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II

Electron and band structure in regular
or disordered 3-dimensional environments:
localised and delocalised states

I Introduction

Calculations based on 3-D environments, using weak bonding approximations, follow
much the same line as the studies made in 1-D. The dispersion curve E = f(k) can be
traced depending on the different directions under consideration (kx, ky and kz for a
cubic crystal). If these directions are not equivalent, and have a forbidden energy for
which the value is direction dependent, then the resulting energy gap in the material
is of the form.

EG = (EC)min − (Ev)max in which (EC)min corresponds to the minimum con-
duction band (CB) for all directions �k considered, and (Ev)max corresponds to the
maximum valence band (VB) over all directions.

This approximation for the weak bond is, in fact, only applicable to metals. In this
Chapter, we shall look at the electronic bands found within 3-D organic solids and
see that their intrinsic semiconducting or insulating character can only be realised by
considering strong bonding. We shall also consider 3-D regularly networked solids,
considering each node an atom which contributes to the electronic properties of the
material, via:

(i) a single, s-state electron, and using as example the cubic network to determine
the height of the permitted band, otherwise known as the VB.

(ii) hybridised electrons using the specific example of diamond, in which each carbon
atom is at the centre of a tetrahedron and has sp3 hybridised bonding states (as
detailed in Appendix A-1, Section II-2); the generation of the band structure
and the forbidden band, which separates bands corresponding to bonding and
anti-bonding states, will be described.

Finally, we will look at amorphous materials.
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34 Optoelectronics of molecules and polymers

II Going from 1-D to 3-D: band structure of networked atoms
with single, participating s-orbitals (including simple cubic and
face centred systems)

1 3-D General expression of permitted energy

To simplify eqn (22) in Chapter I, which relates the energy of a strongly bonded
electron in 1-D, we can rewrite it as

E = E0 − α − β
∑

t=−1,+1

e−ikta (1)

The sum is for one atom and its two closest neighbours. On considering more than
one dimension though, a simple way of writing eqn (1) is

E = E0 − α − β
∑

m

e−i�k �am , (2)

in which �am represents the vectors joining the reference atom with its m closest neigh-
bours. In the case of a cubic lattice, as shown in Figure II-1, the closest neighbouring
atoms have vector �am components:


(±a, 0, 0) in the x axis

(0, ±a, 0) in the y axis

(0, 0, ±a) in the z axis

The energy thus takes the form E = E0 − α − 2β[cos kxa + cos kya + cos kza], in
which kx, ky, kz are the components of �k in the 3 directions Ox, Oy, Oz.

In the centre of the zone, k = k0 = 0 (or kx = ky = kz = 0); the energy is minimal
and equal to:

E = E0 − α − 6β = E(k0) (3)

In the neighbourhood of the central zone, k ≈ k0 ≈ 0, or kx ≈ ky ≈ kz ≈ 0,

cos kxa ≈ 1 − (kxa)2

2 (ditto for ky and kz), and the energy can thus be written as

E = E0 − α − 6β + βa2(k2
x + k2

y + k2
z )

= E(k0) + βk2a2. (4)

a

Figure II-1. Geometry of cubic lattice structure.
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II Electron and band structure 35

We can now compare eqn (4) with that obtained by a Mac Laurin development of E
using k0:

E(k) = E(k0) + (k − k0)

(
∂E

∂k

)
k0

+ (k − k0)
2

2

(
∂2E

∂k2

)
k0

. (5)

As in the centre of the zone, we now have a tangential horizontal (to be compared
with Figure I-10),

(
∂E
∂k

)
k0

= 0 and the mass can be effectively defined by

m∗ = �
2(

∂2E
∂k2

) , (6)

so that we can obtain from eqn (5), when k ≈ k0 = 0:

E(k) = E(k0) + �
2

2m∗ (k − k0)
2. (7)

Again, in the neighbourhood of the central zone, where k0 ≈ 0, we now have

E(k) = E(k0) + �
2

2m∗ k2. (7′)

Comment: The mass m of an electron can be related in the fundamental dynamic
equation FT = q(Eappl + Eint) = mγ with Eappl which is the empirically applied
field and γ is the acceleration undertaken by the electron. The internal field (Eint)

which is derived from the internal potential generated by the nucleus is not well
known and the effective mass m∗ is defined by the relationship Fext = qEappl = m∗γ.
Eqn (6) is obtained by calculating the work of the external force (see Appendix A-2,
Section IV-2).

2 Expressions for effective mass, band size and mobility

The identification of coefficients kn (n = 0 and n = 2) of eqns (4) and (7) yields:


E(k0) = E0 − α − 6β

βa2 = �
2

2m∗ , or m∗ = �

2βa2 .
(8)

The size of the band can be deduced from the amplitude of the variation in energy
in the first Brillouin zone (described, for 1-D, as the variation in k zone in Figure I-10):

— when kx = ky = kz = 0: E = E(k0) = E0 − α − 6β; and
— when kx = ky = kz = π

a : E = E(π
a ) = E0 − α + 6β.

The amplitude in the variation (4β in 1-D) of E, which is the depth of the permitted
band, changes in 3-D to

∆E = E
(π

a

)
− E(k0) = B = 12β (9)

The result given for a simple cubic network can be generalised by introducing
a co-ordination number Z, which denotes the number of closest neighbours, and in
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our example it is equal to 6 as made evident in Figure II-1. Eqn (9) can thus be
rewritten as

B = 2Zβ. (10)

Interestingly enough, when mobility is expressed in the form µ = qτ
m∗ , the intro-

duction of β derived from eqn (10) (β = B/2Z) in eqn (8) gives: m∗ = �2

Ba2 Z. In terms
of µ, we have

µ = qτa2

�2

B

Z
. (11)

We can thus conclude that semiconductors have narrow permitted bands as ∆E = B
is small. There is weak coupling between atoms as, following eqn (10), β is also small;
in other words, semiconductors display low mobilities.

III 3-D covalent crystal from a molecular model: sp3 hybrid
states at nodal atoms

1 General notes

We will now look at the case of diamond, a material made up of a regular network of sp3

hybridised carbon atoms. In Appendix A-1, the spatial geometry of bonded carbon is
detailed. The bonds are equally spaced when sp3 hybridisation occurs and the orbitals
can be expressed using 4 functions |Ψ1 >, |Ψ2 >, |Ψ3 >, |Ψ4 > as calculated in
Appendix A-1, Section III. To follow the formation of the different electronic states
and energy levels in diamond, we will sequentially study each step as shown in
Figure II-2, by:

a Isolating carbon atoms

Looking at Figure II-2-a and Figure II-2-b, zone (1), we see that the orbitals of isolated
carbon atoms, with electronic configuration 1s2 2s2 2p2, are characterised by having
two levels, Es and Ep. Note that in Figure II-3, the atoms C, C′, C′′ and so on, are
assumed to be well separated.

As we bring the C′, C′′, C′′′, C′′′′ closer to the reference atom C, s and p bands
form following the superposition of wavefunctions. For example, s-orbitals give
rise to bonding and antibonding combinations which tend downwards and upwards,
respectively. This is detailed further in Appendix A-2, Section I-2.

b s And p band hybridisation at the critical point M of Figure II-2(a)

When hybridisation of s and p states is energetically favoured, sp3 states on atom
C, described by functions Ψ1, Ψ2, Ψ3 and Ψ4, are obtained (see Appendix A-1,
Section II-2). In the same way, hybrid states of the atom C′ are represented by the
functions Ψ′

1, Ψ′
2, Ψ′

3 and Ψ′
4, and so on, for the other C atoms.
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Energy  
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4
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Eh = Esp3
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f4L and f4A between C 
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bonding orbitals fL and

4 antibonding  fA
associated with bonding 

levels EL and 

antibonding EA.

Increasing degeneration
due to intervention
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neighbouring bonding
orbitals (f1L with f2L,
f1L with f3L…) and
between antibonding
orbitals (f1A with f2A,
f1A with f3A,…)

fA

Ep

EL= E¢ - bfL

(b)

(a)

4D

 4D

2b

sp
3
 anti-bonding 

sp
3
 bonding 

0

0

Figure II-2. (a) Band formation due to closing C atoms; (b) evolution in electronic energy
levels through successive couplings.

Taking all states together, as shown in zone 2 of Figure II-2(b), and represented by
the functions Ψi)i=1,2,3,4, Ψ′

i)i=1,2,3,4 and so on, equivalent to 4N states for a system
containing N atoms, we have energy Esp3 = Eh.. Eh can be calculated relatively simply
using, for example

Eh = 〈Ψ1|H|Ψ1〉

=
〈

1

2
(S + ϕ2px + ϕ2py + ϕ2pz)|H|1

2
(S + ϕ2px + ϕ2py + ϕ2pz)

〉

= 1

4
{〈S|H|S〉 + 〈ϕx|H|ϕx〉 + 〈ϕy|H|ϕy〉 + 〈ϕz|H|ϕz〉}

= 1

4
{Es + 3Ep},
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        C¢¢
C¢

(2)        (1) 

(3)       (4) 
C¢¢¢¢

 C¢¢¢

C

Figure II-3. Relative locations of atoms and available sp3 couplings.

with

Eh = 〈Ψ2|H|Ψ2〉 = 〈Ψ3|H|Ψ3〉 = 〈Ψ4|H|Ψ4〉 = 〈Ψ′
1|H|Ψ′

1〉 = · · · = E′
0.

Ep and Es, respectively, represent the energy levels of 2p and 2s states shown in
Figure II-2-b. Thus

Ep − Eh = Ep − 1

4
{Es + 3Ep} = 1

4
(Ep − Es). (12)

c Type A couplings between neighbouring C atoms, as detailed in Figure II-4

Here we consider only couplings (1), (2), (3) and (4), otherwise noted as C − C′,
C − C′′, C − C′′′, C − C′′′′, assuming that interactions that could result from other
bonds are negligible. The bonding and anti-bonding states appear as shown in zone 3
in Figure II-2-b. This is detailed, qualitatively, in Section 2 just below.

d Supplementary effects resulting from type B couplings between molecular
orbitals, as shown in Figure II-4

Type B couplings are those between (1) and (2), between (2) and (3) and so on,
and result in the appearance of energy bands as shown in zone 4 of Figure II-2-b. A
quantitative approach is detailed in Section 3 below.

2 Independent bonds: formation of molecular orbitals

Zone (3) in Figure II-2 (b) shows the states which appear following coupling of two
sp3 hybridised orbitals, for example, of C and C′. For this atomic coupling, Φ solutions
can be given in the form of a linear combination of each atom’s orbitals. As orbital
|Ψ〉 is for atom C, and orbital |Ψ′〉 is for C′, we now have Φ = c|Ψ〉 + c′|Ψ′〉.
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C C¢C¢¢¢

C¢¢

C¢¢¢¢

(2)

(3)

(4)

Y1¢

Y2

Y1

Y3

Y4

Y3¢¢¢

Y4¢¢¢¢

Y = <Y1|H|Y1¢> 

B:  Coupling 
    between bonds

A

(1)

Y2¢¢

Figure II-4. Representation of successive A and B couplings by projecting plan view of
Figure III-3.

On using line (1) in Figure II-4 to indicate the bonding between 2 C atoms, the
resulting molecular orbital (Φ1) can be bonding or anti-bonding (see Appendix A-1);

Φ1L = 1√
2
(|Ψ1〉 + |Ψ′

1〉)

Φ1A = 1√
2
(|Ψ1〉 − |Ψ′

1〉)
(13)

By taking into account pairs belonging to each carbon atom, and assuming them
to be independent, the molecular orbitals which appear about our reference atom C
are, in addition to Φ1L and Φ1A:

Φ2L = 1√
2
(|Ψ2〉 + |Ψ′′

2〉) and Φ2A = 1√
2
(|Ψ2〉 − |Ψ′′

2〉)

Φ3L = 1√
2
(|Ψ3〉 + |Ψ′′′

3 〉) and Φ3A = 1√
2
(|Ψ2〉 − |Ψ′′′

3 〉)

Φ4L = 1√
2
(|Ψ2〉 + |Ψ′′′′

4 〉) and Φ4A = 1√
2
(|Ψ2〉 − |Ψ′′′′

4 〉)

The energy levels EL and EA are, respectively, associated with bonding and anti-
bonding states. They have the same form as that determined in Appendix A-1, that is:

EL = E′
0 − β and

EA = E′
0 + β.

(14)

Note that E′
0 = Hii = 〈Ψi|H|Ψi〉 = Eh = Esp3 and that the coupling parameter

between two atoms under consideration is −β = Hii′ = 〈Ψi|H|Ψ′
i〉.

Comment For N atoms in a crystal, the number of bonds of type ΦL is 2N as each
carbon atom presents 4 possible bonds each containing 2 electrons, and each shared
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between 2 atoms. However, the actual number of valence electrons per atom is 4,
resulting from 2s22p2 → 2t4, in which t represents hybrid states, and therefore the
fundamental state carries 4N electrons, which can also be written as 2 × 2N (the
number of electrons per bond multiplied by the number of bonds). All bonding bonds
are therefore full when the symmetrically numbered anti-bonding bonds, ΦA, are
empty.

3 Coupling of molecular orbitals and band formation

For a crystal containing N atoms, following the reasoning of Section 2, the energy
level EL (and EA) is degenerate 2N times, corresponding to 2N bonding orbitals.
We will now look at the effect of coupling between different molecular bonds on the
degeneration of energy levels.

a Effect of coupling energy between hybrid orbitals on the same carbon atom

The coupling energy between two hybrid atoms is of the form: 〈Ψ1|H|Ψ2〉 = −∆. In
terms of either Ψ1 and Ψ2 (given in Appendix A-1, Section II-2-c):

−∆ =
〈

1

2
(S + X + Y + Z|H|1

2
(S − X − Y + Z)

〉

= 1

4
(Es − Ep − Ep + Ep) = 1

4
(Es − Ep).

We can see that the effect is not zero and that we should therefore expect, for a
covalently bonded 3-D crystal, a non-zero coupling effect between molecular orbitals
bonding two adjacent atoms.

b Coupling effects between neighbouring bonding orbitals
within a crystal matrix

The coupling within the crystal matrix, shown as B in Figure II-4, corresponds to
the form

〈Φ1L|H|Φ2L〉 =
〈

1√
2
(|Ψ1〉 + |Ψ′

1〉)|H| 1√
2
(|Ψ2〉 + |Ψ′′

2〉)
〉
.

Ignoring coupling integrals between non-adjacent electrons, as for example
〈Ψ′

1|H|Ψ2〉 ≈ 0, results in:

〈Φ1L|H|Φ2L〉 = 1

2
〈Ψ1|H|Ψ2〉 = 1

2
× 1

4
(Es − Ep) = −∆

2
. (15)

On modifying energy levels of type EL, coupling of molecular bonds results in
an increased degeneration to the level of EL = E′

0 − β.
By analogy to the 1-D system looked at in Chapter 1, wavefunctions of the crystal

must be written in the form of a linear combination of either bonding orbitals, ΦL, or
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of anti-bonding orbitals, ΦA. These functions, which are characteristic of a regular
network, should also satisfy Bloch’s theorem and are thus of the form:

∣∣∣ΦL
k (�r )

〉
= c0

∑
s

ei�k·�rs |ΦL(�r − �rs)〉
∣∣∣ΦA

k (�r )
〉
= c′

0

∑
s

ei�k·�rs |ΦA(�r − �rs)〉

These are the Bloch sums for bonding and anti-bonding orbitals, and are for
electrons delocalised throughout a whole crystal network in 3-D. They are similar to
the wavefunctions used in 1-D to verify Floquet’s theory (eqn (10) of Chapter I).

In the same way as that observed for s-orbitals in a 1-D system (Chapter 1) and
in a 3-D system (Section II-1 of this Chapter), the functions result in a fragmentation
of EL and EA levels, as shown in going from zone 3 to zone 4 in Figure II-2. We thus
obtain 2N

∣∣ΦL
k (�r)〉 functions. Having taken into account 4N spin functions we now

have a full band of bonding states, justifying the term “Highest Occupied Molecular
Orbital” (HOMO), otherwise known as the valence band by physicists. The band
of anti-bonding states though is empty and is known as the “Lowest Unoccupied
Molecular Orbital”, or for physicists, the conducting band. The pair of bands are
separated by what is known as the “band gap” of height EG.

Quantitatively, we have seen in Section II of this Chapter that for s-orbitals char-
acterised by a coupling parameter −β = 〈ψs|H|ψs±1〉), the size of the formed bands
is equal to 2Zβ (eqn (10) of Section II). In the case of Figure II-4 treated here, the
co-ordination number (Z) equals 4 and the coupling parameter, 〈Φ1L|H|Φ2L〉 = −∆

2 .
The size of the HOMO and LUMO bands is therefore, following eqn (10), B = 2.4.
∆
2 = 4∆ (zone (4) of Figure II-2-b). In addition, the height of the band gap can be
calculated directly from Figure II-2-b using EG = 2β − 4∆. The values of β and ∆

depend on the network and size of atoms. With diamond having a band gap of around
5.4 eV, it is more of an insulator than a semiconductor. On descending down through
column IV of the periodic table, moving from carbon, through silicon to germanium,
the size of the atoms increases and the size of the permitted bands also increases to the
order of ca. 4∆. With each successive increase in atom size, the band gap diminishes:
C, 5.4 eV; Si, 1.1 eV; and Ge, 0.7 eV.

IV Band theory limits and the origin of levels and bands
from localised states

1 Influence of defaults on evolution of band structure and the
introduction of ‘localised levels’

Figure II-5 continues on from Figure II-2-b by considering the origin of the VB and
CB for a perfectly ordered system of tetrahedral carbon atoms. As we have seen, the
initial s2p2 configuration gives rise to 4 sp3 type molecular orbitals. And each one of
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E

N(E)
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Dangling bond 

2s²

2p² 
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≠≠≠≠sp3

CB 

s
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≠≠

≠≠

Band s*

Band s

ELoc U
Esp3

≠≠
≠

Figure II-5. Origin of localised levels associated with dangling bonds of tetrahedral carbon.

these leads to the formation of a bonding σ-orbital and an anti-bonding σ∗-orbital. In
going from single molecules to the solid state, the combination of sp3 orbitals leads
to the rupture of σ- and anti-bonding σ∗-orbitals into valence and conduction bands,
respectively.

Because of the finite size of a real crystal, however, at the surfaces faults occur
as each carbon atom is bonded to 3 rather than 4 carbon atoms. This results in one
incomplete sp3 bond, or “dangling” bond, which contains one electron and, intrinsi-
cally, is electrically neutral. The single electron is situated at the level Esp3, even if
the localised level associated with the electron is ELoc, and is in the middle of the
band gap, given the permitted bands allowed (Figure II-5).

Other faults can give rise to similar levels in a real crystal: vacated sites (gener-
ated during the preparation of the crystal); and dangling bonds induced by physical
treatment, such as irradiation or ion implantation which, breaks bonds as the crystal
is traversed.

The presence of structural faults, caused by dangling bonds, can create disorder,
for example fluctuations in bonding angles, and result in an opening of levels and the
formation of a default band. The exact positioning of the bands relies on relaxation
phenomena which occur in the solid following fault formation, and whether they
result from valence or conduction bands.

In Figure II-5, the lower band, near the middle of the band gap, corresponds to
a dangling bond containing one electron. It is therefore a donor type band which is
neutral and in an occupied state. The upper band, near the middle of the band gap, cor-
responds to the same fault but has a different charge i.e. has received an extra electron,
and is an acceptor band which would be neutral if it were empty (see page 344 of [Ell
90]). The energy difference between these two types of faults, of which one is neutral
when it is full, the other neutral when it is empty, corresponds to the Hubbard correla-
tion energy (U), for which U = 〈q2/4πε0εrr12〉, in which r12 designates the average
distance between two electrons on the same site over all possible configurations.We
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will now go on to try and detail the effects resulting from these electronic repulsions
which up until now have been treated as negligible.

2 The effects of electronic repulsions, Hubbard’s bands and the
insulator-metal transition

In band theory, until now, we have considered that each electron existed in an average
potential resulting from a collection of atoms and other electrons. In the case of alkali
metals (Li, Na, K. . .), which have one free electron per atom, the transfer of an electron
from one atom to its neighbour through a conduction band occurs via electronic levels
situated just above the Fermi level (EF) and the energy utilised is extremely small, of
the order of a fraction of a meV.

a The model

In utilising Hubbard’s model and theories, we can consider that the only important
electronic repulsions are those which occur between two electrons which are on the
same site (the same atom in a series of alkali metal atoms). The repulsion energy, or
Hubbard energy, can be evaluated to ascertain if it is significant for certain materials
and can even help indicate the origin of certain metal-insulator transitions. As before,
we will use the same chain of alkali metals as shown in Figure II-6-a to evaluate
the problem, although we will assume that overlapping between atoms is poor and
the transport of electrons from one atom to the next requires a great deal of energy.
Movement of an electron thus generates a supplementary repulsive energy which can
be estimated by:

— calculating the ionisation energy required (Ip) to separate an electron from the
atom A′

1 to which it is attached which subsequently becomes A1 (this change is
shown in going from Figure II-6-a to Figure II-6-b); and

(a)           A¢           A¢

(b)

                                                           

A1    A2     

•• • • • ••••

•• • • • ••••

21

Figure II-6. Highlighting electronic repulsions in a chain of atoms with s-orbitals.
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— calculating the energy recovered, or the electron affinity (χ) when the free
electron is placed on the independent, adjacent atom A′

2, which subsequently
becomes A2.

The total energy thus required, equivalent to the repulsive energy, is UH = Ip − χ.
For hydrogen Ip = 13.6 eV and χ = 0.8 eV, and thus UH = 12.8 eV, showing how

UH can attain a relatively high value of several eV.
Elsewhere, Mott showed how the repulsive energy can be calculated using r12

[Mot 79], which represents the distance between two electrons on the same site or
atom, and ψ(r) which is the wavefunction corresponding to the value proposed at the
end of the preceding Section 1.

UH =
∫ ∫

e2

4πε0r12
|ψ(r1)|2 |ψ(r2)|2 dr1dr2.

Practically speaking, this energy is particularly important with respect to transition
metal oxides, such as NiO, for which electron transport occurs via d-orbitals and can
be written as:

Ni2+ + Ni2+ −→ Ni3+ + Ni+

For a chain of alkali metals, however, the same electron transfer, via s-orbitals, is
written:

Cs + Cs −→ Cs+ + Cs−

In Figure II-6, A′
1 ≡ A′

2 ≡ Cs while A1 ≡ Cs+ and A2 ≡ Cs−. On removing the
arrows in Figure II-6, which represent the division of electrons throughout a chain of
atoms, we can consider that for NiO, A′

1 ≡ A′
2 ≡ Ni2+, A1 ≡ Ni3+ and A2 ≡ Ni+.

Placing an electron on a Ni2+, to form a Ni+ ion, would require the energy given
by UH = I − χ if the Ni+ and Ni3+ ions, at positions A2 and A1 in Figure II-6-b,
respectively, are sufficiently far apart. The transported electron can be assumed to
pass through a free state, that is its energy En at the level n → ∞ tends towards 0, as
do the successive energies Ip and −χ, as previously described.

Energy levels of isolated ions can be represented in terms of −Ip (the energy
of an orbital which looses an electron, i.e. Ni3+ or A1) and −χ (the energy of a
supplementary electron situated on Ni+ or A2). When the ions are well separated, as
shown in the far left part of Figure II-7, each energy level is separated by UH = Ip − χ

which appears as a band gap between the upper and lower levels, the former having
received an electron, the latter having lost one.

On bringing the ions closer to one another, as described in going from the left
to right side of Figure II-7, transport by charge carriers becomes possible via the
permitted bands which start to form. These newly formed discrete bands give rise to
permitted bands (Hubbard’s bands), upper level bands of electrons (in which Ni+ can
be found) and lower level bands containing holes (in which Ni3+ resides).

As the size (B) of the bands grows with increasing proximity of atoms, the dif-
ference UH − B decreases and eventually disappears when B reaches UH. Beyond
this value—obtained when the atoms are close enough to each other—the upper and
lower Hubbard bands overlap and the band gap is removed; this point is also known
as the Mott-Hubbard transition from an insulator to metallic state.
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 E 

0 

- c

Ni+, - c
Ip

UH UH - B 

Ni3+, - Ip

B = UH MetalInsulator B

Electrons in upper Hubbard’s 
band 

Holes in lower Hubbard’s band

B

Figure II-7. Evolution of Hubbard bands as a function of band size (B). B = 0 for atoms far
apart but when B = UH, the band gap UH − B disappears to give a metal-insulator transition.

b Charge transfer complexes

Charge transfer complexes (CTCs) are materials in which the effective correlation
energy is high [And 92]. If the effective energy (Ueff ) is defined as the difference
between the electronic repulsion energy for a site occupied by two electrons (Uo)
and the electronic repulsion energy between two electrons on adjacent sites (U1) i.e.
Ueff = U0 − U1, then for a CTC the energy UH corresponds to Ueff .

For a system with N sites:

— if we can assume that Ueff is negligible, each site can be occupied by two electrons
(spin up, ↑, and spin down, ↓). In addition, as in Figure II-8-a, if the system is
half filled by N electrons then the material is metallic;

— if the system is one in which Ueff is high, we can place only one electron per
site. Again, if the system carries N electrons (i.e. ρ = 1, in which ρ designates
the number of electrons per site) then all energy levels are occupied and the
band is full as shown in Figure II-8-b. Only B inter-band transitions are allowed,
demanding a high energy of activation (Ea), and the system, in other words, is an
insulator (Mott insulator) or semiconductor. For example, the complex HMTTF-
TCNQF4, in regular columns, has ρ = 1, Ea = 0.21 eV with a room temperature
conductivity σRT = 10−4Ω−1 cm−1; and

— once again, if the system is one in which Ueff is high and we can only place one
electron per site but ρ < 1 because bonds at the interior of each column are not
fully occupied, both A intra- and B inter-band transitions are possible with the
former requiring, respectively, low and high activation energies. This is shown in
Figure II-8-c.As an example, TTF+0.59− TCNQ−0.59 displays a metallic character
with ρ = 0.59 and σRT = 103Ω−1 cm−1.
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states, ≠and ≠, allowed per
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N electrons, there is a semi-full

band and a metallic state.   

B

(b)   Ueff high, and only 1 
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 insulator or semiconductor 
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Figure II-8. Electron transport with respect to electronic structure. Upper parts of the Figures
represent band schemes and lower parts represent electron positions (• = occupied state, ◦ =
empty state).

c The Mott transition from insulator to metal: estimation of critical factors

Different theories have been elaborated to establish, in a quantitative manner, the
parameters surrounding transitions from insulator to metallic states. The Thomas-
Fermi screened potential can be used [Ell 98], [Sut 93] and the basis of theoretical
developments, including the application of magnetism, can be followed up else-
where [Zup 91]. We will limit ourselves here to saying that this transition can
result from competition between localisation effects, themselves resulting from elec-
tron Fermi kinetic energies (EF) and the electrostatic energies to which they are
subject.

In order to take into account environmental effects and polarisation, two elements
must be considered: the permittivity of the medium under study (ε0εr)(εr being the
relative permittivity of the material); and the active length (a∗) of the electrostatic
potential, which takes on the form e2/4πε0εrK1a∗. K1 is a constant which accounts for
the present-day incomplete knowledge of interaction distances, which can be written
simply as K1a∗. It should be noted that a∗ must take on the same form as the first Bohr
orbit (a0), that is a0 = [ε0h2]/[πme2]. To obtain a∗ from a0, ε0 needs once again to be
replaced by ε0εr, to take into account the effect of the interaction between network and
electron thus changing the latter mass from m to m∗ so that a∗ = [εrε0h2]/[πm∗e2]
or a∗ = εra0(m/m∗).
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As EF = (�2/2m∗)(3π2n)2/3 = (K2h2n2/3)/(4π2m∗), in which n is the electron
concentration (page 171 of [Mooser 93]) and K2 a constant, the condition required
to reach the metallic state can be written: (h2n2/3)n=nc/(4π2m∗) ≥ Ce2/(4πε0εra∗),
in which C is, as yet, an unresolved constant resulting from the introduction of the
aforementioned constants K1 and K2. The relationship is thus based on nc, at which
point the transition occurs. Therefore, we should have a∗n2/3

c ≥ C(e2m∗π)/(ε0εrh2),
either in terms of the expressions a∗ and a0, as in (a∗n1/3

c )2 ≥ C, or expressed as
a∗n1/3

c ≥ D, in which D = C1/2. Experimentally, the constant D is normally found
to be around 8 times the value of nc (it has been shown that D ≈ 0.26) and thus the
criteria for the transition is:

(a∗n1/3
c )2 ≥ 0.26. (16)

Physically speaking, this criterion means that all materials can become metal-
lic if they are sufficiently compressed so that the electron density reaches the value
nc. The corresponding metal-insulator transition (M-I transition, which also occurs
at n = nc) is called the Mott transition and originates from localisation of elec-
trons through electrostatic interactions, not from any material disorder. We shall
see in the following Section 3 how disorder alone can result in the Anderson
transition.

d π-Conjugated polymers

Polymers conjugated by π-orbitals are, in principle, not subject to Mott transitions
as transfers from one site to another in the same chain have β integral values which
are too high (typically of the order of 4β ≈ 10 eV for polyacetylene), well above
electron-electron interaction energies (U, below 1 eV for polyacetylene). Figure II-8-a
therefore sufficiently describes these materials, although they do display insulating
characteristics, which in the case of polyacetylene results from a Peierls distortion
due to electron-phonon interactions which open the band gap (Figure II-9).

3 Effect of geometrical disorder and Anderson localisation

a Introduction

The effect of geometrical disorder has for the most part been studied within theories
on amorphous semiconductors developed by Mott and Davies [Mot 71, Mot 79 and
Mot 93], and discussed—in French—by Zuppiroli [Zup 91] and Moliton [Mol 91].

The theory is based on two fundamental ideas:

— the first was taken from the work of Ioffe and Regel [Iof 60] who observed that
there was no great discontinuity in the electronic properties of semi-metallic or
vitreous materials when going from solid to liquid states. It was concluded that
electronic properties of a materials cannot be only due to long range order, as was
proposed by Bloch for properties of crystals, but are also determined by atomic
and short range properties in which the average free path of an electron is inter-
atomic. It is worth noting also, that even though a material may be amorphous,
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Molecular 
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Figure II-9. (a) Characteristics of π-conjugated polymers, with the example of polyacetylene
under a Peierls transition, verifying that U � 4β, in contrast with (b) Mott insulators for which
U � 4β (and possible for CTCs).

this does not exclude it from having bands. For example, glass, which is a non-
crystalline material, is transparent in the visible region of light (≈1.5 − 3 eV),
that is to say that while absorption of photons with energy below 3 eV does not
occur, glass does actually have a band gap of at least greater than 3 eV; and

— the second rests on the evidence given by Anderson [And 58] for a material
without long range order that nevertheless have localised states with permitted
energy bands for electrons. This theoretical model comes from observations made
on certain amorphous semiconductors in which charge carriers cannot move.

b Limits to the applicability of band theory and Ioffe Regel conditions

Bloch functions, i.e. ψk(r), can be used to describe electron wavefunctions in perfectly
crystalline materials. The electronic states are delocalised and spread out over space,
as denoted by |ψk(r)|2. Because of perfect delocalisation, the average free mean path
of an electron can be considered infinite. It is only when studying a real crystal that
the average free path of an electron takes on significance because of effects due to
quasi-imperfections caused by vibrations, called phonons, and imperfections caused
for example by doping agents and impurities which perturb the regularity of potential
throughout the network. It is only when these electron scattering effects, which limit
the free path of electrons are considered, that the statistical average term L of the free
path length of an electron between two successive collisions can be introduced. In
addition, there are two terms to note: “lattice scattering” which indicates collisions
due to the material network and for a similar effect caused by ionised impurities, the
term “impurity scattering” is used.

On disordering a lattice by introducing vibrations and/or impurities, L appears
and takes on a decreasing value as disorder increases. If there is a low amount of
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impurities, then local levels appear, most notably in the forbidden band (FB), but if
the number of impurities increases, the localised levels grow to form impurity bands
which can reach a size ∆Ee, close to that of the valence band (VB), the conduction
band (CB) and the FB introduced in Bloch’s theory. Bloch’s theory though looses
all semblance of reality when values of ∆Ee reach the same values of the bands.
Put another way, we can go from the crystalline state to the amorphous state with
L decreasing until Bloch’s theory is no longer acceptable. The limit for L was fixed
to kL ∼ 1 (for a perfect crystal, kL � 1) by Ioffe and Regel by following the
reasoning of the uncertainty principle, i.e.

∆E · ∆t ≥ � and ∆x · ∆k ≥ 1. (17)

To arrive at the result shown above, we can consider that the trajectory of an
electron after a collision is random, and at the very best can only be defined between
two collisions, i.e.:

(∆t)max = τ (18)

in which τ is the relaxation time—the average time between two collisions; and

(∆x)max = L (19)

From eqn (17) we can thus directly derive the best precision in ∆E, (∆E)min, and in
∆k, (∆k)min, when:

1) the equivalence of (17) by ∆E is verified. ∆t = � and ∆x · ∆k = 1;
2) when ∆t and ∆x are at their highest value in the equalities just above and equal

to (∆t)max = τ and at (∆x)max = L.

We arrive at:
(∆E)min · τ ≈ �, (20)

and
(∆k)min · L ≈ 1. (21)

The question we are therefore brought to ask is with increasing disorder, what
are the lowest values that τ (and thus the mobility µ = qτ/m) and L can go to while
(∆E)min and (∆k)min retain acceptable values, values which are compatible with
classical theory of bands in a real crystal.

The response can be given be using simple calculations which show that when:

• µ → 1 cm2 V−1 s−1 (and τ ≈ 6 × 10−16 s), from eqn (20) (∆E)min ≈ 1 eV. Thus,
(∆E)min ≈ EG (band gap size) or (∆E)min is the same order of size as the per-
mitted bands. When µ ≤ 1 cm2 V−1 s−1, incertitude in the energy of the carriers
tends to the same order of size as the permitted and forbidden bands, i.e. to such
an extent such that the band scheme looses its relevance to real systems. It will
be shown though that the Anderson model band scheme has to take into account
localised bands with a gap which eventually becomes the mobility gap, Eµ.
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• L → a fewAngstroms, that is to say L ≈ a, in which a is the lattice constant and is
typically of the order of 3 × 10−8 cm, eqn (21) results in (∆k)min ≈ 1/L ≈ 1/a ≈
3 × 107 cm−1 ≈ k. In effect, with λ = h/mv in which v = vthermal ≈ 100 km s−1

and λ ≈ 7 × 10−7 cm, we have k = 2π/λ ≈ 107 cm−1, and can directly infer that
in a band scheme, conduction electrons will be such that k ≈ 1/a. At these values
where L ≈ a, we therefore have (∆k)min ≈ k, and k can no longer be considered
a good physical parameter to which we can apply quantification. In addition,
when ∆k ∼ k Fermi’s sphere is so badly defined that it can, at a limit, be totally
deformed and the concept of carrier speed looses significance as �k = m∗v, just
as much as the average free path which is expressed as a function of v following
L = vτ.

Finally, as soon as L ≈ a, and more strictly speaking as soon as L ≤ a which
occurs when the interaction between an electron and the material network becomes
increasingly strong, an electron no longer goes any further than the limits of the
atom to which is tied. The electronic wavefunction localises over a small region in
space and is generally supposed to diminish exponentially with respect to R following
exp(−αR).

Having followed the work of Mott and Anderson, we are brought to a new concept
of localised states. The permitted density of states, N(E), always results in an energy
band beneath a single EC for a conduction band and above a single EV for a valence
band, and, in other words, an activation energy is necessary for carriers to pass from
one state to another with an emission or absorption of a phonon.

c Anderson localisation

α) The model Systems in which disorder is due to a random variation in the energetic
depth of regularly spaced sites (with interstitial distances always equal to a) are
considered in Anderson’s model, and can relate, for example, to a random distribution
of impurities. Different authors, including Mott, have tried to take into account lateral,
spatial disorder and the results have been close to those of the Anderson model, of
which we will limit our discussion to this section.

In Chapter 1, we saw that if we take into account effects resulting from a network
of atoms at nodes by constructing a regular distribution of identical potential wells,
then a permitted energy band of height B appears, as shown in Figure II-10.

V
a E

N(E) 

B

Figure II-10. Regular distribution of identical potential wells and permitted band.
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In the approximation of strong bonds, we saw in Section II-1 of this Chapter that:

• B = 2Zβ, with Z = the number of adjacent neighbours and β the resonance
integral between two adjacent sites;

•
m∗ = �

2

2βa2 = �
2

a2B
Z (22)

so that µ = qτa2

�2
B
Z , and semiconductors possessing a narrow B band exhibit low

mobilities.

For Anderson’s model we replace the preceding distribution by one of randomly
deep potential wells which represent disorder, as shown in Figure II-11.

β) Variation in wavefunctions with respect to V0/B (Anderson) and L (Ioffe and Regel)
We will show here how permitted energy bands change into localised states if V0/B
goes beyond its critical value. In order to do this, we need to look at the following,
successive scenarios:

— Real crystal: V0/B is very low and L is high

Here the wavefunction is given by Floquet’s theory (eqn (10) of Chapter 1) which we
can write to the order of a normalisation constant:

ψk(r) =
∑

n

eikrnψ0(r−rn). (23)

The average free path can be estimated from the Born approximation, [page 401 of
Smi 61], by realising that the wave vector of an electron (kn) changes to km once
the electron has undergone a collision of probability Pmn and that Pnm = 1

τ
= V

L ,
and in addition [page 16 of Mot 71] Pnm is given by Fermi’s ‘golden rule’: Pnm =
1
4

2π
�

|Ω|2moy N(Em) (eqn (2.20) of [Mol 91] relating to unit volume). For conducting

electrons, for which Em ≈ EF, spread throughout a volume V = a3 with a random

V

E

N(E)
V0

Figure II-11. Distribution of randomly deep potential wells.
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distribution of wells with depth such that |Ω|moy = (V0/2), we obtain:

1

L = Pnm

v
= 1

4

2π

�

(
V0

2

)2

a3 N(EF)

v
, (24)

in which N(EF) is the density of states at the Fermi level and v the velocity of an
electron at the Fermi level.
As L is large, the system under consideration is almost a perfect crystal and therefore
we can write:

N(E) = 4π(2m∗)3/2E1/2

h3 and v =
(

2E

m∗

)1/2

.

In using the effective mass given in eqn (22), eqn (24) gives:

a

L = (V0/β)2

32π
; and with B = 2ZI,

a

L = (2ZV0/B)2

32π
. (25)

— System in which (V0/B) ≈1 (single disorder value) corresponding to L ≈ a for
weak disorder
When L ≈ a, eqn (25) written for a cubic system in which Z = 6 results in
(V0/B) = 0.83 ≈ 1. At this point when L ≈ a (and V0 ≈ B), the disorder is
such that ∆k ≈ k (following Ioffe and Regel), and under such conditions, at each
collision, k randomly varies by ∆k, the closest neighbour to k. In going from
one potential well to the next, the wavefunction as detailed in eqn (23) randomly
changes and, following Mott, looses its phase memory and should therefore be
rewritten using an approximate form:

ψk(r) =
∑

n

Anψ0(r − rn),

with An = cn exp(iϕn), in which An is a function with a random phase and a
near constant amplitude. Moreover, this amplitude is more constant than the vari-
ation between neighbouring potential wells i.e. V0 is low. In a model using two
wells with potential depths V1 and V2 (as in Miller and Abrahams [Mil 60]) the
resulting wavefunction can take on either a symmetrical or antisymmetrical form,
respectively, ψS = A1ψ1 + Bψ2 or ψA = A1ψ1 − Bψ2. We can therefore show
that when |V1 − V2| � |β| (i.e. V0 is low), so A1 ≈ A2, the difference in energy
(E1 − E2) between the two possible states is such that |E1 − E2| ≈ 2|β| [Mot 79]
and [Mol 91]. A representation of the function is shown in Figure II-2-a for a
network of several potential wells.

— System in which (V0/B) > 1 ((V0/B) just above single order value): initial
delocalisation and medium disorder
In a system which corresponds to a great increase in disorder, and for the model of
just two wells would correspond to an increase in the depth between the wells as in
|V1 − V2| = V0, the difference in energy, |E1 − E2|, increases to a corresponding
level and A1 differs from A2. The amplitudes of the functions are no longer
constant and the wavefunction displays increasing disorder both in amplitude and
in phase (Figure II-12-b).
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|y|² 

Figure II-12. Variations in wavefunction with delocalisation: (a) delocalisation—localisation
only; (b) weak delocalisation; and (c) strong delocalisation.

— System in which (V0/B) � 1((V0/B) well above single order value): strong
delocalisation and great disorder

In this system a highly localised state is formed, as shown in Figure II-12-c, and as
V0 increases the localisation is accentuated. In addition, there is no longer propagation
along a line of potential wells and states are thus localised. An exponential decrease
in the wavefunction starts to appear and is increasingly noticeable with increasing
values of V0. The wavefunction takes on the form

ψ(r) =
[∑

n

Anψ0(r − rn)

]
e−αr

and can be rewritten

ψ(r) =
[∑

n

Anψ0(r − rn)

]
e−r/ξ,

in which ξ is the localisation length.
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To conclude, the factor V0/B is a crucial term in deciding whether only localised
states form (V0/B > 1) or whether both localised and delocalised states can co-exist
(V0/B ≤ 1).

γ-Band scheme and form of the states density function N(E) From a realistic scheme
of the distribution of potential wells, we can see that states should be localised
within one energy domain and delocalised in another. Accordingly, in Figure II-13 is
described a system with non-negligible disorder:

— all states at the tail end of the function N(E) which correspond to a high enough
value of V0 and from energies E〈EcandE〉E′

c appear localised as before in the
scheme of potential wells;

— however, the middle of the band corresponds to shallow states with small V0, such
as V0/B, and is a zone of delocalised states which have E′

c < E < Ec.

d Localised states, conductivity and Anderson’s metal-insulator transition

α-Mott’s definition: Mott’s definition is based on continuous conductivity relative to
electrons with a given energy (σE(0)) and delocalised states are on average, at T = 0
K, those for which σE(0) is zero i.e. 〈σE(0)〉 = 0. To arrive at an average though, all
possible configurations which have the energy E need to be considered, and while
some electrons may have a non-zero energy, the average over all possible states with
the corresponding energy E gives zero as a result. These states and the mobility they
represent are in effect thermally activated.

However, at T = 0 K, delocalised states average to give σE(0) �= 0, that is to say
metallic behaviour occurs.

β-State properties In Figure II-13, two types of states—localised and delo-
calised—are separated by energies Ec and E′

c which together are called the ‘mobility

V

V0 Em

band tail 
(localised states)

N(E)

E

Ec Em E¢

N(E)

E

zone of delocalised states

c

Figure II-13. Representation of localised and delocalised states co-existence.
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Figure II-14. Metallic character resulting from the domain EF.

edge’ . In the two zones Einstein’s relation holds true if EF is outside the bands of
non-degenerate states. This gives µ = qD/kT, but the diffusion coefficients (D) have
different forms, as in D = Pa2 in which P represents the probability of movement to
neighbouring sites. This brings us to the origin of the expressions used in Chapter 5:

• when E > E′
c and E < Ec, D = (1/6)νpha2 exp(−w1/kT) (with νph being the

phonon frequency and w1 the energy of activation) and 〈σE(0)〉T=0K = 0. Here as
T → 0, we can verify that D and µ tend towards zero, much as conductivity; and

• when Ec < E < E′
c, D = (1/6)νea2 and σE(0) �= 0 where νe is the frequency of

electronic vibrations.

γ-Slightly disordered media, in which localisation is slight and L is small, and the
distinction between an insulator or semiconductor and a metal As in the case of
classic, crystalline media, the position of EF, as detailed in Figure II-14, is related
to the nature of a material. When EF is situated in the domain of delocalised states
(Ec < EF < E′

c) there is degeneration appropriate for a ‘metallic’character. However,
when EF is situated in the zone of localised states, for which typically E < Ec, charge
carriers can only be thermally excited and conductivity can occur only by jumps or
by excitation to Ec, and indeed at O K conductivity tends towards 0 which is typical
of an insulator. Materials for which the Fermi level is situated in an energy zone in
which states are localised are called Fermi glasses.

δ-Metal-insulator or semiconductor transition For a given material which has a
Fermi level fixed by its charge density, displacement of EC, for example by increasing
the disorder as shown in Figure II-15, moves the Fermi level from an initial state in
a domain of delocalised states (metallic) to a zone of localised states. The result is a
metal to insulator or semiconductor transition.

ε-Anderson transition from order to disorder and the change in conductivity Even
though we do not detail transport properties in this Chapter, we should nevertheless
introduce an expression for metallic conductivity written in the relatively simple form
of σ = qnµ = nq2τ/m∗, in which n is electron concentration and τ is the relaxation
time with respect to the Fermi level. With L = vτ we have σ = nq2L/m∗v, and on
introducing the crystalline momentum, h−k = m∗v, we reach σ = nq2L/h−kF in which
kF is the wave vector at the Fermi surface. We can also note that the number n of elec-
trons within a unit volume V(V = 1) can be obtained by use of the reciprocal space,
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Figure II-15. Using disorder to displace EC and effect metal-insulator transition.

that is to say the number of cells within the Fermi volume being ([4/3]πk3
f )/8π3,

each with volume 8π3/V = 8π3 for V = 1. In taking into account electron spins (i.e.
doubly occupied cells), we have n = 2([4/3]πk3

f )/8π3 and metallic conductivity can
therefore be written as σB = 4πkF

2q2L/12π3h− (cf. Section III-1 in Chapter V).
When considering a metallic state, the Fermi level can be considered more or less

at the band middle, as in 1-D with kF ∝ π/a (p. 21 of [Mot 93]) and Figure II-14. With
increasing disorder, Ec and E′

c tend towards each other at the band centre EM(≈ EF)

at which point all states are delocalised. This change is called Anderson’s transition
and is detailed in Figure II-16. Simultaneously, V0/B ≥ 1 with L tending towards
a. For its part, with L = a, conductivity σ tends towards σmin = σIR = (σB)L=a =
q2/3a�. In mono-dimensional media this abrupt transition is a point of controversy
as it is known to occur progressively in 3-dimensions. When a is of the order of 3Å,
σIR = 700 S cm−1, often a saturation value for conductivity in rising temperatures.

Ec

T = 0;  µ π 0; s π 0 (metal) 

transition metal to
insulator 

 ln s

   

     
        EF
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glass

(B/V0)
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1-D 
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T = 0 
µ = 0 

s  =  0smin 

Increasing
disorder 

Figure II-16. Anderson’s transition from metal to insulator at absolute zero following
1/(V0/B) = B/V0. The same phenomena occurs as EF is displaced from EC.
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V Conclusion

The origin of energy bands in a perfect three dimensional crystal, a material which
presents a perfect regularity tied to a geometric structure unaltered by any physi-
cal reality was presented in this Chapter. In addition, supplementary effects such as
dangling bonds, chain ends and holes within the structure were considered. These
imperfections introduced into the band gap localised levels which once fluctuated
could open to form a band which could split as a function of electron filling, in a
manner analogous to the perturbations caused by electron repulsions, which were not
taken into account in the band theory.

By introducing modifications of crystal regularity by considering network thermal
vibrations (phonons) and defects, both chemical (impurities) and physical (disloca-
tions), the notion of a real crystal was studied. This resulted in determining the free
mean pathway of electrons, which could no longer be considered as completely delo-
calised within the network—as was the case in a perfect crystal. It was shown that an
increase in disorder reduced the free mean path length up to the point of localising
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Figure II-17. Band models for amorphous semiconductors: (a) following CFO; (b) following
µ(E) at T = 0 K; (c) following µ(E) at T > 0 K; and (d) following that of Mott and Davis.
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electrons in neighbourhoods of deep defaults, resulting in energy levels localised at
extremities, or “tails”, of permitted bands.

Finally, it can be noted that all models postulate for amorphous media such
as crystalline semiconductors that there are conduction and valence bands which
are or are not separated by a band gap, depending on the all important band tails.
And that:

— bands result in part from short range order (from approximations of strong bonds
giving rise to bonding and anti-bonding states, i.e. valence and conduction bands
separated by a band gap) and from disorder created by phonons or impurities
shown by tails of delocalised states. Tail states are neutral when occupied in the
case of the valence band and when empty in the conduction band. The Fermi
level is thus placed in the middle of the band gap, as shown in Figure II-17 and
following the model proposed by Cohen, Fritzsche and Ovshinsky (CFO).

— the form of the bands depends on the type of the implicated orbitals. For p or d
orbitals, which are less stretched overall into space than s-orbitals, the form of
N(E) is different and the bands are smaller.

— in a perfect crystal, the band gap is an forbidden energy in which N(E) = 0, while
in an amorphous material it is a mobility gap and N(E) is not necessarily zero but
the mobility µ(E) however does becomes zero at T = 0 K (localised states), as
shown in Figure II-17-b and c.

By taking into account the disorder caused by not only phonons and impurities
but also by structural defects such as dangling bonds and chain ends, additional
offsetting defaults localised in the middle of the band can generate two bands at
compensating levels (Hubbard’s bands) following the model of Mott and Davis as
shown in Figure II-17-d.


