Buiter messages

This chapter covers

An overview of JMS and message-driven beans

An example messaging application using JMS and MDBs
Message-level design antipatterns

Application-level design antipatterns

Asynchronous communication antipatterns

Performance antipatterns

162

6.1

A brief overview of JMS 163

We have been shredding the powdery slopes relentlessly since catching the first lift of
the day. As we ascend one of Colorado’s epic mountains to take yet another adrena-
line ride, a storm rolls in and quickly begins blowing in a fresh layer of powder.
Once off the lift, we take a seat, snowboarder style, at the top of the run to plot our
line of descent. The density of snowflakes swirling in the low light conditions has
decreased our visibility. Donning goggles, we push off and immediately fall into a
rhythm of parallel S-turns that kick up wispy snow fans. Halfway down the moun-
tain the slope suddenly forks, but I fail to see it through the blowing snow. After a
few more turns, it hits me—I don’t hear the familiar sound of another board carv-
ing across the snow. I wait at the edge of the silent slope for a while, but it’s soon evi-
dent that my buddy zigged when I zagged. We’re out of synch on an enormous
mountain enveloped by a storm.

In Bitter Java, our fellow author, Bruce Tate, accurately predicted that message-
driven beans (MDB) would provide fertile ground for antipatterns. Unveiled in
EJB 2.0, MDB are still relatively new, yet unfortunate antipatterns have already
begun to rear their ugly heads. The painful lessons these antipatterns teach aren’t
new. Indeed, message-based systems have been around for a relatively long time.
Many seasoned developers wear the battle scars of messaging gone bad, but fueled
by the need to quickly integrate applications with other internal and external
applications, messaging has become increasingly pervasive. With the advent of
MDBs, which promote asynchronous messaging as a first-class distributed comput-
ing model in the J2EE platform, the stakes have been raised. Yet another tool has
found a home in our already brimming toolbox. And, as always, the wisdom of a
craftsman will lie in knowing how and when (or when not) to use it.

In this chapter, we’ll review the Java Message Service (JMS) and its recent intro-
duction into the J2EE platform in the form of MDBs. Working through a simple
example, we’ll encounter potential pitfalls in designing message-based applica-
tions. Some antipatterns we’ll uncover are related to application performance,
while others fester at the application design level. As we look at each bitter sce-
nario, we’ll explore practical alternatives to ensure that our applications don’t
end up stranded.

A brief overview of JMS

JMS is an API that allows applications to communicate asynchronously by exchang-
ing messages. JMS is to messaging systems what JDBC is to database systems. JMS is
best used to glue together applications through interapplication messaging.

164

CHAPTER 6
Bitter messages

These applications, referred to as JMS clients, engage in asynchronous conversa-
tions by using a common set of interfaces to create, send, receive, and read mes-
sages. That’s not to say you also couldn’t use JMS for intra-application messaging
to send messages between multiple threads, for example.

JMS itself is an industry-standard specification, not an implementation. Ven-
dors of messaging products—commonly referred to as message-oriented middle-
ware (MOM)—support JMS by providing implementations of the interfaces
defined in the JMS specification. By relying only on vendor-neutral interfaces,
applications are decoupled from any specific vendor. That is, the underlying ven-
dor’s implementation can be changed or substituted with another without break-
ing the JMS clients.

A vendor’s JMS implementation is known as a JMS provider. A JMS provider
includes the software that composes the JMS server, or message broker, and the
software running within each JMS client. A JMS application therefore comprises
multiple JMS clients exchanging messages indirectly through a JMS server.
Figure 6.1 illustrates a common JMS application.

Notice that the JMS server acts as a middleman between JMS clients. This
enables loosely coupled communication; neither client knows about the other.
This loosely coupled communication improves reliability, since one client will not
be dependent on the location, availability, or identity of another. Indeed, clients
are free to come and go without adversely affecting reliability. This situation is in
stark contrast to the remote procedure call (RPC) computing model used by
CORBA and Java RMI. Applications using RPC communicate directly with each
other. As such, they tend to be tightly coupled.

That’s enough theory. We’ll learn far more about JMS by getting our hands
dirty building an example application.

Client 1 Client 2

Java Application Java Application

JMS API JMS API

JMS Provider JMS Provider
Messages Messages

Figure 6.1 In a JMS application, applications use the interfaces of the JMS API to
communicate indirectly through the JMS server. Under the hood of each JMS client and
within the JMS server, a vendor’s JMS implementation does all the heavy lifting.

An early antipattern: Fat Messages 165

6.2 An early antipattern: Fat Messages

Messages are the lingua franca of messaging systems. Any application that can
speak in messages is welcome to join in conversations. Message producers are JMS cli-
ents that send messages. Message consumers are JMS clients that receive messages.

The message language is defined by the JMS specification, which specifies six
different message types that vary with the type of payload they transport. Think of
these message types as dialects of the message language. They all sound similar,
but each has a slightly different accent. Their similarity lies in a common struc-
ture: headers, properties, and a payload. The headers and properties define rout-
ing and other information about the message. The payload, or message body, is
the meat of the message. It contains data of specific interest to message consum-
ers. The structure of the payload is unique to each message type. Table 6.1 breaks
down each message type by its respective payload.

Table 6.1 JMS message types vary by the structure of their payload.
Each can carry light or heavy loads. Fat messages clog up the messaging
pipes and invariably impact the performance of a messaging application.

Message type Payload
Message No payload, just headers and properties
TextMessage Java string (text or serialized XML document)
MapMessage Set of name-value pairs
ObjectMessage Serialized Java object
BytesMessage Stream of uninterpreted bytes
StreamMessage Stream of primitive Java types

Each message type is useful in different scenarios. Picking the best message for
the situation is a critical design decision that affects not only the semantics of the
message exchange, but also the performance of the system. Table 6.2 presents
each message type that contains a payload, along with a few considerations to
keep in mind when choosing a message type.

166 CHAPTER 6
Bitter messages

Table 6.2 Before picking a message type, carefully consider if the data being exchanged fits neatly
into the payload the message type was designed to carry.

Message type Key considerations

TextMessage Because the JMS specification does not define a standard XML message type, the
TextMessage commonly is used to transport a serialized XML document. However,
any time the payload contains formatted text, such as XML, it must be parsed by
consumers before it can be used intelligently.

MapMessage Messages of this type are the most versatile. Predefined keys are used to read spe-
cific values of the payload. This allows the payload to grow dynamically over time
without affecting consumers. Consumers that aren’t aware of new keys will be igno-
rant of their existence. If consumers always read the entire payload in a well-defined
order, carrying the keys around may become a dead weight. In these cases,
StreamMessage may yield better performance.

ObjectMessage Producers and consumers of this type of message must be Java programs. When a
producer sends a message of this type, the object in the payload and the transitive
closure of all objects it may reference must be serialized. That is, if the object in the
payload references other objects, then consumers will receive the graph of objects
reachable from the object in the payload. Deep object graphs bloat the message
and restrict message throughput. Additionally, all consumers must be able to suc-
cessfully deserialize the object(s) in the payload using a class loader within their
respective JVMs. This means that all consumers must have access to the class
definitions of the objects in the payload.

BytesMessage Because this message type’s payload is raw uninterpreted bytes, all consumers
must understand how to interpret the payload. No automatic data conversions are
applied to the payload as it’s transported between consumers. This message type
is rarely used, and, when it is, only to transport data of a well-known format, such
as a MIME type, supported by all consumers. In most other cases, a StreamMes-
sage Or a MapMessage iS more convenient.

StreamMessage Unlike the BytesMessage, the StreamMessage retains the order and type of the
primitives in the payload. Moreover, data conversion rules are automatically applied
to the primitive types as they are read by consumers. A StreamMessage iS a more
rigid variation of a MapMessage in that keys do not index its data. However,
because it doesn’t carry around keys, this message type is generally more light-
weight than a MapMessage. Nevertheless, unlike the MapMessage, a StreamMes-
sage requires that consumers have explicit knowledge of the message format.

It’s not always clear which message type is best to use. Some message types are
used more commonly than others, based simply on the type of data being
exchanged. The TextMessage, for example, is the natural choice for exchanging
structured text. Without carefully considering the flavor of payload consumers
will require, you may easily fall into the comfortable habit of using the same mes-
sage type for all situations. Often, the result will be awkward, like fitting square
data in a round message.

6.2.1

6.2.2

An early antipattern: Fat Messages 167

One size doesn’t fit all

Designing messages in a vacuum is like designing a software component in the
absence of clients. Speculation often leads to messages that are neither useful nor
efficient. Take, for example, a message representing a purchase order. How much
information must the message carry to be useful? The answer depends on the
consumer of the message.

If the consumer is a sales automation system using the message to spot cross-
selling opportunities, then including a wealth of information about the customer
may be important. If the message is too brief, this type of consumer may have
insufficient information to efficiently process the message. Attempting to gather
more information may lead to a two-way dialogue between the producer and the
consumer. Chattiness of this sort negates the benefits of loose coupling and asyn-
chronous communication offered by JMS.

On the other hand, if the consumer is an inventory system using the message
to fulfill an order, then the customer information may be unnecessary. Making the
message unnecessarily verbose will fatten it up, thus requiring additional network
bandwidth and CPU resources. Moreover, if the fat message is persisted to nonvol-
atile storage to ensure guaranteed delivery, it will require additional storage
space. That being said, if the frequency at which a fat message is produced is low,
then the respective overhead may be tolerable. However, as the message fre-
quency increases, the overhead will compound until it adversely affects message
throughput.

So, fat messages end up being a common problem because assumptions about
consumer needs are easily made. A message that tries to be everything to every-
body inevitably carries a high delivery price; it clogs up the messaging pipes and
wastes space.

Solution 1: Put messages on a diet

Ideally, a message should contain just enough information to enable its consum-
ers to handle it on their own. Designing such a message is akin to designing a pro-
grammatic interface to a distributed service. To decrease coupling and chattiness,
thin interfaces generally are used to encapsulate business logic behind coarse-
grained methods. Given just the right amount of information, these methods go
about their business without exposing any implementation details. In contrast, fat
interfaces usually are guilty of hiding monolithic business processes that are
tightly interdependent. Getting anything useful to happen often requires calling
multiple methods and supplying superfluous information.

168

6.2.3

CHAPTER 6
Bitter messages

Therefore, when designing loosely coupled messaging applications, it’s best to
follow the lessons taught by good interface-based design:

m Start by designing the interfaces—the shape and size of the messages.

m Choose a message type capable of carrying the simplest payload that meets
the needs of known consumers.

m Avoid fattening up the message by speculating about the kinds of data
needed by future consumers.

m Eliminate duplication by omitting data that a consumer could derive from
the information already in the message.

m Take into account how often the message will be delivered and whether the
delivery of the message must be guaranteed.

Knowing when to put a message on a diet isn’t an exact science. No scale exists
that can accurately weigh a particular message. In addition to including the size of
the static payload and any application-specific headers and properties, the JMS
provider may pile on additional properties at the time of delivery that contribute
to the overall size of the message. If you know the approximate size of the pay-
load, you’ll find that is usually sufficient as a rough estimate when planning for
performance. Remember, too, to factor in the frequency of the message delivery.
Little messages can add up quickly to big performance headaches.

Solution 2: Use references

Sending references to information otherwise contained in a message can help
reduce the size of the message. Rather than sending a fat message stuffed with raw
data, it’s often possible to send a lightweight message instead, one that simply con-
tains a reference to that data. Think of it as a particular type of weight loss pro-
gram where a message is encouraged to eat references. References are especially
powerful in situations where large amounts of data need to be exchanged without
incurring excessive performance overhead. A reference could be a URL, a pri-
mary key, or any other token pointing to the data.

For example, consider a workflow application that uses messages to route elec-
tronic documents to multiple departments. As the document transitions through
its life cycle, from draft to approval, it travels from one department’s message
queue to the next. At each stopping point, more information may be added to the
message. This workflow could be implemented using the BytesMessage message
type to route the document in its native format. However, a downside to that
approach exists: as its size increases, the document will become unwieldy. Each

6.3

Mini-antipattern: Skinny Messages 169

Message Figure 6.2
Client A » Client B References can be used to point to the actual
ID = 703 . i . X .
information otherwise contained in the message.

This approach has the potential to significantly
decrease the size of fat messages. In this
example, the message contains a primary key for
a row in a shared database table. When the
consumer receives this message, it can load and
interpret the data at its leisure.

department’s queue will be burdened with managing the document in memory
until it’s been processed. The situation turns particularly sour if a copy of this fat
message is broadcast to multiple consumers. Every network path from the pro-
ducer to each consumer will have to swallow the fat message like an egg-eating
snake. In the end, not all consumers may want the message after it’s delivered.
References can come in handy in these situations because they significantly
decrease the size of the message.

If all message consumers have access to a shared resource, such as a database
or a file system, consider trimming down messages to contain references to shared
data. As an alternative to transporting an entire document, for example, the mes-
sage representing the document could simply contain the name of a shared file.
When a consumer receives the message, it can process the referenced document
at its leisure by reading the document from the file system. Figure 6.2 illustrates
the use of references to reduce the size of messages.

It’s never too early to start putting messages on a weight loss program, but
don’t go overboard. MOM products have matured significantly over the years.
Some vendors have had time to optimize their products for sending large mes-
sages over different networks. Before making any assumptions, write a few tests to
measure performance. A message that may be perceived as being too large actu-
ally might transmit much faster than you think. And, if a fat message is sent infre-
quently, it may not be a problem. Prematurely hacking away at the message size
can lead to another common problem—skinny messages.

Mini-antipattern: Skinny Messages

Despite warnings about fat messages, skinny messages are equally problematic.
Striking a balance between too much and not enough information is the essence
of good message design.

170

6.3.1

CHAPTER 6
Bitter messages

In general, it’s always better to send a bit too much information. A couple of
extra bytes on a message will generally have little overall effect on performance.
On the flip side, a skinny message with too few bytes may create more work for a
consumer. To successfully handle the message, the consumer may have to make
extra remote calls to get more information.

Using references isn’t always the right answer either. First, each consumer is
burdened with resolving the references on his own. In other words, the producer
can’t package up all the information once and then share it with all the consum-
ers. Worse yet, consider the case where several consumers attempt to resolve a ref-
erence to a document as soon as the message arrives. Consumers may end up
competing for access to the shared file system in a flurry of network activity, caus-
ing them to block. Consequently, message throughput suffers as the consumer
can’t process new messages until the current message is handled. In the end, this
may be far more CPU- and network-intensive than just sending the entire docu-
ment in the first place.

To reiterate, not sending enough information in a message can weigh down an
otherwise efficient messaging application. The virtues of asynchronous communi-
cation may be taken over by a much slower, synchronous conversation induced by
contention and blocking.

Solution: Use state to allow lazy loading

One performance-boosting variation of references is to include some state infor-
mation in the message, along with the reference. For example, in addition to the
document reference, the message could also include the current state of the doc-
ument. For instance, states might include: NEW, REVISED, or APPROVED. The
presence of the state in the message allows consumers to make a decision about
whether loading the document is necessary. Consequently, only consumers that
actually need the document will access the shared file system, reducing the
potential for delayed blocking. State can be added to a message in a variety of
ways. Putting state in the payload is one way, although the consumer will bear the
burden of filtering. In section 6.12, we’ll discuss how to use message selectors.
Message selectors tell the JMS server how to filter messages before delivering
them to consumers. The filtering is based on the contents of each message’s
headers and properties.

Seeds of an order processing system 171

6.4 Seeds of an order processing system

6.4.1

We ran into two pitfalls before starting our journey: fat messages and skinny mes-
sages. We would do well to keep these potential troublespots in mind before
messages start swirling around. Now, we’re ready to dive into a working example.
We want an example we can sink our teeth into, so we’ll develop the underpin-
nings of an asynchronous order processing system using JMS. Although we’ll write
gratuitous amounts of code, as an example of JMS, ours will fall well short of pro-
viding a comprehensive tour of JMS. Albeit easy to learn and use, JMS can be
applied in a range of enterprise application integration (EAI) and business-to-
business (B2B) scenarios. Our example will illustrate merely one isolated applica-
tion of JMS—with a few pitfalls sprinkled in along the way to keep us on our toes.
Throughout the rest of the chapter, we’ll continue to refactor the application
example, each time eliminating a weakness in its design.

Defining the system

Let’s assume that we have a legacy order fulfillment application that we’d like to
tie in with a J2EE online order processing system. Rather than modifying the leg-
acy system to interface directly with the new system, we’d prefer to integrate the
two worlds using a loosely coupled design. When an online order is initiated
through the order processing system, it should trigger the following business logic
sequentially:

1 Store the order information in an order database.
2 Deliver the order to the legacy order fulfillment application.

3 Broadcast a notification indicating the order’s status.

These tasks must be completed in lock-step as an atomic business process. If any
step fails, the entire process will also fail and would have to be repeated anew.
However, we don’t want our online customers to be blocked, waiting for the com-
pletion of this relatively lengthy business process. Customers don’t need to wait;
they are happy to place an order request and receive later notification—an email,
for example—to confirm that the order has been fulfilled.

Reliability is paramount because we can’t afford to lose any customer orders.
When an order request is issued, we should be able to guarantee its disposition. In
light of these requirements, we decide to use JMS as the integration glue. Using it
correctly is the challenge.

172

CHAPTER 6
Bitter messages

6.4.2 Designing messages

As we learned in the previous section, designing the messages that form the inter-
face between our applications will help us determine how those applications inter-
act. Based on our admittedly simple use case, we need two messages: an
OrderRequest message and an OrderStatus message.

The OrderRequest message

An OrderRequest message is used to initiate the order fulfillment process. Mes-
sages of this type are sent to exactly one consumer—the legacy order fulfillment
application. Table 6.3 dissects the payload of an OrderRequest message.

Table 6.3 An OrderRequest message requests fulfillment of an online order.

Name Description Type Example value
Order ID The order’s unique identifier String 104-549-736
Product ID The product’s unique identifier String Ride Timeless 158
Quantity The number of units to buy int 1
Price The product’s unit price in dollars double 479.00

At this point, we can’t be certain that we’ve considered all possible attributes of an
OrderRequest message. We’ll keep the message simple for now.

The OrderStatus message
The second message we need, an OrderStatus message, is just an indication of an
order’s disposition. This type of message is broadcast to any application that has
registered interest in the life cycle of orders. For example, the sales automation
system might monitor the status of an order as it progresses through the system.
This message is broadcast only after the legacy order fulfillment application has
had an opportunity to process the order represented by an OrderRequest message.
Imagine that a message of this type contains a unique identifier for an order,
an order status code, and an optional text describing the order’s status. Notice
that the unique order identifier is actually a reference to the original order. We
don’t need to include all the details of the original order in an OrderStatus
message because subscribers of this message type are generally only interested in
the order’s disposition. However, if a particular subscriber wants the details of
the original order, the identifier can be used to query the shared order database.
In other words, the OrderStatus message is designed for a specific type of

6.4.3

6.4.4

Seeds of an order processing system 173

consumer. A reference is used to accommodate the few subscribers that may have
special interests.

Having considered the message design, we’re ready to decide now how these
messages should be delivered.

Choosing messaging models

We have a couple of choices when deciding how our messages should be delivered
to consumers. In general, the JMS server receives messages from producers and
delivers the messages to consumers. Specifically, JMS provides two different mes-
saging models: publish/subscribe and point-to-point.

The two messaging models use a slightly different vernacular. The publish/sub-
scribe messaging model allows a message publisher (producer) to broadcast a mes-
sage to one or more message subscribers (consumers) through a virtual channel
called a topic. The point-to-point messaging model allows a message sender (pro-
ducer) to send a message to exactly one message receiver (consumer) through a
virtual channel called a queue. Figure 6.3 illustrates the two messaging models.

By communicating indirectly through virtual channels managed by the JMS
server, producers and consumers are decoupled from one another. That is to say
that a consumer’s location, availability, and identity are unknown to the producer.

In our example application, an OrderRequest message should be processed by
only one consumer—the order fulfillment application. Therefore, we’ll use the
point-to-point messaging model to deliver these types of messages. In contrast, an
OrderStatus message must be delivered to all clients that have registered interest
in the disposition of orders. Therefore, we’ll use the publish/subscribe messaging
model to broadcast these types of messages. Figure 6.4 shows an architectural dia-
gram of the JMS components collaborating to fulfill an order.

Notice in the architectural diagram that the client that receives the Order-
Request message is also a publisher of OrderStatus messages. A JMS client can
serve both roles—producer and consumer—to bridge between messaging mod-
els. Also, keep in mind that each client could be running in its own virtual
machine and perhaps even on separate machines in the network.

Responding to change

Fortunately, the JMS API for the publish/subscribe and point-to-point messaging
models are remarkably symmetrical. In general, only the names change when
switching from one messaging model to the other. Every method and class name
containing the substring Topic can be changed to Queue, and vice versa. A few
other minor details and model-specific features exist, but by and large, the APIs

174 CHAPTER 6
Bitter messages

Publish/Subscribe Messaging
Subscriber A

Subscriber B

Candidate

Publisher

Point-to-Point Messaging

Receiver

Message

Candidate
Receiver

Figure 6.3 The publish/subscribe message model publishes a copy of a message to each
subscriber through a topic. The point-to-point messaging model sends any given message to
exactly one of possibly many receivers through a queue. The topic or queue decouples all
participants to allow their location, availability, and identity to vary independently.

JMS Server

OrderRequest

OrderRequest

OrderRequest
Sender

OrderRequest
Receiver

_

Order
Database

OrderRequest
Queue

OrderStatus OrderStatus

Topic Legacy
Order Fulfillment
Application

OrderStatus

OrderStatus
Subscriber N

OrderStatus
Subscriber 1

Figure 6.4 Messaging applications can be a hybrid of publish/subscribe and point-to-point
messaging, depending on the number of message consumers interested in each message.

6.4.5

Seeds of an order processing system 175

mirror each other. The upshot is that the skills you learn using one messaging
model are portable to the other. It’s worth mentioning that the open source
Messenger (http://jakarta.apache.org/commons/sandbox/messenger/) library
makes using JMS a bit easier. It effectively hides the differences between messaging
models and their delivery options.

In the future, more than one consumer may want to know when an order is
placed. For example, a sales automation system might also track OrderRequest
messages to identify potential cross-selling opportunities. For now, we’ll use the
point-to-point messaging model, keeping in mind that the JMS APIs are on our
side if needs change down the road.

We’ve yet to delve into how the consumer of OrderRequest messages is devel-
oped and packaged. We’ll get there in good time, but first, let’s look at the system
from the perspective of the order producer. It’s here that we’ll gain valuable
insight into the design of our application.

Building the OrderRequest producer

In the architectural diagram, the client that produces the OrderRequest messages
appears to be stand-alone. However, we can safely assume that this client has more
responsibilities. Indeed, if we were to zoom out a few thousand feet, we’d see that
the OrderRequestSender is actually just a single component in a larger J2EE appli-
cation. Orders are placed over the Internet through a web application that,
among other things, uses this component to integrate with the order fulfillment
application through messaging.

Using a flexible message format will allow us to add new attributes easily to
OrderRequest messages later, if necessary. Several JMS message types will work, but
we might be tempted to use serialized XML in the payload of a TextMessage. After
all, the message could be easily represented as structured text, and XML offers the
ultimate in flexibility and portability. Indeed, XML is a wonderful technology and a
million ways exist for using it well, but this isn’t one of them. To see why, let’s look
at listing 6.1 to see how we might send an OrderRequest message containing XML.

176 CHAPTER 6
Bitter messages

public class OrderRequestSender {

private QueueConnection connection; Creates a QueueSender
private QueueSession session; connected to the
private QueueSender sender; OrderRequestQueue

public void connect () throws NamingException, JMSException {
Context ctx = new InitialContext () ;

QueueConnectionFactory connectionFactory =
(QueueConnectionFactory)
ctx.lookup ("OrderRequestConnectionFactory") ;

connection = connectionFactory.createQueueConnection() ;

session = connection.
createQueueSession (false, Session.AUTO ACKNOWLEDGE) ;

Queue queue = (Queue)ctx.lookup ("OrderRequestQueue") ;

sender = session.createSender (queue) ;

}

public void sendOrder (OrderRequest order) throws JMSException {

TextMessage message = session.createTextMessage() ; Fills the
message.setText (order.toXML ()) ; < ‘ OrderRequest
a aq) Sends the OrderRequest ‘ m.i;saxgal-payload
sender.send (message) ; message to the Order- wi
} RequestQueue
public void disconnect () throws JMSException { Disconnects from the
connection.close() ; OrderRequestQueue
}

}
|

Notice that we create a TextMessage containing a serialized string of XML by invok-
ing the toxML () method of an OrderRequest business object. In other words, the
OrderRequest message is simply an XML representation of the OrderRequest busi-
ness object. Unfortunately, the contents of the message aren’t explicit. That is,
without parsing the XML, we can’t tell what types of data it contains.

Now that we see the world through the eyes of the OrderRequestSender and in
the context of our architecture, we can tell all is not exactly as we imagined.
Indeed, there’s a bitter taste in our mouth. Using XML as the payload of the
OrderRequest message seemed like a good idea since XML is both flexible and
portable. However, data portability isn’t really an issue because we’ll be building
the consumer of OrderRequest messages. Furthermore, we can achieve flexibility

Antipattern: XML as the Silver Bullet 177

with other message types. So, given that both the producer and the consumer are
within our control, no clear advantages exist to using XML in this scenario. Before
going much further then, let’s reconsider the decision to use XML.

6.5 Antipattern: XML as the Silver Bullet

6.5.1

At first blush JMS and XML appear to be a match made in heaven. To some extent
they are kindred spirits that can team up to solve historically vexing problems.
One beauty of JMS is that it allows messages to be exchanged throughout a hetero-
geneous environment in a platform-neutral fashion—a noble challenge of EAI In
practice, although Java applications themselves are platform-neutral for the most
part, not all systems glued together with JMS are Java applications. To further
extend the reach of messaging, some JMS vendors provide support for messaging
between Java and non-Java clients.

JMS is aimed at enabling the ubiquitous transfer of messages, and XML stands
tall when it comes to expressing data in a portable and flexible format. Indeed,
because XML distills down to a stream of text, it can be interpreted by any plat-
form. It’s also flexible in the sense that, despite conforming to a well-defined
structure, an XML document can easily be extended to include new data elements
without affecting current applications using it.

Sounds great, right? Not so fast. It comes as no surprise that XML has the poten-
tial to be overused. It’s a fate shared by many new technologies that come on the
scene with great fanfare. While some may contend that putting XML in the drink-
ing water will make everyone’s teeth whiter, XML is best used in moderation. We’ll
go out on a limb here and predict that a book on bitter XML wouldn’t be known
for its brevity. Swinging the XML hammer for the sake of XML is not without its
price. When a JMS consumer receives an XML message, that message must be
parsed before it can be used for anything meaningful. The overhead of parsing
XML will elongate the time required for the consumer to process the message. This
extra processing may in turn limit the overall message throughput of the applica-
tion. As such, XML loses many of its advantages when you control all the producers
and consumers. Regardless of the performance implications—which certainly
must be measured before forming any conclusions—the burden of parsing should
be hoisted on consumers only when a definitive advantage exists in using XML.

Solution: Use XML messages judiciously

XML is no panacea. In many cases, the MapMessage has all the same virtues as a
message containing XML, without the performance hit of parsing. With respect to

178

CHAPTER 6
Bitter messages

portability, most JMS vendors will automatically convert a MapMessage produced by
a Java application to an equivalent message in a non-Java environment. Native
conversions of this sort are generally less expensive performance-wise than pars-
ing XML. The format of a MapMessage is also flexible in that new name-value pairs
can be added easily without breaking existing consumers. Moreover, messages
containing XML have the disadvantage of not supporting runtime validation
afforded by the explicit, strongly typed methods of a MapMessage.

That’s not to say a powerful synergy doesn’t exist sometimes between XML and
JMS. For example, messages that must be represented in a hierarchical structure
can certainly benefit from the flexibility of an XML message. As well, messages
that travel beyond the edges of your intranet to communicate with other systems
can reap the rewards of portable XML. In the future we’re likely to see an even
tighter coupling between these two technologies in a wide range of applications
from EAI to B2B.

In any event, the best approach is to start with the simplest message type and
benchmark its performance. Then, if an XML message becomes necessary, you’ll
have something to compare that message against. Is parsing XML messages a per-
formance bottleneck? Wait! Don’t answer that just yet. First, gather hard evidence
with a performance test for the actual situation in question. Then, use that infor-
mation to make an informed decision. You might be pleasantly surprised.

To reiterate, serializing XML into an OrderRequest message doesn’t buy us
much over a MapMessage in our application. We’re designing all the producers and
consumers and, at this point, the message has a flat structure. With a MapMessage,
we’re also free to add new data without affecting current clients, should that
become necessary. Listing 6.2 shows the refactored method that uses a MapMessage
type when sending an OrderRequest message.

public void sendOrder (OrderRequest order) throws JMSException {
MapMessage message = session.createMapMessage () ;

message.setString ("Order ID", order.getOrderId());
message.setString ("Product ID", order.getProductId()) ;
message.setInt ("Quantity", order.getQuantity());
message.setDouble ("Price", order.getPrice());

sender.send (message) ;

6.6

6.6.1

Antipattern: Packrat 179

Notice that the message is now more explicit. And we get the advantage of strong
type checking. When the consumer reads the message, each attribute’s type is
unambiguous. For example, a consumer can now read an OrderRequest message
as shown in listing 6.3.

String orderId = mapMessage.getString("Order ID");
String productId = mapMessage.getString("Product ID");
int quantity = mapMessage.getInt ("Quantity") ;

double price = mapMessage.getDouble ("Price");

We finally have our messages nailed down! Next, we must decide if guaranteeing
their delivery brings anything to the party.

Antipattern: Packrat

Guaranteed message delivery, one of the cornerstones of messaging systems,
always comes at a price in terms of resources and performance. Anything adver-
tised as guaranteed seems to bear that caveat. Alas, no free lunch exists here.

The JMS specification contains provisions for configuring a messaging system
to achieve different Quality of Service (QoS) levels. Building on that foundation,
JMS vendors compete by including value-added reliability features to their prod-
uct offerings. The QoS level we choose is dependent largely on our specific appli-
cation’s requirements. After all, we want to get something for the price we pay.

Reliability is measured on a sliding scale. It’s not just a single toggle switch we
flip on or off, but rather a panel of control knobs. If we turn them all to their
highest setting, we’ll get maximum reliability and, possibly, horrible performance.
Turn them down to their lowest setting, and we’ll get minimum reliability with
improved performance. It’s a trade-off; the right setting usually lies somewhere in
the middle. Two mechanisms for guaranteeing message delivery with the highest
potential for misuse are persistent messages and durable subscriptions. Failure to
understand their potential cost can set us up for a big fall.

Putting a price on persistence

JMS defines two message delivery modes: persistent and nonpersistent. When a mes-
sage marked as persistent is sent to the JMS server, it’s immediately squirreled away
in nonvolatile storage. Only after the message is stored safely does the message
producer receive an acknowledgment that the JMS server has agreed to deliver the

180

CHAPTER 6
Bitter messages

message. By taking this responsibility, the JMS server guarantees that the message
will never be lost. As the server metes out each persistent message to consumers, it
keeps track of consumers that have actually received the message. The consumers
help by acknowledging the receipt of each message. If the JMS server fails (or is
restarted) while delivering messages, then upon recovery, the server will attempt
to deliver all persistent messages that have yet to be acknowledged.

Non-persistent messages, on the other hand, aren’t stored on disk. Therefore,
they aren’t guaranteed to survive a JMS server failure or restart. As such, non-
persistent messages generally require fewer resources and can be delivered in less
time than persistent messages. Higher levels of message throughput usually can
be realized by using non-persistent messages at the expense of reliability.

By default, a message producer marks all messages as being persistent. Each
message sent will be stored on disk before it’s delivered. With our OrderRequest-
Sender, that step works to our advantage because we can’t afford to lose Order-
Request messages if the JMS server fails or is restarted. Figure 6.5 illustrates the
sequence of events in delivering a persistent OrderRequest message.

Every orderRequest message is guaranteed to be delivered once—and only
once—to the OrderRequestReceiver. In contrast, ensuring that every OrderStatus
message is received by its consumers may not be a requirement of our business.
Instead, we may be able to deliver these messages once at most and avoid the over-
head of guaranteed delivery. That is, it won’t be the end of the world if one of these

JMS Server

1. Send 4. Receive

A 4

OrderRequest
Sender

OrderRequest

OrderRequest
4 Receiver

< Queue <
3. Acknowledge

5. Acknowledge

2. Persist 6. Remove

Datastore

Figure 6.5 Persistent messages must be stored in nonvolatile storage by the JMS server
before acknowledging the message producer. These messages are then removed from storage
upon successful delivery. Not all messages require this degree of reliability. For messages that
need to be delivered once at most, better throughput can be realized.

6.6.2

6.6.3

Antipattern: Packrat 181

messages falls on the floor. Unless we explicitly mark orderStatus messages as non-
persistent, our application will suffer the burden of guaranteeing their delivery.

It’s important to note that messages sent using the point-to-point messaging
model must be placed on a queue in the JMS server prior to delivery, regardless of
whether or not they are marked persistent. A point-to-point message not marked
as persistent lives on the queue until it’s consumed or the JMS server fails or
restarts. Therefore, messages not consumed at a rate equal to or greater than
their rate of arrival may cause the queue to grow unchecked, putting additional
strain on the JMS server. Publish-subscribe messages, in contrast, don’t necessarily
have to be stored internally before delivery.

Paying for durable subscriptions

Durable subscriptions, another mechanism for guaranteeing message delivery, are
a feature specific to the publish/subscribe messaging model. A durable subscrip-
tion outlives a subscriber’s connection to the JMS server. That is, when a message
arrives at a topic for which a durable subscriber has registered interest, and the
subscriber is disconnected, the JMS server will save the message in nonvolatile
storage. In essence, the undelivered message is treated as a persistent message.
The JMS server will continue to store any outstanding messages until the durable
subscriber has reconnected. Once the subscriber has reconnected, all outstanding
messages are forwarded to it. If a message expires before the subscriber recon-
nects, the message will be removed.

Here’s the rub: If a durable subscriber is disconnected for relatively long peri-
ods of time, and messages have a long life span, the JMS server is burdened with
having to manage all outstanding messages. The resulting strain on resources is
similar to that of persistent messages. For each durable subscription, the message
server must internally keep track of the messages each durable subscriber has
missed for a given topic.

Solution: Save only what’s important

Certain types of messages are so critical to your business that you can’t afford to
lose one. By all means, use the power of JMS to guarantee their delivery to the
extent necessary. If, however, certain types of messages can be missed when things
go bad, then you should avoid incurring the unnecessary overhead to guarantee
their delivery.

In our order processing system, for example, losing an order request if the
JMS server fails will adversely affect our bottom line. We must guarantee that
every OrderRequest message ultimately arrives at our legacy order fulfillment

182

6.7

CHAPTER 6
Bitter messages

application. Therefore, the OrderRequest message is persistent. Additionally, if
the legacy order fulfillment application itself fails, or is taken offline for mainte-
nance, we must guarantee that any messages it misses will be delivered once it
has recovered. Therefore, its subscription must be durable. We don’t have to do
anything special for durability in this case. Messages sent to a queue are implicitly
durable; they’ll be waiting when the consumer comes back online. At the end of
the day, we’re willing to incur the overhead of persistence and durable subscrip-
tions in exchange for peace of mind.

Conversely, we may be willing to tolerate the loss of an OrderStatus message, a
temporal message reflecting an order’s state at a given instant. If a subscriber
misses an OrderStatus message, the worst-case scenario is that the subscriber must
check the order status in the order database. The inconvenience of missing a mes-
sage just doesn’t warrant the cost of burdening the JMS server with the tasks of
storing each message, then deleting the message later once all interested subscrib-
ers have successfully acknowledged it. And remember, because we can easily bolt
on more reliability later, if necessary, we’ll do best by starting simple.

Mini-antipattern: Inmediate Reply Requested

When I reach the base of the slope, there’s no sign of my snowboarding buddy. He
may have waited for me patiently somewhere, or already started back up. I could
wait at the base to see if he shows up, but if he’s already on the lift, I'll miss the
opportunity of another ride. All slopes on this side of the mountain converge in this
spot, and at the head of the lift line, there’s a small whiteboard. I decide to scribble a
message for him. The next time he gets on the lift, he will be sure to see it, and we’ll
hook back up. In the meantime, the powder is getting deeper; and I'm ready for the
next ride.

If you’re blocked waiting for a reply, you’re stuck. You can’t move on or coordi-
nate new activities. As a result, you may miss out on opportunities. In other words,
waiting creates an opportunity cost. To work (and play) efficiently, you'd like to
rendezvous when it’s most convenient. Asynchronous messaging frees you from
waiting and lets you get in a few more runs.

Excessive coupling is the enemy of asynchronous messaging. Indeed, it flies in
the face of a powerful aspect of asynchronous messaging—loose coupling. If mes-
sage producers have intimate knowledge of the consumers with which they com-
municate, then assumptions are inevitably made. In particular, a producer may
rely on a particular consumer’s identity, location on the network, and possible

Mini-antipattern: Immediate Reply Requested 183

connection times. Consequently, the system can’t grow and shrink dynamically. In
other words, producers are susceptible to the changes of the consumers on which
they rely. If, for example, a consumer on which a producer relies disconnects or
moves to a new host on the network, then the producer may end up waiting indef-
initely for the consumer to reconnect.

That said, JMS does support a synchronous request/reply style of communica-
tion. Message producers can send a request in the form of a message to an out-
bound destination (topic or queue). When a message consumer receives the
message—either synchronously or asynchronously—it can then reply by sending a
message to a predetermined inbound destination. The two participants may agree
on well-known destinations ahead of time. Alternatively, the producer can dynami-
cally create a temporary inbound topic and assign it to the request message’s JMS -
ReplyTo property. Figure 6.6 illustrates a synchronous request/reply conversation.

It’s true that the producer and consumer are decoupled in the sense that they
are unaware of each other’s identity or location, but an implied association exists.
Indeed, their life cycles are coupled. After publishing the request message, the
TopicSubscriber.receive () method invoked by the producer blocks until a con-
sumer sends a reply message. The producer must wait on the line until a consumer
is connected. Even then, the producer is at the mercy of the consumer’s duty cycle.
If the consumer is never able to connect and send a reply, the producer will con-
tinue to block, forever waiting for a reply. To avoid freezing the producer indefi-
nitely, use the receive (long timeout) or receiveNoWait () method. These
methods will break the producer free of the synchronous bonds before it’s too late.

Outbound
Topic

Request Message

Producer Consumer

JMSReplyTo =
InboundTemporaryTopic

Reply Message

TopicPublisher.publish(request) request = TopicSubscriber.receive()

reply = TopicSubscriber.receive() TopicPublisher.publish(reply)

Inbound
Temporary
Topic

Figure 6.6 Although JMS does support synchronous request/reply messaging, if used extensively

this messaging tends to create undesirable coupling between the message producer and consumer.
From the producer’s perspective, the round trip is synchronous; it blocks waiting for a consumer to

reply. If a consumer isn’t able to reply, the producer may block indefinitely.

184

6.8

6.8.1

CHAPTER 6
Bitter messages

The sequence of steps required by a message producer to engage in a request/
reply conversation can be executed in one fell swoop using the javax.jms.Topic-
Requestor or javax.jms.QueueRequestor utility classes. These classes define a
request () method that encapsulates the lock-step process of sending a request
message and blocking until a reply message is received. If not executed in a sepa-
rate thread, invoking the blocking request () method from a message producer
will block the calling thread until a reply has been received. This risk alone may
warrant a move from convenience to safety by using a variant of the receive ()
method directly.

In general, asynchronous messaging is utilized best for a fire-and-forget style of
communication. When a request/reply conversation is needed, the power of asyn-
chronous communication is diminished, and the scales start to tip back in favor of
RPC communication. Therefore, before using JMS, carefully consider if your sys-
tem has the potential to benefit from asynchronous messaging. Indeed, asynchro-
nous communication should sometimes be eschewed in favor of synchronous
communication. If specific use cases require an immediate reply in response to a
request, consider using synchronous protocols such as Java RMI or SOAP.
Although JMS may afford better reliability through guaranteed message delivery, it
may also be overkill for the task at hand. Remember that it’s just another tool
whose value is derived from the circumstances in which you use it.

Speaking of new tools, we’ve now learned enough about JMS to start cracking
message-driven beans. It’s been a long journey to this point, but you won’t want to
miss what’s around the next corner.

Using message-driven beans (MDBs)

Let’s pick up where we left off on our order processing system. We built the
OrderRequestSender, picked the best message type, and then dialed in the right
amount of reliability. It’s high time we designed the consumer of OrderRequest
messages. We could choose to create the consumer as a stand-alone JMS client.
However, we want to scale our application to handle many OrderRequest messages
concurrently. So, in the spirit of this book, and because we already have an invest-
ment in an EJB server, we’ll design the message consumer as a message-driven
bean (MDB).

Pooling with MDBs

MDBs were introduced in EJB 2.0 as server-side components capable of concurrently
processing asynchronous messages. In contrast, while session and entity beans can

6.8.2

Using message-driven beans (MDBs) 185

produce asynchronous messages, they can only consume messages synchronously.
An MDB’s life cycle is similar to that of a stateless session bean. Instances of a partic-
ular MDB are identical. They hold no state that makes them distinguishable. There-
fore, MDB instances can be pooled. Message producers unknowingly interact with
an MDB instance by sending a message to a topic or queue subscribed to by the
MDB. Figure 6.7 illustrates the advantage of pooling MDB instances.

An MDB is equipped to handle JMS messages by implementing the
javax.jms.MessageListener interface. This interface defines a single onMessage ()
method. When a message is delivered to the topic or queue, an MDB instance is
plucked from the pool and its onMessage () callback method is invoked with the
message. If more messages are delivered to the topic or queue before the
instance’s onMessage () method returns, then other instances are called into
action to handle the messages. When an instance’s onMessage () method returns,
the instance is returned to the pool to await the next message.

To summarize, the use of MDBs offers a distinct advantage over managing mul-
tiple JMS clients. Instead of trying to load balance messages between stand-alone
JMS clients for optimal throughput, the container effectively distributes the load
using a pool of available MDB instances. So, let’s take advantage of an MDB to han-
dle requests for orders.

Building the OrderRequest consumer

Unlike a session or entity bean, an MDB does not have a home or remote inter-
face. In other words, an MDB does not define business methods accessible directly
from remote clients. Instead, it simply defines the onMessage () method that

J2EE Server

MDB instance pool

r’-~\

’ \

-{-+MDB 1)

A ’

S -

r’-~\

’ \

-{-4 mpB 21 (MDB 4

,

S -

Figure 6.7 MDB instances are pooled in preparation for handling incoming messages. In this example,
two MDB instances have been enlisted from the pool and are now busily handling messages. When the
next message arrives (M3), if MDB1 and MDB2 are still busy, then an idle MDB instance (MDB3 or
MDB4) will be plucked from the pool to handle the message. In this way, multiple messages can be
consumed concurrently for better performance.

186 CHAPTER 6
Bitter messages

contains the business logic for handling a message. The business logic encapsu-
lated in the onMessage () method is executed in response to asynchronously receiv-
ing a message. Listing 6.4 shows how an OrderRequest is consumed by our MDB.

Listing 6.4 A message-driven bean that handles OrderRequest messages

public class OrderRequestReceiverMDB
implements javax.ejb.MessageDrivenBean,
javax.jms.MessageListener {

private MessageDrivenContext ctx;

public void setMessageDrivenContext (MessageDrivenContext ctx) {
this.ctx = ctx;

}

public void ejbCreate() {}
public void onMessage (Message message) {

if (message instanceof MapMessage) {

MapMessage mapMessage = (MapMessage)message;

try {
String orderId = mapMessage.getString("Order ID"); Crack the
String productId = mapMessage.getString("Product ID"); message

int quantity = mapMessage.getInt ("Quantity") ;

double price = mapMessage.getDouble ("Price");

OrderRequest orderRequest = Create an order value object
new OrderRequest (orderId, productId, quantity, price);

recordOrder (orderRequest) ; Store order in order database

Send order to

OrderStatus status = fulfillOrder (orderRequest) ;
fulfillment system

notifyOrderStatusSubscribers (status) ;

Broadcast
} catch (JMSException jmse) { notification to
jmse.printStackTrace () ; 0rder§;atus
} subscribers

} else {
System.err.println ("OrderRequest must be a MapMessage type!");
}

}

public void ejbRemove () {}

}
|

In addition to the performance benefits gained by MDB pooling, this type of bean
is much easier to develop than a stand-alone JMS consumer. Notice that we didn’t

Using message-driven beans (MDBs) 187

have to write all the boilerplate setup code needed to connect to the JMS server
through JNDI and subscribe to a queue as we did in building the OrderRequest-
Sender. The EJB container takes care of all that plumbing, based on the contents
of deployment descriptors. Listing 6.5 shows the standard XML deployment
descriptor (ejb-jar.xml) relevant to our MDB example.

<message-drivens>
<ejb-name>orderRequestReceiverMDB</ejb-name>
<ejb-class>com.bitterejb.order.ejb.0OrderRequestReceiverMDB</ejb-class>
<transaction-type>Container</transaction-type>
<message-driven-destination>

<destination-types>javax.jms.Queue</destination-type>

</message-driven-destination>

</message-driven>

By declaring the message destination as a queue using the <destination-types>
tag in the deployment descriptor, the code in the MDB itself becomes oblivious to
a message’s point of origin (topic or queue). That is, this same MDB could be con-
figured to subscribe to a topic without changing any code. This means that the
business logic this MDB encapsulates easily can be reused across messaging mod-
els. That’s a markedly easier solution than developing a new JMS consumer client.

The actual JNDI name of the queue to which our OrderRequestSender is send-
ing OrderRequest messages is declared in a vendor-specific XML deployment
descriptor. The EJB container automatically subscribes MDB instances to this mes-
sage queue when the instances are created. This same vendor-specific deployment
descriptor may also declare the initial and maximum size of the MDB instance
pool. Sizing the pool allows us to easily throttle the message throughput, based on
expected message volumes.

We haven’t yet discussed the actual business logic involved in handling a mes-
sage. Once a message arrives, the business logic can do whatever is necessary to
fulfill the order. That process isn’t all that relevant to the antipatterns in this chap-
ter. We could imagine the business logic using the J2EE Connector Architecture
(JCA) to communicate with the legacy order fulfillment application, for example.
The logic might even collaborate with other EJB components—session and entity
beans—in a more complex workflow. For example, to create an easily supported
order status notification, a subscriber of OrderStatus messages could use JavaMail
to send an email to the person who placed the order. The email could contain an

188

6.9

6.9.1

CHAPTER 6
Bitter messages

indication of the order’s status. In any event, this arbitrary business logic should
be decoupled from JMS as we’ll see in our next antipattern.

Antipattern: Monolithic Consumer

At this point, we might be tempted to walk away from the MDB that consumes
OrderRequest messages, satisfied that it dutifully handles messages. If we did, we’d
miss a golden opportunity to improve the design. Before wandering off, let’s take
a minute to reflect on ways to keep the code clean and the design pristine. A small
investment to pay off design debt now will help prevent interest payments from
accumulating down the road.

As it stands, our MDB’s onMessage () method creates the unfortunate side effect
of undesirable coupling. It’s not a particularly long method, but after cracking the
message, it inlines a sequence of method calls. As a result, the business logic
onMessage () encapsulates—the real meat of the order fulfillment process—is inti-
mately tied to an asynchronous messaging infrastructure. No clean separation of
concerns exists between the communication mechanism used to interact with the
business logic and the logic itself. Left untouched, this tightly wrapped ball of
code is, and forever will be, a JMS consumer. This coupling has a severe conse-
quence. The only way to execute the business logic is by publishing a JMS message
for consumption by the MDB. However, we’d like to reuse this business logic in the
absence of JMS. Without overengineering the design, what’s the simplest thing we
can do now to head off potentially painting ourselves in a corner later? It might
surprise you to hear that a test is in order.

Listening to the test

If we had attempted to write a test for the business logic before digging into the
implementation of the MDB, the pain that would be caused by undesirable cou-
pling would have been evident. By paying attention to the test, we would have
uncovered a better design opportunity much sooner. Indeed, when writing a test
is painful, we can usually assume that something’s wrong.

Consider how difficult it is to write a test for the business logic through the
MDB'’s onMessage () method. To do so, we would have to follow this procedure:

1 Write a full-blown JMS message producer similar to the OrderRequest-
Sender.
2 Register the message producer as a subscriber of OrderStatus messages.

3 Create and publish an OrderRequest message.

6.9.2

Antipattern: Monolithic Consumer 189

4 Wait for the asynchronous OrderStatus message.
5 Validate that the resulting OrderStatus message contains the expected status.

6 Query the order database to ensure the order was properly recorded.

That’s a lot of work! And most of our effort is geared toward appeasing the JMS
infrastructure. While this approach might create a good integration test, we’re
once again forced to use JMS. We really just want to know if the business logic
works. However, given the current design, testing the business logic independent
of JMS proves difficult because the test doesn’t distinguish between the two. The
test forces us to separate JMS from the business logic by refactoring the MDB to
delegate its work to a testable component.

Solution: Delegate to modular components

Modular designs that use cohesive and loosely coupled components are generally
easier to test. Imagine how the design improves if we look at it first in light of a
test. Without worrying about how a JMS message arrives, the test is simply con-
cerned with validating the business logic. After all, the test really only cares about
the guts of the onMessage () method. This tells us that inside the onMessage ()
method is a unique component just waiting to be let free. So, let’s refactor the
logic contained in the onMessage () method into a separate component, called the
OrderRequestHandler class. Listing 6.6 shows the updated onMessage () method.

public void onMessage (Message message) {
if (message instanceof MapMessage) {

MapMessage mapMessage = (MapMessage)message;

try { Crack the

String orderId = mapMessage.getString("Order ID"); message

String productId = mapMessage.getString("Product ID") ;
int quantity = mapMessage.getInt ("Quantity") ;
double price = mapMessage.getDouble ("Price") ;

OrderRequest orderRequest = Create an order value object
new OrderRequest (orderId, productId, quantity, price);

OrderRequestHandler handler = new OrderRequestHandler () ;
handler.handle (orderRequest) ; <)—‘ Delegate to encapsulated

, , business logic
} catch (JMSException jmse) {

jmse.printStackTrace () ;

190

CHAPTER 6
Bitter messages

} else {
System.err.println ("OrderRequest must be a MapMessage type!");
}
}
|

If we extract the inlined code into the OrderRequestHandler class, then the code’s
business logic is decoupled from asynchronous messages. The Order-
RequestHandler class is solely responsible for the order fulfillment process:
recording an order, submitting the order to the legacy order fulfillment applica-
tion, and notifying order status subscribers. In addition, the business logic easily
can be tested outside the MDB container, completely separate from JMS technol-
ogy. Once we’ve gained confidence that the handler works as expected, it can be
used by many clients. Local clients within the same JVM, for example, can submit
an order request simply by invoking a method directly on an instance of the class.
We’ve successfully put JMS in its rightful place—as a glue technology.

Now, imagine we want to expose the logic of the OrderRequestHandler to
remote clients. Using the Session Facade design pattern, a session bean can ser-
vice remote synchronous clients by delegating directly to an OrderRequestHandler
instance. Moving a step further, we can expose the same business logic to remote
asynchronous clients by creating an MDB that either delegates directly to an
OrderRequestHandler instance or indirectly through the Session Facade.
Figure 6.8 illustrates the multiple communication paths used to access the busi-
ness logic that processes an order request.

Notice that by decorating a modular component in a layered fashion, we’ve
effectively created two communication paths: one synchronous and the other
asynchronous. Moreover, no code duplication exists. We need only to change the
business logic in one place to affect the synchronous and asynchronous clients
uniformly. That is, the business logic can be varied, independent of the client
types that may chose to use it.

The moral of the story is to remember that an MDB is simply a conduit
between JMS clients and business logic. As such, it should be kept as thin as possi-
ble. After receiving a message, and possibly converting it into a lightweight busi-
ness object, the MDB should delegate to other components that act on the
contents of the message. And we discovered all that by starting from a testing per-
spective. Go figure!

Now for a little fun with a familiar, albeit tiresome, game: hot potato.

6.10

Asynchronous

OrderRequest OrderRequest OrderRequest
Sender Message Queue

Antipattern: Hot Potato 191

J2EE Server

EJB Container

Synchronous

OrderProcessor
SessionEJB

RMI/IIOP

) 4

Client

OrderRequest
Handler

OrderRequest
ReceiverMDB

Figure 6.8 Layering is a design technique used to build loosely coupled systems capable of servicing
disparate clients. By decorating a simple component that encapsulates business logic, enabling
technologies can serve as thin communication adapters. This maintains a clean separation of concerns,
improves testability, and allows the business logic to be changed in one location to affect all clients.

Antipattern: Hot Potato

When a JMS server doesn’t receive an acknowledgment for a message sent to a
consumer, the server’s only recourse is to attempt to redeliver the message. This
sets the stage for a potentially wicked game of hot potato. The game goes some-
thing like this:

The JMS server sends a message to a message-driven bean.

The MDB raises an exception or rolls back its transaction.

As a result, the MDB container doesn’t acknowledge the message.
So the server attempts to redeliver the message.

The message again causes the MDB to raise an exception or roll back its
transaction.

Once again, the server does not receive an acknowledgment.

Rinse and repeat.

The JMS server and the MDB container continue to toss the message back and
forth, neither one wanting to get caught with the message when its timeout
expires (if ever). Round and round they go; where they stop, nobody knows.

192

CHAPTER 6
Bitter messages

This begs a question: what might cause a message to go unacknowledged by an
MDB. As first-class EJB components, MDBs are transaction-aware in their own right.
Often we want to execute the business logic, triggered by the arrival of a message,
as an atomic business process. Let’s look at our example again. The arrival of an
OrderRequest message kicks off a sequence of actions: updating a database, access-
ing an external system, and sending notification. If any step fails, we want the
entire business process to be rolled back.

Using MDBs greatly simplifies handling messages within a transaction. MDBs
can manage their own transactions or let the container manage transactions on
their behalf. If CMT are used, then message consumption is included in the same
transaction as the message handling logic. Only if the transaction succeeds will
the message be acknowledged. It’s an all-or-nothing proposition. If either of the
following occurs while executing the onMessage () method, the transaction will be
rolled back and the JMS server will attempt to redeliver the message:

m A system exception (e.g., EJBException) is thrown from the onMessage ()
method.

m The MessageDrivenContext.setRollbackOnly () method is invoked.

Because the message acknowledgment is tied directly to the success of a transac-
tion, MDBs that use CMTs are easy candidates for a game of hot potato. Rolling back
the transaction because business logic fails causes the message to never be acknowl-
edged. Figure 6.9 depicts the hot potato game played between the JMS server and
an MDB instance (note that the steps are presented in clockwise sequence).

MDB Instance

public void onMessage(Message m) {
throw new RuntimeException();
Jlor

mdbContext.setRollbackOnly();

1. Deliver message 2. onMessage!() failure
4. Redelivery attempt 3. No acknowledgment sent

Repeat steps 1-4 until message expires

Figure 6.9 If an MDB instance continuously throws a system exception from its onMessage ()
method, or rolls back the transaction, then the MDB container doesn’t acknowledge receipt of the
message. Consequently, the JMS server assumes the message wasn’t successfully delivered. In an
effort to set things straight, the server will attempt to redeliver the message. The message becomes
like a hot potato tossed back and forth between the JMS server and MDB instances.

6.10.1

Antipattern: Hot Potato 193

MDBs that choose to manage their own transactions are slightly less likely to
get into a game of hot potato, though they are not immune to it. When BMT are
used, the consumption of a message is not included in the same transaction as the
message handling logic. Messages are acknowledged, regardless of whether the
transaction is committed or rolled back. To force the JMS server to redeliver a
message if the transaction is rolled back, a system exception can be thrown from
the onMessage () method.

Although hot potato appears to be good, clean fun, it’s not a game with
many prizes. The JMS server on one side is frazzled, juggling all outstanding
messages. On the other side, the MDB instances are thrashed, trying to deal with
recurring messages they can’t handle. Until an acknowledgment is made, the
games will continue.

Solution: Acknowledge the message, not its result

The easiest way to avoid a game of hot potato is to acknowledge the successful
receipt of the message, not whether the resulting business logic was successful.
The JMS server can’t do anything about the latter, so don’t put the server in a posi-
tion to let you down.

Toward this end, you don’t want to throw system exceptions in response to
business logic errors. System exceptions should be raised only in response to gen-
uine system (or container) failures. Because application exceptions cannot be
thrown from the onMessage () method, it’s best to log any business logic errors
and return gracefully from the onMessage () method. This lets the JMS server know
that the consumer got the message, which is all the server really cares about any-
way. A variation on this theme is to send an error-related message to a special
error queue. To handle unexpected error conditions intelligently, exception-han-
dling consumers can subscribe to this queue.

Be mindful of the repercussions of rolling back an MDB transaction by invok-
ing the MessageDrivenContext.setRollbackOnly () method. It, too, will force the
JMS server to attempt redelivery. Ask yourself whether the next MDB instance cho-
sen to handle the message will be able to execute the business logic successfully,
or if it will suffer the same fate. If the problem that triggers the rollback is unre-
coverable, then the next MDB instance to receive the redelivered message will
likely encounter the same problem. Incoming hot potato! If it’s possible that the
next MDB instance to receive the redelivered message will be able to recover from
the error, then rolling back the transaction may be appropriate.

Some JMS providers automatically support the use of a Dead Message Queue
(DMQ). If, for example, an attempt to deliver a message is unsuccessful after a

194

CHAPTER 6
Bitter messages

preconfigured number of redelivery tries, the message is automatically redirected
to the DMQ. Our application is then responsible for monitoring this queue and
taking appropriate action when a doomed message arrives. JMS providers may also
support a configurable redelivery delay whereby the JMS server waits a predefined
amount of time before attempting redelivery. Understanding the conditions
under which a message will be redelivered helps minimize the chance of creating
a berserk message. Equally troublesome is the subject of our next antipattern: a
message that takes a while to chew on.

6.11 Antipattern: Slow Eater

6.11.1

An MDB can chew on only one message at a time. Until its onMessage () method
returns (swallows what’s in its mouth), an MDB cannot be used to handle other
messages. That is, an MDB instance is not re-entrant. If another message is deliv-
ered to the MDB container before a busy instance’s onMessage () method returns,
then the container will pluck another MDB instance from the instance pool to han-
dle the new message. This is true for both publish/subscribe and point-to-point
messaging. Messages published to a topic are delivered to one MDB instance in
every MDB container registering interest in the topic. Messages sent to a queue are
delivered to one MDB instance in exactly one MDB container registering interest in
the queue. In either case, an MDB instance can only handle messages serially.

When the onMessage () method takes a relatively long time to handle a mes-
sage, more and more instances in an MDB instance pool will be needed to handle
high message volumes. Messages will start to back up any time the average arrival
time of messages is greater than the average time to consume each message,
thereby creating a bottleneck that restricts message throughput. In general, any-
time the ratio of message production to consumption is high, message through-
put will suffer.

Solution: Eat faster, if you can

If high message volumes are expected, it’s wise to keep the onMessage () method
as fast as possible. An MDB with a short and sweet onMessage () method can
achieve higher levels of message throughput with a smaller number of MDB
instances in the pool. Because every MDB instance in the pool is stateless and
identical, any idle instance can handle an incoming message. As soon as the
onMessage () method returns, it can immediately handle another message. That’s
all well and good, except for one minor detail: MDBs are usually tasked with time-
consuming work on which message producers can’t afford to block waiting.

Antipattern: Eavesdropping 195

Indeed, if faced with a quick and dirty job, we might just use a synchronous
method call.

We should strive to keep the code paths invoked by the onMessage () method
optimized as necessary to support a tolerable message throughput. Delegating to
modular components that perform the actual message handling makes it much
easier to write isolated performance tests that continually measure the response
time of the logic encapsulated in onMessage ().

When we dig a bit deeper in our toolbox, we can find a few performance tricks
for helping slow eaters. If we spend time reading our JMS vendor’s documenta-
tion, we can get a feel for the possible tools we could use. For example, some ven-
dors have support for throttling, which effectively slows down producers if
consumers are lagging behind. We might as well use what’s already available to
our advantage—we paid for it! Once our MDBs are efficiently consuming mes-
sages, we need to make sure they aren’t eating more than their fair portion. This
is the subject of our next antipattern.

6.12 Antipattern: Eavesdropping

As messages fly around in a message-based system, consumers must pick and
choose the messages they’ll consume. The potential for information overload
increases with each new message producer participating in the system. A con-
sumer eating a relatively small portion of messages today may be faced with signif-
icantly larger portions tomorrow.

Take, for example, a publish/subscribe scenario with subscribers eavesdrop-
ping on a high-traffic topic. As more and more messages are sent to that topic, the
subscribers may experience an abysmal signal-to-noise ratio. Similarly, in a point-to-
point scenario, receivers consuming messages from a high-volume queue may be
burdened with handling low priority work. Developing custom message filtering
logic in each message consumer is both time consuming and prone to error. It also
makes it difficult to uniformly improve message filtering logic and performance.

As a work-around, multiple destinations (topics and queues) can be set up to
partition messages according to their intended use. In other words, we can break
up coarse destinations into multiple fine-grained destinations for more selective
listening. For example, we could configure two queues for our order processing
system: one for standard orders and the other for premium orders. However, the
process of setting up special interest destinations starts to fall apart at some point,
and ultimately leads to a proliferation of topics and queues, which must be admin-
istered and managed. This work-around also places the burden on message

196

6.12.1

CHAPTER 6
Bitter messages

producers to send only relevant messages to each destination. Message consumers
are in turn burdened with registering interest in only the appropriate destinations
necessary to get all the information they need.

Solution: Use message selectors

Message selectors are one way for message consumers to easily tune out messages
they don’t need or want to hear. Each message consumer can be configured with a
unique message selector, much as we use mail and news filters to receive only
information we’re interested in reading.

A message’s filtering can be based only on its headers and properties, not on
the payload it carries. The SQL-92 conditional expression syntax—which makes
up SQL WHERE clauses—is used to declare the filtering criteria. The JMS provider
filters messages, so the process is automatic from the consumer’s perspective.

The use of message selectors is one way to easily design queue specialization into
a message-based system. Referring back to our example order processing system,
we can see it may make good business sense to handle premium orders differently
than standard orders. Rather than creating two different queues—one for stan-
dard orders and another for premium orders—a single queue could be used by
all message consumers interested in orders. We could then create two different
types of OrderRequest handlers modeled as MDBs: a standard order handler and a
premium order handler.

Assuming an OrderRequest message contained the total price of the order as a
message property, the standard order handler would be created with a message
selector on that property so the standard order handler would only see orders on
the queue with a total price up to $1,000. The premium order handler’s message
selector would restrict its view of the queue to only those orders that exceeded
$1,000. We could then vary the size of the respective MDB instance pools indepen-
dently. For example, the premium order handler’s pool might be increased to
improve the throughput of fulfilling premium orders. Figure 6.10 illustrates the
flow of messages when message selectors are used to handle premium orders dif-
ferently than standard orders.

Using the same example, each subscriber of OrderStatus messages could use
message selectors to select the messages they receive. Messages that didn’t match
the selection criteria for a given subscriber wouldn’t be delivered to that subscriber.
Each subscriber would pick up a good, clean signal without any of the noise.

How and where messages are filtered is an implementation detail of the JMS
provider. Any specific JMS vendor’s implementation may apply the message selec-
tion logic in the server-side message router or in the client-side consumer’s JVM.

6.12.2

Antipattern: Eavesdropping 197

J2EE Server

MDB Containers

OrderRequest
(TotalPrice >= $1000.00) OrderRequest
> ReceiverMDB

OrderRequest
Sender
Client

OrderRequest
Message

OrderRequest
Queue

OrderRequest = Orde(Request
(TotalPrice < $1000.00) ReceiverMDB

Figure 6.10 Message selectors can be used to improve signal quality by filtering messages
based on header and property values. Rather than having to eavesdrop on all messages for fear
of missing an important message, consumers can be created with unique message selectors.
This allows the QoS to be varied according to the business value of the message being handled
by a pool of MDB instances.

Depending on the implementation, message selectors may create a measurable
drag on performance. In general, however, filtering on the server side is less
expensive and may actually improve performance by minimizing network traffic
for unwanted messages. In any event, it pays to have performance benchmarks
and automated tests that can continually check whether performance is going off
the rails. Running these tests can help determine objectively how the perfor-
mance of message selectors stacks up against custom message filtering logic in
each message consumer.

At the end of the day, anything that can be done with message selectors can
also be achieved using multiple destinations. The use of message selectors over
multiple destinations ultimately boils down to striking a balance between resource
management and performance.

Now, let’s apply what we’ve learned by setting up a message selector.

Declaring message selectors

Message selectors are declared for each message consumer when the consumer is
created. With MDBs, no extra coding is necessary. The message selection criteria
simply are declared in the XML deployment descriptor. The MDB container cre-
ates all MDB instances in the pool with the same message selection criteria.

198

6.12.3

CHAPTER 6
Bitter messages

Assuming an OrderRequest message contains a property defining the total cost
of the order, adding the following XML snippet to the standard XML deployment
descriptor (ejb-jar.xml) causes only those orders exceeding $1,000 to be deliv-
ered to the MDB instances managed by this container:

<message-selector>

<! [CDATA [TotalPrice > 1000.00]]>

</message-selectors>
That’s all there is to it! Of course message selectors can be arbitrarily complex,
depending on the number of message properties and the conditional logic
involved. Using a CDATA section around the message selector text means the text
won’t be subjected to XML parsing. Therefore, we won’t need to escape all the log-
ical operators to appease the XML parser.

Going beyond message selectors

Many JMS vendors have value-add features for going beyond message selectors. If
you choose to take these paths, just remember that you’re straying away from
portability. Fortunately, with MDBs we can take advantage of these extensions at
deployment time. That is, we usually won’t have to change any code to put these
extensions in or take them out. The deployment descriptor conveniently includes
all configuration details.

As we learned, the JMS specification restricts message selectors to filtering,
based on a message’s headers and properties. In other words, we can’t filter a mes-
sage by inspecting its payload. In response, many vendors have added proprietary
extensions to the message selector syntax to support content-based routing. For
example, many vendors can use XPath to filter either proprietary XML message
types or a TextMessage containing XML.

Another proprietary extension for message filtering is the use of wildcard topic
names. By using a dot notation when naming topics, we can set up a hierarchy of
information. Consumers can then easily subscribe to groups of messages. Take,
for example, a financial application that sends stock quote updates to either the
STOCKS.NYSE.IBM or STOCKS.NASDAQ.SUNW topics. If consumers want to sub-
scribe to all NASDAQ prices, they simply register interest in the STOCKS.NASDAQ. *
topic. Alternatively, they can listen to a specific stock by registering interest in the
STOCKS.NASDAQ.SUNW topic, for example.

Up to this point we’ve covered many antipatterns related to the design of
applications using JMS and MDBs. As a parting shot, let’s look at a final antipat-
tern, one that usually reveals itself at the end of your development process.

Antipattern: Performance Afterthoughts 199

6.13 Antipattern: Performance Afterthoughts

6.13.1

We’ve touched on performance in many ways throughout this chapter. However,
just because some antipatterns had performance side effects doesn’t mean we
should focus on performance too early. Premature optimization is speculative at
best. On the other hand, casting performance absolutely to the wind is a recipe
for disaster. Every design decision we make, including the selection of a JMS ven-
dor, ultimately has the potential to affect performance. Our path deviates away
from a successful deployment each time a decision is made without objectively
measuring its performance implications.

Although the JMS specification defines two messaging models and various QoS
features that may influence performance, the specification does not address the
performance implications of these decisions. This lapse gives JMS vendors a lot of
room to compete and tailor their product offerings to shine in certain deployment
scenarios. Indeed, vendors have different strengths and weaknesses. It’s entirely
possible that a vendor’s implementation designed specifically to excel in certain
scenarios may fall down in other scenarios. And then there’s the code we write!

Simply measuring the time it takes a JMS server to transport a single message
from a producer to a consumer doesn’t give us a full picture of performance. The
performance of an individual message’s delivery cycle may be markedly different
when the JMS server is under load—for example, delivering fat, persistent mes-
sages to multiple consumers. Without a rough measure of success based on realis-
tic usage patterns, the measurements are useless.

Solution: Measure early and often

Our defense against performance-related antipatterns is a solid foundation of
automated tests that validate our application’s performance requirements. When
faced with decisions that may affect performance, these automated tests can be
rerun to objectively measure any impact. As our application’s design takes shape,
we’ll get confidence by continually running its performance tests to measure
progress. If a change improves performance, we can raise the bar by modifying
the tests to use the new benchmark. If performance degrades, we can undo what-
ever changes were made and try again.

Automated performance tests can also be used as a yardstick when evaluating
different JMS implementations in terms of their performance. Before making an
investment in a specific JMS vendor’s implementation, we should create a few
benchmarks. We should start by using a simple driver that can be configured eas-
ily to produce/consume arbitrary numbers of messages and report performance

200

CHAPTER 6
Bitter messages

metrics for each action. Because the performance of messaging models will vary
between vendors, we need to make sure the test is indicative of our application’s
needs. Then we can proceed to write automated tests that use the test rig to simu-
late a representative use case and automatically check that performance is within
tolerable limits.

Given the variation in vendor implementations and design decisions, perfor-
mance cannot be treated as an afterthought without facing potentially dire conse-
quences. Writing performance tests early and running them often illuminates
unforeseen bottlenecks and reduces the effects of downstream thrash tuning. The
following list represents factors that should be considered when writing and run-
ning performance tests:

m Message throughput The number of messages a JMS server is able to pro-
cess over a given period of time can be a telling metric. It quantifies the
degree to which an application can scale to handle more concurrent users
and a higher message volume.

m Message density The average size of a message impacts the performance
and scalability of an application. Smaller messages use less network band-
width and are generally easier for the JMS server to manage.

m Message delivery mode Persistent messages must first be stored in nonvol-
atile memory before being processed by the JMS server. Effective tests must
produce messages representative of the production system to get an accu-
rate picture of production performance.

m Test under realistic load scenarios Load testing with multiple users often
illuminates bottlenecks that aren’t evident in a single producer/consumer
scenario. Write tests that measure the message throughput capable under
average and peak concurrent user loads. Consider both the ratio of users to
actual JMS connections, and the resources required.

m Production rate versus consumption rate If the rate at which messages are
produced exceeds the rate at which messages are consumed, the JMS server
must somehow manage the backlog of messages. Watch for any significant
disparities between the send rate and the receive rate.

m Go the distance Endurance testing over an extended period of time can
identify problematic trends such as excessive resource usage or decreased
message throughput. Running performance tests overnight, for example,
may highlight problems that may be encountered when the system goes live.

6.14

Summary: Getting the message 201

= Know your options JMS vendors generally support proprietary runtime
parameters and deployment options for tuning the performance and scal-
ability of their product offering. Know what options are available out-of-the-
box so that the JMS provider can be configured to yield optimal perfor-
mance and scalability relative to your application.

®m Monitor metrics Some JMS vendors include an administrative console for
monitoring internal JMS metrics such as queue sizes and message through-
put. Monitor these metrics to gain insight into the usage patterns of your
application. If an API is available for obtaining these metrics programmati-
cally, such as through JMX, write tests to check continually whether the met-
rics are within tolerable ranges.

m Chart metrics Simple charts serve as early warning systems against unde-
sirable performance trends. For example, plotting the number of messages
processed as a function of time will help pinpoint where message through-
put plateaus. When using point-to-point messaging, plotting the queue size
over time will clearly indicate when messages are being backlogged.

Automated performance tests are invaluable for their ability to keep all these con-
siderations continually in check. Don’t settle for having to manually recheck per-
formance every time you make a change. Invest early in tests that check their own
results and run them often to gain confidence. You’ll be glad you did!

Summary: Getting the message

JMS is easy to use and extremely powerful, yet subtle implications must be carefully
considered when using JMS to build message-based applications. In this chapter, we
discussed several common pitfalls as we developed an example order processing
system glued together with asynchronous messaging. In many cases, we were able
to side-step problems by applying relatively simple refactorings. In other instances,
we avoided potential problems altogether by understanding the consequences of
design decisions and planning accordingly.

Although many antipatterns discussed in this chapter are applicable to JMS in
general, we specifically put MDBs under the microscope. As first-class EJB compo-
nents making their debut in EJB 2.0, MDBs enable asynchronous access to server-
side business logic and resources. Moreover, they simplify the development of mes-
sage consumers that can scale to handle high-volume message traffic. Nevertheless,
designing and configuring MDBs to meet the challenges of today’s business needs

202

CHAPTER 6
Bitter messages

requires attention to detail. As we watch MDBs mature to include support for other
messaging technologies, we’ll likely bear witness to new MDB antipatterns.

Many antipatterns we discussed in this chapter are related to performance. JMS
is used primarily as a glue technology to integrate multiple applications through
the exchange of portable messages. As such, the quality of a message-based appli-
cation is measured according to the message throughput it can reliably scale to
handle. The important lesson to be learned from these antipatterns is to size and
test your application early and often to ensure a successful deployment.

6.15 Antipatterns in this chapter

This section covers the Fat Messages, Skinny Messages, XML as the Silver Bullet,
Packrat, Immediate Reply Requested, Monolithic Consumer, Hot Potato, Slow
Eater, Eavesdropping, and Performance Afterthoughts antipatterns.

FAT MESSAGES

DESCRIPTION
Using the same message type for all situations and not designing
messages for their intended consumers leads to bloated messages.
MOST FREQUENT SCALE
Application
REFACTORED SOLUTION NAME
Message dieting
REFACTORED SOLUTION TYPE
Software
REFACTORED SOLUTION DESCRIPTION
Design messages to carry just enough information to allow their
consumers to autonomously handle the messages. Send referenc-
es to data when sending the data itself is size prohibitive.
ANECDOTAL EVIDENCE
“This message contains a plethora of information, just in case
consumers need it.”
SYMPTOMS, CONSEQUENCES
The messaging pipes are clogged with fat messages, and message
throughput suffers.

Antipatterns in this chapter 203

SKINNY MESSAGES

DESCRIPTION
Messages that don’t contain enough information burden their con-
sumers with making extra remote calls to get more information.
MOST FREQUENT SCALE
Application
REFACTORED SOLUTION NAME
Put some meat on the bones.
REFACTORED SOLUTION TYPE
Software
REFACTORED SOLUTION DESCRIPTION
Err on the side of sending a bit too much information. Add state
information to references to let consumers decide when and if to
load referenced data.
ANECDOTAL EVIDENCE
“Why is the application spending all of its time I/O blocked?”
SYMPTOMS, CONSEQUENCES
Asynchronous communication breaks down into synchronous
communication to clarify the intent of messages. Misuse of refer-

ences causes contention of a shared resource and ends up being
slower than a fatter message.

204 CHAPTER 6
Bitter messages

XML AS THE SILVER BULLET

DESCRIPTION
Filling messages with XML by default in the name of flexibility and
portability

MOST FREQUENT SCALE
Application

REFACTORED SOLUTION NAME
Use XML on the edges.

REFACTORED SOLUTION TYPE
Software

REFACTORED SOLUTION DESCRIPTION
Use XML messages to communicate with applications beyond
your control. The MapMessage has similar flexibility and portability
when communicating with application within your control.
ANECDOTAL EVIDENCE
“XML is the only way to make this message portable.” “All the cool
developers are using XML.”
SYMPTOMS, CONSEQUENCES
Messages containing XML may incur unnecessary overhead that
limits message throughput. Message handling logic isn’t explicit
or type-safe.

Antipatterns in this chapter 205

PACKRAT

DESCRIPTION
Storing all messages, regardless of whether delivery must be guaranteed
MOST FREQUENT SCALE
Application
REFACTORED SOLUTION NAME
Save only the important messages.
REFACTORED SOLUTION TYPE
Software

REFACTORED SOLUTION DESCRIPTION
Consider the ramifications of losing a message before deciding to
guarantee its delivery.

ANECDOTAL EVIDENCE
“Let’s be safe and store all messages by default.”

SYMPTOMS, CONSEQUENCES

Storing all messages limits message throughput and unnecessarily
burdens the JMS server.

IMMEDIATE REPLY REQUESTED

DESCRIPTION
Using JMS for a synchronous request/reply style of communication
MOST FREQUENT SCALE
Application
REFACTORED SOLUTION NAME
Use synchronous communication technologies where appropriate.
REFACTORED SOLUTION TYPE
Software
REFACTORED SOLUTION DESCRIPTION
If a request/reply style of communication is needed, consider us-
ing Java RMI or SOAP.
ANECDOTAL EVIDENCE
“How can I return a result once the consumer handles the message?”
SYMPTOMS, CONSEQUENCES

Undesirable coupling between producers and consumers, negat-
ing the benefits of asynchronous messaging

206 CHAPTER 6
Bitter messages

MONOLITHIC CONSUMER

DESCRIPTION
Inlining business logic in the class that consumes a message
MOST FREQUENT SCALE
Application
REFACTORED SOLUTION NAME
Delegate.
REFACTORED SOLUTION TYPE
Software
REFACTORED SOLUTION DESCRIPTION
Design the message consumer to simply crack the message then
forward the message’s data to a separate class defining the actual
business logic.
ANECDOTAL EVIDENCE
“I can’t test the business logic without starting the JMS server.”
“That’s too hard to test.” “Our system’s only API is through asyn-
chronous messaging.”
SYMPTOMS, CONSEQUENCES

Business logic is tightly coupled to the use of JMS and can only be
accessed by sending it a message.

Antipatterns in this chapter 207

HOT POTATO

DESCRIPTION
A message is continuously tossed back and forth between the JMS
server, and a message consumer that won’t acknowledge it has re-
ceived the message.

MOST FREQUENT SCALE
Application

REFACTORED SOLUTION NAME
Acknowledge the message receipt, not its result.

REFACTORED SOLUTION TYPE
Software

REFACTORED SOLUTION DESCRIPTION
Consumer should always acknowledge that they've received a
message. This acknowledgment should not be dependent on the
success of the business logic handling the message. Log failures in
business logic to a separate error queue.

ANECDOTAL EVIDENCE
“Where did all these messages come from?”

SYMPTOMS, CONSEQUENCES
The JMS server is burdened with attempting to redeliver messages
that no consumer will ever acknowledge.

208 CHAPTER 6
Bitter messages

SLOW EATER

DESCRIPTION
Message consumers that take a relatively long time to consume a
message negatively affect message throughput

MOST FREQUENT SCALE
Application
REFACTORED SOLUTION NAME
Eat as fast as you can.
REFACTORED SOLUTION TYPE
Software
REFACTORED SOLUTION DESCRIPTION
Measure the consumption rate of messages as an early warning
system against bottlenecks. Optimize the code paths of message
consumers as necessary.
ANECDOTAL EVIDENCE
“We have to frequently increase the size of the message-driven bean
instance pool.” “The message queues continue to grow unchecked.”
SYMPTOMS, CONSEQUENCES

Message throughput is negatively affected when the production
rate is greater than the consumption rate.

Antipatterns in this chapter 209

EAVESDROPPING

DESCRIPTION
Listening in on high-traffic message queues and topics for fear of
missing an important message
MOST FREQUENT SCALE
Application
REFACTORED SOLUTION NAME
Use message selectors.
REFACTORED SOLUTION TYPE
Software
REFACTORED SOLUTION DESCRIPTION
The use of message selectors lets consumers tune out messages they
aren’t interested in hearing. Specialized message consumers can
handle high-priority messages with a better QoS.
ANECDOTAL EVIDENCE
“This consumer keeps getting spammed with unwanted messages.”
SYMPTOMS, CONSEQUENCES
Message consumers are burdened with handling throw-away mes-

sages and high priority work is intermixed with low priority work.
Network and CPU utilization increases.

210

CHAPTER 6
Bitter messages

PERFORMANCE AFTERTHOUGHTS

DESCRIPTION
Focusing on performance without requirements or engaging in
premature optimizations without a baseline

MOST FREQUENT SCALE
Application

REFACTORED SOLUTION NAME
Measure early and often.

REFACTORED SOLUTION TYPE
Process

REFACTORED SOLUTION DESCRIPTION
Gather performance requirements early and often. Build auto-
mated performance tests that continuously validate performance
criteria. Use performance tests to benchmark JMS vendors based
on your application’s requirements.

TYPICAL CAUSES
Poor planning

ANECDOTAL EVIDENCE
“We will have plenty of time to performance tune at the end of
the development cycle.” “We’ll let our QA department measure
performance.” “We’re using a reputable JMS server, so it should
scale well.”

SYMPTOMS, CONSEQUENCES
Repeated delivery of poorly performing software, redesign of crit-
ical use cases late in the development cycle, and last-minute tun-
ing activities that are ineffective.

Part 4

Broader topics

In Arkansas, we gaze at the rain-swollen Little Missouri River. We look forward
to running this Ozark jewel, which is rarely this high. Our egos, too, are swelled.
This river, now merely the promise of a fun diversion, would have been well beyond
our skill level a mere two years ago. As we suit up, we plan our run, discussing
strategy and safety issues. I notice a partner frantically scrambling through our gear
and realize that we’ve forgotten to pack a spray skirt. The function of a skirt is to
seal water out of the kayak. After eight hours of driving, we’ll have no run today.

In Arkansas, we painfully learned that issues like packing and strategizing can be
as important as fundamental skills like paddling. The same holds true of EJB
development. Part 4 of Bitter EJB addresses secondary issues like tuning and
packaging.

In chapter 9, we discuss the importance of good performance tuning tech-
niques. We emphasize the need for an automated test suite and the importance of
testing before making assumptions about performance. In chapter 10, we discuss
the issues of building, testing, and packaging an application. We look into tools
like XDoclet and Ant that make the build process easier to automate. And we
underscore the importance of running automated tests. In chapter 11, we peek
into the future of EJB, pointing to technologies that may play a crucial role in the
future of EJB.

Butter tunes

This chapter covers

Definitions of performance

Antipatterns related to the EJB performance tuning process
A JUnitPerf tutorial

Tuning an example EJB application using JUnitPerf tests

A step-by-step performance testing methodology
Techniques for automating performance testing

287

288

CHAPTER 9
Bitter tunes

1t’s early in the morning, and I'm locked in tightly to my new snowboard, staring
anxiously down the impossibly steep slope. I'm a skier who’s grown increasingly
addicted to the freedom of snowboarding, and I've learned quickly. But I'm having
a tough time getting to the next level—the confident level of the elite boarder. With a
twist of the hips, I accelerate downhill. I mechanically hammer through a couple of
turns, reacting to each tiny groove and bump in the ungroomed morning snow. My
brain gradually falls behind, and my body only bavely keeps wp with the descent. I'm
in a purely reactionary mode now, with my eyes tracking the terrain only inches in
Jfront of me. I fear that I may be unable to stop, and I certainly can’t keep up this
reckless pace. I wonder if I will even see the crash come.

In this chapter, we’ll tour a few common pitfalls related to the EJB performance
tuning process. We’ll focus on developing a disciplined performance testing
methodology driven, not by irrational fears or wild speculation, but by automated
tests whose objective results aren’t distracted by emotion. By continually measur-
ing the performance of our code—and the impact of our changes to it—these
tests will help us stay ahead of the pain endured when undetected performance
problems sneak into our code.

Ah, but tuning isn’t a development activity, you say. Configuring the applica-
tion for its operational environment is a job suited for those other geeks—the
operations folks strolling safely around the lodge—not those of us still on the
mountain. Well, we could pass the buck that way, but letting performance tuning
roll too far downhill is an incredibly inefficient way to develop software. At best, it
introduces a costly delay in the feedback cycle between making a change intended
to improve performance and seeing whether that change actually did any good.
At worst, failure to start measuring performance early invites the danger that sig-
nificant problems will crop up later, when redesigns are no longer economical.
Instead, to maximize our time and ensure a successful rollout of our application,
we must obtain immediate results on early performance testing.

In this chapter, we will consider an EJB application that suffers from poor per-
formance. The application will employ a familiar antipattern that will serve as a
crash test dummy for our performance testing methodology, letting us focus on
tuning the application and measuring the impact of that tuning. Each time we
ratchet the performance gear a notch, we’ll receive immediate data that indicates
unambiguously whether we’ve truly improved performance. By taking the guess-
work out of the tuning process, we’ll increase our confidence, allowing us to
tackle new performance requirements without fear.

Measures of success 289

9.1 Measures of success

9.1.1

Before we shift into high gear, let’s first nail down a definition of performance as a
measurement. In general, two ways exist for viewing performance: response time
and throughput. We tune and test applications differently, depending on the
aspect on which we’re focusing our improvements.

Response time

The response time of our application refers to the speed at which the application is
able to service a given request, such as a user requesting a web page through a
browser. The request may be serviced by any number of resources in our applica-
tion, including servlets, EJB, a database, or a legacy system. We can manage certain
types of resources by placing a limit on the maximum number of concurrent
requests each resource can safely handle. That is, managed resources are control
valves that help us throttle the application for consistent performance and stabil-
ity. Consequently, each time a request requires the use of a managed resource, it
may need to wait in a queue until the resource is available.

Take, for example, a limited resource familiar to most enterprise developers—
database connections. Figure 9.1 (a) shows a database connection servicing a
request for data. In this case, the database connection pool is sized with ample
available connections capable of servicing requests without queuing. So no cost is
incurred in waiting for a database connection to become available. In contrast,
figure 9.1 (b) shows a queue of active requests waiting to be serviced by a single
database connection. In this case, the size of the database connection pool is not
able to keep up with the number of new requests without queuing. Step right
up... and take a number!

From figure 9.1, we can infer that the response time of a request will include
any time spent waiting in the request queue for an available database connection.
The response time may also include any network latency in obtaining a database
connection via a remote call. Furthermore, as concurrent requests for a database

Request queue

Database
Connection

Database
Connection

(@) (b)

Figure 9.1 Database connections are examples of managed resources that may cause incoming
requests to be queued before being serviced. Queuing incurs additional response time overhead.

290

9.1.2

CHAPTER 9
Bitter tunes

connection increase, more requests will be queued, waiting for the connection.
Therefore, to characterize the response time of our application accurately, we
must take two essential measurements: the response time for a single request and
the response time for the same request under a load of concurrent requests.

In section 9.7.2, we’ll roll up our sleeves and write automated tests that mea-
sure the response time of a use case from our application. By continually running
these tests, we should gain confidence, knowing that any optimizations we make
have indeed improved response time. For now, let’s begin by considering the pos-
sible measurements of such tests.

Throughput

While response time focuses on the speed of a specific request, throughput mea-
sures the number of requests our application can service in a given amount of
time. For EJB applications, throughput is typically measured as the number of
business transactions per second (tps). What constitutes an average business
transaction is certainly application-specific, so throughput metrics always must be
taken in appropriate context. For example, our application might be capable of
processing 10 product catalog queries per second, with each query returning an
average of five products.

From a slightly different angle, we use throughput as an indicator of our appli-
cation’s potential to scale. Scalability is a measure of a load’s affect on our applica-
tion’s performance. For example, if we say that our application can scale to
handle five concurrent users, then we’re referring to the application’s ability to
maintain a linear (not exponential) average response time for each user, while
under the stress of a five-user load.

Applications that scale well can deliver increasingly higher levels of through-
put by adding resources, such as more hardware or more connections within a
pool. When the average response time of a business transaction becomes intolera-
ble under load, the application has reached its maximum effective throughput. Stress-
ing the application beyond this point by piling on a heavier load will further
degrade its responsiveness.

Revisiting our example of database connections as managed resources,
figure 9.2 shows how a database connection pool can be used to work off requests
efficiently. As the number of concurrent requests increases, the single database con-
nection in figure 9.2 (a) will eventually hit a wall. Try as it might, the connection
won’t be able to keep up with the number of pending requests in the queue. Conse-
quently, the request queue will continue to grow, adding to the response time of all
waiting requests. By tuning the size of the database connection pool to include two

Antipattern: Premature Optimization 291

Database
Connection

Request queue Request queue

Database

Connection

Database
Connection

Figure 9.2 Pooling limited resources, such as database connections, is a common technique for
improving an application’s throughput. By increasing the size of the connection pool, a scalable
application can take advantage of these additional resources to deliver better performance.

available connections, as shown in figure 9.2 (b), more requests can be serviced in a
given amount of time. All other things being equal, figure 9.2 (b)’s connection
pool will double the application’s throughput depicted in figure 9.2 (a).

When attempts to get an application to scale prove frustrating, or even down-
right impossible, bottlenecks are the usual suspects. In general, a bottleneck is any
chokepoint that restricts throughput. When a bottleneck is suspected, load testing
tools are called to the rescue. Load testing tools are invaluable. They first put a
load on an application, then shine light on any bottlenecks that rear their ugly
heads. In section 9.7.5, we’ll capture a nasty little bottleneck in the wild by writing
an automated load test. Before we do, however, we must discuss an antipattern
everybody knows but nobody likes to talk about: Premature Optimization.

9.2 Antipattern: Premature Optimization

Making a chunk of seemingly slow code faster can be quite satisfying. You can get
a thrill from strutting your programming prowess and seeing immediate perfor-
mance improvements. However, that thrill can cloud your judgment. Time passes
in a flash as performance tweaking takes over, often resulting in an overly com-
plex tangle of code that might get run only once in a blue moon. But when that
code does run—man, is it fast!

Nobody is immune to the allure of Premature Optimization. We’ve been both
victims of and witnesses to its use. Premature Optimization can take many forms: a
speculative architecture decision, the choice of a particular design, a change in
the runtime environment, or convoluted code.

292

9.2.1

CHAPTER 9
Bitter tunes

Low-level code optimizations tend to attract your attention first. The trouble is,
in most cases, the code paths you decide to optimize aren’t called frequently
enough to justify the time spent tuning the code. To make matters worse, the risk
of wasting time optimizing arbitrary code paths increases with the code base size.
Sure, you can always find a chunk of code that can be made faster, but it’s usually
the wrong one. Although you want your code to be reasonably efficient at all
times, you gamble each time you blindly optimize code at the expense of code
clarity and precious development time. Indeed, code clarity is often compromised
as a result of optimization.

Premature Optimization has another insidious side effect. Tweaking code to
make it faster tends to break something that’s already working. That is, as you con-
tort the code to squeeze out the last little bit of performance, you inevitably make
compromises that can come back to bite you big later. Alas, your code won’t win
any awards for producing the wrong result quickly.

Tuning EJB applications blindfolded

EJB applications are especially unforgiving when you tune them in the dark. They
inherently use at least one other resource, such as a database. As such, any arbi-
trary EJB method may spend more time blocked, waiting on a resource, than actu-
ally using the CPU. In that case, optimizing code won’t show any significant
performance improvement.

The runtime environment of an EJB application is also particularly fertile
ground for the Premature Optimization antipattern. You must consider the vir-
tual machine, database, and application server versions, as well as a dizzying array
of internal tuning parameters for each version. If you try to get all these parame-
ters adjusted for optimal performance before understanding their effect on your
application, you incur at least two costs. First, you divert time away from those
activities that really pay the bills. Second, you can complicate deployment unnec-
essarily by assuming that certain configuration parameters must be used.

Another reason EJB applications are prone to Premature Optimization is the
myriad design decisions that must be weighed against performance. Indeed, it’s easy
to speculate on possible optimizations from the design perspective. Once you swerve
onto that path, you may waste a significant amount of development time before you
see any possible gain. Table 9.1 describes a few premature high-level design optimi-
zations prevalent in EJB applications, along with their potential consequences.

At the end of the day, time spent tuning one area of our application is time
not spent tuning another. It’s a game of opportunity cost. Without a deep
understanding of your application and the behaviors of its users, arbitrary

9.2.2

Antipattern: Premature Optimization 293

Table 9.1 Premature design optimizations in EJB applications may degrade performance and increase
complexity. Deferring these types of optimizations until deemed necessary and beneficial is a better use
of our time and resources.

Premature

Optimization Potential consequences

If your business object doesn’t require concurrent read and write access while retain-
ing stringent transactional integrity, then the use of an entity bean may incur unneces-
sary complexity and performance overhead. A servlet or session EJB using JDBC is
often sufficient.

Entity beans

Stored
procedures

Although stored procedures allow your database to do the heavy lifting, the business
logic they encapsulate is tightly coupled to the database schema and may be written
in a proprietary language that’s difficult to maintain. Designing a business logic layer
in your middle tier generally is easier to develop and maintain.

Bean-managed
persistence

BMP entity beans may suffer from hard-coded SQL, difficult-to-maintain database
logic, and n + 1 database calls to load n bean instances. Entity beans using con-
tainer-managed persistence generally are more efficient and easier to develop, if
used properly.

Custom pri-
mary key gener-
ator

If not designed carefully, custom primary key generators may require synchronization
that becomes a scalability bottleneck. Better scalability, with less work, may be real-
ized by using automatic primary key generators already provided by your database. To
help, JDBC 3.0 includes new methods to facilitate the retrieval of automatically gen-
erated fields.

Caches

If the data in your cache is changing more often than it’s being used, then the number
of cache hits may not justify the complexity of caching while preserving data integrity.

Custom
resource pools

The use of custom resource pools in the name of better performance may prevent
your application server from managing resources effectively. Stability may deteriorate

unless the pools already provided by your server are used.

optimizations are pure speculation. However, by first identifying the most valu-
able optimizations, whether at a high or low level, you can concentrate your
efforts where they’re most needed.

Solution 1: Plan, but don’t act (yet)

Performance requirements are the solution for Premature Optimization. Without
well-defined goals, you’ll try forever to optimize every line of code you write to
mitigate a performance backlash. However, by defining measurable goals for
performance-critical use cases, you can optimize pragmatically, based on patterns
in user behavior and data usage. Your energy is focused on solving the most criti-
cal performance issues first.

In our experience, the best performance gains are realized when following the
advice given in the simple motto, “make it run, make it right, make it fast.” Notice

294

9.2.3

CHAPTER 9
Bitter tunes

that this advice speaks to the order in which you take action, not necessarily the
order in which you consider the necessity of those actions. In other words, you
should take action to improve performance only when not doing so would pre-
clude you from delivering a successful application. The earlier you know what
determines success, the better.

Knowing when to take action isn’t always clear-cut. We’re constantly trying to
strike a delicate balance between optimizing the code we write today and building
an application that can achieve expected levels of performance. On one hand,
you want to keep the code efficient without racking up too much time tuning. On
the other hand, you need to consider the performance requirements of your
application early and often. If you don’t keep in mind how your decisions might
impact performance, chances are when you finally do look up, you’ll be aimed
straight for a tree. Nevertheless, you can avoid possible disasters by expending
effort to improve performance only when you’ve gathered sufficient evidence to
let you prioritize and focus on optimizations that will truly make a difference.

If you defer performance tuning until it’s proven to be a high-yield investment,
you’ll have a chance to validate your design with working code and tests. At this
point in the development cycle, you will be able to understand the design well
enough to consider the potential benefits of global and local optimizations toward
meeting performance goals. Better yet, with a solid foundation of tests, you will be
able to tune safely, knowing that the tests will fail if tweaking code causes existing
functionality to break. In the meantime, writing well-factored, modular code puts
you in a position to tune economically down the road, if necessary.

Solution 2: Write well-factored, modular code

Until performance improvements are necessary, write code that is as simple and
clean as possible. The time you’ll save if you write the simplest and cleanest code as
a matter of course can be used later to optimize those few places where code acci-
dentally gets complex and laden.

If you find opportunities to improve performance, remember that simple
designs that use well-factored, modular code are more amenable to performance
tuning than more complicated designs. In general, well-factored code is easier to
change. And code that’s easy to change is easier to tune. By encapsulating imple-
mentation details, modular components can respond to change, allowing us to
change their underlying code without breaking their clients. Moreover, well-fac-
tored, modular code exposes succinct methods that serve as excellent starting
points for optimizing a particular code path. Take, for example, the method in

Antipattern: Premature Optimization 295

listing 9.1 responsible for withdrawing an amount from a bank account, designed
as an entity EJB.

Listing 9.1 Code that is not well factored is also difficult to tune

public double withdraw(int accountId, double amount)
throws Exception {

InitialContext context = new InitialContext() ; .
Find the
Object homeRef = context.lookup ("AccountHome") ; SPeCiﬁed
account
AccountHome accountHome = (AccountHome)PortableRemoteObject by its ID
narrow (homeRef, AccountHome.class) ;
Account account = accountHome.findByPrimaryKey (accountId) ;
account.setBalance (account.getBalance () - amount) ; Withdraw the
ifi moun
return account.getBalance() ; specified amount
) of money
|

Notice how all the logic is inlined in the method. If we were to run a code profiler
on this code, we would find it difficult to ascertain which piece of logic—finding
the appropriate account or withdrawing the specified amount—consumes the
most time. The profiler would merely decompose the overall method time into
the individual execution times of each method invoked. However, we’d like to
know which coarse-grained code path could benefit most from tuning. To make
this monolithic method easier to read, let’s refactor it a bit, as shown in listing 9.2.

Listing 9.2 Well-factored code enables a code profiler to help you tune effectively

double withdraw(int accountId, double amount) {
Find the specified
Account account = findAccount (accountId) ; account by its ID

return account.withdraw (amount) ; Withdraw the speciﬁed

} amount of money
|

Our refactoring organized the inlined code into two distinct methods: find-
Account () and withdraw (). In applying this refactoring, not only have we made the
code simpler and more modular, we’ve also enabled the code profiler to help us.
The code profiler can now quantify the individual cost of each code path and point
us directly to the starting point of the most expensive path. And, as an added
bonus, once we optimize a particular method, that method can be used by other
components in our application, providing better performance many times over.

296

9.3

9.3.1

CHAPTER 9
Bitter tunes

Now, let’s consider what would happen if, instead of building performance
into our design, we attempt to bolt on performance after the design is finished.

Antipattern: Performance Afterthoughts

Developing applications that perform well requires prior intent. If performance is
important, it must be baked in to the application, not bolted on afterwards. We
learned this lesson the hard way a few years back. (And one of us has the hairline
to prove it!) The database we were using had a serious bottleneck in its locking
strategy. When used with applications that read more data than they wrote, the
database was lightning fast. Yet whenever multiple concurrent users attempted fre-
quent database updates, this particular database was clearly the wrong tool for the
job. Unfortunately, we didn’t know the bottleneck existed until it was too late.
Although we knew from the beginning that the application needed to scale in
order to be successful, we didn’t plan for scalability early enough. We assumed
that the application would scale, and if it didn’t, we figured we would have time
later to refactor the application’s design to be more scalable. Building a prototype
that demonstrated a few performance-critical use cases under load would have
alerted us earlier to the impending doom.

Just because you’re using EJB technology doesn’t mean you can disregard per-
formance concerns. It’s true that any worthy EJB container will help you manage
resources for the best possible performance. However, perfuming a poorly per-
forming application with the scent of EJB won’t keep the flies away.

We can increase our application’s probability of success by using simple
designs tactically with well-factored, modular code, but that, too, is no substitute
for strategically planning for performance. This presents a conundrum. If we
delay considering performance until right before the application goes live, it’s
usually too little too late. Then again, we don’t want to speculate on performance
at the expense of rapidly delivering valuable software. The answer to this problem
lies in continuous planning and measurement.

Solution: Plan early and often

To counterbalance premature optimization, we need to plan proactively for perfor-
mance. That’s not to say we should attempt to predict future performance
demands and carve a plan in stone. We’ll be sorely disappointed when, as often
happens, things don’t go according to that plan. Indeed, our perspective inevitably
will alter as we learn more about our application and its users. Consequently, the
performance plan is subject to frequent change. Planning for performance

Antipattern: Performance Afterthoughts 297

requires that we constantly consider the current state and goals of our application,
by taking measurements and making course corrections throughout the project.

As the delivery date approaches, no doubt we’ll know which aspects of our
application suffer from poor performance. Furthermore, we’ll have more accu-
rate estimates of the production load on our application and the respective hard-
ware necessary to handle that load. Performance plans may change as a result of
this information, and we should consider this a good thing.

In the meantime, the performance planning process will help us head off
potential problems at the earliest opportunity. If we continually plan for perfor-
mance, we’ll be able to see obstacles in the terrain ahead and react in time to
avoid a crash. Let’s consider the following guidelines for performance planning:

1 Understand the application’s usage patterns Users generally expect different
levels of service, depending on the feature of the application they are using
at the time. Users expect some use cases to respond rapidly and understand
when others are slower. A web user, for example, expects to navigate a prod-
uct catalog quickly. Yet, when an online order is placed, the same user will
accept a delayed order confirmation via email. Understanding patterns in
user behavior, and the data and resources required to support that behavior,
provides invaluable input into the performance planning process.

2 Prioritize performance requirements To maximize your time and dollars,
you should satisfy the performance requirement with the highest business
value first. For example, optimizing a product catalog for maximum
responsiveness when browsed under load is arguably a better investment
than optimizing your email server for faster order confirmation. Once the
top performance requirement has been demonstrated successfully, you
can work on the next highest priority requirement. Rinse and repeat.

3 Write automated performance tests Performance tests that unambiguously
define and validate the performance requirements of your application are
essential in helping you meet desired performance goals. Without a tar-
get, you’ll never know when you’ve hit the mark. Good performance tests
express objective exit criteria in an executable format. In other words,
running these tests will help you decide if tuning is necessary, and, if so,
when tuning should stop. Tests also prevent tendencies to overoptimize
based on speculation or commit too early to designs and infrastructure
that seem to promise improved performance.

4 Build modular components Components that hide their implementation
insulate the rest of the application from changes made to improve

298

9.4

CHAPTER 9
Bitter tunes

performance. Using these components, you can start with a simple algo-
rithm that works, even if it may incur a few extra seconds of overhead. As
you learn more about your application and its uses, you can easily swap in
a new, blazingly fast algorithm or data structure, for example.

5 Revise plans based on feedback Once performance goals have been identi-
fied and prioritized, you must demonstrate performance as early as possi-
ble to get feedback. You’ll want to know sooner rather than later if you're
making design decisions that may prohibit your application from meeting
user demands. If you feed this information back into the planning pro-
cess, you can steer the design to meet your performance goals continually.
You can respond more readily to change, rather than dutifully marching
to an inflexible master plan.

6 Understand your EJB server’s configuration options In your haste to tear the
wrapper off your new EJB server, a few finer features may go unnoticed.
Server vendors differentiate themselves from their competitors, providing
different knobs and levers you can twist and pull to improve performance.
If you understand the available options, you’ll know when to leverage
rather than build for successful performance. Study and investigate the
contents of the box. Then experiment and see what happens. Your tests
will announce impending danger if your application starts to sputter.

7 Schedule the availability of production hardware Your plan should include
testing on production-quality hardware as soon as possible. Indeed, how
your application performs for real users is what matters most ultimately.
Everything else is just preparation.

Remember, it’s not the plan that’s important, but the planning. With that in
mind, let’s get down in the trenches with a real, live application.

Grist for the tuning mill

Let’s say we’ve accepted a mission to develop yet another online product catalog.
Our customer group—those folks defining the requirements of our application—
has decided that users want to browse a list of all products for a particular
category within a product catalog. The initial user interface will be an HTML
browser, but it’s imperative that the catalog browsing service be available to other
types of distributed clients. This requirement is not unlike the others we’ve been
delivering, from which a service-oriented architecture has emerged.

9.4.1

Grist for the tuning mill 299

We conclude that the simplest approach would be to publish a remote facade
that encapsulates the business logic of querying a product catalog. We dub it the
catalog service. A stateless session bean seems like the logical choice given our
architecture and experience, so let’s make it the centerpiece of our design.

Putting an EJB to the test

Before diving into the implementation of our catalog service, let’s start by writing
a test. Why? Well, how else will we know what code to write? If we write a test first,
we’ll have an example of the catalog service’s intended use. In addition to demon-
strating the intent of the catalog service, the test can validate automatically that
the catalog service returns the correct results. Once the test passes, we’re done!
Listing 9.3 shows the JUnit test, which queries for all products in the snowboard
category of the product catalog. (Note: a full tutorial on JUnit goes beyond the
scope of this chapter. The JUnit Primer* will help get you up and running quickly.)

Listing 9.3 Unit testing the product catalog service

public class CatalogTest extends TestCase {

public CatalogTest (String name) {
super (name) ;

}

public void testGetProducts() throws Exception {
String snowboardCategory = “Snowboard”;
Catalog catalog = (Catalog)getCatalogHome () .create() ;

Collection products =
catalog.getProductsByCategory (snowboardCategory) ;

assertEquals (25, products.size());

Iterator productIter = products.iterator() ;

while (productIter.hasNext()) {
ProductDetails product = (ProductDetails) productIter.next();
assertEquals (snowboardCategory, product.getCategory()) ;

}

catalog.remove () ;

1 http://www.clarkware.com/articles/JUnitPrimer.html

300

9.4.2

CHAPTER 9
Bitter tunes

The test case has a single test method, testGetProducts (), that starts by using the
Catalog home interface to create a remote reference to a Catalog session bean
instance. The Catalog remote interface represents a facade—a black box from
the client’s perspective—that finds products in a catalog. Using the remote Cata-
log reference, the test then queries for all products in the snowboard category.
We expect exactly 25 products in this category because before running the test we
created 25 example products in the snowboard category of the product catalog
database. Iterating over the resulting collection of products, the test validates that
the catalog service only returns the products in the snowboard category.
Excellent! Now there’s just one problem: We have to get the test to pass.

Passing the test

To get the test to pass, we have to write the code for the catalog EJB. All EJB com-
ponents require a remote interface, home interface, and bean class. We won’t
actually show the code here because, frankly, the implementation doesn’t matter.
Instead, we’ll just show the design of one possible solution. Our priority should be
to begin by writing clean and simple code. We won’t worry about performance
here. We just want to validate that our design is usable and our code produces the
correct results, thus avoiding the risk of overspending on performance too early.
Running the test from the remote client’s perspective gives us confidence that the
catalog service is working as we expect. We can change and tune the underlying
code without the fear that existing functionality might silently break. If it does,
the test will surely let out a scream.

Under the hood in the Catalog bean class, we code the bean to use JDBC to
query our product table directly through a database connection. The values in our
database table are then packaged and returned to the client in a collection of light-
weight ProductDetails DTOs. In future use cases, administrative users may update
the products in a catalog. This updating might require a more complex persis-
tence mechanism, for example, the type of persistence afforded by an entity bean.
We’ll cross that bridge when we get there. Right now we’re concerned only with
retrieving read-only product information, so a simple stateless session bean wired
up to the database will do just fine. Figure 9.3 shows a UML sequence diagram illus-
trating the interaction of our recently built components.

Notice that all business logic occurs on the server side, behind the facade of
the catalog interface. As such, our design is modular. If performance becomes an
issue, we can tune the code behind the catalog interface without adversely affect-
ing its remote clients. That’s reassuring because we have a sneaky suspicion that
tuning may be in our immediate future.

9.4.3

Grist for the tuning mill 301

CatalogTest CatalogHome Catalog Connection ProductDetails

Create catalog

\4

Get products

Create

1
1 Query for products

y

Create

Get details

A

Figure 9.3 The Catalog stateless session bean, wired directly to the database, is used to query the
catalog for all products in a product category. The test stands in for a client, demonstrating a usage
scenario and validating that expected results are returned.

We’ve written just enough code to get the test to pass. We’ve made it work and
made it right. Now, let’s make it fast.

Specifying response time as a measure of success

Up until now, we’ve written simple code so that the test would pass. In doing so,
we certainly didn’t forget the hard-earned wisdom we gained designing distrib-
uted systems over the years. Rather, we made a concerted effort to determine the
workability of our design and code first, before speculating on performance.

With much pride, we demonstrate the new catalog service to our customer,
who is delighted. After kicking the tires a bit, our customer hunkers down at our
test machine and proceeds to press the button that lists the snowboard category
products over and over again. Our customer likes the fact that the new catalog ser-
vice is working this soon in the schedule, so now we’re ready to start polishing.
The customer consensus is that the service just isn’t fast enough; we need to
improve performance.

The average response time of the web page to query and list 25 products is
approximately 1.4 seconds. We think we can do better than that with a little tun-
ing, but we need a way to measure success. So we ask our customer group to write

302

9.4.4

CHAPTER 9
Bitter tunes

a new performance requirement. We watch as they scratch their heads and mum-
ble a bit, but finally they draft a performance:

The average response time of the catalog web page listing up to 25 products should not
exceed 1 second.

Great, now we have a goal!

Seeing light at the end of the tuning tunnel

To satisfy our new performance requirement, we need to shave off about a half-
second of the response time, then stop tuning before we hit the point of diminish-
ing returns. However, we’re not sure whether to start chiseling in the presentation
layer or the business logic layer. We want to focus our attention on tuning the sec-
tions of code that contribute the most overhead to the overall response time.
Guessing would be a fool’s game, so we put our trusty code profiler on the case to
hunt down the busiest code. Table 9.2 shows the results:

Table 9.2 Using a code profiler takes the guesswork out of tuning by identifying hot spots worth
optimizing. Always seek the advice of a code profiler before attempting to tune code.

Method Total time (ms)
CatalogEJB.getProductsByCategory () 1327.0
CatalogServlet.service () 10.0
CatalogEJB.getConnection () 10.0
CatalogEJB.runQuery () 15.0

1362.0

The code profiler identifies the CatalogEJB.getProductsByCategory () method as
the major contributor to the total response time. Well, that rules out tuning the
presentation layer for any observable gain in performance. The top contributor is
the EJB method, not the servlet method that presents its results. The profiler
results also rule out tuning the database interaction. The time it takes to obtain a
database connection and execute the SQL query is insignificant compared to the
business logic in the EJB.

We have no question that the culprit is the code in the EJB that transforms
database rows into products. But when we’re done tuning, how will we know we’ve
made good progress? What if our tuning activities cause performance to take a
step backward? Fear begins to envelop us as we’re reminded of endless hours
spent with the subject of our next antipattern—Thrash-tuning.

Antipattern: Thrash-tuning 303

9.5 Antipattern: Thrash-tuning

I am barely a third of the way down the hill, contemplating disaster, when some-
thing finally clicks. Instead of focusing on every slight ripple in the snow, I concen-
trate only on obstacles that might impact my balance or my course down the
mountain. I'm able to keep my eyes further ahead, improving my ability to plan and
react. With this improvement I husband my waning strength better, saving it for the
biggest challenges—IUike that tree just ahead! I've entered the zone that my mentors
s0 often describe.

If you’re always looking at your feet, you can’t anticipate what’s up ahead. And if
you can’t anticipate, you can’t determine whether your microadjustments are
making any progress toward the ultimate goal. Before long, you’re bound to
diverge hopelessly off course.

Thrash-tuning is a nasty habit born out of undisciplined performance tuning.
You know the drill: change a tuning parameter here, tweak some code there, then
run the application. Is it faster? No, it actually seems to be slower! Interesting. Now which
change caused that to happen? Lacking clear knowledge, you repeat the cycle, over
and over again.

Without a baseline to measure against, Thrash-tuning is entirely unpredict-
able. You may spend days tuning in circles with only a minor improvement to the
application’s overall performance. Sometimes you get lucky and increase perfor-
mance by a single order of magnitude in a quick round of thrashing, but you’ll
soon find that’s the exception. As a general rule, Thrash-tuning can consume
hours or days of your life, without amounting to much good.

The following are common ways to invoke the curse of Thrash-tuning:

m Changing more than one thing at a time In the rush to get the most bang
for your tuning buck, you change multiple things at once, but doing so
makes the individual contributions of those changes indistinguishable from
each other. Multiple changes also makes backing out a change that
degrades performance difficult.

m Forgetting to measure between changes Without quantifiable evidence
that a particular change improves performance, you can’t clearly determine
its impact. Performance goals always seem to be just beyond your grasp.

= Not knowing when to stop Remember, Thrash-tuning is a habit and a par-
ticularly hard one to kick. You may find yourself tuning endlessly. Perfor-
mance tests are the cure, telling you when enough is enough.

304

9.5.1

CHAPTER 9
Bitter tunes

If these scenarios sound all too familiar, you’re not alone. Both novice and veter-
ans alike have suffered similar fates at the hands of EJB applications. The sheer
number of opportunities for improving EJB performance makes falling into a
vicious tuning cycle deceivingly easy. At one end of the spectrum, you can change
deployment descriptors quickly to dynamically influence performance. At the
opposite end, you can apply high-level design patterns, using general knowledge
gained from distributed computing.

The difficulty lies in choosing an approach and measuring its impact in isola-
tion. A solution applied in hopes of improving performance for one aspect of our
application may cause unwanted secondary effects in other areas. Consequently,
performance tuning quickly turns into a delicate balancing act. We become pain-
fully aware that multiple controls often exist for performance with complex inter-
actions. Each new interaction increases the odds that making a change—one that
theoretically should improve performance—may not make a difference.

Besides being incredibly frustrating, when thrash-tuning runs rampant, it has
the potential to rob us of enormous amounts of development time. The more you
scratch it, the more it itches. A sure-fire way to stop this irritation is to use a sound
methodology with information derived from automated performance testing.

Solution: Use a performance testing methodology

The only defense we’ve found against falling prey to Thrash-tuning is the use of
tests to gather evidence first, before making an attempt to improve performance.
We’ve tried predicting whether an optimization would improve performance, and
yet, after hours of navel gazing, we remained undecided. Although not as thera-
peutic as navel gazing, writing tests that measure the impact of changes has given
us much better success.

To ensure that you’re always ratcheting forward toward optimal performance,
current performance must be automatically compared to a baseline. Doing so
keeps the performance of your application from going off the rails. If you use a
methodology like the following, your performance stays on track, never more
than one change away from the last baseline:

1 Begin with clean and modular code that’s easy to understand and modify,
and driven by tests that express its intentions and expectations.

2 Choose quantifiable performance goals for the code.

3 Profile the code to identify hot spots with the highest return on investment.

4 Write and run an automated test that baselines current performance.

9.6

Mini-antipattern: Manual Performance Testing 305

5 Make a change intended to improve performance.
6 Run the automated test again to measure the gain (or loss) in performance.

7 Repeat as often as necessary until the application meets its performance
goals.

Notice that we use a test to measure both before and after a tuning change is
made. The test tells us if the tuning did any good. If not, we can back out the
change to arrive safely at the last good baseline. Bear in mind that we might need
to give caches, pools, and other performance-enhancing mechanisms a chance to
warm up before taking a measurement. Otherwise, the observed performance
may be thrown off by a cold start. In other words, the test environment has to be
predictable, and the tests must be repeatable.

This easy-to-use formula really shines when applied incrementally to solve
the most pressing performance problem at any given time. Once performance
has improved in one area, and a test is in place to keep that problem continu-
ally in check, you can repeat the formula with the next most important perfor-
mance problem.

We’ll use this methodology to confidently tune our catalog service throughout
the remainder of this chapter. In fact, we’ve already taken the first steps toward
our goal. We wrote clean and modular code to make our test pass. Demonstrating
our results to our customer prompted them to draft a realistic performance
requirement we can measure. Before beginning to hack and slash, we used a pro-
filer to find high-yield tuning opportunities. Now we’re ready to begin tuning so
that we can deliver on the goal our customer has given us. First, let’s make sure we
get started on the right foot by avoiding the tedium of manual testing.

Mini-antipattern: Manual Performance Testing

When we first turned over our catalog service to our customer, we watched as they
poked and prodded, and we noticed that they grew weary of manually hitting the
web page to assess performance. A couple times, they had to redo tests because
the manual process wasn’t followed consistently. Clearly, we need a more efficient
and less error-prone testing strategy. As the suite of performance tests grows, run-
ning them all manually just doesn’t scale. So many tests to run, so little time. Our
team has earned a reputation for cranking out high-quality features like clock-
work. To live up to that great reputation, we can’t drag ourselves to the test lab to
play the role of simulated web users every time we change something that impacts
performance. That’s what computers are for!

306

9.6.1

CHAPTER 9
Bitter tunes

When push comes to shove and deadlines loom, manual tests are always the
second thing (right after documentation, of course) that gets selectively ignored.
Peril usually isn’t too far behind. The next time we tune something without the
safety of automated tests, our confidence will wane, and we’ll fall back into a
Thrash-tuning cycle again. Our stress goes up, the number of defects increases,
and pretty soon we’re burnt out.

Solution: Automate performance testing

Automated performance tests are like canaries in a coal mine. If we keep them
running, they’ll continue to measure whether performance goals are being met
in the face of change. If a change causes performance to backslide, well, we’ll
know it at the poor birdie’s expense.

Good performance tests offer many advantages, including

® automatically checking their own results

m providing immediate feedback in the form of a simple pass or fail status
m retaining their value over time through repeated testing of expectations
® running continuously without manual intervention

m instilling confidence to change code with impunity

At the least, we should run our performance tests once a day as a sanity check. If
we’re actively tuning code or changing the runtime environment, we should run
them more often. The repeatability of the tests will prove our application’s readi-
ness for production.

A plethora of tools already exists for performance testing automation. Apache
JMeter,? for example, is an open source desktop application that measures the
performance of an application’s behavior under load. Traditionally used to test
web applications, over time JMeter has been made more extensible. You can now
write custom extensions to put almost any server, network, or object under load.
JMeter is also highly configurable; it includes a collection of test listeners for
graphically visualizing performance. It can also be configured to include test
assertions. For example, you can assert that a request for a web page returns
within a specified amount of time. Yet, although JMeter is a valuable tool for per-
formance testing, it falls short of our goals for automation. Specifically, the test
results must be manually inspected each time the tests are run. While we could

2 http://jakarta.apache.org/jmeter/

9.7

9.7.1

Automated performance testing with JUnitPerf 307

probably extend JMeter to satisfy our desire for automation, instead we opt to use
a complementary tool.

In this chapter we’ll use JUnitPerf, an open source performance-testing tool
that wraps existing functional tests written in JUnit. We choose JUnitPerf because
it allows us to write tests that automatically check their own results and provide
immediate feedback with an unambiguous pass or fail status. JUnitPerf is also
tightly integrated with JUnit, so our performance tests can be run automatically
alongside our functional JUnit tests.

Automated performance testing with JUnitPerf

We’ve already validated the feasibility of our EJB design with working code and a
functional test. Making it fast enough to please our customer is our next order of
business. However, we don’t want to risk breaking functionality by complicating
our code with performance optimizations. To be useful, the catalog service has to
work right and perform well at the same time. Let’s explore how JUnitPerf can
keep both these interests in check.

JUnitPerf overview

JUnitPerf? is an open source set of JUnit extensions for automated performance
testing. JUnitPerf tests transparently wrap standard JUnit tests and measure their
performance. In other words, we can build upon our existing functional test to
make sure the code continues to work right. The JUnitPerf tests tell us if the code
is fast enough. If a performance test doesn’t meet expectations, the whole test fails.
If the functional test fails, the performance test fails. Conversely, if the perfor-
mance test passes, then we have confidence that tuning didn’t cause existing func-
tionality to break. Table 9.3 describes the major JUnitPerf classes and interfaces.

Because JUnitPerf tests can run any class that implements JUnit’s Test inter-
face, we could use JUnitPerf to measure the performance of any test conforming
to this interface. In this section, we use it to wrap the JUnit test we wrote earlier
for our catalog service. We could also use JUnitPerf to run HttpUnit tests and
measure the performance of our entire web application, for example. Another
option might be to use JUnitPerf to run Cactus tests to validate our catalog ser-
vice’s business logic from within the EJB container.

3 http://www.clarkware.com/software/JUnitPerf. html

308

9.7.2

CHAPTER 9
Bitter tunes

Table 9.3 JUnitPerf is a collection of classes and interfaces for performance testing JUnit tests.

Class/Interface Description

TimedTest Runs a JUnit test and measures its elapsed time. A TimedTest is constructed
with a specified maximum elapsed time. By default, a TimedTest will wait for
the completion of its JUnit test and then fail if the maximum elapsed time was
exceeded. Alternatively, a TimedTest can be constructed to immediately fail
when the maximum elapsed time of its JUnit test is exceeded.

LoadTest Runs a JUnit test with a simulated number of concurrent users and iterations.
The load can be incrementally ramped by registering a Timer instance to control
the delay between the additions of each concurrent user.

Timer An interface implemented by classes that define timing strategies to optionally
control the delay between additions of users in a LoadTest.

ConstantTimer A Timer with a constant delay.

RandomTimer A Timer with a random delay and a uniformly distributed variation.

But that’s another day. Right now, our customer is getting nervous. Let’s put our
money where our mouth is with an automated response time test for the catalog
service.

Testing response time

Recall that we’re staring down the barrel of a response time of approximately 1.4
seconds to display 25 products on a web page. We won’t sleep well until the
response time is under 1 second. Luckily, we know what to do. The code profiler
indicated earlier that optimizing the CatalogEJB.getProductsByCategory ()
method would be the smart move. How will we know when we’re done? Well,
when a performance test passes, of course.

We want to write a test that will fail if the response time of our use case exceeds
1 second. To do that, we create a JUnitPerf TimedTest instance that wraps our
existing CatalogTest.testGetProducts () test case method. Listing 9.4 shows the
JUnitPerf test used to validate our performance expectations.

public class CatalogResponseTimeTest {
public static Test suite() {
long maxTimeInMillis = 1000;

Test test = new CatalogTest ("testGetProducts") ;
Test timedTest = new TimedTest (test, maxTimeInMillis) ;
return timedTest;

9.7.3

Automated performance testing with JUnitPerf 309

}

public static void main(String args[]) ({
junit.textui.TestRunner.run(suite()) ;

}
|

As a convenient way to run our test, our test defines a suite () method called by
the JUnit test runner in the main() method. We run the CatalogResponseTime-
Test, and it fails with the following output:

.TimedTest (WAITING) :

testGetProducts (com.bitterejb.catalog.ejb.CatalogTest) : 1352 ms

F

Time: 1.352

There was 1 failure:

1) testGetProducts (com.bitterejb.catalog.ejb.CatalogTest)
Maximum elapsed time exceeded! Expected 1000ms, but was 1352ms.

FAILURES!! !

Tests run: 1, Failures: 1, Errors: 0
All right, we knew that would happen. We just wanted to see if the test was really
measuring anything. The test expected the response time to be less than 1 sec-
ond, but sure enough, it measured the same response time as observed by our cus-
tomer—1.4 seconds. Now we have a solid baseline from which to work. We should
be able to optimize code, improving the response time until the test passes. If the
test doesn’t eventually pass, we’ll need to start turning the performance knob in
the other direction or look for another knob to turn.

Be aware of a subtle “gotcha!” when writing JUnitPerf tests. The response time
measured by a TimedTest includes the elapsed time of the testXxX () method and
its test fixture—the setUp () and tearDown () methods. Therefore, the maximum
elapsed time specified in the TimedTest should be adjusted accordingly to take
into account any cost of the existing test’s fixture.

Tweaking code

To get the test to pass, we follow the code profiler’s advice and optimize the logic
that created ProductDetails objects from the rows in our database. The SQL
query is sufficiently fast, according to the profiler, so nothing is gained barking up
that tree. After optimizing, we run the CatalogResponseTimeTest again, and it
gives us the following output:

310

9.7.4

9.7.5

CHAPTER 9
Bitter tunes

TimedTest (WAITING) :
testGetProducts (com.bitterejb.catalog.ejb.CatalogTest): 751 ms

Time: 0.751

OK (1 test)

Hey, that did the trick! The test tells us that we made good progress. Had the test
failed, we could have continued to optimize until it passed.

After showing off the improved catalog service to our customer, we add this
test to our suite of performance tests. As we go forward, the automated test will
continue to keep the response time of this use case in check.

Specifying scalability as a measure of success

At this point we know how long it takes for one user to get a list of 25 products
using the catalog service. How long will the same process take if our application is
under the stress of multiple concurrent users? Until now we haven’t thought
much about scalability, but we’re confident that our simple design won’t let us
down. Here’s where the rubber meets the road.

Our customer is impressed with our track record of meeting goals, and now is
ready to hand us a new challenge. Performance planning early and often has
enabled the customer to accurately estimate the expected load on the production
system. The customer now wants to improve upon our performance success by
writing a new performance requirement, which states:

The response time of the catalog web page listing wp to 25 products should not exceed 1
second under a load of five concurrent users.

In other words, the catalog service should scale to handle five concurrent users
while consistently maintaining the single-user response time we demonstrated
earlier. That’s a tall order. Let’s use JUnitPerf to see how far off the mark our
application currently is.

Testing response time under load

We have an automated JUnitPerf test that measures single-user response time.
We’d like to use a similar testing technique to put this test under a load of five
concurrent users while measuring each user’s response time. We want the test to
fail if any user’s response time exceeds one second. Then we can follow our per-
formance testing methodology to tune until the test passes.

To do so, we write a JUnitPerf test that creates a LoadTest instance passing in a
TimedTest instance and a number of concurrent users. The TimedTest in turn

Automated performance testing with JUnitPerf 311

wraps our existing CatalogTest.testGetProducts () test case method. Listing 9.5
shows the JUnitPerf test used to validate our scalability expectations.

Listing 9.5 Testing the scalability of the catalog service

public class CatalogLoadTest {
public static Test suite() ({

long maxTimeInMillis = 1000;
int concurrentUsers = 5;

Test test = new CatalogTest ("testGetProducts") ;

Test timedTest = new TimedTest (test, maxTimeInMillis) ;
Test loadTest = new LoadTest (timedTest, concurrentUsers) ;
return loadTest;

}

public static void main(String argsl[]) {
junit.textui.TestRunner.run(suite());
}
1

We run the CatalogLoadTest , which fails with the following output:

TimedTest (WAITING) :

testGetProducts (com.bitterejb.catalog.ejb.CatalogTest): 771 ms

TimedTest (WAITING) : testGetProducts (com.bitterejb.catalog.ejb.CatalogTest) :
1372 ms

F

TimedTest (WAITING) : testGetProducts (com.bitterejb.catalog.ejb.CatalogTest) :
1963 ms

F

TimedTest (WAITING) : testGetProducts (com.bitterejb.catalog.ejb.CatalogTest) :
2584 ms

F

TimedTest (WAITING) : testGetProducts (com.bitterejb.catalog.ejb.CatalogTest) :
3255 ms

F

Time: 3.40

There were 4 failures:

1) testGetProducts (com.bitterejb.catalog.ejb.CatalogTest)

Maximum elapsed time exceeded! Expected 1000ms, but was 1372ms.
2) testGetProducts (com.bitterejb.catalog.ejb.CatalogTest)

Maximum elapsed time exceeded! Expected 1000ms, but was 1963ms.
3) testGetProducts (com.bitterejb.catalog.ejb.CatalogTest)

Maximum elapsed time exceeded! Expected 1000ms, but was 2584ms.
4) testGetProducts (com.bitterejb.catalog.ejb.CatalogTest)

Maximum elapsed time exceeded! Expected 1000ms, but was 3255ms.

312

9.7.6

CHAPTER 9
Bitter tunes

FAILURES!! !
Tests run: 5, Failures: 4, Errors: 0O
Ouch! Our application can’t scale beyond one user. Notice that the first user’s
response time is within the l-second limit, but the other users’ response times
bust the threshold. Worse yet, the response times increased for each successive
user, indicating that our application has a bottleneck restricting its ability to scale.
So we fire up the code profiler and run the CatalogLoadTest to obtain clues.
The code profiler doesn’t let us down. Table 9.4 shows what the profiler finds
when the catalog service is under load.

Table 9.4 Running a profiler on the catalog service under load reveals contention for a database
connection. Load testing tools help illuminate scalability bottlenecks.

Method Average time (ms)
CatalogEJB.getProductsByCategory () 716.0
CatalogServlet.service () 10.0
CatalogEJB.getConnection () 1248.0
CatalogEJB.runQuery () 15.0

1989.0

The CatalogEJB.getConnection () method that was only taking around 10 milli-
seconds in our initial run of the code profiler is now taking up the majority of the
overall response time. Let’s tune that method while continuing to test the single-
user response time.

Using a connection pool to increase throughput

Based on the evidence provided by the code profiler, we conclude that a single
database connection is the limiting factor to scaling our application. Conse-
quently, requests for a connection are being queued. Each successive user’s
response time in turn rises above the desired threshold.

In this case, pooling database connections is a low cost, high reward change
sure to improve scalability. Before you start rolling your eyes over yet another
example demonstrating the virtues of connection pooling, allow us to explain. We
realize connection pooling is the poster child for many discussions on perfor-
mance. Indeed, it’s a well-known performance problem, and that’s exactly why
we’re using it here. We want the problem—and the solution—to be familiar so

Automated performance testing with JUnitPerf 313

CatalogTest CatalogHome Catalog ConnectionPool Connection ProductDetails

Create catalog

Get products

v

eserve

R

Connection
—_—
1

. Query for products:

Create

v

Get details

v

Figure 9.4 Refactoring the catalog service to use a database connection pool improves the scalability
without sacrificing code complexity.

you can focus on how to test it. It’s not about the connection pool; it’s about the
technique to discover it.

It’s also worth noting that we’ve run across more than one improperly sized
connection pool. Worse yet, we’ve seen custom connection pools that were imple-
mented incorrectly. (Yet another victim of the Not Invented Here antipattern.) In
other words, just because you’re using a connection pool doesn’t necessarily
mean you get instant scalability. You have to test for that, so let’s get back to the
technique.

Instead of synchronizing access to a single database connection shared by mul-
tiple users, we refactor our Catalog EJB to use a database connection pool. We
then configure the pool size to five active connections to improve scalability.
Figure 9.4 shows a UML sequence diagram illustrating the use of the database con-
nection pool.

Now we run the CatalogLoadTest again, and it passes with the following output:

TimedTest (WAITING) : testGetProducts (com.bitterejb.catalog.ejb.CatalogTest) :
751 ms

TimedTest (WAITING) : testGetProducts (com.bitterejb.catalog.ejb.CatalogTest) :
812 ms

314

9.7.7

CHAPTER 9
Bitter tunes

TimedTest (WAITING) : testGetProducts (com.bitterejb.catalog.ejb.CatalogTest) :

822 ms

TimedTest (WAITING) : testGetProducts (com.bitterejb.catalog.ejb.CatalogTest) :
831 ms

TimedTest (WAITING) : testGetProducts (com.bitterejb.catalog.ejb.CatalogTest) :
811 ms

Time: 0.972

OK (5 tests)

Outstanding! Our scalability test is passing, and the underlying functional test
continues to pass. This tells us that refactoring to use a database connection pool
didn’t break anything. As we expected, the refactoring actually improved scalabil-
ity. Because requests don’t need to be queued before being serviced, the response
times are fairly consistent for each concurrent user. The test validates our design
as able to handle five concurrent users without any specific user experiencing a
delayed response time. If, in the future, the response time of any user increases
beyond the limit set in our load test, the test will fail.

Testing throughput

We may end up with performance requirements expressed as throughput rather
than as response time under load. For example, we might want to write an auto-
mated test to measure the total amount of time elapsed while servicing all five con-
current users. Using JUnitPerf, we simply reverse the order in which we create the
tests, this time wrapping the LoadTest in a TimedTest, as indicated in listing 9.6.

Listing 9.6 Testing the throughput of the catalog service

public class CatalogThroughputTest {
public static Test suite() {

long maxTimeInMillis = 1000;
int concurrentUsers = 5;

Test test = new CatalogTest ("testGetProducts") ;

Test loadTest = new LoadTest (test, concurrentUsers) ;

Test timedTest = new TimedTest (loadTest, maxTimeInMillis) ;
return timedTest;

}

public static void main(String args[]) ({
junit.textui.TestRunner.run (suite()) ;

}

9.8

Modeling performance 315

The CatalogThroughputTest will fail if the catalog service is unable to process at
least five catalog queries per second. After refactoring to use a database connec-
tion pool, the CatalogThroughputTest passes with the following output:

TimedTest (WAITING): LoadTest (NON-ATOMIC): ThreadedTest:
testGetProducts (com.bitterejb.catalog.ejb.CatalogTest) (repeated): 972 ms

Time: 0.972

OK (5 tests)

Now that we’ve written JUnitPerf tests to measure both response time and
throughput, let’s put all the numbers together into a performance model.

Modeling performance

Using our existing JUnitPerf tests, we can ramp up the user load to sketch out a
model that represents our application’s overall performance. Doing so will answer
questions in the performance planning process like, “Will our application scale to
meet the demands of 10, 100, or 1,000 concurrent users?”

As an example, figure 9.5 shows the average response time as a function of
the number of concurrent users. The figure example compares the use of a data-
base connection pool with 10 active connections to that of a single shared data-
base connection.

Notice that with a single database connection the application cannot maintain
a linear response time as the number of concurrent requests increases. That is, as
more users attempt to use the application, their observed response times are elon-
gated. In contrast, using a database connection pool allows the application to ser-
vice requests to up to 25 users at a relatively constant response rate.

Figure 9.6 shows the throughput as a function of the number of concurrent
users. This figure also compares the use of a database connection pool with 10
active connections to that of a single shared database connection.

Notice that, regardless of the number of concurrent users, the bottleneck
caused by a single database connection limits the throughput to one catalog
query per second—the application’s maximum effective throughput. In contrast,
by configuring the connection pool with 10 active connections, the application is
able to consistently process almost 10 catalog queries per second. The application
can scale to handle at least 25 concurrent users with only 10 shared connections.

Models such as these are great information radiators. You can look at them
quickly and know how your application performs. Many performance testing

316 CHAPTER 9
Bitter tunes

Catalog Response Time

Average response time (sec)

1] 10 18 20 25
Number of concurrent users

----¢----10 DB Connections —®— 1 DB Connection

Figure 9.5 The use of a database connection pool, as indicated by the dotted line, yields a fairly
constant response time for up to 25 concurrent users. With a single shared connection, as indicated by
the solid line, the response time curve is exponential.

Catalog Throughput

9

8
27
o
36
"
5 9
g4
s 3
32

1

u |

1 5] 10 15 20 25
Number of concurrent users

----¢--- 10 DB Connections —&— 1 DB Connection |

Figure 9.6 The use of a database connection pool, as indicated by the dotted line, delivers a throughput
roughly equivalent to the number of active connections in the pool. With a single shared connection, as
indicated by the solid line, the throughput bottoms out at one query per second.

9.9

9.9.1

Mini-antipattern: Stage Fright 317

tools, including JMeter, will automatically generate charts of this sort. Use them to
your advantage.

Mini-antipattern: Stage Fright

If we don’t test our application’s performance early and often in a production-like
environment, when the curtain goes up, the application may fall down in front of
its live audience. Often we assume that, when an application meets its perfor-
mance goals in development, it will perform equally well for its intended audi-
ence. We’re usually disappointed.

To simulate realistic production traffic and usage patterns, we need to test our
application’s performance with representative data, tool versions, workloads, net-
work latency, and hardware capacity. Tests that merely simulate users continually
buying Chihuahuas from our online pet store won’t cut it. We’ll be in for an
unwelcome surprise when a real user tries to buy a furry friend not already cached
in the middle tier.

Solution: Practice on stage

To alleviate the fear and risk of embarrassment on stage, practice is our only
recourse. Running performance tests in a production-staging environment as
soon as possible, and keeping those tests running, will give us the confidence we
need. The best approach to practicing for a production setting is to write tests
that address our worst fears. What will happen when 10 users log in at the same
time? We won’t know until it happens, but we do know it’s better to have it hap-
pen when we’re practicing. Writing a passing login test under a 10-user load goes
a long way toward boosting our confidence for the big show. In other words, tests
let us safely play “what if” games with performance. By simulating a load, they can
help us determine the amount of hardware we’ll need to support our expected
user load.

We need to give our application a dress rehearsal by testing under realistic sce-
narios. We’ll use the same version of the virtual machine, application server, data-
base, and other tools that will be deployed in the production environment. If
caching and pooling is used to boost performance, then we can let the applica-
tion warm up before running the performance tests. In other words, our tests
should measure the actual performance, as observed by real users, to the maxi-
mum extent possible.

Once we’ve done our best to design and tune for performance under realistic
loads, no substitute exists for tuning an application in production. Don’t

318

9.10

CHAPTER 9
Bitter tunes

underestimate the value of a tool that can monitor a live performance. Usage pat-
terns in a live system may behave differently than expected.

Summary: Tuning with confidence

In this chapter, we looked at several antipatterns that commonly plague the EJB
performance tuning process. In our quiet moments, when we’re sure nobody is
listening, we’ve probably all admitted to ourselves that we’ve been bitten by the
need for speed. However, now that we’ve resolved to put speed in its place, we
want to avoid these antipatterns by adopting an approach that’s best summarized
in the carpenter’s motto: measure twice, cut once.

Before tuning to improve performance, we profiled our code to find hot spots.
We then measured the performance again with a failing performance test written
using JUnitPerf. Only after reviewing this evidence did we attempt to change code
or the runtime environment to improve performance. We also put our trust in
our gauges—automated tests that specify the performance requirements set by
our customer. We leveraged these tests, using them as the qualifying measure of
success, to ensure that our application’s performance continually improved.

The methodology proposed for side-stepping the pitfalls encountered in this
chapter is applicable to any type of performance tuning activity—EJB or other-
wise. The bottom line: When making a case for or against applying changes in the
name of performance, don’t assume facts not already in evidence. Test first, then
tune with confidence.

Antipatterns in this chapter 319

9.11 Antipatterns in this chapter

This section covers the Premature Optimization, Performance Afterthoughts,
Thrash-tuning, Manual Performance Testing, and Stage Fright antipatterns.

PREMATURE OPTIMIZATION

DESCRIPTION
Good programmers frequently try to optimize every line of code
and speculate in the name of performance, without considering
which code/design elements are actually performance problems.

MosT FREQUENT SCALE
Application

REFACTORED SOLUTION NAME
Performance test automation

REFACTORED SOLUTION TYPE
Process, technology

REFACTORED SOLUTION DESCRIPTION
Use the simplest code/design that will work. Establish concrete
criteria and run automated performance tests against the criteria
to establish the need for performance tuning. Tune only problem
areas. Write well-factored and modular code that’s easy to tune
later, if necessary.

ANECDOTAL EVIDENCE
“It works fine, but I suspected future performance problems so I
spent the afternoon making it fast.” “All of my code is a little
tough to read, but it’s very fast.” “That design/technology is going
to be too slow.”

SYMPTOMS, CONSEQUENCES
Fewer development cycles are left for customer requirements or
meaningful optimization when unforeseen problems arise. De-
sign and code becomes unnecessarily complex and difficult to
maintain. Functionality breaks when it’s tweaked to be faster.

320 CHAPTER 9
Bitter tunes

PERFORMANCE AFTERTHOUGHTS

DESCRIPTION
Attempting to bolt performance on to an application at the end of
the development cycle rather than bake it in from the beginning

MOST FREQUENT SCALE
Application
REFACTORED SOLUTION NAME
Continuous performance planning

REFACTORED SOLUTION TYPE
Process

REFACTORED SOLUTION DESCRIPTION
Gather performance requirements early and often. Build auto-
mated performance tests that continuously validate performance
criteria. Performance tests help to define exactly which areas do
not meet criteria to focus testing efforts. Make any necessary
course corrections throughout the project based on quantifiable
measurements.

TYPICAL CAUSES
Poor planning

ANECDOTAL EVIDENCE
“We will have plenty of time to performance tune at the end of
the development cycle.” “It’s a good design. We do not need to
tune for performance.” “We’ll let our QA department measure
performance.” “We’re using Enterprise JavaBeans, so it should
scale well.”

SYMPTOMS, CONSEQUENCES
Repeated delivery of poorly performing software, redesign of crit-
ical use cases late in the development cycle, and lastminute tun-
ing activities that are ineffective

Antipatterns in this chapter 321

THRASH-TUNING

DESCRIPTION
Performance tuning is difficult without a solid baseline or when
multiple configuration parameters are changed at once between
measurements. Attempting performance tuning in these conditions
makes it difficult to gauge progress and correct problems, lengthen-
ing the overall cycle time and giving the appearance of thrashing.
MOST FREQUENT SCALE
Application
REFACTORED SOLUTION NAME
Good performance methodology

REFACTORED SOLUTION TYPE
Process

REFACTORED SOLUTION DESCRIPTION
A sound performance testing methodology and a good testing en-
vironment are the primary keys. Baseline measurements are man-
datory to gauge progress. All tests should start from a common
configuration and changes should be made one at a time. Focus
on performance problems demonstrated by failed tests.

ROOT CAUSES
Haste, inadequate performance testing tools
ANECDOTAL EVIDENCE
“It feels faster, don’t you think?” “When are we done tuning?”
“What did we change to make it slower?”
SYMPTOMS, CONSEQUENCES
Inefficient performance testing and tuning, longer than expected

performance tuning cycles, and unclear results of performance
improvements

322 CHAPTER 9
Bitter tunes

MANUAL PERFORMANCE TESTING

DESCRIPTION
Manually running performance tests every time something is
changed doesn’t scale and the tests aren’t easily repeatable
MOST FREQUENT SCALE
Organization
REFACTORED SOLUTION NAME
Automated performance testing
REFACTORED SOLUTION TYPE
Process, technology
REFACTORED SOLUTION DESCRIPTION
Use a performance testing tool like JUnitPerf to build automated
tests. Let a computer run the tests continuously and consistently.
TYPICAL CAUSES
Inadequate performance testing tools
ANECDOTAL EVIDENCE
“I don’t have time to run that test.” “I can’t repeat the results of
the test from run to run.”
SYMPTOMS, CONSEQUENCES
The time it takes to run tests manually increases the pressure to

fall back into a thrash-tuning cycle. Performance problems aren’t
detected consistently.

Antipatterns in this chapter 323

STAGE FRIGHT

DESCRIPTION
Failure to test software in its production environment with repre-
sentative data, tool versions, workloads, network latency, and
hardware capacity

MOST FREQUENT SCALE
Application

REFACTORED SOLUTION NAME
Production environment testing

REFACTORED SOLUTION TYPE
Process

REFACTORED SOLUTION DESCRIPTION
Test application performance in settings as close as possible to the
production environment.

TYPICAL CAUSES
Pride, ignorance

ANECDOTAL EVIDENCE
“We don’t have time to test in production. The system is going
live tomorrow!” “Don’t worry. This is good code. It should work
fine in the production environment.” “It was fast on my develop-
ment machine.”

SYMPTOMS, CONSEQUENCES

Software that performs well in development environments, but
fails miserably in production settings

