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Properties of Atomic Nuclei
�When exposed to magnetic fields, magnetic nuclei can receive and emit 

radio waves. Their frequency �0 is proportional to the strength B0 of the 
magnetic field: �0 = 2 � �0 = � B0

� The constant of proportionality is the gyro-magnetic ratio �.  It is a 
characteristic constant of the nuclear isotope

� Examples of isotope abundance and radio frequencies are:

nuclear isotope  nat. abundance �0 at B0 = 1.0 T
1H               99.98   %           42.57 MHz

14N               99.63  %             3.08 MHz
19F              100.00  %           40.05 MHz

13C 1.108 %           10.71 MHz
129Xe               26.44  %           11.78 MHz
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Magnetic Shielding

� The NMR frequency is determined by the magnetic field at the 
site of the nucleus

� Atomic nuclei are surrounded by electrons
� In molecules, the electrons of the chemical bond are shared 

by different nuclei
� Electrons of atoms and molecules move in orbitals which are 

studied in quantum mechanics
� The orbitals of the binding electrons are characteristic of the

chemical structure of the molecule
� Electrons carry an electric charge
� Electric charges in motion induce a magnetic field
� The internal magnetic field induced by the electrons moving in the 

external magnetic field B0 is usually opposed to B0. It shields the 
nucleus from B0.
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Chemical Shift
� The induced magnetic field shifts the resonance frequency:

�L = 2� �L = � (1 - �) B0
� The quantity � is the magnetic shielding for a given chemical group
� The quantity � = (�L - �ref) / �ref is the chemical shift of a chemical group. 

It is independent of the magnetic field strength B0.
� The chemical shift can be calculated from tabulated chemical shift 

increments as well as ab initio from quantum mechanics
� The quantity �ref is the reference frequency, for example, the resonance 

frequency of tetramethyl silane (TMS)  for 1H and 13C NMR
� Magnetically inequivalent chemical groups possess different chemical 

shifts
� In liquids narrow resonance signals are observed with typical widths of 

0.1 Hz
� The distribution of resonance frequencies forms the NMR spectrum
� The NMR spectrum is a fingerprint of the molecular structure similar to a

distribution of FM signals at a given location which is a fingerprint of the 
geographical position

� The acquisition of NMR spectra of molecules in solution is a standard 
method of analysis in following chemical synthesis
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Nuclear Magnetization in 
Thermodynamic Equilibrium

� All magnetic dipole moments are added as vectors; their components in 
each space direction are additive

� The sum of transverse components (if observable) vanishes
� The sum of longitudinal components constitutes the longitudinal

magnetization
� This component is referred to as the magnetic polarization of the 

nuclei or the nuclear magnetization
� At room temperature only about 1018 spins of all 1023 spins contribute to 

the macroscopic nuclear magnetization of the sample
� In the thermodynamic equilibrium state, the nuclear magnetization is 

oriented parallel to the direction of the magnetic field
� The direction of the magnetic field is referred to as the z direction of the 

laboratory coordinate frame LCF (index L)
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Bloch’s Equation
�When the magnetization M is not aligned with the zL direction, it 

precesses around zL with the frequency �0 in complete analogy with 
the precession of a top spinning in a gravitational field g

� The precession is described by the equation for the magnetic spinning top:

� This equation states that any change dM of the magnetization M is
perpendicular to M and B; therefore M precesses

� In general any macroscopic precessional motion is attenuated. This is
why Felix Bloch introduced phenomenological attenuation terms:

� The resultant equation is the Bloch equation,

where M0: initial magnetization, T1: longitudinal relaxation time,
T2: transverse relaxation time

� Note: The Bloch equation formulates a left-handed rotation of the transverse
magnetization. But for convenience sake a right handed one is followed 
throughout this text and many others in the literature

d
dt M = � M � B

d
dt M = � M � B – R (M – M0)

R =
1/T2 0     0
0   1/T2 0
0     0   1/T1
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Contacting Nuclear Magnetization
� Nuclear magnetization can be rotated away from the direction zL of the 

magnetic polarization field B0 by radio-frequency (rf) irradiation
� To this end one generates a magnetic field which rotates around B0 with

frequency �rf
� For maximum interaction of  the rotating field with the nuclear 

magnetization the resonance condition �rf = �0 is chosen 
� Because �0 = �0/2� is a frequency in the radio-frequency regime, the 

rotating magnetic field is an electromagnetic radio-frequency wave
� High frequency electromagnetic waves are emitted from transmission 

antennas or oscillating electronic rf circuits
� An electronic oscillator consists of a coil with inductance L, a capacitor 

with capacitance C, and a resistor with resistance R
� The coil generates a linearly polarized, oscillating magnetic field 2B1 sin�rft
� Two orthogonal, linearly polarized waves cos�rft und sin�rft generate a 

rotating wave 
� A linearly polarized wave sin�rft can be decomposed into a right rotating 

wave ½ exp{i�rft} and a left rotating wave ½ exp{-i�rft}
� For optimum use of the oscillating magnetic field, the sample to be 

investigated is placed inside the coil
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Rotating Coordinate Frame
� Transformations from one coordinate frame into another change the 

point of view, i. e. they change the mathematics but not the physics
� As the precession of nuclear magnetization is a rotational motion and the rf 

excitation is a rotating wave, the magnetization is conveniently studied in a 
rotating coordinate frame (RCF)

� The dog at the traffic circuit is positioned in the laboratory coordinate 
frame (LCF):  For him the bicycles are driving in the traffic circuit with
angular velocities �rf and �rf + �

� The cyclists on the bicycles are viewing the world from the RCF. They are 
at rest in their respective RCF

� For the red cyclist the world is rotating against the direction of his bicycle 
with angular velocity -�rf

� For the red cyclist the yellow bicycle rides with angular velocity � in his RCF
� The connecting vectors from the center of the traffic circle to the bicycles 

correspond to the magnetization vectors in the transverse xy plane
� The angular velocity of the RCF as seen in the LCF corresponds to the 

frequency �rf of the rf wave
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Radio-Frequency Pulses

� In a coordinate system, which rotates with frequency �0 around the z axis
the magnetization M appears at rest even if it is not parallel to the magnetic 
field B0

�When the magnetization is not rotating, there is no magnetic field 
active in that frame which produces a torque on the magnetization

� On resonance �rf = �0, and the rf field B1 is time independent and appears 
static in the RCF when turned on

� In the RCF, which rotates in the LCF with �rf = �0 around B0, the magneti-
zation rotates around the B1 field with frequency �1 = � |B1| in analogy to 
the rotation with frequency �0 = � |B0| around the B0 field in the LCF

� If B1 is turned on in a pulsed fashion for a time tP, a 90� pulse is defined for 
�1 tP = 90� and a 180� pulse for �1 tP = 180�

� The phase �� of the rotating rf field B1exp{i�rft + i ��} defines the direction 
of the B1 field in the xy plane of the RCF

� Using this phase the magnetization can be rotated in the RCF around 
different axes, e. g. 90�y denotes a positive 90� rotation around the y axis of 
the RCF and 180�x a positive 180� rotation around the x axis
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Phase Correction
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Relaxation
� Relaxation denotes the loss of transverse magnetization with the time 

constant T2 and build-up of longitudinal magnetization with T1
� The loss of transverse magnetization due to different time-invariant local 

magnetic fields can stroboscopically be reversed by formation of echoes
� For formation of a racetrack echo all bicyclists start at the same time but 

ride with different speeds. At a certain time all go back and meet at the
starting line forming the echo after twice that time

� Their total riding time is the echo time tE
� The NMR echo has accidentally been discovered in 1949 by Erwin Hahn
� For formation of a Hahn echo all transverse magnetization components are 

rotated by 180° around an axis in the xy plane
� The direction of precession is maintained with this change of positions on 

the circle, and all magnetization components refocus at time tE
� If some components randomly change their precession frequencies, the

echo amplitude is irreversibly reduced
� Random frequency changes arise from fluctuating local magnetic fields 

associated with molecules in motion
� T2 relaxation denotes the irreversible loss of the echo amplitude
� Both relaxation times T1 and T2 are determined by the type and time scale 

of molecular motion
� By splitting the 180° pulse of the Hahn echo sequence into two 90° pulses

separated by a time delay, one obtains the stimulated echo sequence
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Echoes and Inhomogeneous Magnetic Fields
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Pulse Sequences for Measurement of T1
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CW-, Fourier, and Stochastic NMR

auto-correlation cross-correlation

B. Blümich, Prog. Nucl. Magn. Reson. Spectr. 19 (1987) 331 - 417
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Space Encoding
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