
CHAPTER 27

Limits and Topology

27.1 Introduction

This chapter opens a line of mathematical thought and methods which is

quite different from purely set-theoretical, algebraic and formally logical

approaches: topology and calculus. Generally speaking this perspective

is about the “logic of space”, which in fact explains the Greek etymol-

ogy of the word “topology”, which is “logos of topos”, i.e., the theory

of space. The “logos” is this: We learned that a classical type of logical

algebras, the Boolean algebras, are exemplified by the power sets 2a of

given sets a, together with the logical operations induced by union, in-

tersection and complementation of subsets of a (see volume 1, chapter

3). The logic which is addressed by topology is a more refined one, and it

appears in the context of convergent sequences of real numbers, which

we have already studied in volume 1, section 9.3, to construct important

operations such as the n-th root of a positive real number. In this con-

text, not every subset of R is equally interesting. One rather focuses on

subsets C ⊂ R which are “closed” with respect to convergent sequences,

i.e., if we are given a convergent sequence (ci)i having all its members

ci ∈ C, then l = limi→∞ ci must also be an element of C. This is a useful

property, since mathematical objects are often constructed through limit

processes, and one wants to be sure that the limit is contained in the

same set that the convergent series was initially defined in.

Actually, for many purposes, one is better off with sets complementary

to closed sets, and these are called open sets. Intuitively, an open set
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O in R is a set such that with each of its points x, a small interval of

points to the left and to the right of x is still contained in O. So one may

move a little around x without leaving the open set. Again, thinking about

convergent sequences, if such a sequence is outside an open set, then its

limit l cannot be in O since otherwise the sequence would eventually

approach the limit l and then would stay in the small interval around l

within O.

In the sequel, we shall not develop the general theory of topological

spaces, which is of little use in our elementary context. We shall only

deal with topologies on real vector spaces, and then mostly only of finite

dimension. However, the axiomatic description of open and closed sets

will be presented in order to give at least a hint of the general power of

this conceptualization. There is also a more profound reason for letting

the reader know the axioms of topology: It turns out that the open sets

of a given real vector space V form a subset of the Boolean algebra 2V

which in its own right (with its own implication operator) is a Heyting

algebra! Thus, topology is really a kind of spatial logic, however not a

plain Boolean logic, but one which is related to intuitionistic logic. The

point is that the double negation (logically speaking) of an open set is not

just the complement of the complement, but may be an open set larger

than the original. In other words, if it comes to convergent sequences

and their limits, the logic involved here is not the classical Boolean logic.

This is the deeper reason why calculus is sometimes more involved than

discrete mathematics and requires very diligent reasoning with regard to

the objects it produces.

27.2 Topologies on Real Vector Spaces

Throughout this section we work with the n-dimensional real vector

space Rn. The scalar product (?, ?) in Rn gives rise to the norm ‖x‖ =√
(x,x) =

√∑
i x

2
i of a vector x = (x1, x2, . . . xn) ∈ Rn. Recall that for

n = 1 the norm of x is just the absolute value of x. Actually, the theory

developed here is applicable to any finite-dimensional real vector space

which is equipped with a norm, and to some extent even for any infinite-

dimensional real vector space with norm, but we shall only on very rare

occasions encounter this generalized situation. In the following, we shall

use the distance function or metric d defined through the given norm via

d(x,y) = ‖x − y‖, as defined in volume 1, section 24.3. Our first defini-
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tion introduces the elementary type of sets used in the topology of real

vector spaces:

Definition 175 Given a positive real number ε, and a point x ∈ Rn, the

ε-cube around x is the set

Kε(x) = {y | |yi − xi| < ε, for all i = 1,2, . . . n},

whereas the ε-ball around x is the set

Bε(x) = {y | d(x,y) < ε}.

Example 98 To give a geometric intuition of the preceding concepts, con-

sider the concrete situation for real vector spaces of dimensions 1, 2 and

3.

On the real line R the ε-ball and the ε-cube around x reduce to the same

concept, namely the open interval of length 2ε with midpoint x, i.e.,
]
x−

ε, x + ε[.

Fig. 27.1. The ε-ball (a) and ε-cube (b) around x in R2. The boundaries

are not part of these sets.

On the Euclidean plane R2, the ε-ball around x is a disk with center x and

radius ε. The boundary1, a circle with center x and radius ε, is not part

1 The precise definition of “boundary” is not needed now and will be given in

definition 199.
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of the disk. The ε-cube is a square with center x with distances from the

center to the sides equal to ε. Again, the sides are not part of the square

(figure 27.1).

The situation in the Euclidean space R3 explains the terminology used. In

fact, the ε-ball around x is the sphere with center x and radius ε and the

ε-cube is the cube with center x, where the distances from the center to

the sides are equal to ε, see figure 27.2.

Fig. 27.2. The ε-ball (a) and ε-cube (b) around x in R3. The boundaries

are not part of these sets.

The fact that both concepts, considered topologically, are in a sense

equivalent, is embodied by the following lemma.

Lemma 230 For a subset O ⊂ Rn, the following properties are equivalent:

(i) For every x ∈ O, there is a real number ε > 0 such that Kε(x) ⊂ O.

(ii) For every x ∈ O, there is a real number ε > 0 such that Bε(x) ⊂ O.

Proof Up to translation, it is sufficient to show that for every ε > 0, there is

a positive real number δ such that Bδ(0) ⊂ Kε(0), and conversely, there is a

positive real number δ′ such that Kδ′(0) ⊂ Bε(0). For the first claim, take δ = ε.
Then z = (z1, . . . zn) ∈ Bδ(0) means

∑
i z

2
i < ε

2, so for every i, |zi| < ε, i.e.,

z ∈ Kε(0). For the second claim, take δ′ = ε√
n

. Then z = (z1, . . . zn) ∈ Kδ′(0)
means |zi| < ε√

n
, i.e.,

∑
i z

2
i < n · ε

2

n
, whence ‖z‖ < ε, i.e., z ∈ Bε(0). �
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Definition 176 A subset O ⊂ Rn is called open (in Rn), iff it has the equiv-

alent properties from definition 230. A subset C ⊂ Rn is called closed (in

Rn), iff its complement Rn − C is open.

Example 99 Figure 27.3 shows an open set O in R2 and illustrates alter-

native (ii) of lemma 230. Taking an arbitrary point x1 in the open set,

there is an open ball around x1 (shown in dark gray) that is entirely con-

tained in the open set. Two magnifications exhibit points x2, x3 and x4

increasingly close to the boundary, but always an open ball can be found

that lies within O, since the boundary of O is not part of O itself.

Fig. 27.3. An open set in R2.

In contrast, figure 27.4 shows the same set, but now it includes its bound-

ary. Again an open ball around x1 lies within the set, but choosing a point

x2 on the boundary, no ε-ball can be found that is entirely contained in

the set, however small ε may be. Thus this set cannot be open. In fact, it

is closed, as its complement is open.

Note that there are sets that are both open and closed. In Rn the entire

set Rn and the empty set∅ are both open and closed. There are also sets

that are neither open nor closed, for example, in R, the interval
[
a,b

[

that includes a, but not b, is neither open nor closed.

Exercise 133 Show that every ball Bε(x) and every cube Kε(x) is open.

Exercise 134 Use the triangle inequality for distance functions (volume 1,

proposition 213) to show that the intersection of any two balls Bεx(x),

Bεy (y) and any two cubes Kεx(x), Kεy (y) is open.
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Fig. 27.4. A closed set in R2.

Sorite 231 We are considering subsets of Rn. Then:

(i) The empty set ∅ and the total space Rn are open.

(ii) The intersection U ∩ V of any two open sets U and V is open.

(iii) The union
⋃
ιUι of any (finite or infinite) family (Uι)ι of open sets is

open.

Exercise 135 Use exercises 133 and 134 to give a proof of the properties

of sorite 231.

Remark 30 More generally, a topology on a set X is a set T of subsets of

X satisfying as axioms the properties of sorite 231.

Example 100 Here is a seemingly exotic, but crucial relation to logical

algebras: The set Open(Rn) of open sets in Rn becomes a Heyting algebra

by the following definitions: The maximum and minimum are Rn and ∅,

respectively, the meet U ∧ V is the intersection U ∩ V , the join U ∨ V is

the union U ∪V , and the implication U ⇒ V is the union
⋃
O∩U⊂V O. (Give

a proof of the Heyting properties thus defined.)

Classical two-valued logic: For any non-empty set A, consider the topology

consisting of the open sets ⊥ = ∅ and > = A. With ∨ and ∧ as above,

define ¬U = (U ⇒ ⊥). Then ¬> = ⋃O∩>⊂⊥O = ⊥ and ¬⊥ = ⋃O∩⊥⊂>O =
>. These definitions satisfy the properties of a Boolean algebra.

A three-valued logic: We choose a set A, with the topology consisting of

the open sets ⊥ = ∅, > = A and a third set X, with X ≠ ∅ and X ≠ A.

Again ¬U = (U ⇒ ⊥), and we have: ¬> = ⊥, ¬⊥ = > and ¬X = ⊥. This

last equation shows that this logic is not a Boolean algebra, since it is not

the case that x = ¬¬x for all x.
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A fuzzy logic: Let A = [0,1[ with the topology of all intervals Ix =
[
0, x

[ ⊂
A. We have Ix ∨ Iy = Imax(x,y) and Ix ∧ Iy = Imin(x,y), as well as ⊥ = ∅
and > = A. The implication is Ix ⇒ Iy = >, if x ≤ y , and Ix ⇒ Iy = Iy , if

x > y . This logic is not Boolean either.

The next definition establishes the connection to convergent sequences.

Definition 177 A sequence (ci)i of elements in Rn is called convergent if

there is a vector c ∈ Rn such that for every ε > 0, there is an index N

with ci ∈ Bε(c) for i > N. Equivalently, we may require that for every

ε > 0, there is an index M with ci ∈ Kε(c) for i > M . If (ci)i converges to

c, one writes limi→∞ ci = c. A sequence which does not converge is called

divergent.

A sequence (ci)i of elements in Rn is called a Cauchy sequence, if for every

ε > 0, there is an index N with ci ∈ Bε(cj) for i, j > N. Equivalently, we

may require that for every ε > 0, there is an index M with ci ∈ Kε(cj) for

i, j > M .

Fig. 27.5. The sequence (ci)i converges to c. A given ε-ball around c

contains all ci for i > 3. In the magnification, another, smaller, ε-ball

contains all ci for i > 7.

Observe that this definition coincides with the already known concept

of convergent and Cauchy sequences in the case n = 1. For example,

because the ε-cube around x corresponds to the interval
]
x − ε, x + ε[ in

R, the expression ci ∈ Kε(cj) corresponds to ci ∈
]
cj − ε, cj + ε

[
, which

in turn is equivalent to |ci − cj| < ε.

Exercise 136 Give a proof of the claimed equivalences in definition 177.

Convergence of a sequence in Rn is equivalent to the convergence of each

of its component sequences:
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Proposition 232 For a sequence (ci)i of elements in Rn, and j = 1,2, . . . n,

we denote by (ci,j)i the j-th projection of (ci)i, whose i-th member ci,j is

the j-th coordinate of the vector ci. Then (ci)i is convergent (Cauchy), iff

all its projections (ci,j)i for j = 1,2, . . . n are so. Therefore, a sequence

is convergent, iff it is Cauchy, and then the limit limi→∞ ci is uniquely de-

termined. It is in fact the vector whose coordinates are the limits of the

coordinate sequences, i.e., (limi→∞ ci)j = limi→∞ ci,j .

Proof We make use of the characterization in definition 177 of convergent or

Cauchy sequences by means of cubes Kε(x). In this setting, y ∈ Kε(x) is equiva-

lent to yj ∈ Kε(xj) for all projections yj , xj of the vectors y = (y1, . . . yn), x =
(x1, . . . xn) for j = 1, . . . n. The claims follow immediately from this fact. �

Convergent sequences provide an important characterization of closed

sets:

Proposition 233 For a subset C ⊂ Rn, the following two properties are

equivalent:

(i) The set C is closed.

(ii) Every Cauchy sequence (ci)i with members ci ∈ C has its limit

limi→∞ ci in C.

Proof Suppose that C is closed and assume that the limit c = limi→∞ ci is in

the open complement D = Rn − C . Then there is an open ε-ball Bε(c) ⊂ D. But

there is an index N such that i ≥ N implies ci ∈ Bε(c), a contradiction to the

hypothesis that all ci are in C . Suppose that C is not closed. Then D is not open.

So there is an element c ∈ D such that for every i ∈ N, there is an element

ci ∈ B 1
i+1
(c)∩ C . But then the sequence (ci)i converges to c. �

Not every sequence is convergent, but if its members are bounded, we

may extract a convergent “subsequence” from it. Boundedness is defined

as follows:

Definition 178 A bounded sequence is a sequence (ci)i such that there is

a real number R such that for all i, ci ∈ BR(0).

Intuitively for a bounded sequence, one can find a ball, such that the

entire sequence lies within this ball, i.e., members of the sequence do not

“grow indefinitely”. Here is an important class of bounded sequences:

Lemma 234 A Cauchy sequence is bounded.

Proof This is immediate. �
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Of course, the converse is false, as can be seen in the trivial example

(ci = (−1)i)i, whose members all lie in the open interval between −2 and

2. But we may extract parts of bounded sequences which are Cauchy:

Definition 179 For a sequence (ci)i, a subsequence (di)i of (ci)i is a se-

quence (di)i defined by an ordered injection s : N→ N, i.e., n <m implies

s(n) < s(m), by means of di = cs(i).

Exercise 137 Show that a subsequence (ei)i of a subsequence (di)i of a

sequence (ci)i is a subsequence of (ci)i.

Proposition 235 (Bolzano-Weierstrass) Every bounded sequence (ci)i has

a convergent subsequence.

Proof For the proof of this theorem, we need auxiliary closed sets, namely closed

cubes. A closed cube is a set of the form K = ∏
i=1,2,...n

[
ai, bi

]
for a sequence

ai < bi of pairs of real numbers. Such a cube K is the union of 2n closed sub-

cubes Kj , with j = 1,2, . . .2n, where each cube is defined by either the lower

interval
[
ai, (ai+bi)/2

]
or the upper interval

[
(ai+bi)/2, bi

]
in the i-th coordi-

nate. Clearly, the successive subdivision cubes Kj1,j2,...jk are contained in cubes

Kε(x) for any positive ε as k tends to infinity. Now, since (ci)i is bounded, it

is contained in a closed cube K. We define our convergent subsequence: Begin

by taking d0 = c0. Then one of the subdivision cubes Kj1 contains the ci for an

infinity of indices. Take d1 = ci1 with the first index i1 > 0 such that ci1 ∈ Kj1 .

Then at least one of its subdivision cubes Kj1,j2 contains the ci for an infinity

of indexes larger than i1. Take the first index i2 such that ci2 ∈ Kj1,j2 and set

d2 = ci2 . Proceeding with this procedure, we thereby define a subsequence (di)i
of (ci)i which is contained in progressively smaller subdivision cubes. This is a

Cauchy sequence, and the proposition is proved. �

Example 101 Figure 27.6 shows a bounded sequence, where the upper

and lower bounds are indicated by dashed lines. A convergent subse-

quence is emphasized through heavy dots.

A sequence contained in a closed set C doesn’t necessarily contain any

converging subsequence, an example being the sequence (ci = i)i of nat-

ural numbers, contained in the closed set R. But if the closed set C is

bounded, i.e., if there is a radius R such that x ∈ BR(0) for all x ∈ C,

then a fortiori, any sequence in C is bounded. But then, by the Bolzano-

Weierstrass theorem, it has a convergent subsequence and its limit must
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Fig. 27.6. A convergent subsequence (heavy dots) of a bounded se-

quence.

be an element of C by proposition 233. So every sequence in C has a con-

vergent subsequence which converges within C! This type of closed sets

is extremely important in the entire calculus and deserves its own name.

Proposition 236 For a subset C ⊂ Rn, the following properties are equiv-

alent:

(i) The set C is closed and bounded.

(ii) Every sequence (ci)i in C has a subsequence which converges to a

point in C.

(iii) If (Ui)i is a (finite or infinite) family of open sets such that C ⊂ ⋃iUi
(a so-called open covering of C), then there is a finite subfamily

Ui1 , . . . Uik which also covers C, i.e., C ⊂ ⋃
j Uij (a subcovering of

(Ui)i).

Proof (i) implies (ii): Let C be closed and bounded. A sequence (ci)i in C has a

convergent subsequence by proposition 235. Since C is closed, the limit of the

subsequence is in C by proposition 233.

(ii) implies (i): If C is not bounded, then, evidently, there is a sequence (ci)i which

tends to infinity, so no subsequence can converge. If C is not closed, again by

proposition 233, it contains a Cauchy sequence (ci)i which has its limit outside

C . But then every subsequence of this sequence converges to the same point

outside C .

Let us now prove the equivalence of the first and third properties.

(iii) implies (i): If C is not bounded, then the open covering (Ui = Ki+1(0))i of Rn

has no finite subcovering containing C . If C is bounded, but not closed, then let

x = (x1, . . . xn) 6∈ C be a point such that K 1

2j
(x) ∩ C ≠ ∅ for all j ∈ N. Take

the following open covering of C . Start with the open set U0 = Rn −∏i

[
xi −

1, xi + 1
]
, complement of the closed cube

∏
i

[
xi − 1, xi + 1

]
. Then take the open
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set, Uj = K2(x) −
∏
i

[
xi − 1

2j
, xi + 1

2j

]
for j = 1,2, . . . . This family of open sets

covers Rn − {x}, hence also C , but, because of the choice of x, none of its finite

subcoverings contains all of C

(i) implies (iii): The converse is more delicate. Suppose that C is closed and

bounded. The strategy is this: We first construct a denumerable subcovering

(Uij )j∈N of C . Suppose that no finite subfamily covers C . Then for all finite sub-

families Ui0 , Ui1 , . . . Uim , there is an element cm ∈ C −
⋃m
j=0Uij . Since C is closed

and bounded, we may even suppose that (cm)m converges to c ∈ C . But then

there is an open set Uim0
which contains c, since (Uij )j∈N covers C . This means,

by construction of (cm)m, that the members of this convergent sequence stay

outside some open cube Kε(c) for m → ∞, a contradiction. We now construct a

denumerable subcovering of C . Clearly, if Uk is a member of our covering and

if x ∈ Uk, then there is an open cube K = ∏
i

]
ξi, ηi

[
which is contained in Uk,

contains x, and such that its interval points ξi, ηi are all rational numbers. So

Uk is covered by a family of open cubes with rational boundary numbers. The

denumerable family (Kr )r∈N of all these cubes, when summed up for all Uk of

the given covering, also cover C , and each Kr is contained in an open set Uk(r).

Therefore the open subcovering (Uk(r))r is denumerable, what was claimed, and

we are done. �

Definition 180 A set C ⊂ Rn is called compact, iff it has the equivalent

properties described in proposition 236.

Exercise 138 Show that a compact set in R has a minimum and a maxi-

mum.

Proposition 237 The Cartesian product X × Y ⊂ Rm+n of two compact

sets X ⊂ Rm and Y ⊂ Rn is compact.

Proof First, it is clear that the Cartesian product of two bounded sets is bounded.

Next, we show that the complement of X × Y is open. We have Rm+n − X × Y =
((Rm − X) × Rn) ∪ (Rm × (Rn − Y)). We show that (Rm − X) × Rn is open, the

other set X × (Rn − Y) being then open for the same reason after exchanging

left and right factors. Now, let (x,y) ∈ (Rm − X) × Rn. Then there is a cube

Kε(x) ⊂ Rm −X in Rm. Since no conditions are imposed on y , we have (x,y) ∈
Kε(x,y) ⊂ (Rm −X)×Rn, so (Rm −X)×Rn is open. �

Definition 181 For a real number ε > 0 and x ∈ Rn, the closed ball

Bε(x) is defined by Bε(x) = {y | d(x,y) ≤ ε}. A closed cube in Rn is

a set
[
a1, b1

] × [a2, b2
] × . . . [an, bn

]
for pairs ai ≤ bi, i = 1,2, . . . n. In

particular, we have a closed cube Kε(x) =
[
x1 − ε, x1 + ε

]× [x2 − ε, x2 +
ε
]× . . . [xn − ε, xn + ε

]
.
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Exercise 139 Show that in Rn a closed cube
[
a1, b1

] × . . . [an, bn
]

for

pairs ai ≤ bi, i = 1, . . . n, as well as a closed ball Bε(x) are compact.

Example 102 The upper half-plane H+ = {(x,y) ∈ R2 | y ≥ 0} is a

closed set in R2, since its complement H− = {(x,y) ∈ R2 | y < 0} is

an open set. However H+ is not compact, since it is not bounded (prop-

erty (i)). Alternatively, we find a sequence (ci)i = ((0, i))i that has no

convergent subsequence in H+ (property (ii)).

The subset of integers Z in R is closed. In fact its complement in R is ZC =⋃∞
i=−∞

]
i, i+1

[
, which is an open set, since it is the union of open intervals.

Z is not bounded, hence not compact. Also, U = ⋃∞i=−∞
]
i−ε, i+ε[, where

ε < 1, is an open covering of Z, but U contains no finite subcovering of Z,

thus property (iii) is violated.

In contrast, every closed disk Br (x0) = {x | d(x0, x) ≤ r}, and every

finite union of such closed disks, is compact.

27.3 Continuity

So far, we have only dealt with topological considerations on all of Rn.

In most practical cases, we do not have all of Rn at hand. For example, a

function may be defined only on a closed interval of R, or even only on

an interval of type ]0,1], such as f(x) = 1/x. When applying topological

considerations to such functions, we would like to deal strictly with what

happens within their domains. Also, when composing two functions, the

specific codomains and domains should coincide, as it is required for

the composition of set functions. So we are forced to set up a minimal

conceptual environment to apply topology to set functions.2

2 This small extra effort will pay off: We obtain a “category” of topological

spaces, i.e., topologically reasonable maps, the possibility to compose such

maps and to compare topologically specified sets by means of such maps.

Compare the category of matrixes, the category of sets and set maps, the

category of modules and linear homomorphisms, the category of digraphs,

the category of acceptors,. . . Later in chapter 36, we shall give a systematic ac-

count of such a conceptualization. For the moment, you just have to recognize

that the present topological considerations are completely integrated within a

big program of building categories of mathematical objects in order to obtain

a global control of mathematical structures.
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Definition 182 Given a subset X ⊂ Rn, a subset U ⊂ X is called open

(closed) in X, iff there is an open (closed) set O ⊂ Rn such that U = X ∩
O. The set of open sets in X is also called the relative topology of X. In

particular, we write BXε (x) = Bε(x) ∩ X and KXε (x) = Kε(x) ∩ X for the

restrictions of the open balls and cubes, respectively, and call these open

sets in X the open ball, or open cube, in X, respectively.

Exercise 140 Show that for a given subset X of Rn, the properties of

sorite 231 are true for the open sets in X, where X plays the role of the

“total space”. Moreover, show that the closed sets in X are precisely the

complements in X of the open sets in X.

Lemma 238 If X ⊂ Rm and Y ⊂ Rn are two subsets of Euclidean spaces,

and if f : X → Y is a set map, then the following properties are equivalent.

(i) The inverse image f−1(U) of any open set U in Y is open in X.

(ii) For any point x ∈ X and for any positive real number ε, there is

a positive real number δ (generally depending on x and on ε) such

that f(BXδ (x)) ⊂ BYε (f (x)).
(iii) For any point x ∈ X and for any positive real number ε, there is

a positive real number δ (generally depending on x and on ε) such

that f(KXδ (x)) ⊂ KYε (f (x)).
(iv) The inverse image f−1(U) of any closed set U in Y is closed in X.

(v) For any point x ∈ X and for any convergent sequence (ci)i with

limi→∞ ci = x, the image sequence (f (ci))i converges to f(x).

Proof (i) implies (ii): Since f−1(BYε (f (x))) is open and contains x, there is an

open ball BXδ (x) ⊂ f−1(BYε (f (x))). Therefore f(BXδ (x)) ⊂ BYε (f (x)).
(ii) implies (i): Since every open set U is the union of open balls, its inverse image

is the union of inverse images of open balls. But by (ii), the inverse image of an

open ball is a union of open balls, and, therefore, open, whence (i).

The same argument yields the equivalence of (i) and (iii).

The equivalence of (i) and (iv) results from the set-theoretic fact that comple-

ments and inverse images commute.

(ii) implies (v): Let ε > 0. Then there is δ > 0 such that f(BXδ (x)) ⊂ BYε (f (x)). So

by the convergence of (ci)i, there is a natural number N such that i ≥ N implies

ci ∈ BXδ (x). Hence i ≥ N implies f(ci) ∈ BYε (f (x)), therefore (f (ci))i converges

to f(x).

(v) implies (ii): Suppose (ii) is false for an x ∈ X. Then there is ε0 > 0 such that

for every i ∈ N, there is ci ∈ B 1
i+1
(x) with f(ci) 6∈ Bε0(f (x)). But the sequence
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(ci)i evidently converges to x, while the images f(ci) stay outside the open ball

Bε0(f (x)), which contradicts (v). �

Definition 183 If X ⊂ Rm and Y ⊂ Rn are two subsets of Euclidean

spaces, a set map f : X → Y with the equivalent properties of lemma 238

is called continuous. A continuous bijection f such that its inverse f −1 is

also continuous, is called a homeomorphism. The set of continuous maps

f : X → Y is denoted by Top(X, Y). In particular, if Y = R, one writes

C0(X) = Top(X,R). If in lemma 238, the conditions (ii) to (iv) are valid for

a specific point x only, f is called continuous in x. This means that f is

continuous, iff it is continuous in every x of its domain.

Example 103 To illustrate property (i) of lemma 238, it is best to show

a case where the property fails. In figure 27.7, the function f is non-

continuous, as is clear by the jump at the argument x. The value at x,

f(x), is indicated by the heavy dot. Now, the inverse image f−1(U) of

the open interval U , is not open, but a half-open interval, i.e., open at the

left and closed at the right with x as the endpoint.

Fig. 27.7. The function f being non-continuous, the inverse image of the

open set U is not open, in fact it is a half-open interval.

Sorite 239 Let X ⊂ Rm, Y ⊂ Rn, V ⊂ Rs ,W ⊂ Rt, Z ⊂ Rl be subsets of

Euclidean spaces.

(i) The identity IdX is always a homeomorphism.
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(ii) If f : X → Y and g : Y → Z are continuous, then their composition

g ◦ f is also continuous.

(iii) If f : X → Y , g : Y → Z and h : Z → W are continuous, then

(h ◦ g) ◦ f = h ◦ (g ◦ f) = h ◦ g ◦ f .

(iv) If f : X → Y and u : U → V are continuous, then so is the Cartesian

product map f ×u : X ×U → Y × V .

(v) The projections prX : X×Y → X and prY : X×Y → Y are continuous.

(vi) If a : U → X and b : U → Y are continuous maps, then so is the

universal map (a, b) : U → X × Y associated with a and b (see

volume 1, proposition 57).

Proof (i) is evident.

(ii) follows from the fact that for an open set U ⊂ Z , we have (g ◦ f)−1(U) =
g−1(f−1(U)), and since V = f−1(U) is an open set so is g−1(V).

(iii) Associativity is clear, since it is true for any set maps.

(iv) It suffices to show that the inverse image of an open cube KX×Yε (x,y)

under f × u is open. But we have KX×Yε (x,y) = KXε (x) × KYε (y), therefore

(f ×u)−1(KX×Yε (x,y)) = f−1(KXε (x))×u−1(KYε (y)), and this is open.

For (v), observe that the cube KX×Yε (x,y) is mapped by prX into the cube KXε (x),

since cube elements are characterized coordinatewise. Similarly for the second

projection.

As to (vi), if at a point v ∈ U , we have a(Kδ(v)) ⊂ Kε(a(v)) and b(Kδ(v)) ⊂
Kε(b(v)), then (a, b)(Kδ(v)) ⊂ KXε (a(v))×KYε (b(v)) = KX×Yε ((a, b)(v)). �

These seemingly innocent general properties of continuous maps have a

large number of very important consequences concerning the continuity

of functions which are known from the theory of polynomials and from

linear geometry. The crucial fact is this:

Lemma 240 The maps of addition, + : R × R → R, and multiplication,

· : R×R→ R, are continuous. The inversion ?−1 : R∗ → R∗ is continuous.

Proof By the basic properties of the real number arithmetic, we have, for the

addition, +(Kε/2(x,y)) ⊂ Kε(x +y).
For the product x ·y , we have |(x+ν)·(y+µ)−x ·y| ≤ |x||µ|+|y||ν|+|µ||ν|.
If xy ≠ 0, take δ = min{ε/3|x|, ε/3|y|,√ε/3}. If x = 0 and y ≠ 0, then take

δ = min{ε/2|y|,√ε/2}. If x ≠ 0 and y = 0, then take δ = min{ε/2|x|,√ε/2}. If

x = y = 0, take δ = √ε. We then obtain (Kδ(x,y)) ⊂ Kε(x ·y).
The third statement is left as an exercise for the reader. �
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Proposition 241 A polynomial function P : Rn → R defined by a polyno-

mial P ∈ R[X1, . . . Xn] of n variables X1, . . . Xn is continuous.

Proof If P = a ∈ R is a constant, the polynomial function P : Rn → R is constant,

and this is evidently continuous. In general, if fi : Rn → R, for i = 1, . . . k, are

continuous, then, by proposition 240, their sum
∑
i fi : Rn → R : x ,

∑
i fi(x)

and their product
∏
i fi : Rn → R : x ,

∏
i fi(x) are continuous since we have∑

i fi =
∑◦(f1, . . . fk) and

∏
i fi =

∏◦(f1, . . . fk), where (f1, . . . fk) : Rn → Rk is

the universal map of Cartesian products, and where
∑

and
∏

are the continuous

k-fold sum and product maps. But the polynomial function P is the sum of its

monomials, so it is continuous if the monomials are so. Further, each monomial

aXn1 . . . Xnt in P is a product of the constant a and the projection functions Xj ,

which are all continuous by sorite 239, hence P is continuous. �

Exercise 141 Give a proof of proposition 241 for the polynomial P =
2X2

1 −X2 ·X3 + 1.5 using sorite 239 and lemma 240.

Lemma 242 The maps of addition and multiplication, + : C × C → C and

· : C×C→ C are continuous for the complex numbers, where we interpret

C as the real vector space R2 to define its topology. Conjugation ? : C → C

of complex numbers is a homeomorphism.

Proof This follows immediately since these operations, when rewritten in real

coordinates, are polynomial functions. So proposition 241 applies. �

Using the above general facts from sorite 239, we deduce the following

theorem about continuity of matrix operations. This requires that ma-

trixes M ∈ Mm,n(R) are viewed as vectors in some Euclidean space. We

do this in the usual way by the well-known identification ofMm,n(R) with

Rmn, the Euclidean structure on Mm,n(R) being induced from the Eu-

clidean structure on Rmn. For example, the norm of a matrix M = (Mi,j)
is ‖M‖ =

√∑
i,jM

2
i,j .

Proposition 243 The following maps are all continuous:

(i) Addition + : Mm,n(R)×Mm,n(R)→Mm,n(R) : (M,N), M +N,

(ii) Multiplication · : Ml,m(R)×Mm,n(R)→Ml,n(R) : (M,N), M ·N,

(iii) Scalar product (?, ?) : Rn ×Rn → R,

(iv) Scalar multiplication R×Mm,n(R)→Mm,n(R) : (t,M), t ·M ,

(v) Determinant function det : Mn,n(R)→ R,

(vi) Matrix transposition τ : Mm,n(R)→Mn,m(R),

(vii) Matrix adjunction Ad : Mn,n(R)→Mn,n(R).
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Proof All the claims of this proposition are immediate from the polynomial

character of the involved functions and their combinations, following sorite 239

and proposition 241. We leave the details to the reader as a useful exercise. �

A central fact about continuous maps is

Proposition 244 The image f(X) ⊂ Rm of a compact set X ⊂ Rn under a

continuous map f : X → Rm is compact.

Proof Let (Ui)i be an open covering of f(X). Then the inverse image of f(X) =⋃
iUi is X = ⋃i f−1(Ui), an open covering of X. So there is a finite subcovering⋃J
j=1 f

−1(Uij ) of X. Therefore f(X) = f(⋃Jj=1 f
−1(Uij )) =

⋃J
j=1 f(f

−1(Uij )) ⊂⋃J
j=1Uij ⊂ f(X), so we obtain the finite subcovering

⋃J
j=1Uij of f(X). �

In particular, by exercise 138, if we are given a continuous function f :

X → R on a compact set X, there are two arguments x,y ∈ X such that

f(x) ≤ f(z) ≤ f(y) for all z ∈ X, i.e., the minimum and maximum

of f(X) are obtained as function values. But we do not know whether

all intermediate values are obtained. This property is guaranteed by the

famous intermediate value theorem (Zwischenwertsatz) first proved by

the German mathematician Bernhard Bolzano in 1817.

Proposition 245 (Bolzano) If K = [a1, b1
]×[a2, b2

]×. . . [an, bn
]

for pairs

ai ≤ bi, i = 1,2, . . . n is a closed cube in Rn, and if f : K → R is contin-

uous, then Im(f ) is a closed interval
[
a,b

]
, i.e., for each value c between

the minimum a = f(x) and maximum b = f(y) of Im(f ), there is an

argument z ∈ K such that c = f(z).

Proof By proposition 244, f(K) is compact, i.e., closed and bounded by proposi-

tion 236. Therefore b = sup(f (K)) is finite. But taking a sequence (ci)i in f(K)

which converges to b, closedness of f(K) implies that b ∈ f(K). A similar argu-

ment works with a = inf(f (K)), the infimum3 of f(K). Therefore there is a max-

imal and a minimal value for f(K). Now, let r = f(u) < s = f(v) for u,v ∈ K
be any two values in f(K). We claim that any value c ∈ [r , s] is taken by an argu-

ment z ∈ K, i.e., c = f(z). Consider the map γ :
[
0,1

] → K : ξ , ξ ·u+(1−ξ)·v .

This is evidently a continuous map, since it is even affine. The composition

g = f · γ :
[
0,1

] → R is continuous and we have g(0) = r < g(1) = s. So

we have reduced the problem to a one-dimensional cube
[
0,1

]
. Suppose that

there is x ∈ T = [
r , s

] − g([0,1]). Take the supremum y of T . Since s 6∈ T ,

3 The infimum of a non-empty set A ⊂ R, which is bounded from below, i.e.,

there is l < x, for all x ∈ A, is the number inf(A) = − sup(−A), where −A =
{−x | x ∈ A}.
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the supremum is an element of the interval
[
r , s

]
, and smaller than s. Take a

sequence (ci)i, ci ∈]y, s] which converges to y . By construction of y , there is a

sequence (di)i in
[
0,1

]
with f(di) = ci, for all i. But

[
0,1

]
is compact, so there

is even a convergent subsequence (ei)i of (di)i, converging to e ∈ [0,1], say. But

then, by continuity, f(e) = f(limi→∞ ei) = limi→∞ f(ei) = y , a contradiction. �

Fig. 27.8. Intermediate value theorem.

Recall that we used this result to prove proposition 219 in chapter 25.3

of volume 1.

Corollary 246 For a polynomial P ∈ R[X] of odd degree, there is an ar-

gument x ∈ R such that P(x) = 0.

Proof Since P is continuous, it suffices to find arguments a,b ∈ R such that

P(a) < 0 and P(b) > 0. Let P(x) = a2n+1x
2n+1 + a2nx

2n + . . . a0. We may evi-

dently suppose a2n+1 = 1, since the general case follows immediately from this

special case. For x ≠ 0, we write P(x) = x2n+1(1 + a2n
x
+ . . . a0

x2n+1 ). Consider

positive natural numbers x = i as arguments of P . If i→∞, then the summands
a2n
i
. . .

a0
i2n+1 converge to 0. Therefore the factor 1 + a2n

i
+ . . . a0

i2n+1 converges to

1. This implies that the product P(i) = i2n+1(1 + a2n
i
+ . . . a0

i2n+1 ) tends to ∞ as

i→∞. For integers i < 0, if i→ −∞, then P(i) = i2n+1(1+ a2n
i
+ . . . a0

i2n+1 ) tends to

i2n+1 < 0, so we have positive and negative values and then, by proposition 245,

there is an x such that P(x) = 0. �

This last result was used in chapter 25.1 of volume 1.
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27.4 Series

This section introduces a more systematic study of sequences, and in par-

ticular sequences deduced from partial sums of given sequences. These

series play a central role in the construction of basic continuous func-

tions, but also, as we shall see later in this book under the title of Taylor

series, in the reconstruction of quite general functions in terms of con-

vergent sequences of polynomial functions.

To begin with, consider the real vector space Sequ(R, n) = (Rn)N of se-

quences (ci)i with values in Rn. Recall that the sum and scalar multi-

plication are defined coordinatewise, i.e., (ci)i + (di)i = (ci + di)i, and

λ(ci)i = (λci)i for λ ∈ R. Denote by C(R, n) the subset of Cauchy or,

equivalently, convergent sequences in Sequ(R, n).

Lemma 247 The set C(R, n) is a vector subspace of Sequ(R, n). The map

limi→∞ : C(R, n) → Rn : (ci)i , limi→∞ ci is linear and its kernel is the

sub-vector space O(R, n) of zero sequences.

Exercise 142 Give a proof of lemma 247. Check in particular that the

statement of linearity of the map limi→∞ is equivalent to the fact that

limits of sums of sequences are the sums of their limits, whereas the

product of a constant λ with the members of a convergent sequence con-

verges to the scaling of the sequence limit by λ.

Definition 184 Consider the following two linear endomorphisms Σ and

∆ of Sequ(R, n):

Σ : Sequ(R, n)→ Sequ(R, n) : (ci)i , Σ(ci)i,

the i-th member of Σ(ci)i being Σ(ci) = Σij=0cj . The image sequence Σ(ci)i

is called the (associated) series of (ci)i. And

∆ : Sequ(R, n)→ Sequ(R, n) : (ci)i , ∆(ci)i,

the i-th member of ∆(ci)i being ∆(ci) = ci−ci−1 for positive i and ∆(c0) =
c0. The image ∆(ci)i is called the (associated) difference of (ci)i.

Lemma 248 The endomorphisms Σ and ∆ are automorphisms and in-

verses of each other, i.e.,

∆ ◦ Σ = Σ ◦∆ = IdSequ(R,n).



22 Limits and Topology

Proof This is immediate by a straightforward calculation, which we leave to the

reader. �

This means that the inverse image ∆−1C(R, n) is the vector space of se-

quences having convergent series. If a series Σ(ci)i converges, we write

Σ
∞
i=0ci for its limit. By the identification of Cauchy and convergent se-

quences, we have:

Proposition 249 If a series Σ(ci)i converges, then (ci)i is a zero sequence,

i.e,

∆(C(R, n)) ⊂ O(R, n).

Proof This follows from the Cauchy condition |Σ(ci+1) − Σ(ci)| < ε for subse-

quent partial sums of sufficiently high index i of the series. �

Example 104 Given a real number q, the sequence (qi)i gives rise to the

geometric series Σ(qi)i with general member

Σ(qi) = 1+ q + q2 + . . . qi.

For q ≠ 1, one has the formula 1+ q + q2 + . . . qi = 1−qi+1

1−q . Since we have

Σ(qi) = 1
1−q −

qi+1

1−q , convergence is a linear map, and the second summand

converges to zero for |q| < 1, we have the very important formula

Σ
∞
i=0q

i = 1

1− q

for |q| < 1. Try to understand this result geometrically for the intuitive

special value q = 1
2 .

But there are zero sequences without converging associated series:

Example 105 The harmonic series Σ
(

1
i+1

)
i
, with partial sums Σ

(
1
i+1

)
=

1+ 1
2+. . .

1
i+1 , is divergent. Nonetheless, the very similar alternating series

Σ

(
(−1)i

i+1

)
i

is convergent. This is a special case of the following Leibniz

criterion.

Proposition 250 If (ci)i ∈ Sequ(R,1) is a zero sequence which is mono-

tonously decreasing, i.e., ci ≥ ci+1 for all i, then the alternating series

Σ((−1)ici)i converges.
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Proof We are given a series with c0 ≥ c1 ≥ . . . which converges to 0. Let us show

by induction on N that the partial sums SN =
∑N
i=0(−1)ici satisfy 0 ≤ SN ≤ c0.

This is true for N = 0,1,2 by immediate check. In general, if N is even, we have

SN = SN−2 − cN−1 + cN , whence SN ≤ SN−2 ≤ c0, but also SN = SN−1 + cN ≥
SN−1 ≥ 0. If N is odd, then SN = SN−2 + cN−1 − cN , whence SN ≥ SN−2 ≥ 0,

but also SN = SN−1 − cN ≤ SN−1 ≤ c0. Now, Cauchy’s criterion for convergence

requires |SN−SM | < ε for N,M sufficiently large. But SN−SM is just a partial sum

of such an alternating series starting from m = min(M,N). If this minimum is

sufficiently large, by the above, the difference is limited by cm, which converges

to 0, so we are done. �

A partially converse criterion is the famous criterion of absolute conver-

gence.

Definition 185 A series Σ(ci)i ∈ Sequ(R, n) is said to be absolutely con-

vergent if the series Σ(‖ci‖)i ∈ Sequ(R,1) converges.

Proposition 251 An absolutely convergent series Σ(ci)i ∈ Sequ(R, n) is

convergent.

Proof Let Σ(ci)i be absolutely convergent. Then for two indexes N ≤ M , the tri-

angle inequality in Rn yields ‖Σ(cM)− Σ(cN)‖ = ‖
∑M
i=N+1 ci‖ ≤

∑M
i=N+1 ‖ci‖, and

the latter is smaller than any positive ε for M,N sufficiently large by the abso-

lute convergence hypothesis. Therefore the Cauchy criterion yields convergence

of the series. �

The next criterion gives us a large variety of absolutely convergent series

at hand:

Proposition 252 If a series Σ(ci)i ∈ Sequ(R, n) is based on a sequence

(ci)i with non-zero members such that there is a real number 0 < q < 1

with this property: There is a natural N such that
‖ci+1‖
‖ci‖ ≤ q for all i > N,

then Σ(ci)i is absolutely convergent.

Proof Since the initial portion of a sequence is irrelevant for its convergence, we

may suppose that
‖ci+1‖
‖ci‖ ≤ q for all i ≥ 0. Then we have ‖ci‖ ≤ qi‖c0‖, all i ∈ N.

Therefore Σ(‖ci‖) ≤ ‖c0‖ · (1 + q + q2 + . . . qi) which is a convergent geometric

series. �

For the next result, we again interpret complex numbers as vectors in R2

and accordingly consider sequences with members in C as series in the

Euclidean space R2.
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Corollary 253 Given a complex number z ∈ C, the power series (involv-

ing powers of z) Σ
(
zk

k!

)
k

is absolutely convergent. We therefore define the

complex-valued function

exp(z) =
∞∑

k=0

zk

k!

which is called the exponential function.

Proof The absolute convergence follows immediately from the ratio

zk+1

(k+1)!

zk

(k)!

= z

k+ 1
,

which tends to 0 for k→∞, and the proposition 252 applies. �

27.4.1 Fundamental Properties of the Exponential Function

In this subsection, we want to deal with some technical aspects which

are of general interest, but which are also crucial for the establishment

of fundamental properties of the exponential function. In particular, we

want to calculate the value exp(w+z), and since this involves the powers

(w + z)k as functions of w and z, we need to calculate polynomials (X +
Y)k ∈ Z[X, Y] first. To this end, we need a formula for the coefficients

of such polynomials. These coefficients will also play an important role

in the calculus of probability, to name but one example. They are in fact

omnipresent in mathematics as soon as it comes to the calculation of any

combinatorial quantities.

Definition 186 Let 0 ≤ k ≤ n be natural numbers. Then one sets
(
n

k

)
= n!

k!(n− k)! =
n(n− 1)(n− 2) . . . (n− k+ 1)

k!

(with the special value 0! = 1) and calls this rational number the binomial

coefficient n over k.

Here is the basic result which allows the inductive calculation of binomial

coefficients:

Lemma 254 For natural numbers 0 ≤ k < n, we have

(
n

k

)
+
(
n

k+ 1

)
=
(
n+ 1

k+ 1

)
.
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In particular, by induction on n, and observing that
(
n
0

)
= 1, it follows that

binomial coefficients are integers.

Proof We have
(
n

k

)
+
(
n

k+ 1

)
= n · (n− 1) · . . . (n− k+ 1) · (k+ 1)

k!(k+ 1)
+

n · (n− 1) · . . . (n− k+ 1) · (n− k)
k!(k+ 1)

= n · (n− 1) · . . . (n− k+ 1)

(k+ 1)!
((k+ 1)+ (n− k))

=
(
n+ 1

k+ 1

)
.

�

The Pascal triangle (figure 27.9) is a graphical representation of the above

result: We represent the binomial coefficients for a given n on a row and

develop the coefficients from n = 0 on downwards. Observe the vertical

symmetry axis in the triangle, which stems from the obvious fact that(
n
k

)
=
(
n
n−k

)
.

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

1 7 21 35 35 21 7 1

. . .

Fig. 27.9. The Pascal triangle.

This yields the coefficients of (X + Y)n as follows:

Proposition 255 If n ∈ N, then the polynomial (X + Y)n ∈ Z[X, Y] has

this representation in terms of monomials:

(X + Y)n =
n∑

k=0

(
n

k

)
Xn−k · Y k = Xn +nXn−1 · Y + . . . nX · Yn−1 + Yn.



26 Limits and Topology

Proof One proves the proposition by induction on n using the recursive formula

from lemma 254. This is just an exercise in reindexing sums, we therefore omit

it and refer to [14]. �

This allows us to regard the expression exp(w + z) as a series of the

following products:

exp(w + z) =
∞∑

n=0

n∑

k=0

1

n!

(
n

k

)
wn−kzk =

∞∑

n=0

n∑

k=0

1

(n− k)!w
n−k 1

k!
zk.

So we are confronted with the problem of whether a product of series is

the series of the products of their summands. This is precisely what the

following proposition guarantees:

Proposition 256 Identifying C(C,1)with the vector space C(R,2) over the

Euclidean space R2, if Σ(ci)i and Σ(di)i are absolutely convergent series

in C(C,1), then we have the Cauchy product formula



∞∑

i=0

ci


 ·



∞∑

i=0

di


 =

∞∑

i=0

i∑

k=0

ci−kdk.

This is a special case of a formula guaranteeing that a series is absolutely

convergent, iff it is “unconditionally” convergent, which means that it

converges to the same limit for any permutation of the summation. We

cannot delve into those details and refer to [14].

Proposition 256 implies the following result.

Proposition 257 The map

exp : C→ C∗

is a surjective continuous group homomorphism from the additive group

of complex numbers to the multiplicative group of non-zero complex num-

bers, i.e., exp(0) = 1 and exp(w + z) = exp(w) · exp(z) for all w,z,∈ C.

There is a number π = 3.1415926 . . . such that

Ker(exp) = i2πZ.

In particular, C/i2πZ
∼→ C∗. The inverse image of the unit circle subgroup

U ⊂ C∗ is the additive group i ·R, in particular,

U
∼→ i ·R/i2πZ ∼→ R/Z.
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This combines to the group isomorphism R×U ∼→ C∗ : (r ,u), exp(r)·u,

which is called the polar coordinate representation of (non-zero) com-

plex numbers. The uniquely determined angle −π < θ ≤ π , such that

u = exp(i · θ) ∈ U in the polar coordinate representation z = exp(r) · u
is denoted by arg(z). The Euler formula exp(i · θ) = cos(θ) + i sin(θ)

established in proposition 210 in volume 1 (we used the symbol A(θ) for

exp(i·θ) there), implies the representation of the sine and cosine functions,

which are both continuous, in terms of power series:

cos(θ) = 1− θ
2

2!
+ θ

4

4!
− θ

6

6!
+ · · · (−1)n

θ2n

(2n)!
+ · · ·

sin(θ) = θ − θ
3

3!
+ θ

5

5!
− θ

7

7!
· · · (−1)n

θ2n+1

(2n+ 1)!
+ · · ·

The Euler formula implies this alternative definition of the sine and cosine

functions:

cos(θ) = 1

2
(exp(i · θ)+ exp(−i · θ)),

sin(θ) = 1

2i
(exp(i · θ)− exp(−i · θ)).

The restriction exp |R : R → R+ is continuous and ordered4 isomorphism

of the additive group of R onto the multiplicative group R+ of positive

real numbers. Its inverse log : R+ → R is called the (natural) logarithm. In

particular, log(1) = 0, and log(x ·y) = log(x)+ log(y) for all x,y ∈ R+.

The number e = exp(1) = ∑∞
k=0

1
k! = 2.7182818 . . . is called the Euler

number; it is also equal to limn→∞(1+ 1
n)
n. For a rational number

p
q with

q > 0, we have exp(pq ) = e
p
q = ( q√e)p . The general value exp(z) for z ∈ C

is therefore also written as ez.

Proof By proposition 256, exp is a group homomorphism, i.e., for all w,z ∈ C,

exp(w + z) = exp(w) · exp(z). In particular, 1 = exp(0) = exp(w + (−w)) =
exp(w)·exp(−w), whence exp : C→ C∗ is a group homomorphism into the mul-

tiplicative group of non-zero complex numbers. Moreover, exp is continuous. In

fact, for any w ∈ C, we have exp(w + z)− exp(w) = exp(z)(exp(w)− 1). So we

have to show that exp(w)−1→ 0 ifw → 0. But ‖ exp(w)−1‖ ≤ ‖w‖·∑k ‖w‖
k

(k+1)! ≤
‖w‖ ·∑k ‖w‖

k

k! ≤ ‖w‖ ·∑k ‖w‖k = ‖w‖
1−‖w‖ for ‖w‖ < 1, which evidently converges

4 This means that x < y implies exp(x) < exp(y). In calculus this is also called

a strictly monotonous map.
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to 0 as ‖w‖ → 0. Now, clearly exp(z) = exp(z). Therefore, for θ ∈ R, we have
1

exp(i·θ) = exp(−i · θ) = exp(i · θ), which means that we have a group homomor-

phism exp : i ·R → U . Setting the Euler equation exp(i · θ) = cos(θ)+ i · sin(θ)

for the real an complex parts of exp(i · θ), we have cos(θ)2 + sin(θ)2 = 1, and

the alternative definitions of cos(θ) and sin(θ) in terms of the exponential func-

tion follow immediately. The series for cos(θ) and sin(θ) are also visible from

the real and imaginary contributions in the series expansion of the exponential

function.

We now want to calculate the kernel of exp. To this end, observe that for k ≥ 2

and 0 < θ ≤ 3, we have θk

k! >
θk+1

(k+1)! . Therefore, under these conditions, the series

for the cosine converges by the Leibniz criterion proposition 250. Coming back

to that proposition’s proof, we recognize that 1− θ2

2 < cos(θ) < 1− θ2

2 +
θ4

24 for

0 < θ < 3. But then, u = √2 is the smallest zero of 1 − θ2

2 while v =
√

6− 2
√

3

is the smallest zero of 1 − θ2

2 +
θ4

24 in the interval 0 < θ < 3. Therefore, by

proposition 245, there is a zero of cos(θ) in the interval
]
u,v

[
. Since cos(θ)

is continuous by the way it is derived from exp(i · θ), and since cos(0) = 1,

there is a smallest zero of cos, lying between u and v . Call it π
2 . Therefore all

values in
[
0,1

]
are taken for arguments θ between 0 and π

2 by cos(θ). So exp(i ·
π
2 ) = i, exp(i · π) = −1, exp(i · 3π

2 ) = −i, and exp(i · 2π) = 1. Therefore, the

cosine takes all values between 1 and −1. This implies that exp(i · θ) is onto

U . The goniometric addition theorem from proposition 210 in volume 1 is a

consequence of the group homomorphism property of exp. For 0 ≤ θ < θ + η <
π
2 , it yields cos(θ + η) = cos(θ) cos(η)− sin(θ) sin(η) < cos(θ) cos(η) < cos(θ),

so the cosine function is strictly monotonously decreasing. So for every x ∈[
0,1

]
, there is exactly one θ ∈ [0, π2

]
such that cos(θ) = x. By cos(θ)2+sin(θ)2 =

1, the sine function is monotonously increasing from 0 to 1 as θ moves from 0 to
π
2 . Again, by the addition theorem for the cosine function, we have cos(θ+ π

2 ) =
− sin(θ). This gives us the values for cos(θ) for the arguments in

[π
2 , π

]
: The

values cos(θ) decrease monotonously from 0 to −1 as θ moves from π
2 to π .

By the same argumentation, from π to 2π , cos(θ) increases monotonously from

−1 to 1. All this together proves that i · 2πZ is the kernel of exp.

Let us finally concentrate on the real arguments in exp. Since e = exp(1) > 1,

there are arbitrary large real numbers exp(n) = en for real arguments, and by

exp(−n) = 1
exp(n) also arbitrary small real values for real arguments. By propo-

sition 245, every positive real value is taken by exp(x) for x ∈ R. Now, ev-

ery complex number z ≠ 0 can be written as z = ‖z‖u, u ∈ U . Therefore

there are x,θ ∈ R, such that exp(x) = ‖z‖ and exp(i · θ) = u. This means

that z = ‖z‖u = exp(x) exp(i · θ) = exp(x + i · θ), and we have shown that

exp : C → C∗ is surjective. For x ∈ R, we have exp(−x) = 1
exp(x) . But for pos-

itive x ∈ R, exp(x) > 1. So exp(x) > 0 for all x ∈ R. Moreover, for real num-

bers x < y , we have exp(x) < exp(x) exp(y − x) = exp(y), whence exp |R
is strictly monotonous onto the multiplicative group R+ of positive real num-
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bers. The statements about the logarithm are now immediate. The statements

about the coincidence exp( p
q
) = e

p
q are left as an exercise. For the equation

e = limn→∞(1+ 1
n
)n, we refer to [14]. �

Fig. 27.10. The sine (a) and cosine (b) functions, with their domains re-

stricted to R.

Definition 187 If a ∈ R+, one defines the exponential function for basis

a by ax = expa(x) = exp(x · log(a)). If moreover a ≠ 1, one also defines

the logarithm function for basis a by loga(x) = 1
log(a) log(x). In older

literature, log is also denoted by ln (logarithmus naturalis), while one uses

the notation log for log10 and calls that the decadic logarithm, but we

refrain from such atavisms.

Sorite 258 The logarithm loga for basis a ∈ R+ has the following proper-

ties. Let x,y ∈ R.

(i) If b ∈ R+ is a second basis, we have logb(x) = logb(a) · loga(x),

(ii) logb(a) · loga(b) = 1,

(iii) loga(b
x) = x · loga(b),

(iv) if x ∈ Q, then the exponential function ax and the rational powers

defined earlier, denoted by the same signs, coincide,

(v) ax+y = ax · ay , and (ax)y = ax·y .

(vi) If b ∈ R+ is a second basis, we have bx = aloga(b)·x .
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Fig. 27.11. The exponential (a) and logarithm (b) functions, with their

domains restricted to R.

Proof The proof of this sorite is left as an exercise, using the straightforward

definition of the logarithm, i.e., applying the exponential function as the inverse

isomorphism to log to verify the specific claims. �

27.5 Proof of Euler’s Formula for Polyhedra

and Kuratowski’s Planarity Theorem

Recall from chapter 13 of volume 1 that a skeletal graph Γ : A → 2V is a

graph without multiple edges or loops. A drawing of a skeletal graph Γ

as defined in definition 84, chapter 13, volume 1, is intuitively a family

of (continuous) curves ca :
[
0,1

] → R such that ca(
]
0,1

[
) is disjoint

of the image of all other curves. Recall also that a drawing may also

be defined on the unit sphere S2 ⊂ R3, instead of R2. The Northpole

is the top point with coordinates (0,0,1). By the stereographic projec-

tion τ : S2 − Northpole
∼→ R2, which is a homeomorphism of topological

spaces, every drawing on S2 induces one in R2, and conversely. Here is

the definition of τ (see figure 27.12). We write x = (h, v) ∈ R2 × R for a

point in S2.

τ(h,v) = 1

1− v h.

Exercise 143 Show that inverse map is τ−1(z) =
(

2
‖z‖2+1 · z,

‖z‖2−1
‖z‖2+1

)
. Use

propositions 240 and 241 to show that these maps are continuous.
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Fig. 27.12. A stereographic projection of a sphere onto the plane T

through the equator. The point p is mapped to p′ on T , where p, p′

and the northpole N are collinear.

We called a polyhedron a drawing of a connected skeletal graph Γ on

S2, but we also use this terminology for a drawing D of Γ in R2, too.

The elements of the finite set C of connected components of the drawn

graph D(Γ) are called the faces of D(Γ). In the drawing on R2 there is

one face which is not bounded, this one corresponds to the face on S2

which includes the Northpole. It is called the exterior face, the others are

called the interior faces of the drawing. We now want to prove Euler’s

formula for polyhedra from proposition 108, volume 1. Recall from that

proposition that ε = card(V), φ = card(A), σ = card(C).

Proof The proof is by induction on the number ξ = ε + φ. For ξ = 1, there is

a single point and no edge, whence Euler’s formula for polyhedra ε − φ + σ =
1 + 0 + 1 = 2. Suppose that the drawing D has a “bridge”, i.e., an edge line ca
such that the drawing minus this line is no more connected (see figure 27.13 (a)).

Then the drawing of the remainder of the graph after omitting a decomposes

into a disjoint union of two connected subdrawings D′,D′′. These subdrawings

obviously each have a ξ which is smaller than that of the drawing D. Therefore,

Euler’s formula for polyhedra holds for both D′ and D′′: ε′ − φ′ + σ ′ = 2 and

ε′′ −φ′′ +σ ′′ = 2. Now let us express ε,φ, and σ of D in terms of the values for

D′ and D′′:
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ε = ε′ + ε′′

φ = φ′ +φ′′ + 1 (the bridge)

σ = σ ′ + σ ′′ − 1 (both share the exterior face)

So we have

ε −φ+ σ = (ε′ + ε′′)− (φ′ +φ′′ + 1)+ (σ ′ + σ ′′ − 1)

= ε′ −φ+ σ ′ + ε′′ −φ′′ + σ ′′ − 1− 1

= 2+ 2− 2

= 2

Fig. 27.13. Reducing the drawing D of a graph to drawings of smaller

graphs: (a) by removing a connecting edge, (b) by removing a vertex and

the edges connected to it.

If there is no bridge, take a vertex v which is on the boundary of the exterior

face. The k lines terminating at v define a total of k faces containing v in their

boundaries (see figure 27.13 (b)). Omitting the point v and all lines terminating

in v in the drawing D defines the drawing D′ of a connected graph with k − 1

less faces, since the interior faces around v are now united to the exterior face

of D. Again, Euler’s formula for polyhedra holds for D′, and we have

ε = ε′ + 1 (the vertex v)

φ = φ′ + k (k edges connecting to v)

σ = σ ′ + (k− 1) (k− 1 new faces)

This yields

ε −φ+ σ = (ε′ + 1)− (φ′ + k)+ (σ ′ + k− 1) = 2,

and the proof is complete. �
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Corollary 259 The graphs K5 and K3,3 are not planar.

Proof In fact, suppose that we have a drawing D of K5. Then every three vertexes

define a triangular face, so σ =
(

5
3

)
= 10, but then ε−φ+σ = 5−10+10 = 5 ≠ 2.

For K3,3, the faces are defined by rectangular cycles through 4 vertexes each.

There are 9 such cycles (choose 2 upper and 2 lower points and connect them to

a cycle), so we have ε −φ+ σ = 6− 9+ 9 = 6 ≠ 2 �

Now, Kuratowski’s theorem attributes a central role to the two graphs

K5 and K3,3 in that planarity of any skeletal graph Γ is based on the

non-inclusion of essentially one of these non-planar graphs. “Essentially”

means one of these alternatives: (1) There is a subgraph Γ ′ ⊂ Γ which

has a contraction isomorphic to K5 or K3,3 (see definition 85, chapter 13,

vol 1). (2) There is a subgraph Γ ′ ⊂ Γ which results from K5 or K3,3 by

a succession of subdivisions of their edges. A subdivisions of an edge

x
a
y is the addition of one more vertex v to V and the replacement

of a by two edges x
ax

v and v
ay

y .

We have these auxiliary facts:

Lemma 260 Suppose that we can prove the special case that Γ is planar

iff it contains no subgraph which is a subdivision of a graph isomorphic to

K5 or K3,3. Then the theorem follows.

Proof If Γ has no subgraph which can be contracted to a graph isomorphic to

K5 or K3,3, then in particular, it has no subgraph, which is a subdivision of a

graph isomorphic to K5 or K3,3, since subdivisions can be contracted to the orig-

inal graphs. By the assumption made in lemma 260 it then can be concluded

that Γ is planar. Conversely, if Γ is planar and there is a contraction to a graph

isomorphic to K5 or K3,3, then there is a sequence of elementary contractions,

which define this contraction. The idea is this: If it can be shown that an ele-

mentary contraction preserves the planarity of a graph, then K5 or K3,3 must be

planar, which a contradiction. So, if a drawing of a planar graph Γ is given, an

elementary contraction of the line x
a

y can be performed by isolating a

small tubular neighborhood around the drawing of a and then piping the lines

ending at x within that tubular neighborhood to y (see figure 27.14). Obviously,

this construction conserves planarity. Thus the lemma is proved. �

Kuratowski’s theorem

So one is left with the proof of the subdivision version of Kuratowski’s

theorem. Now, we already know that a graph containing a subdivision of
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Fig. 27.14. The graphical process of an elementary contraction conserves

planarity.

a copy of K5 or of K3,3 can not be planar, since the contractions yielding

K5 or K3,3 would yield drawings of graphs containing drawings of K5 or of

K3,3, which is impossible by corollary 259. So we are left with the proof

of the other implication, i.e., that a non-planar graph must necessarily

contain a subdivision of drawings of K5 or of K3,3.

Suppose there is a Γ which, being non-planar, contains no subgraph which

is a subdivision of a copy of K5 or of K3,3. Take one with a minimal num-

ber of edges. It cannot have a bridge line, since then it is easily seen that

one of the subgraphs connected by this bridge would be non-planar and

therefore would contain a subdivision of one of the two critical graphs.

Moreover, it cannot contain points x with deg(x) = 1,2, since the non-

planarity would be conserved omitting these points. So all points have

deg(x) ≥ 3. Then the omission of an arbitrary line x
l
y in Γ yields

a smaller graph Φ which does not contain a subdivision of K5 or of K3,3

and therefore is planar.

The proof idea is to show that, under these assumptions, one can find a

subgraph of Φ which is isomorphic to K5 or K3,3, and this would contra-

dict the assumption that Γ does not contain any of these subgraphs. To

do so, one first shows that there is a cycle Z in Φ containing the points

x,y defined above. One then makes a drawing of Φ such that there is a

maximum of faces interior to the drawing of Z. One considers the compo-

nents of the subgraph of Φ induced on the vertexes outside the drawing

of Z and then defines outer pieces as those subgraphs of Φ which are

either induced on outer components, plus the points on Z which they

are connected to, or else which are outer edges of the drawing of Z con-

necting two points of Z. Inner components and inner pieces are defined

in an analogous way. For a pair of points u,v on Z, one looks for inner

or outer pieces such that they contain points ≠ u,v on both walks on Z

(in clockwise orientation, say) between u and v . These pieces are called

(u–v)-separating.
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One can find an inner piece H and four points u0, u1, v0, v1 such that

Z = u0 . . . u1 . . . v0 . . . v1 . . . u0,

and such that H is (u0–v0)- and (u1–v1)-separating. Thus H meets the

clockwise walks u0 . . . u1, u1 . . . v0, v0 . . . v1, and

v1 . . . u0 in four points q, r , s, t, all different from u0, u1, v0, v1.

The proof now closes with an analysis of four cases of possible positions

of the points q, r , s, t on the cycle Z, and where each case yields a sub-

graph isomorphic to K5 or K3,3. This is a contradiction to the assumption

that the original graph Γ (of which Φ is a subgraph) does not contain a

subgraph isomorphic to K5 or K3,3. The details of the proof are described

in [12]. It goes back to Gabriel Andrew Dirac and Seymour Schuster, A

theorem of Kuratowski. Nderl. Akad. Wetensch. Proc. Ser. A 57, 1954.




