
 if(Math.random() > 0.25) {
 throw new RemoteException("Simulated failure occurred");
 }
 System.out.println("Replying");
 return 5;
 }
}

Listing 3.1 RemoteService.java

Advice 91
The getReply() method simulates the service offered. By checking against a ran-
domly generated number, it simulates a failure resulting in an exception (statisti-
cally, the method will fail approximately 75 percent of the time—a really high
failure rate!). When it does not fail, it prints a message and returns 5.

 Next let’s write a simple client (listing 3.2) that invokes the only method in
RemoteService.

public class RemoteClient {
 public static void main(String[] args) throws Exception {
 int retVal = RemoteService.getReply();
 System.out.println("Reply is " + retVal);
 }
}

Now let’s write an aspect to handle failures by reattempting the operation three
times before giving up and propagating the failure to the caller (listing 3.3).

import java.rmi.RemoteException;

public aspect FailureHandlingAspect {
 final int MAX_RETRIES = 3;

 Object around() throws RemoteException
 : call(* RemoteService.get*(..) throws RemoteException) {
 int retry = 0;
 while(true){
 try{
 return proceed();
 } catch(RemoteException ex){
 System.out.println("Encountered " + ex);
 if (++retry > MAX_RETRIES) {
 throw ex;
 }
 System.out.println("\tRetrying...");
 }
 }
 }
}

We declare that the around advice will return Object to accommodate the poten-
tial different return value types in the captured join points. We also declare that

Listing 3.2 RemoteClient.java

Listing 3.3 FailureHandlingAspect.java

Method part
of advice b

 cPointcut
(anonymous)

part of advice

 d Execution of
captured
join point

 b

92 CHAPTER 3
AspectJ: syntax basics
it may throw RemoteException to allow the propagating of any exception thrown
by the execution of captured join points.
The pointcut part of the advice uses an anonymous pointcut to capture all the
getter methods in RemoteService that throw RemoteException.
We simply return the value returned by the invocation of proceed(). Although
the join point is returning an integer, AspectJ will take care of wrapping and
unwrapping the logic.

When we compile and run the program, we get output similar to the following:

> ajc RemoteService.java RemoteClient.java FailureHandlingAspect.java
> java RemoteClient
Encountered java.rmi.RemoteException: Simulated failure occurred
 Retrying...
Encountered java.rmi.RemoteException: Simulated failure occurred
 Retrying...
Replying
Reply is 5

The output shows a few failures, retries, and eventual success. (Your output may
be a little different due to the randomness introduced.) It also shows the correct
assignment to the retVal member in the RemoteClient class, even though the
advice returned the Object type.

3.2.9 Context collection example: caching

The goal of this example is to understand how to collect context in arguments,
execution objects, and return values. First, we write a method for a simple facto-
rial computation, and then we write an aspect to cache the computed value for
later use. We want to insert a result into the cache for values passed on to only
nonrecursive calls (to limit the amount of caching). Before any calls to the facto-
rial() method, including the recursive ones, we check the cache and print the
value if a precomputed value is found. Otherwise, we proceed with the normal
computation flow. Let’s start with creating the factorial computation in
listing 3.4.

import java.util.*;

public class TestFactorial {
 public static void main(String[] args) {
 System.out.println("Result: " + factorial(5) + "\n");
 System.out.println("Result: " + factorial(10) + "\n");
 System.out.println("Result: " + factorial(15) + "\n");

 c

 d

Listing 3.4 TestFactorial.java: factorial computation

Advice 93
 System.out.println("Result: " + factorial(15) + "\n");
 }

 public static long factorial(int n) {
 if (n == 0) {
 return 1;
 } else {
 return n * factorial(n-1);
 }
 }
}

Now let’s write the aspect to optimize the factorial computation by caching the
computed value for later use, as shown in listing 3.5.

import java.util.*;

public aspect OptimizeFactorialAspect {
 pointcut factorialOperation(int n) :
 call(long *.factorial(int)) && args(n);

 pointcut topLevelFactorialOperation(int n) :
 factorialOperation(n)
 && !cflowbelow(factorialOperation(int));

 private Map _factorialCache = new HashMap();

 before(int n) : topLevelFactorialOperation(n) {
 System.out.println("Seeking factorial for " + n);
 }

 long around(int n) : factorialOperation(n) {
 Object cachedValue = _factorialCache.get(new Integer(n));
 if (cachedValue != null) {
 System.out.println("Found cached value for " + n
 + ": " + cachedValue);
 return ((Long)cachedValue).longValue();
 }
 return proceed(n);
 }

 after(int n) returning(long result)
 : topLevelFactorialOperation(n) {
 _factorialCache.put(new Integer(n), new Long(result));
 }
}

Listing 3.5 OptimizeFactorialAspect.java: aspect for caching results

Capturing context
using args()

 b

Capturing context
from another
pointcut

 c

Using pointcut’s
context

 d

Returning primitive
from around advice

 e

Passing along context
to proceed()

 f

Capturing
return value

 g

94 CHAPTER 3
AspectJ: syntax basics
The factorialOperation() pointcut captures all calls to the factorial() method.
It also collects the argument to the method.
The topLevelFactorialOperation() pointcut captures all nonrecursive calls to
the factorial() method. It captures the context available in any factorialOper-
ation() pointcut it uses. See figure 3.5 for a graphical representation of captur-
ing context using named pointcuts.
The before advice logs the nonrecursive factorial() method invocation. In the
log message, it uses the collected context.
The around advice to any factorial() method invocation also uses the con-
text. It declares that it will return a long matching the return type of the
advised join point.
The around advice passes the captured context to proceed(). Recall that the
number and type of arguments to proceed() must match the advice itself.
The after returning advice collects the return value by specifying its type and
identifier in the returning() part. It then uses the return value as well as the
context collected from the join point to update the cache.

When we compile and run the code, we get the following output:

> ajc TestFactorial.java OptimizeFactorialAspect.java
> java TestFactorial
Seeking factorial for 5
Result: 120

Seeking factorial for 10
Found cached value for 5: 120
Result: 3628800

Seeking factorial for 15
Found cached value for 10: 3628800
Result: 1307674368000

Seeking factorial for 15
Found cached value for 15: 1307674368000
Result: 1307674368000

As soon as a cached value is found, the factorial computation uses that value
instead of continuing with the recursive computation. For example, while comput-
ing a factorial for 15, the computation uses a pre-cached factorial value for 10.

NOTE It seems that you could simply modify the Test.factorial() method
to insert code for caching optimization, especially since only one meth-
od needs to be modified. However, such an implementation will tangle
the optimization logic with factorial computation logic. With conventional

 b

 c

 d

 e

 f

 g

Static crosscutting 95
refactoring techniques, you can limit the inserted code to a few lines.
Using an aspect, you refactor the caching completely out of the core fac-
torial computation code. You can now modify the caching strategy with-
out even touching the factorial() method.

3.3 Static crosscutting

In AOP, we often find that in addition to affecting dynamic behavior using
advice, it is necessary for aspects to affect the static structure in a crosscutting
manner. While dynamic crosscutting modifies the execution behavior of the pro-
gram, static crosscutting modifies the static structure of the types—the classes,
interfaces, and other aspects—and their compile-time behavior. There are four
broad classifications of static crosscutting: member introduction, type-hierarchy
modification, compile-time error and warning declaration, and exception soft-
ening. In this section, we study the first three kinds. Understanding exception
softening requires additional design considerations for effective use, and we will
visit that along with other similar topics in chapter 4.

3.3.1 Member introduction

Aspects often need to introduce data members and methods into the aspected
classes. For example, in a banking system, implementing a minimum balance
rule may require additional data members corresponding to a minimum balance
and a method for computing the available balance. AspectJ provides a mecha-
nism called introduction to introduce such members into the specified classes and
interfaces in a crosscutting manner.

 The code snippet in listing 3.6 introduces the _minimumBalance field and the
getAvailableBalance() method to the Account class. The after advice sets the
minimum balance in SavingsAccount to 25.

public aspect MinimumBalanceRuleAspect {
 private float Account._minimumBalance;

 public float Account.getAvailableBalance() {
 return getBalance() - _minimumBalance;
 }

 after(Account account) :
 execution(SavingsAccount.new(..)) && this(account) {
 account._minimumBalance = 25;
 }

Listing 3.6 MinimumBalanceRuleAspect.java

Introducing a data
member

Introducing a
method

Using the introduced
data member

96 CHAPTER 3
AspectJ: syntax basics
 before(Account account, float amount)
 throws InsufficientBalanceException :
 execution(* Account.debit())
 && this(account) && args(amount) {
 if (account.getAvailableBalance() < amount) {
 throw new InsufficientBalanceException(
 "Insufficient available balance");
 }
 }
}

In the aspect in listing 3.6, we introduce a member _minimumBalance of type float
into the Account class. Note that introduced members can be marked with an access
specifier, as we have marked _minimumBalance with private access. The access rules
are interpreted with respect to the aspect doing the introduction. For example, the
members marked private are accessible only from the introducing aspect.

 You can also introduce data members and methods with implementation into
interfaces; this will provide a default behavior to the implementing classes. As
long as the introduced behavior suffices for your implementation needs, this
prevents the duplication of code in each class, since the introduction of the data
members and methods effectively adds the behavior to each implementing class.
In chapter 8, we will look more closely at doing this.

3.3.2 Modifying the class hierarchy

A crosscutting implementation often needs to affect a set of classes or interfaces
that share a common base type so that certain advice and aspects will work only
through the API offered by the base type. The advice and aspects will then be
dependent only on the base type instead of application-specific classes and inter-
faces. For example, a cache-management aspect may declare certain classes to
implement the Cacheable interface. The advice in the aspect then can work only
through the Cacheable interface. The result of such an arrangement is the
decoupling of the aspect from the application-specific class, thus making the
aspect more reusable. With AspectJ, you can modify the inheritance hierarchy of
existing classes to declare a superclass and interfaces of an existing class or inter-
face as long as it does not violate Java inheritance rules. The forms for such a
declaration are:

declare parents : [ChildTypePattern] implements [InterfaceList];

and
declare parents : [ChildTypePattern] extends [Class or InterfaceList];

Using the introduced
method

Static crosscutting 97
For example, the following aspect declares that all classes and interfaces in the
entities package that have the banking package as the root are to implement
the Identifiable interface:

aspect AccountTrackingAspect {
 declare parents : banking..entities.* implements Identifiable;

 ... tracking advices
}

The declaration of parents must follow the regular Java object hierarchy
rules. For example, you cannot declare a class to be the parent of an inter-
face. Similarly, you cannot declare parents in such a way that it will result in
multiple inheritance.

3.3.3 Introducing compile-time errors and warning

AspectJ provides a static crosscutting mechanism to declare compile-time errors
and warnings based on certain usage patterns. With this mechanism, you can
implement behavior similar to the #error and #warning preprocessor directives
supported by some C/C++ preprocessors, and you can also implement even
more complex and powerful directives.

 The declare error construct provides a way to declare a compile-time error
when the compiler detects the presence of a join point matching a given point-
cut. The compiler then issues an error, prints the given message for each
detected usage, and aborts the compilation process:

declare error : <pointcut> : <message>;

Similarly, the declare warning construct provides a way to declare a compile-
time warning, but does not abort the compilation process:

declare warning : <pointcut> : <message>;

Note that since these declarations affects compile-time behavior, you must use only
statically determinable pointcuts in the declarations. In other words, the pointcuts
that use dynamic context to select the matching join points—this(), target(),
args(), if(), cflow(), and cflowbelow()—cannot be used for such a declaration.

 A typical use of these constructs is to enforce rules, such as prohibiting calls to
certain unsupported methods, or issuing a warning about such calls. The follow-
ing code example causes the AspectJ compiler to produce a compile-time error if
the join point matching the callToUnsafeCode() pointcut is found anywhere in
the code that is being compiled:

98 CHAPTER 3
AspectJ: syntax basics
declare error : callToUnsafeCode()
: "This third-party code is known to result in crash";

The following code is similar, except it produces a compile-time warning instead
of an error:

declare warning : callToBlockingOperations()
: "Please ensure you are not calling this from AWT thread";

We have more examples of how to use compile-time errors and warnings for pol-
icy enforcement in chapter 6.

3.4 Tips and tricks

Here are some things to keep in mind as you are learning AspectJ. These simple
tips will make your aspects simpler and more efficient:

■ Understand the difference between the AspectJ compiler and a Java compiler—One
of the most common misconceptions that first-time users have is that an
AspectJ compiler works just like a Java compiler. However, unlike a Java
compiler, which can compile either individual files or a set of files together
without any significant difference, the AspectJ complier must compile all
of the related classes and aspects at the same time. This means that you
need to pass all the source files to the compiler together. The latest com-
piler version has additional options for weaving these files into JAR files.
With those options, you also need to pass all JAR files together into a single
invocation of the compiler. See appendix A for more details.

■ Use a consistent naming convention—To get the maximum benefit from a wildcard-
pointcut, it is important that you follow a naming convention consistently. For
example, if you follow the convention of naming all the methods changing
the state of an object to start with set, then you can capture all the state-
change methods using set*. A consistent package structure with the right
granularity will help capture all the classes inside a package tree.

■ Use after returning when appropriate—When designing the after advice, con-
sider using after returning instead of after, as long as you don’t need to
capture an exception-throwing case. The implementation for the after
advice without returning needs to use a try/catch block. There is a cost
associated with such a try/catch block that you can avoid by using an after
returning advice.

■ Don’t be misled by &&—The natural language reading of pointcuts using &&
often misleads developers who are new to AspectJ. For example, the point-

Summary 99
cut publicMethods() && privateMethods() won’t match any method even
though the natural reading would suggest “public and private methods.”
This is because a method can have either private access or public access,
but not both. The solution is simple: use || instead to match public or pri-
vate methods.

Chapter 8 presents a set of idioms that will help you avoid potential troubles as
you begin using AspectJ.

3.5 Summary

AspectJ introduces AOP programming to Java by adding constructs to support
dynamic and static crosscutting. Dynamic crosscutting modifies the behavior of
the modules, while static crosscutting modifies the structure of the modules.
Dynamic crosscutting consists of pointcut and advice constructs. AspectJ exposes
the join points in a system through pointcuts. The support of wildcard matching
in pointcuts offers a powerful yet simple way to capture join points without
knowing the full details. The advice constructs provide a way to express actions
at the desired join points. Static crosscutting, which can be used alone or in sup-
port of dynamic crosscutting, includes the constructs of member introduction,
type hierarchy modification, and compile-time declarations. The overall result is
a simple and programmer-friendly language supporting AOP in Java. At this
point, if you haven’t already done so, you may want to download and install the
AspectJ compiler and tools. Appendix A explains where to find the compiler and
how to install it.

 Together, this chapter and the previous one should get you started on
AspectJ, but for complex programs, you will need to learn a few more concepts,
such as exception softening and aspect association. We present these concepts
and more in the next chapter.

For online information and ordering of this and other Manning books, go to
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact:

Special Sales Department
Manning Publications Co.
209 Bruce Park Avenue Fax: (203) 661-9018
Greenwich, CT 06830 email: orders@manning.com

©2003 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form or by means electronic, mechanical, photocopying, or otherwise, without
prior written permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial
caps or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to
have the books they publish printed on acid-free paper, and we exert our best efforts to that
end.

Manning Publications Co. Copyeditor: Liz Welch
209 Bruce Park Avenue Typesetter: Denis Dalinnik
Greenwich, CT 06830 Cover designer: Leslie Haimes

ISBN 1-930110-93-6

Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – VHG – 05 04 03 02

brief contents

PART 1 UNDERSTANDING AOP AND ASPECTJ.............................1

1 ■ Introduction to AOP 3

2 ■ Introducing AspectJ 32

3 ■ AspectJ: syntax basics 64

4 ■ Advanced AspectJ 100

PART 2 BASIC APPLICATIONS OF ASPECTJ................................143

5 ■ Monitoring techniques: logging, tracing,
and profiling 145

6 ■ Policy enforcement: system wide contracts 178

7 ■ Optimization: pooling and caching 202

PART 3 ADVANCED APPLICATIONS OF ASPECTJ......................243

8 ■ Design patterns and idioms 245

9 ■ Implementing thread safety 286

10 ■ Authentication and authorization 323
vii

viii BRIEF CONTENTS
11 ■ Transaction management 356

12 ■ Implementing business rules 391

13 ■ The next step 425

A ■ The AspectJ compiler 438

B ■ Understanding Ant integration 447

■ resources 455

■ index 461

10Authentication and
authorization
This chapter covers
■ Using JAAS to implement authentication and

authorization
■ Using AspectJ to modularize JAAS-based

authentication
■ Using AspectJ to modularize JAAS-based

authorization
323

324 CHAPTER 10
Authentication and authorization
An important consideration for modern software systems, security consists of many
components, including authentication, authorization, auditing, protection against
web site attacks, and cryptography. In this chapter, we focus on two of these:
authentication and authorization. Together these security components manage
system access by evaluating users’ identities and credentials.

 This chapter introduces an AspectJ-based solution using the Java Authentica-
tion and Authorization Service (JAAS), one of the newest ways to implement
authentication and authorization in Java applications. You’ll see how AspectJ-
based solutions work in cooperation—and not in competition—with existing
technologies. Using AspectJ helps you to modularize your implementation,
which leads to better response to requirement changes, while at the same time
greatly reducing the amount of code you have to write.

 To get a clear understanding of the core problem and how you’d use JAAS to
address it, we also examine the conventional solution for implementing authen-
tication and authorization. Developing the conventional solution serves two pur-
poses: it introduces the basic mechanism offered by JAAS and it demonstrates its
shortcomings. Later when we present the AspectJ-based solution, this knowledge
will come in handy.

10.1 Problem overview

Authentication is a process that verifies that you are who you say you are. Authoriza-
tion, on the other hand, is a process that establishes whether an authenticated
user has sufficient permissions to access certain resources. Both components are
so closely related that it is difficult to talk about one without the other—authori-
zation cannot be accomplished without first performing authentication, and
authentication alone is rarely sufficient to determine access to resources.

 Since authentication and authorization are so important—and continue to
become even more so given our highly connected world—we must learn to deal
with the various ways of implementing such control. Modern APIs like JAAS (which
is now a standard part of J2SE 1.4) abstract the underlying mechanisms and allow
you to separate the access control configuration from the code. The application-
level developer doesn’t have to be aware of the underlying mechanism and won’t
need to make any invasive changes when it changes. In parallel to these APIs,
efforts such as the Security Assertion Markup Language (SAML) and the Extensi-
ble Access Control Markup Language (XACML) aim to standardize the configura-
tion specification language. The overall goal of these APIs and standardization
efforts is to reduce complexity and provide agile implementations.

A simple banking example 325
 Conventional programming methods, even when using APIs such as JAAS,
require you to modify multiple modules individually to equip them with authen-
tication and authorization code. For instance, to implement access control in a
banking system, you must add calls to JAAS methods to all the business methods.
As the business logic is spread over multiple modules, so too is the implementa-
tion of the access control logic.

 Unlike the bare OOP solution, an EJB framework handles authorization in a
much more modular way, separating the security attributes in the deployment
descriptor. As we mentioned in chapter 1, the very existence of EJB is proof that
we need to modularize such concerns. When EJB or a similar framework is not a
choice, as in a UI program, the solution often lacks the desired modularization.
With AspectJ, you now have a much better solution for all such situations.

NOTE Even with the EJB framework, you may face situations that need a cus-
tom solution for authentication and authorization. Consider, for exam-
ple, data-driven authorization where the authorization check not only
considers the identity of the user and the functionality being accessed,
but also the data involved. Current EJB frameworks do not offer a good
solution to these problems that demand flexibility.

10.2 A simple banking example

To illustrate the problem and provide a test bed, let’s write a simple banking sys-
tem. We’ll examine only the parts of the system that illustrate issues involved in
conventional and AspectJ-based solutions to authentication and authorization
implementation. The banking example here differs from the one in chapter 2 in
a few ways: We refactor the classes to create interfaces, we put all the classes and
interfaces in the banking package, and we introduce a new class. We will continue
to build on this system in the next two chapters.

 Listing 10.1 shows the Account interface. (As you can see, we have omitted
some of the methods that you would expect to see in an Account interface.) Later
we’ll create a simple implementation of this interface. The exception Insufficient-
BalanceException that we’ll use to identify an insufficient balance is implemented
in listing 10.2.

package banking;

public interface Account {
 public int getAccountNumber();

Listing 10.1 Account.java

326 CHAPTER 10
Authentication and authorization
 public void credit(float amount);

 public void debit(float amount)
 throws InsufficientBalanceException;

 public float getBalance();
}

package banking;

public class InsufficientBalanceException extends Exception {
 public InsufficientBalanceException(String message) {
 super(message);
 }
}

Now, let’s look at a simple, bare-bones implementation of the Account interface.
Later, we’ll pose the problem of authorizing all of its methods, using both conven-
tional and AspectJ-based solutions. Listing 10.3 shows a simple implementation of
the Account interface that models a banking account.

package banking;

public class AccountSimpleImpl implements Account {
 private int _accountNumber;
 private float _balance;

 public AccountSimpleImpl(int accountNumber) {
 _accountNumber = accountNumber;
 }

 public int getAccountNumber() {
 return _accountNumber;
 }

 public void credit(float amount) {
 _balance = _balance + amount;
 }

 public void debit(float amount)
 throws InsufficientBalanceException {
 if (_balance < amount) {
 throw new InsufficientBalanceException(
 "Total balance not sufficient");

Listing 10.2 InsufficientBalanceException.java

Listing 10.3 AccountSimpleImpl.java

A simple banking example 327
 } else {
 _balance = _balance - amount;
 }
 }

 public float getBalance() {
 return _balance;
 }
}

The code for AccountSimpleImpl is straightforward. To examine how our solution
works across multiple modules and with nested methods that need authorization,
let’s introduce another class, InterAccountTransferSystem (listing 10.4), which
simply contains one method for transferring funds from one account to another.

package banking;

public class InterAccountTransferSystem {
 public static void transfer(Account from, Account to,
 float amount)
 throws InsufficientBalanceException {
 to.credit(amount);
 from.debit(amount);
 }
}

Finally, to test our solution we’ll write a simple Test class. In the sections that fol-
low, we will use this class as a basis for adding authentication and authorization
in the conventional way; later in the chapter, we will use the class to test the
AspectJ-based solution. Listing 10.5 shows the implementation of the Test class.

package banking;

public class Test {
 public static void main(String[] args) throws Exception {
 Account account1 = new AccountSimpleImpl(1);
 Account account2 = new AccountSimpleImpl(2);

 account1.credit(300);
 account1.debit(200);

Listing 10.4 InterAccountTransferSystem.java

Listing 10.5 Test.java: version with no authentication or authorization

328 CHAPTER 10
Authentication and authorization
 InterAccountTransferSystem.transfer(account1, account2, 100);
 InterAccountTransferSystem.transfer(account1, account2, 100);
 }
}

Because of the way the operations are arranged, the last operation should throw
an InsufficientBalanceException. We will ensure that our solutions satisfy the
requirement of throwing this exception (as opposed to some other type of excep-
tion or no exception at all) when the business logic detects insufficient funds in
the debiting account.

 Next, let’s implement a basic logging aspect (listing 10.6) to help us under-
stand the activities taking place.

package banking;

import org.aspectj.lang.*;

import logging.*;

public aspect AuthLogging extends IndentedLogging {
 declare precedence: AuthLogging, *;

 public pointcut accountActivities()
 : execution(public * Account.*(..))
 || execution(public * InterAccountTransferSystem.*(..));

 public pointcut loggedOperations()
 : accountActivities();

 before() : loggedOperations() {
 Signature sig = thisJoinPointStaticPart.getSignature();
 System.out.println("<" + sig.getName() + ">");
 }
}

The base aspect, IndentedLogging, was discussed in section 5.5.2. It provides the
support for indenting the log statements according to their call depth. We need
to define the loggedOperation() pointcut that was declared in the base Indented-
Logging aspect. Later, we will add authentication and authorization logging to it
as we develop the solution. We won’t log more details about the activities (such as
account number and amount involved), since the correctness of the core imple-
mentation is not the focus of this chapter.

Listing 10.6 AuthLogging.java: logging banking operations

Authentication: the conventional way 329
 When we compile the basic banking application and the logging aspect, and
then run the test program, we see output similar to this:

> ajc banking*.java logging*.java
> java banking.Test
<credit>
<debit>
<transfer>
 <credit>
 <debit>
<transfer>
 <credit>
 <debit>
Exception in thread "main" banking.InsufficientBalanceException:

 Total balance not sufficient
...more call stack

The output shows the interaction when no authentication or authorization is in
place. This interaction log will serve as the basis for comparison when we add
authentication and authorization.

 Coverage of the JAAS mechanism is brief since our purpose is to demonstrate
the AOP solution. We encourage you to read a good JAAS book or tutorial so that
you will understand the more complex issues that we do not deal with here; then
you can extend the AspectJ-based solution to them as well. Please note that
although we use a JAAS-based example to explain the AspectJ-based solution, you
can also use the solution as a template for other kinds of access control systems.

10.3 Authentication: the conventional way

In this section, we add authentication functionality to our basic banking system.
We employ the upfront login approach—asking for the username and password at
the beginning of the program. Because of its complexity, we won’t look at an
example of just-in-time authentication (in which authentication does not occur
until the user accesses the system functionality that requires user identity verifica-
tion) in this section, since the point we are demonstrating is basically the same.

10.3.1 Implementing the solution

The authentication functionality in JAAS consists of the following:
■ A LoginContext object
■ Callback handlers that present the login challenge to the user
■ A login configuration file that enables you to modify the configuration

without changing the source code

➥

330 CHAPTER 10
Authentication and authorization
The callback handler provides a mechanism for acquiring authentication infor-
mation. It asks users to provide their name and password either on the console,
in a login dialog box, or through some other means. In our case, we use a simple
TextCallbackHandler that is part of Sun’s JRE 1.4 distribution. If you are using
another JRE, this class may not be available, and you will have to either find an
equivalent or write one of your own. TextCallbackHandler, when invoked, simply
asks for the username and password and supplies the information to the authen-
tication system invoking it. Since the username and password are visible to the
user, you are unlikely to use this callback handler in a real system, but it serves as
a simple, illustrative mechanism for our purposes.

NOTE We use the term user to mean anyone and anything accessing the sys-
tem. It includes human as well as nonhuman users—people and other
parts of the system. For example, in a business-to-business transac-
tion, a machine is likely to represent the identity of a business access-
ing the service.

The login configuration file sets up the class that is used as the authentication
module. We use a very simple authentication module, sample.module.SampleLogin-
Module, provided as a part of the JAAS tutorial (see http://java.sun.com/j2se/1.4/
docs/guide/security/jaas/tutorials/GeneralAcnAndAzn.html). The classes from the
sample package we use are described in the tutorial. Employing this simple
scheme allows us to focus on using AOP instead of the details of JAAS. The fol-
lowing login configuration file (sample_jaas.config) associates the Sample config-
uration with the sample.module.SampleLoginModule class:

Sample {
 sample.module.SampleLoginModule required debug=true;
};

The LoginContext object needs two parameters: a configuration name and a call-
back handler. The configuration name (Sample), in conjunction with the configu-
ration file, determines the login module used by the system.

 Let’s change the Test class to implement authentication with JAAS in the con-
ventional way, as shown in listing 10.7.

package banking;

import javax.security.auth.login.LoginContext;

import com.sun.security.auth.callback.TextCallbackHandler;

Listing 10.7 Test.java: with authentication functionality

Authentication: the conventional way 331
public class Test {
 public static void main(String[] args) throws Exception {
 LoginContext lc
 = new LoginContext("Sample",
 new TextCallbackHandler());
 lc.login();

 Account account1 = new AccountSimpleImpl(1);
 Account account2 = new AccountSimpleImpl(2);

 account1.credit(300);
 account1.debit(200);

 InterAccountTransferSystem.transfer(account1, account2, 100);
 InterAccountTransferSystem.transfer(account1, account2, 100);
 }
}

We enable authentication in our banking system by performing login before
executing any core code. First, we create a LoginContext object, supplying it
with the name of the configuration we wish to use and the callback handler
that will request the username and password. Next, we invoke the login()
method on the LoginContext object. If the username and password pass the
authentication test, the method simply returns normally. If, however, the user-
name and password fail to match, it throws a checked exception of type Login-
Exception. Once the authentication is passed successfully, we continue with the
main program functionality.

 Since we have chosen to implement upfront login authentication, this
arrangement will satisfy that requirement. If, however, you want just-in-time
authentication, you will need to add similar authentication coding in every such
operation. Just-in-time authentication is useful when the system contains several
parts that do not require authenticating the user. Pre-authenticating users may
be less than desirable in such cases.

10.3.2 Testing the solution

To examine the interaction, let’s improve the logging aspect for capturing the
authentication join points. We will change the pointcuts to log the login join
points, as shown in listing 10.8. In the section that follows, we will use the same
logging aspect when we test our AspectJ-based solution.

332 CHAPTER 10
Authentication and authorization
package banking;

import org.aspectj.lang.*;

import javax.security.auth.Subject;
import javax.security.auth.login.LoginContext;

import logging.*;

public aspect AuthLogging extends IndentedLogging {
 declare precedence: AuthLogging, *;

 public pointcut accountActivities()
 : execution(public * Account.*(..))
 || execution(public * InterAccountTransferSystem.*(..));

 public pointcut authenticationActivities()
 : call(* LoginContext.login(..));

 public pointcut loggedOperations()
 : accountActivities()
 || authenticationActivities();

 before() : loggedOperations() {
 Signature sig = thisJoinPointStaticPart.getSignature();
 System.out.println("<" + sig.getName() + ">");
 }
}

When we run the program, it asks for a username and password. If the user can
be authenticated, it proceeds with the remaining part of the program. Other-
wise, it throws a LoginException:

> ajc banking*.java logging*.java
 sample\module*.java sample\principal*.java

> java -Djava.security.auth.login.config=sample_jaas.config
 banking.Test

<login>
user name: testUser
password: testPassword
 [SampleLoginModule] user entered user name: testUser
 [SampleLoginModule] user entered password: testPassword
 [SampleLoginModule] authentication succeeded
 [SampleLoginModule] added SamplePrincipal to Subject
<credit>
<debit>
<transfer>

Listing 10.8 AuthLogging.java: with authentication logging implemented

➥

➥

Authentication: the AspectJ way 333
 <credit>
 <debit>
<transfer>
 <credit>
 <debit>
Exception in thread "main" banking.InsufficientBalanceException:

 Total balance not sufficient
... the rest of call stack

With the exception of presenting the user with a login challenge, there is no dif-
ference in interaction compared with the base system. We now have a banking
system that allows access only to authenticated users.

10.4 Authentication: the AspectJ way

At this point, you should have a good understanding of how to use JAAS for
authentication. However, you’ll recall that when we used it in the conventional
solution, we were forced to make changes to the core system in order to add the
authentication. Additionally, if we had implemented just-in-time authentication
in the conventional solution, it would have forced us to change multiple mod-
ules, causing code scattering. The AspectJ-based solution will improve the modu-
larity of the solution and avoid code scattering. Let’s take a look.

10.4.1 Developing the solution

In this section, we will create a base aspect that we can use to authenticate any
system and a subaspect of it that will enable the banking system’s authentication
mechanism. To enable authentication in your system, all you need to do is
extend the base aspect and provide a list of operations that need authentication
in the pointcut. Listing 10.9 shows the base aspect that modularizes the authen-
tication functionality.

package auth;

import javax.security.auth.Subject;
import javax.security.auth.login.*;

import com.sun.security.auth.callback.TextCallbackHandler;

public abstract aspect AbstractAuthAspect {
 private Subject _authenticatedSubject;

 public abstract pointcut authOperations();

➥

Listing 10.9 AbstractAuthAspect.java: the base authentication aspect

Authenticated subject b

Pointcut for operations
needing authentication c

334 CHAPTER 10
Authentication and authorization
 before() : authOperations() {
 if(_authenticatedSubject != null) {
 return;
 }

 try {
 authenticate();
 } catch (LoginException ex) {
 throw new AuthenticationException(ex);
 }
 }

 private void authenticate() throws LoginException {
 LoginContext lc = new LoginContext("Sample",
 new TextCallbackHandler());
 lc.login();
 _authenticatedSubject = lc.getSubject();
 }

 public static class AuthenticationException
 extends RuntimeException {
 public AuthenticationException(Exception cause) {
 super(cause);
 }
 }
}

The aspect stores the authenticated subject in an instance variable. By storing
the authenticated subject and checking for it prior to invoking the login logic,
we avoid asking for a login every time a method that needs authentication is
called. After a successful login operation, we can obtain this member from the
LoginContext object.

 In our implementation, we will use the whole process as the login scope.
Once a user is logged in, he will never have to log in again during the lifetime of
the program. Depending on your system’s specific requirements, you may want
to move this member to an appropriate place. For example, if you are writing a
servlet, you may want to keep this member in the session object. We also assume
that a user, once logged in, never logs out. If this is not true in your system, you
need to set this member to null when the current user logs out.
The abstract pointcut is meant to be defined in subaspects capturing all the
operations needing authentication.
The before advice to the authOperations() pointcut ensures that our code per-
forms authentication logic only if this is the first time during the program’s life-
time that a method that needs authentication is being executed. If it is the first

Authentication
advice

 d

Authentication
logic

 e

Authentication
exception

 f

 b

 c

 d

Authentication: the AspectJ way 335
time, _authenticatedSubject will be null, and the authenticate() method will be
invoked to perform the core authentication logic. When subsequent join points
that need authentication are executed, because the _authenticatedSubject is
already not null the login process won’t be carried out.

 Since the LoginException is a checked exception, the before advice cannot
throw it. Throwing such exceptions would result in compiler errors. We could have
simply softened this exception using the declare soft construct. However, following
the exception introduction pattern discussed in chapter 8, we instead define a con-
cern-specific runtime exception that identifies the cause of the exception, should a
caller wish to handle the exception.
The core authentication operation is performed in this method. If the login fails,
it throws a LoginException that aborts the program. If the login succeeds, it
obtains the subject from the login context and sets it to the instance variable
_authenticatedSubject.
AuthenticationException is simply a RuntimeException that wraps the original
exception.

Adding authentication functionality to banking is a now a simple matter of writing
an aspect, as shown in listing 10.10, that extends AbstractAuthAspect and defines
the authOperations() pointcut. In our example, we define the pointcut to capture
calls to all methods in the Account and InterAccountTransferSystem classes.

package banking;

import auth.AbstractAuthAspect;

public aspect BankingAuthAspect extends AbstractAuthAspect {
 public pointcut authOperations()
 : execution(public * banking.Account.*(..))
 || execution(public * banking.InterAccountTransferSystem.*(..));
}

Although we have used just-in-time authentication in this example, you can eas-
ily implement up-front authentication by simply adding a pointcut correspond-
ing to the method that represents “up-front” for you, such as the main() method
in the console application or the frame initialization in a UI application. For
example, defining the authOperations() pointcut as follows will perform authen-
tication as soon as the main() method begins to execute:

 public pointcut authOperations()
 : execution(void banking.Test.main(String[]));

 e

 f

Listing 10.10 BankingAuthAspect.java: authenticating banking operations

336 CHAPTER 10
Authentication and authorization
With such a pointcut, the authentication advice will kick in as soon as the pro-
gram starts entering the main() method. Further, when you choose up-front
authentication, you can write an additional advice that tests for authentication
status before executing a method that needs authenticated access. This advice
could simply throw a runtime exception, because accessing this method without
prior authentication is a violation.

10.4.2 Testing the solution

We now have the system equipped with authentication. When we compile the
new aspects with the classes and interfaces in section 10.2, along with the logging
aspect in listing 10.8, and run the test program, it prompts for a username and
password, as in the conventional solution developed earlier:

> ajc banking*.java auth*.java logging*.java
 sample\module*.java sample\principal*.java

> java -Djava.security.auth.login.config=sample_jaas.config
 banking.Test

<credit>
 <login>
user name: testUser
password: testPassword
 [SampleLoginModule] user entered user name: testUser
 [SampleLoginModule] user entered password: testPassword
 [SampleLoginModule] authentication succeeded
 [SampleLoginModule] added SamplePrincipal to Subject
<debit>
<transfer>
 <credit>
 <debit>
<transfer>
 <credit>
 <debit>
Exception in thread "main" banking.InsufficientBalanceException:

 Total balance not sufficient
... the rest of call stack

As expected, this output is identical to that shown in section 10.3. We now have a
system with authentication modularized in one reusable abstract aspect and one
system-specific concrete aspect.

10.5 Authorization: the conventional way

The authorization process determines whether the user has sufficient credentials
to access certain functions within the system. Let’s consider a banking system

➥

➥

➥

Authorization: the conventional way 337
where the authorization rule specifies that only users with managerial credentials
may waive certain fees. We need to perform the following operations:

1 Authentication is a prerequisite to authorization; unless we are certain
that users are who they claim to be, there is no point in checking their
credentials. Therefore, we first need to verify that users have been
authenticated, and if they have not, we need to do so.

2 Then we need to retrieve users’ credentials. You can do this in various
ways depending on the authorization scheme you use. For example, the
authorization system could check a policy file to extract the credentials
associated with the authorized person.

3 Last, we need to verify whether those credentials are sufficient to access
the fee-waiving operation. For example, if a person has only the teller
credential and not the managerial credential, fee-waiving operations
won’t be available to that user.

10.5.1 Understanding JAAS-based authorization

While the exact way you use JAAS will depend on your system’s access control
requirements, a typical way to use it to perform authorization requires that you
follow these steps:

1 Perform authentication—The system first needs to authenticate the user
using a login or any suitable mechanism. Then it must obtain a verified
subject from the authentication subsystem. The Subject class encapsu-
lates information about a single entity, such as its identification and cre-
dentials. All subsequent operations that require authorization must
check that this subject has sufficient credentials to access the operations.

2 Create an action object—JAAS requires that each method that needs an
authorization check be encapsulated in an action object. This object must
implement either PrivilegedAction or PrivilegedExceptionAction.
Both interfaces contain just one method: run(). The only difference is
that the run() method has no exception declaration in the former inter-
face, whereas in the latter, it declares that it may throw an exception of
type Exception. In either case, the run() method needs to execute the
intended operation.

3 Execute the action object—The action object we just created needs to be
executed on behalf of the authenticated subject using static methods in

338 CHAPTER 10
Authentication and authorization
the Subject class: Subject.doAsPrivileged(Subject, PrivilegedAction,
AccessControlContext) or Subject.doAsPrivileged(Subject, Privileged-
ExceptionAction, AccessControlContext). In cases where doAsPrivileged()
is called with a PrivilegedExceptionAction parameter, if the run()
method throws a checked exception, it will wrap it inside Privileged-
ActionException before throwing it.

4 Check access—The methods that need to ensure authorized access must
check the subject’s credentials by calling the AccessController.check-
Permission() method and passing it a permission object that contains
the required permissions. If the user doesn’t have sufficient permissions,
this method throws an unchecked AccessControlException exception.

5 Create a system-level access control policy—At the system level, you write a
policy file that grants to a set of subjects permissions to certain opera-
tions. The AccessController.checkPermission() method indirectly uses
this policy file to grant access only to those operations that are allowed
by the accessing subject’s credentials and permissions.

10.5.2 Developing the solution

Now that we’ve looked at the changes needed in the system to implement
authorization, let’s look at the modifications we need to make in the banking
example. In listing 10.11, we define a simple permission class, BankingPermis-
sion. The name string passed in its constructor defines the permissions. We will
later map these strings in a security policy file to allow only certain users to
access certain functionality.

package banking;

import java.security.*;

public final class BankingPermission extends BasicPermission {
 public BankingPermission(String name) {
 super(name);
 }

 public BankingPermission(String name, String actions) {
 super(name, actions);
 }
}

Listing 10.11 BankingPermission.java: permission class for banking system authorization

Authorization: the conventional way 339
The class BankingPermission defines two constructors to match those in the base
BasicPermission class. The actions parameter in the second constructor is
unused and exists only to instantiate the permission object from a policy file. To
learn more, refer to the JDK documentation.

 Now let’s modify the AccountSimpleImpl class to check permission in each of
its public methods. Each change is simply a call to AccessController.check-
Permission() with a BankingPermission object as an argument. Each Banking-
Permission needs a name argument to specify the kind of permission sought. We
employ a simple scheme that uses the method name itself as the permission
string. Listing 10.12 shows the implementation of AccountSimpleImpl where
each method checks the permission before executing its core logic.

package banking;

import java.security.AccessController;

public class AccountSimpleImpl implements Account {
 private int _accountNumber;
 private float _balance;

 public AccountSimpleImpl(int accountNumber) {
 _accountNumber = accountNumber;
 }

 public int getAccountNumber() {
 AccessController.checkPermission(
 new BankingPermission("getAccountNumber"));

 ...

 }

 public void credit(float amount) {
 AccessController.checkPermission(
 new BankingPermission("credit"));

 ...

 }

 public void debit(float amount)
 throws InsufficientBalanceException {
 AccessController.checkPermission(
 new BankingPermission("debit"));

 ...

 }

Listing 10.12 AccountSimpleImpl.java: the conventional way

340 CHAPTER 10
Authentication and authorization
 public float getBalance() {
 AccessController.checkPermission(
 new BankingPermission("getBalance"));

 ...

 }

 ... implementation for private methods ...
}

We now have an Account implementation that performs access checks for each
public operation. We must make similar changes to InterAccountTransferSystem
(we’ll omit that discussion here for brevity’s sake). Next, let’s look at the changes
needed in our test program (listing 10.13) that invokes these operations.

package banking;

import java.security.*;
import javax.security.auth.Subject;
import javax.security.auth.login.LoginContext;

import com.sun.security.auth.callback.TextCallbackHandler;

public class Test {
 public static void main(String[] args) throws Exception {
 LoginContext lc
 = new LoginContext("Sample",
 new TextCallbackHandler());
 lc.login();

 final Account account1 = new AccountSimpleImpl(1);
 final Account account2 = new AccountSimpleImpl(2);

 Subject authenticatedSubject = lc.getSubject();

 Subject
 .doAsPrivileged(authenticatedSubject,
 new PrivilegedAction() {
 public Object run() {
 account1.credit(300);
 return null;
 }}, null);
 try {
 Subject
 .doAsPrivileged(authenticatedSubject,
 new PrivilegedExceptionAction() {

Listing 10.13 Test.java: the conventional way

Authorization: the conventional way 341
 public Object run() throws Exception {
 account1.debit(200);
 return null;
 }}, null);
 } catch (PrivilegedActionException ex) {
 Throwable cause = ex.getCause();
 if (cause instanceof InsufficientBalanceException) {
 throw (InsufficientBalanceException)ex.getCause();
 }
 }

 try {
 Subject
 .doAsPrivileged(authenticatedSubject,
 new PrivilegedExceptionAction() {
 public Object run() throws Exception {
 InterAccountTransferSystem
 .transfer(account1, account2,
 100);
 return null;
 }}, null);
 } catch (PrivilegedActionException ex) {
 Throwable cause = ex.getCause();
 if (cause instanceof InsufficientBalanceException) {
 throw (InsufficientBalanceException)ex.getCause();
 }
 }

 try {
 Subject
 .doAsPrivileged(authenticatedSubject,
 new PrivilegedExceptionAction() {
 public Object run() throws Exception {
 InterAccountTransferSystem
 .transfer(account1, account2,
 100);
 return null;
 }}, null);
 } catch (PrivilegedActionException ex) {
 Throwable cause = ex.getCause();
 if (cause instanceof InsufficientBalanceException) {
 throw (InsufficientBalanceException)ex.getCause();
 }
 }
 }
}

Clearly, we’ve had to use too much code. For each operation needing access con-
trol, we create an anonymous class extending either PrivilegedExceptionAction

342 CHAPTER 10
Authentication and authorization
or PrivilegedAction, based on whether the operation can throw a checked
exception. The run() method of each anonymous class simply calls the operation
under consideration.

 We put the calls to the methods that are routed through a PrivilegedException-
Action object in a try/catch block. In the catch block, we check to see if the cause
for the exception is an InsufficientBalanceException. If so, we throw that excep-
tion because the caller of the business method would expect it to be Insufficient-
BalanceException and not PrivilegedExceptionAction. Please refer to the JDK
documentation for PrivilegedExceptionAction for more details on how the
checked exceptions are handled differently than the runtime exceptions.

 While we use anonymous classes here, we could have used named classes as
well. Each named class would require a constructor taking all the parameters of
the method. It would then store those parameters as instance variables. Later,
while implementing the run() method, it would pass the stored instance vari-
ables to the method.

 We could have also combined all the operations into one action by creating a
single PrivilegedExceptionAction and routing all the actions through it. How-
ever, we did not do so in order to better mimic the real system, where not all the
operations that need authorization will be in one or two places. Further, combining
several methods into one action requires that you consider exception-handling
carefully. By routing the methods individually through the PrivilegedException-
Action class, you can handle an exception thrown by each method separately and
make the appropriate decisions. With the combined method, you will need to
handle the exceptions thrown by a set of methods together. While such an
arrangement may not always be a problem, you need to consider it anyway.

10.5.3 Testing the solution
Let’s see if the solution works. To do so, we add authorization logging to the
AuthLogging aspect, as shown in listing 10.14.

package banking;

import org.aspectj.lang.*;

import javax.security.auth.Subject;
import javax.security.auth.login.LoginContext;

import logging.*;

public aspect AuthLogging extends IndentedLogging {

Listing 10.14 AuthLogging.java: adding authorization logging

Authorization: the conventional way 343
 declare precedence: AuthLogging, *;

 public pointcut accountActivities()
 : call(void Account.credit(..))
 || call(void Account.debit(..))
 || call(* Account.getBalance(..))
 || call(void InterAccountTransferSystem.transfer(..));

 public pointcut authenticationActivities()
 : call(* LoginContext.login(..));

 public pointcut authorizationActivities()
 : call(* Subject.doAsPrivileged(..));

 public pointcut loggedOperations()
 : accountActivities()
 || authenticationActivities()
 || authorizationActivities();

 before() : loggedOperations() {
 Signature sig = thisJoinPointStaticPart.getSignature();
 System.out.println("<" + sig.getName() + ">");
 }
}

The aspect in listing 10.14 modified the one in listing 10.8 to add a new point-
cut, authorizationActivities(), and include that pointcut in the loggedOpera-
tion() pointcut.

 In the BankingPermission class (listing 10.11), the constructor took an argu-
ment name that was a string defining the permissions for the system. We said that
we would later map name to a security policy file to allow only certain users to
access certain functionality. Let’s define that security policy file now. We want to
permit testUser to be able to carry out all the operations in the banking system.
Listing 10.15 shows the policy file that grants testUser the permissions to access
all the operations (credit, debit, getBalance, and transfer).

grant Principal sample.principal.SamplePrincipal "testUser" {
 permission banking.BankingPermission "credit";
 permission banking.BankingPermission "debit";
 permission banking.BankingPermission "getBalance";
 permission banking.BankingPermission "transfer";
};

Listing 10.15 security.policy: the policy file for authorization

344 CHAPTER 10
Authentication and authorization
When we compile and run the test program, it not only asks for a name and
password, but also executes all the operations that have been authorized through
Subject.doAsPrivileged():

> ajc banking*.java logging*.java
 sample\module*.java sample\principal*.java

> java -Djava.security.auth.login.config=sample_jaas.config
 -Djava.security.policy=security.policy banking.Test

<login>
user name: testUser
password: testPassword
 [SampleLoginModule] user entered user name: testUser
 [SampleLoginModule] user entered password: testPassword
 [SampleLoginModule] authentication succeeded
 [SampleLoginModule] added SamplePrincipal to Subject
<doAsPrivileged>
 <credit>
<doAsPrivileged>
 <debit>
<doAsPrivileged>
 <transfer>
 <credit>
 <debit>
<doAsPrivileged>
 <transfer>
 <credit>
 <debit>
Exception in thread "main" banking.InsufficientBalanceException:

 Total balance not sufficient
... the rest of call stack

The output shows that each method that needs authorization is called in the con-
text of the doAsPrivileged() method. We will compare this output to one using
AspectJ-based authorization in section 10.6; we expect them to be identical.

 If you want to learn more about JAAS, modify the security policy file to see
the effect of different permissions. This will allow you to see how JAAS prevents
certain users from accessing a set of operations while allowing others to access
those operations.

 Now extend this problem to a real system and try to answer the following
question: Which operations in your system need to be authenticated/authorized?
The answer will not be easy to come by. You will have to examine all the modules
and create a list of operations that perform access control checks. This task is
laborious and error-prone.

➥

➥

➥

Authorization: the conventional way 345
10.5.4 Issues with the conventional solution

Let’s summarize the problems posed by the conventional object-oriented solution:
■ Scattering of decisions—The decision for operations to be checked against

permissions is scattered throughout the system, and therefore any modifi-
cations to it will cause invasive changes.

■ Difficulty of determining access-controlled operations—Consider the same prob-
lem of deciding if an operation needs to perform authorization checks
from the business component developer’s point of view. Since deciding
whether an operation needs authorization depends on the system using
the components, it is even harder to identify these operations in compo-
nents than in system-specific classes.

■ The need to write a class for each access-controlled operation—For each simple
operation, you must write a named or anonymous class carrying out the
desired operation.

■ Incoherent system behavior—The implementation for authorizing a method
is separated into two parts: the callee and the caller. The callee side uses
AccessController.checkPermission() to check the permissions (as in list-
ing 10.12), whereas the caller side uses Subject.doAsPrivileged() to exe-
cute the operation on a subject’s behalf. Failure to check permissions on
the callee side may allow unauthorized subjects to access your system. On
the caller side, if you forget to use Subject.doAsPrivileged(), your opera-
tion will fail even if the user accessing the operation has the proper set of
permissions. If you don’t find and fix the problem during a code review or
a testing phase, it will pop up after the deployment, potentially causing a
major loss of business functionality.

■ Difficult evolution—Any change in authorization operations means making
changes in every place the call is made. Any such change will require that the
entire test be run through again, increasing the cost of the change.

This list demonstrates the sheer amount of code you will need to write. However,
the amount of code is not the biggest problem. Just examine the tangling of the
authorization code—it simply overwhelms the core logic. The conventional
methods force you to stuff the system-level authorization concern into every part
of the system. A utility wrapper can reduce the amount of code, but the funda-
mental problem of tangling remains unsolved.

346 CHAPTER 10
Authentication and authorization
10.6 Authorization: the AspectJ way

In extending the AspectJ solution to address authorization, we use the worker
object creation pattern described in chapter 8. As with authentication, AspectJ
enables you to add authorization to the system without changing the core imple-
mentation. In this section, we develop a reusable aspect that enables you to add
authorization to your system by simply writing a few lines for a subaspect.

10.6.1 Developing the solution

To recap, using JAAS to implement authorization involves routing the authorized
call through a class that implements either PrivilegedExceptionAction or
PrivilegedAction, depending on whether the operation throws checked excep-
tions. As you saw in section 10.5, the conventional solution requires the coding of
both classes implementing PrivilegedAction and their invocations. The worker
object creation pattern takes the pain out of this process. Without this pattern,
we would have to implement classes for each operation that needs authorization.
We could still use AspectJ to provide around advice to intercept each of the oper-
ations separately and to create and execute the corresponding, hand-written action
objects through Subject.doAsPrivileged(Subject, PrivilegedAction, AccessControl-
Context), or Subject.doAsPrivileged(Subject, PrivilegedExceptionAction, Access-
ControlContext). Now, with the use of a worker object creation pattern, instead
of writing a class for each operation that needs authorization, we simply write an
aspect that advises all corresponding join points of such operations to auto-
create worker classes and execute them through Subject.doAsPrivileged().

 The result is a real savings in the amount of code we have to write, since the
concern is modularized within just one aspect. Listing 10.16 shows the base
aspect that implements the authorization concern in addition to authentication.

package auth;

import org.aspectj.lang.JoinPoint;

import java.security.*;
import javax.security.auth.Subject;
import javax.security.auth.login.*;

import com.sun.security.auth.callback.TextCallbackHandler;

public abstract aspect AbstractAuthAspect {

Listing 10.16 AbstractAuthAspect.java: adding authorization capabilities

Authorization: the AspectJ way 347
 private Subject _authenticatedSubject;

 public abstract pointcut authOperations();

 before() : authOperations() {
 if(_authenticatedSubject != null) {
 return;
 }

 try {
 authenticate();
 } catch (LoginException ex) {
 throw new AuthenticationException(ex);
 }
 }

 public abstract Permission getPermission(
 JoinPoint.StaticPart joinPointStaticPart);

 Object around()
 : authOperations() && !cflowbelow(authOperations()) {
 try {
 return Subject
 .doAsPrivileged(_authenticatedSubject,
 new PrivilegedExceptionAction() {
 public Object run() throws Exception {
 return proceed();
 }}, null);
 } catch (PrivilegedActionException ex) {
 throw new AuthorizationException(ex.getException());
 }
 }

 before() : authOperations() {
 AccessController.checkPermission(
 getPermission(thisJoinPointStaticPart));
 }

 private void authenticate() throws LoginException {
 LoginContext lc = new LoginContext("Sample",
 new TextCallbackHandler());
 lc.login();
 _authenticatedSubject = lc.getSubject();
 }

 public static class AuthenticationException
 extends RuntimeException {
 public AuthenticationException(Exception cause) {
 super(cause);
 }
 }

Pointcut for
operations
that need
authorization

 b

Method that
obtains the
needed
permissions

 c

Around advice
that creates and

executes the
worker object

 d

Permissions
checking

 e

348 CHAPTER 10
Authentication and authorization
 public static class AuthorizationException
 extends RuntimeException {
 public AuthorizationException(Exception cause) {
 super(cause);
 }
 }
}

This aspect routes every call that needs authorization through an anonymous
class implementing the PrivilegedExceptionAction interface. By inserting pro-
ceed() in the implemented run() method, we take care of wrapping all opera-
tions that require any type and number of arguments, as well as any type of
return value. This pattern saves us from writing a class for each operation that
needs authorization.

 Let’s examine the aspect in more detail:
The authOperations() abstract pointcut is identical to the one in the authentica-
tion solution we presented earlier. When we define the pointcut in the subaspect,
we will list all the operations that need authentication, which are the same as the
ones that need authorization. Later, toward the end of chapter, we show you a
simple modification you can use if you have to separate the list for operations
that need authentication from those that need authorization.
This abstract method allows the subaspects to define the permission needed for
the captured operation. It passes the static information about the captured join
point to the getPermission() method in case the permission depends on a class
and method for the operation.
This around advice first creates a worker object for the captured operation and then
executes it using Subject.doAsPrivileged() on behalf of the authenticated subject.
By using the && operator to combine the authOperations() pointcut with !cflowbe-
low(authOperations()), we ensure that the worker object is created only for the top-
level operations that need authorization. Note that we do not need to separately
route an operation if it is already in the control flow of another routed operation.
This before advice determines whether the caller of the method has sufficient
permissions. Note we did not put the logic to check permissions in the preceding
around advice. This is because we first need to create the worker object and pass
it to Subject.doAsPrivileged(); only then can we check for the permissions
called by the worker object.
AuthorizationException is simply a RuntimeException that wraps the original
exception.

Authorization
exception

 f

 b

 c

 d

 e

 f

Authorization: the AspectJ way 349
Notice how the two before advice and an around advice to the authOperations()
pointcut are lexically arranged. (Please refer to section 4.2.4 for more informa-
tion about how lexical ordering of advice in an aspect affects their precedence.)
This arrangement is critical for the correct functioning of this aspect. With this
arrangement the advice is executed as follows:

1 The first before advice is executed prior to executing the join point. This
advice performs the authentication, if needed, and obtains an authenti-
cated subject after authenticating.

2 The around advice is executed next. It creates a wrapper worker object and
invokes it using Subject.doAsPrivileged(). This results in calling the
original captured join point when the advice body encounters proceed().

3 The second before advice is executed just prior to proceeding with the
execution of the captured join point. Essentially, think of the before
advice as being called right before the proceed() method in the around
advice. This advice uses AccessController.checkPermission() to check
the permission needed.

In summary, by controlling the precedence, we ensure that authentication occurs
before authorization; we verify the identity of the subject before we check the
permissions for that subject.

 To enable authorization in our banking system, we must modify Banking-
AuthAspect to implement the abstract getPermission() method. This is all we
have to change in order to enable authorization—the reusable base aspect takes
care of all the complexities. Listing 10.17 shows BankingAuthAspect, which
enables authorization in our example banking system.

package banking;

import org.aspectj.lang.JoinPoint;

import java.security.Permission;

import auth.AbstractAuthAspect;

public aspect BankingAuthAspect extends AbstractAuthAspect {
 public pointcut authOperations()
 : execution(public * banking.Account.*(..))
 || execution(public * banking.InterAccountTransferSystem.*(..));

Listing 10.17 BankingAuthAspect.java: adding authorization capabilities

350 CHAPTER 10
Authentication and authorization
 public Permission getPermission(
 JoinPoint.StaticPart joinPointStaticPart) {
 return new BankingPermission(
 joinPointStaticPart.getSignature().getName());
 }
}

In this concrete aspect, we add a definition for the getPermission() method. In
our implementation, we return a new BankingPermission class with the name of
the method obtained from the join point’s static information as the permission
identification string. This permission scheme is identical to the one we used for
the conventional solution in listing 10.15.

10.6.2 Testing the solution

When we compile all the classes and aspects and run the test program, we see
output similar to the following:

> ajc banking*.java auth*.java logging*.java
 sample\module*.java sample\principal*.java

> java -Djava.security.auth.login.config=sample_jaas.config
 -Djava.security.policy=security.policy banking.Test

<credit>
 <login>
user name: testUser
password: testPassword
 [SampleLoginModule] user entered user name: testUser
 [SampleLoginModule] user entered password: testPassword
 [SampleLoginModule] authentication succeeded
 [SampleLoginModule] added SamplePrincipal to Subject
 <doAsPrivileged>
<debit>
 <doAsPrivileged>
<transfer>
 <doAsPrivileged>
 <credit>
 <debit>
<transfer>
 <doAsPrivileged>
 <credit>
 <debit>
Exception in thread "main"

 auth.AbstractAuthAspect$AuthorizationException:
 banking.InsufficientBalanceException: Total balance not sufficient

Note that the output is nearly identical to that in section 10.5.4. However, there
are a few differences. The first difference is that the login occurs in a different

➥

➥

➥
➥

Authorization: the AspectJ way 351
place due to the just-in-time policy. Second, the log for each operation occurs
before the log for the doPrivileged() method that routed the operation. This
is because the logging aspect has a higher precedence, and its before advice is
applied before the around advice in AbstractAuthAspect. Refer to chapter 4,
section 4.2, for details on aspect precedence rules. Also note that the type of
exception thrown by the last transfer() call is not the expected Insufficient-
BalanceException. This behavior is due to the fact that any exception thrown by
the PrivilegedExceptionAction.run() method is wrapped in an Authorization-
Exception. Since we cannot throw a checked exception of a type other than that
declared by the method itself, we wrap the exception in a runtime exception
AbstractAuthAspect.AuthorizationException.

 We can remedy the situation by simply adding one more aspect, modeled
after the exception introduction pattern in chapter 8, to the system. This aspect’s
job is to catch the AbstractAuthAspect.AuthorizationException thrown by any
method that could throw an InsufficientBalanceException and check the cause
of the thrown exception. If the cause’s type is InsufficientBalanceException, it
then throws the cause exception instead of AuthorizationException. Listing 10.18
shows the implementation of this logic in an aspect.

package banking;

import auth.AbstractAuthAspect;

public aspect PreserveCheckedException {
 after() throwing(AbstractAuthAspect.AuthorizationException ex)
 throws InsufficientBalanceException
 : call(* banking..*.*(..)
 throws InsufficientBalanceException) {
 Throwable cause = ex.getCause();
 if (cause instanceof InsufficientBalanceException) {
 throw (InsufficientBalanceException)cause;
 }
 throw ex;
 }
}

In this case, the only exception that we need to preserve is InsufficientBalance-
Exception. Now when we compile all the classes and aspects, we see that the
checked exception is preserved:

Listing 10.18 PreserveCheckedException.java: aspect preserving checked exceptions

352 CHAPTER 10
Authentication and authorization
> ajc banking*.java auth*.java logging*.java
 sample\module*.java sample\principal*.java

> java -Djava.security.auth.login.config=sample_jaas.config
 -Djava.security.policy=security.policy banking.Test

<credit>
 <login>
user name: testUser
password: testPassword
 [SampleLoginModule] user entered user name: testUser
 [SampleLoginModule] user entered password: testPassword
 [SampleLoginModule] authentication succeeded
 [SampleLoginModule] added SamplePrincipal to Subject
 <doAsPrivileged>
<debit>
 <doAsPrivileged>
<transfer>
 <doAsPrivileged>
 <credit>
 <debit>
<transfer>
 <doAsPrivileged>
 <credit>
 <debit>
Exception in thread "main" banking.InsufficientBalanceException:
Total balance not sufficient
... the rest of call stack

We now have an aspect-oriented solution to authentication and authorization for
the banking system. The most beneficial characteristics of this solution are:

■ You can add functionality without touching even a single core source file.
■ The specifications are captured in a single aspect.
■ The base aspect that implements most of the functionality is reusable.

You now should be able to write a simple subaspect of this reusable aspect to get
a comprehensive access-controlled system.

 Now that we have a modularized implementation of authorization concerns,
we can quickly react to any changes in the authorization requirements. For exam-
ple, consider data-driven authorization in a banking system where the creden-
tials needed for performing the fee-waiving operations depend on the amount
involved. We can implement this requirement easily by capturing the join points
corresponding to the fee-waiving operations and collecting the waived amount
as a context. We then advise such join points to check the credentials based on
the amount. Consider another requirement: providing the opportunity for re-
login with a different identity upon determining that the credentials with the
current identity are not sufficient to perform an operation. We can easily imple-

➥

➥

Fine-tuning the solution 353
ment this functionality by modifying the authorization advice to present the user
with a login opportunity upon authorization failure. In a nutshell, the ease of
implementation brought forth by AspectJ-based authorization makes it practical
to implement useful variations of the core functionality.

10.7 Fine-tuning the solution

In this section, we examine a few finer points that you may want to consider
when customizing the access control solution for your system.

10.7.1 Using multiple subaspects

In most common situations, the list of operations that need authentication and
authorization is a system-wide consideration, similar to the solution in this chap-
ter. However, suppose each subsystem must control its list of operations. In this
case, you need multiple subaspects, one for each subsystem, each specifying
operations in the associated subsystem. For example, the following aspect
extends AbstractAuthAspect to authenticate all the public operations in the
com.mycompany.secretprocessing package:

public aspect SecretProcessingAuthenticationAspect {
 extends AbstractAuthAspect {
 public pointcut authOperations() :
 execution(public * com.mycompany.secretprocessing.*(..));
}

Using this scheme, you can include multiple subaspects in a system, each specify-
ing a list of join points needing authentication and authorization. Then the
advice in the base aspect applies to join points captured by the pointcut in each
subaspect. This is similar to the participant pattern, in which each class controls
the subaspect that defines the pointcuts for the class. However, in this case the
subaspect defines the pointcuts for a subsystem, which results in greater flexibil-
ity and ease of maintenance for the owners of the subsystem.

 Remember that if you use multiple subaspects, the system will create an
instance of each of the concrete subaspects that share the common base aspect. If
you store the authenticated subject as an instance variable of the base aspect, as
we did in the solution in this chapter, the user will be forced to log in multiple
times—upon reaching the first join point captured by the pointcut in each con-
crete subaspect. You will need to store the authenticated subject in a different
way. For instance, if your authentication has program scope, you may want to
keep the authenticated subject as a static variable inside the AbstractAuthAspect.

354 CHAPTER 10
Authentication and authorization
10.7.2 Separating authentication and authorization

In the chapter’s solution, we used a single pointcut to capture both authoriza-
tion and authentication join points. While this scheme is fine in most cases,
there are situations when you need to separate these join points. For example,
consider a requirement for up-front login. You need the method corresponding
to the main entry in the program to be authenticated but not necessarily autho-
rized. Satisfying such a requirement is quite simple. First you need two point-
cuts: one for authentication and another for authorization. Then you must
modify the aspect we developed to separate out the authentication advice to
apply to the authentication pointcut, and you will have to modify the authoriza-
tion advice in a similar way.

 What happens if your authorization join point is encountered prior to an
authentication one? The solution depends on your system’s requirements. One
solution is to fall back to just-in-time authentication, thus performing authenti-
cation prior to the execution of the first method that needs to check authoriza-
tion (if the user was never authenticated). The easiest way to achieve this would
be to include an authorization pointcut in an authentication pointcut as well:

pointcut authenticatedOperations()
 : primaryAuthenticatedOperations() || authorizedOperations();

The other possibility is to simply throw an exception if an authorization join
point is reached before the user is authenticated. Checking to see if the
_authenticatedSubject is null in the authorization advice may be the easiest
option. Both the choices can be implemented easily, and the choice you make
depends on your system requirements.

10.8 Summary

The JAAS API provides a standard way to introduce authentication and authori-
zation into your system without requiring application developers to know the
complex implementation details. The conventional JAAS-based solution suffers
from code bloat and poses the problem of having no single place to list or
enforce authentication and authorization decisions. On a large system, this
makes it almost impossible to figure out which operations are being authorized.
Further, it separates the implementation on the caller side from the callee side.
Failing to add an authentication check on the caller side leads to making
resources unavailable to otherwise qualified users. Failing to add an authoriza-
tion check on the callee side, on the other hand, results in potential unautho-
rized access to the operations, compromising the system’s integrity.

Summary 355
 The beauty of an AspectJ solution for authentication and authorization lies in
modularizing the access control implementation into a few modules, separate
from the core system logic. You still use JAAS to perform the core part of authen-
tication and authorization, but you no longer need to have calls to its API all over
the system. By simply including a few aspects and specifying operations that
require access control, you complete the implementation. If you have to add or
remove operations under access control, you just change the list of operations
needing such control—no change is required to the core parts of the system. AOP
and AspectJ make authentication and authorization not only easy to implement
but also easy to evolve.

 By combining such aspects along with those in the rest of the book, you could
create an EJB-lite framework and benefit from improved control over the ser-
vices you need.

	AspectJ: syntax basics
	3.1 Pointcuts
	3.1.1 Wildcards and pointcut operators
	3.1.2 Signature syntax
	3.1.3 Implementing pointcuts

	3.2 Advice
	3.2.1 Anatomy of advice
	3.2.2 The before advice
	3.2.3 The after advice
	3.2.4 The around advice
	3.2.5 Comparing advice with methods
	3.2.6 Passing context from a join point to advice
	3.2.7 Returning a value from around advice
	3.2.8 An example using around advice: failure handling
	3.2.9 Context collection example: caching

	3.3 Static crosscutting
	3.3.1 Member introduction
	3.3.2 Modifying the class hierarchy
	3.3.3 Introducing compile-time errors and warning

	3.4 Tips and tricks
	3.5 Summary

	1930110936bsp_.pdf
	Authentication and authorization
	10.1 Problem overview
	10.2 A simple banking example
	10.3 Authentication: the conventional way
	10.3.1 Implementing the solution
	10.3.2 Testing the solution

	10.4 Authentication: the AspectJ way
	10.4.1 Developing the solution
	10.4.2 Testing the solution

	10.5 Authorization: the conventional way
	10.5.1 Understanding JAAS-based authorization
	10.5.2 Developing the solution
	10.5.3 Testing the solution
	10.5.4 Issues with the conventional solution

	10.6 Authorization: the AspectJ way
	10.6.1 Developing the solution
	10.6.2 Testing the solution

	10.7 Fine-tuning the solution
	10.7.1 Using multiple subaspects
	10.7.2 Separating authentication and authorization

	10.8 Summary

