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1 A Brief History of AGI

The vast bulk of the AI field today is concerned with what might be called
“narrow AI” – creating programs that demonstrate intelligence in one or an-
other specialized area, such as chess-playing, medical diagnosis, automobile-
driving, algebraic calculation or mathematical theorem-proving. Some of these
narrow AI programs are extremely successful at what they do. The AI projects
discussed in this book, however, are quite different: they are explicitly aimed
at artificial general intelligence, at the construction of a software program
that can solve a variety of complex problems in a variety of different domains,
and that controls itself autonomously, with its own thoughts, worries, feelings,
strengths, weaknesses and predispositions.

Artificial General Intelligence (AGI) was the original focus of the AI field,
but due to the demonstrated difficulty of the problem, not many AI researchers
are directly concerned with it anymore. Work on AGI has gotten a bit of a
bad reputation, as if creating digital general intelligence were analogous to
building a perpetual motion machine. Yet, while the latter is strongly implied
to be impossible by well-established physical laws, AGI appears by all known
science to be quite possible. Like nanotechnology, it is “merely an engineering
problem”, though certainly a very difficult one.

The presupposition of much of the contemporary work on “narrow AI”
is that solving narrowly defined subproblems, in isolation, contributes signifi-
cantly toward solving the overall problem of creating real AI. While this is of
course true to a certain extent, both cognitive theory and practical experience
suggest that it is not so true as is commonly believed. In many cases, the best
approach to implementing an aspect of mind in isolation is very different from
the best way to implement this same aspect of mind in the framework of an
integrated AGI-oriented software system.

The chapters of this book present a series of approaches to AGI. None
of these approaches has been terribly successful yet, in AGI terms, although
several of them have demonstrated practical value in various specialized do-
mains (narrow-AI style). Most of the projects described are at an early stage
of engineering development, and some are still in the design phase. Our aim
is not to present AGI as a mature field of computer science – that would be
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impossible, for it is not. Our goal is rather to depict some of the more excit-
ing ideas driving the AGI field today, as it emerges from infancy into early
childhood.

In this introduction, we will briefly overview the AGI approaches taken
in the following chapters, and we will also discuss some other historical and
contemporary AI approaches not extensively discussed in the remainder of
the book.

1.1 Some Historical AGI-Related Projects

Generally speaking, most approaches to AI may be divided into broad cate-
gories such as:

• symbolic;
• symbolic and probability- or uncertainty-focused;
• neural net-based;
• evolutionary;
• artificial life;
• program search based;
• embedded;
• integrative.

This breakdown works for AGI-related efforts as well as for purely narrow-
AI-oriented efforts. Here we will use it to structure a brief overview of the AGI
field. Clearly, there have been many more AGI-related projects than we will
mention here. Our aim is not to give a comprehensive survey, but rather to
present what we believe to be some of the most important ideas and themes in
the AGI field overall, so as to place the papers in this volume in their proper
context.

The majority of ambitious AGI-oriented projects undertaken to date have
been in the symbolic-AI paradigm. One famous such project was the General
Problem Solver [42], which used heuristic search to solve problems. GPS did
succeed in solving some simple problems like the Towers of Hanoi and crypto-
arithmetic,1 but these are not really general problems – there is no learning
involved. GPS worked by taking a general goal – like solving a puzzle – and
breaking it down into subgoals. It then attempted to solve the subgoals, break-
ing them down further into even smaller pieces if necessary, until the subgoals
were small enough to be addressed directly by simple heuristics. While this
basic algorithm is probably necessary in planning and goal satisfaction for
a mind, the rigidity adopted by GPS limits the kinds of problems one can
successfully cope with.

1Crypto-arithmentic problems are puzzles like DONALD + GERALD = ROBERT. To
solve such a problem, assign a number to each letter so that the equation comes out
correctly.
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Probably the most famous and largest symbolic AI effort in existence to-
day is Doug Lenat’s CYC project.2 This began in the mid-80’s as an attempt
to create true AI by encoding all common sense knowledge in first-order pred-
icate logic. The encoding effort turned out to require a large effort, and soon
Cyc deviated from a pure AGI direction. So far they have produced a use-
ful knowledge database and an interesting, highly complex and specialized
inference engine, but they do not have a systematic R&D program aimed
at creating autonomous, creative interactive intelligence. They believe that
the largest subtask required for creating AGI is the creation of a knowledge
base containing all human common-sense knowledge, in explicit logical form
(they use a variant of predicate logic called CycL). They have a large group of
highly-trained knowledge encoders typing in knowledge, using CycL syntax.

We believe that the Cyc knowledge base may potentially be useful eventu-
ally to a mature AGI system. But we feel that the kind of reasoning, and the
kind of knowledge embodied in Cyc, just scratches the surface of the dynamic
knowledge required to form an intelligent mind. There is some awareness of
this within Cycorp as well, and a project called CognitiveCyc has recently been
initiated, with the specific aim of pushing Cyc in an AGI direction (Stephen
Reed, personal communication).

Also in the vein of “traditional AI”, Alan Newell’s well-known SOAR
project3 is another effort that once appeared to be grasping at the goal of
human-level AGI, but now seems to have retreated into a role of an interest-
ing system for experimenting with limited-domain cognitive science theories.
Newell tried to build “Unified Theories of Cognition”, based on ideas that
have now become fairly standard: logic-style knowledge representation, men-
tal activity as problem-solving carried out by an assemblage of heuristics,
etc. The system was by no means a total failure, but it was not constructed
to have a real autonomy or self-understanding. Rather, it’s a disembodied
problem-solving tool, continually being improved by a small but still-growing
community of SOAR enthusiasts in various American universities.

The ACT-R framework [3], though different from SOAR, is similar in that
it’s an ambitious attempt to model human psychology in its various aspects,
focused largely on cognition. ACT-R uses probabilistic ideas and is generally
closer in spirit to modern AGI approaches than SOAR is. But still, similarly to
SOAR, many have argued that it does not contain adequate mechanisms for
large-scale creative cognition, though it is an excellent tool for the modeling
of human performance on relatively narrow and simple tasks.

Judea Pearl’s work on Bayesian networks [43] introduces principles from
probability theory to handle uncertainty in an AI scenario. Bayesian net-
works are graphical models that embody knowledge about probabilities and
dependencies between events in the world. Inference on Bayesian networks
is possible using probabilistic methods. Bayesian nets have been used with

2See www.cyc.com and [38].
3See http://ai.eecs.umich.edu/soar/ and [37].
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success in many narrow domains, but, in order to work well, they need a rea-
sonably accurate model of the probabilities and dependencies of the events
being modeled. However, when one has to learn either the structure or the
probabilities in order to build a good Bayesian net, the problem becomes very
difficult [29].

Pei Wang’s NARS system, described in this volume, is a very different
sort of attempt to create an uncertainty-based, symbolic AI system. Rather
than using probability theory, Wang uses his own form of uncertain logic – an
approach that has been tried before, with fuzzy logic, certainty theory (see,
for example, [50]) and so forth, but has never before been tried with such
explicit AGI ambitions.

Another significant historical attempt to “put all the pieces together” and
create true artificial general intelligence was the Japanese 5th Generation
Computer System project. But this project was doomed by its pure engineer-
ing approach, by its lack of an underlying theory of mind. Few people mention
this project these days. In our view, much of the AI research community ap-
pears to have learned the wrong lessons from the 5th generation AI experience
– they have taken the lesson to be that integrative AGI is bad, rather than
that integrative AGI should be approached from a sound conceptual basis.

The neural net approach has not spawned quite so many frontal assaults on
the AGI problem, but there have been some efforts along these lines. Werbos
has worked on the application of recurrent networks to a number of problems
[55, 56]. Stephen Grossberg’s work [25] has led to a host of special neural
network models carrying out specialized functions modeled on particular brain
regions. Piecing all these networks together could eventually lead to a brain-
like AGI system. This approach is loosely related to Hugo de Garis’s work,
discussed in this volume, which seeks to use evolutionary programming to
“evolve” specialized neural circuits, and then piece the circuits together into
a whole mind. Peter Voss’s a2i2 architecture also fits loosely into this category
– his algorithms are related to prior work on “neural gasses” [41], and involve
the cooperative use of a variety of different neural net learning algorithms. Less
biologically oriented than Grossberg or even de Garis, Voss’s neural system
net does not try to closely model biological neural networks, but rather to
emulate the sort of thing they do on a fairly high level.

The evolutionary programming approach to AI has not spawned any ambi-
tious AGI projects, but it has formed a part of several AGI-oriented systems,
including our own Novamente system, de Garis’s CAM-Brain machine men-
tioned above, and John Holland’s classifier systems [30]. Classifier systems are
a kind of hybridization of evolutionary algorithms and probabilistic-symbolic
AI; they are AGI-oriented in the sense that they are specifically oriented to-
ward integrating memory, perception, and cognition to allow an AI system to
act in the world. Typically they have suffered from severe performance prob-
lems, but Eric Baum’s recent variations on the classifier system theme seem
to have partially resolved these issues [5]. Baum’s Hayek systems were tested
on a simple “three peg blocks world” problem where any disk may be placed
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on any other; thus the required number of moves grows only linearly with the
number of disks, not exponentially. The chapter authors were able to replicate
their results only for n up to 5 [36].

The artificial life approach to AGI has remained basically a dream and
a vision, up till this point. Artificial life simulations have succeeded, to a
point, in getting interesting mini-organisms to evolve and interact, but no one
has come close to creating an Alife agent with significant general intelligence.
Steve Grand made some limited progress in this direction with his work on the
Creatures game, and his current R&D efforts are trying to go even further [24].
Tom Ray’s Network Tierra project also had this sort of ambition, but seems
to have stalled at the stage of the automated evolution of simple multicellular
artificial lifeforms.

Program search based AGI is a newer entry into the game. It had its ori-
gins in Solomonoff, Chaitin and Kolmogorov’s seminal work on algorithmic
information theory in the 1960s, but it did not become a serious approach
to practical AI until quite recently, with work such as Schmidhuber’s OOPS
system described in this volume, and Kaiser’s dag-based program search al-
gorithms. This approach is different from the others in that it begins with a
formal theory of general intelligence, defines impractical algorithms that are
provably known to achieve general intelligence (see Hutter’s chapter on AIXI
in this volume for details), and then seeks to approximate these impractical
algorithms with related algorithms that are more practical but less universally
able.

Finally, the integrative approach to AGI involves taking elements of some
or all of the above approaches and creating a combined, synergistic system.
This makes sense if you believe that the different AI approaches each capture
some aspect of the mind uniquely well. But the integration can be done in
many different ways. It is not workable to simply create a modular system
with modules embodying different AI paradigms: the different approaches are
too different in too many ways. Instead one must create a unified knowl-
edge representation and dynamics framework, and figure out how to manifest
the core ideas of the various AI paradigms within the universal framework.
This is roughly the approach taken in the Novamente project, but what has
been found in that project is that to truly integrate ideas from different AI
paradigms, most of the ideas need to be in a sense “reinvented” along the way.

Of course, no such categorization is going to be complete. Some of the
papers in this book do not fit well into any of the above categories: for instance,
Yudkowsky’s approach, which is integrative in a sense, but does not involve
integrating prior AI algorithms; and Hoyes’s approach, which is founded on
the notion of 3D simulation. What these two approaches have in common is
that they both begin with a maverick cognitive science theory, a bold new
explanation of human intelligence. They then draw implications and designs
for AGI from the respective cognitive science theory.

None of these approaches has yet proved itself successful – this book is
a discussion of promising approaches to AGI, not successfully demonstrated
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ones. It is probable that in 10 years a different categorization of AGI ap-
proaches will seem more natural, based on what we have learned in the in-
terim. Perhaps one of the approaches described here will have proven success-
ful, perhaps more than one; perhaps AGI will still be a hypothetical achieve-
ment, or perhaps it will have been achieved by methods totally unrelated to
those described here. Our own belief, as AGI researchers, is that an integra-
tive approach such as the one embodied in our Novamente AI Engine has an
excellent chance of making it to the AGI finish line. But as the history of
AI shows, researchers’ intuitions about the prospects of their AI projects are
highly chancy. Given the diverse and inter-contradictory nature of the differ-
ent AGI approaches presented in these pages, it stands to reason that a good
percentage of the authors have got to be significantly wrong on significant
points! We invite the reader to study the AGI approaches presented here, and
others cited but not thoroughly discussed here, and draw their own conclu-
sions. Above all, we wish to leave the reader with the impression that AGI is
a vibrant area of research, abounding with exciting new ideas and projects –
and that, in fact, it is AGI rather than narrow AI that is properly the primary
focus of artificial intelligence research.

2 What Is Intelligence?

What do we mean by general intelligence? The dictionary defines intelligence
with phrases such as “The capacity to acquire and apply knowledge”, and
“The faculty of thought and reason.” General intelligence implies an ability
to acquire and apply knowledge, and to reason and think, in a variety of
domains, not just in a single area like, say, chess or game-playing or languages
or mathematics or rugby. Pinning down general intelligence beyond this is a
subtle though not unrewarding pursuit. The disciplines of psychology, AI and
control engineering have taken differing but complementary approaches, all of
which are relevant to the AGI approaches described in this volume.

2.1 The Psychology of Intelligence

The classic psychological measure of intelligence is the “g-factor” [7], although
this is quite controversial, and many psychologists doubt that any available
IQ test really measures human intelligence in a general way. Gardner’s [15]
theory of multiple intelligences argues that human intelligence largely breaks
down into a number of specialized-intelligence components (including linguis-
tic, logical-mathematical, musical, bodily-kinesthetic, spatial, interpersonal,
intra-personal, naturalist and existential).

Taking a broad view, it is clear that, in fact, human intelligence is not
all that general. A huge amount of our intelligence is focused on situations
that have occurred in our evolutionary experience: social interaction, vision
processing, motion control, and so forth. There is a large research literature
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in support of this fact. For instance, most humans perform poorly at making
probabilistic estimates in the abstract, but when the same estimation tasks
are presented in the context of familiar social situations, human accuracy be-
comes much greater. Our intelligence is general “in principle”, but in order
to solve many sorts of problems, we need to resort to cumbersome and slow
methods such as mathematics and computer programming. Whereas we are
vastly more efficient at solving problems that make use of our in-built special-
ized neural circuitry for processing vision, sound, language, social interaction
data, and so forth. Gardner’s point is that different people have particularly
effective specialized circuitry for different specializations. In principle, a hu-
man with poor social intelligence but strong logical-mathematical intelligence
could solve a difficult problem regarding social interactions, but might have to
do so in a very slow and cumbersome over-intellectual way, whereas an indi-
vidual with strong innate social intelligence would solve the problem quickly
and intuitively.

Taking a somewhat different approach, psychologist Robert Sternberg [53]
distinguishes three aspects of intelligence: componential, contextual and ex-
periential. Componential intelligence refers to the specific skills people have
that make them intelligent; experiential refers to the ability of the mind to
learn and adapt through experience; contextual refers to the ability of the
mind to understand and operate within particular contexts, and select and
modify contexts.

Applying these ideas to AI, we come to the conclusion that, to roughly em-
ulate the nature of human general intelligence, an artificial general intelligence
system should have:

• the ability to solve general problems in a non-domain-restricted way, in
the same sense that a human can;

• most probably, the ability to solve problems in particular domains and
particular contexts with particular efficiency;

• the ability to use its more generalized and more specialized intelligence
capabilities together, in a unified way;

• the ability to learn from its environment, other intelligent systems, and
teachers;

• the ability to become better at solving novel types of problems as it gains
experience with them.

These points are based to some degree on human intelligence, and it may
be that they are a little too anthropomorphic. One may envision an AGI
system that is so good at the “purely general” aspect of intelligence that it
doesn’t need the specialized intelligence components. The practical possibility
of this type of AGI system is an open question. Our guess is that the multiple-
specializations nature of human intelligence will be shared by any AGI system
operating with similarly limited resources, but as with much else regarding
AGI, only time will tell.
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One important aspect of intelligence is that it can only be achieved by
a system that is capable of learning, especially autonomous and incremental
learning. The system should be able to interact with its environment and
other entities in the environment (which can include teachers and trainers,
human or not), and learn from these interactions. It should also be able to
build upon its previous experiences, and the skills they have taught it, to learn
more complex actions and therefore achieve more complex goals.

The vast majority of work in the AI field so far has pertained to highly spe-
cialized intelligence capabilities, much more specialized than Gardner’s mul-
tiple intelligence types – e.g. there are AI programs good at chess, or theorem
verification in particular sorts of logic, but none good at logical-mathematical
reasoning in general. There has been some research on completely general non-
domain-oriented AGI algorithms, e.g. Hutter’s AIXI model described in this
volume, but so far these ideas have not led to practical algorithms (Schmid-
huber’s OOPS system, described in this volume, being a promising possibility
in this regard).

2.2 The Turing Test

Next, no discussion of the definition of intelligence in an AI context would
be complete without mention of the well-known Turing Test. Put loosely,
the Turing test asks an AI program to simulate a human in a text-based
conversational interchange. The most important point about the Turing test,
we believe, is that it is a sufficient but not necessary criterion for artificial
general intelligence. Some AI theorists don’t even consider the Turing test as
a sufficient test for general intelligence – a famous example is the Chinese
Room argument [49].

Alan Turing, when he formulated his test, was confronted with people
who believed AI was impossible, and he wanted to prove the existence of an
intelligence test for computer programs. He wanted to make the point that
intelligence is defined by behavior rather than by mystical qualities, so that
if a program could act like a human it should be considered as intelligent
as a human. This was a bold conceptual leap for the 1950’s. Clearly, how-
ever, general intelligence does not necessarily require the accurate simulation
of human intelligence. It seems unreasonable to expect a computer program
without a human-like body to be able to emulate a human, especially in con-
versations regarding body-focused topics like sex, aging, or the experience of
having the flu. Certainly, humans would fail a “reverse Turing test” of em-
ulating computer programs – humans can’t even emulate pocket calculators
without unreasonably long response delays.

2.3 A Control Theory Approach to Defining Intelligence

The psychological approach to intelligence, briefly discussed above, attempts
to do justice to the diverse and multifaceted nature of the notion of intelli-
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gence. As one might expect, engineers have a much simpler and much more
practical definition of intelligence.

The branch of engineering called control theory deals with ways to cause
complex machines to yield desired behaviors. Adaptive control theory deals
with the design of machines which respond to external and internal stimuli
and, on this basis, modify their behavior appropriately. And the theory of
intelligent control simply takes this one step further. To quote a textbook of
automata theory [2]:

[An] automaton is said to behave “intelligently” if, on the basis of its
“training” data which is provided within some context together with
information regarding the desired action, it takes the correct action
on other data within the same context not seen during training.

This is the sense in which contemporary artificial intelligence programs are
intelligent. They can generalize within their limited context; they can follow
the one script which they are programmed to follow. Of course, this is not
really general intelligence, not in the psychological sense, and not in the sense
in which we mean it in this book.

On the other hand, in their treatise on robotics, [57] presented a more
general definition:

Intelligence is the ability to behave appropriately under unpredictable
conditions.

Despite its vagueness, this criterion does serve to point out the problem
with ascribing intelligence to chess programs and the like: compared to our
environment, at least, the environment within which they are capable of be-
having appropriately is very predictable indeed, in that it consists only of
certain (simple or complex) patterns of arrangement of a very small number
of specifically structured entities. The unpredictable conditions clause suggests
the experiential and contextual aspects of Sternberg’s psychological analysis
of intelligence.

Of course, the concept of appropriateness is intrinsically subjective. And
unpredictability is relative as well – to a creature accustomed to living in
interstellar space and inside stars and planets as well as on the surfaces of
planets, or to a creature capable of living in 10 dimensions, our environment
might seem just as predictable as the universe of chess seems to us. In or-
der to make this folklore definition precise, one must first of all confront the
vagueness inherent in the terms “appropriate” and “unpredictable”.

In some of our own past work [17], we have worked with a variant of the
Winkless and Browning definition,

Intelligence is the ability to achieve complex goals in complex environ-
ments.



10 Pennachin and Goertzel

In a way, like the Winkless and Browning definition, this is a subjective
rather than objective view of intelligence, because it relies on the subjective
identification of what is and is not a complex goal or a complex environment.
Behaving “appropriately”, as Winkless and Browning describe, is a matter of
achieving organismic goals, such as getting food, water, sex, survival, status,
etc. Doing so under unpredictable conditions is one thing that makes the
achievement of these goals complex.

Marcus Hutter, in his chapter in this volume, gives a rigorous definition of
intelligence in terms of algorithmic information theory and sequential decision
theory. Conceptually, his definition is closely related to the “achieve complex
goals” definition, and it’s possible the two could be equated if one defined
achieve, complex and goals appropriately.

Note that none of these approaches to defining intelligence specify any
particular properties of the internals of intelligent systems. This is, we be-
lieve, the correct approach: “intelligence” is about what, not how. However,
it is possible that what implies how, in the sense that there may be certain
structures and processes that are necessary aspects of any sufficiently intel-
ligent system. Contemporary psychological and AI science are nowhere near
the point where such a hypothesis can be verified or refuted.

2.4 Efficient Intelligence

Pei Wang, a contributor to this volume, has proposed his own definition of
intelligence, which posits, basically, that “Intelligence is the ability to work
and adapt to the environment with insufficient knowledge and resources.”
More concretely, he believes that an intelligent system is one that works under
the Assumption of Insufficient Knowledge and Resources (AIKR), meaning
that the system must be, at the same time,

A finite system The system’s computing power, as well as its working and
storage space, is limited.

A real-time system The tasks that the system has to process, including
the assimilation of new knowledge and the making of decisions, can arrive
at any time, and all have deadlines attached with them.

An ampliative system The system not only can retrieve available knowl-
edge and derive sound conclusions from it, but also can make refutable
hypotheses and guesses based on it when no certain conclusion can be
drawn.

An open system No restriction is imposed on the relationship between old
knowledge and new knowledge, as long as they are representable in the
system’s interface language.

A self-organized system The system can accommodate itself to new knowl-
edge, and adjust its memory structure and mechanism to improve its time
and space efficiency, under the assumption that future situations will be
similar to past situations.
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Wang’s definition4 is not purely behavioral: it makes judgments regarding
the internals of the AI system whose intelligence is being assessed. However,
the biggest difference between this and the above definitions is its emphasis on
the limitation of the system’s computing power. For instance, Marcus Hutter’s
AIXI algorithm, described in this volume, assumes infinite computing power
(though his related AIXItl algorithm works with finite computing power).
According to Wang’s definition, AIXI is therefore unintelligent. Yet, AIXI can
solve any problem at least as effectively as any finite-computing-power-based
AI system, so it seems in a way unintuitive to call it “unintelligent”.

We believe that what Wang’s definition hints at is a new concept, that we
call efficient intelligence, defined as:

Efficient intelligence is the ability to achieve intelligence using severely
limited resources.

Suppose we had a computer IQ test called the CIQ. Then, we might say
that an AGI program with a CIQ of 500 running on 5000 machines has more
intelligence, but less efficient-intelligence, than a machine with a CIQ of 100
that runs on just one machine.

According to the “achieving complex goals in complex environments” cri-
terion, AIXI and AIXItl are the most intelligent programs described in this
book, but not the ones with the highest efficient intelligence. According to
Wang’s definition of intelligence, AIXI and AIXItl are not intelligent at all,
they only emulate intelligence through simple, inordinately wasteful program-
search mechanisms.

As editors, we have not sought to impose a common understanding of the
nature of intelligence on all the chapter authors. We have merely requested
that authors be clear regarding the concept of intelligence under which they
have structured their work. At this early stage in the AGI game, the notion
of intelligence most appropriate for AGI work is still being discovered, along
with the exploration of AGI theories, designs and programs themselves.

3 The Abstract Theory of General Intelligence

One approach to creating AGI is to formalize the problem mathematically,
and then seek a solution using the tools of abstract mathematics. One may
begin by formalizing the notion of intelligence. Having defined intelligence,
one may then formalize the notion of computation in one of several generally-
accepted ways, and ask the rigorous question: How may one create intelligent
computer programs? Several researchers have taken this approach in recent
years, and while it has not provided a panacea for AGI, it has yielded some

4In more recent work, Wang has modified the details of this definition, but the
theory remains the same.
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very interesting results, some of the most important ones are described in
Hutter’s and Schmidhuber’s chapters in this book.

From a mathematical point of view, as it turns out, it doesn’t always
matter so much exactly how you define intelligence. For many purposes, any
definition of intelligence that has the general form “Intelligence is the maxi-
mization of a certain quantity, by a system interacting with a dynamic envi-
ronment” can be handled in roughly the same way. It doesn’t always matter
exactly what the quantity being maximized is (whether it’s “complexity of
goals achieved”, for instance, or something else).

Let’s use the term “behavior-based maximization criterion” to character-
ize the class of definitions of intelligence indicated in the previous paragraphs.
Suppose one has some particular behavior-based maximization criterion in
mind – then Marcus Hutter’s work on the AIXI system, described in his
chapter here, gives a software program that will be able to achieve intelli-
gence according to the given criterion. Now, there’s a catch: this program
may require infinite memory and an infinitely fast processor to do what it
does. But he also gives a variant of AIXI which avoids this catch, by restrict-
ing attention to programs of bounded length l and bounded time t. Loosely
speaking, the AIXItl variant will provably be as intelligent as any other com-
puter program of length up to l, satisfying the maximization criterion, within
a constant multiplicative factor and a constant additive factor.

Hutter’s work draws on a long tradition of research in statistical learning
theory and algorithmic information theory, mostly notably Solomonoff’s early
work on induction [51, 52] and Levin’s [39, 40] work on computational measure
theory. At the present time, this work is more exciting theoretically than
pragmatically. The “constant factor” in his theorem may be very large, so
that, in practice, AIXItl is not really going to be a good way to create an AGI
software program. In essence, what AIXItl is doing is searching the space of
all programs of length L, evaluating each one, and finally choosing the best
one and running it. The “constant factors” involved deal with the overhead
of trying every other possible program before hitting on the best one!

A simple AI system behaving somewhat similar to AIXItl could be built
by creating a program with three parts:

• the data store;
• the main program;
• the meta-program.

The operation of the meta-program would be, loosely, as follows:

• At time t, place within the data store a record containing the complete
internal state of the system, and the complete sensory input of the system.
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• Search the space of all programs P of size |P | < l to find the one that,
based on the data in the data store, has the highest expected value for the
given maximization criterion.5

• Install P as the main program.

Conceptually, the main value of this approach for AGI is that it solidly
establishes the following contention:

If you accept any definition of intelligence of the general form “max-
imization of a certain function of system behavior,”
then the problem of creating AGI is basically a problem of dealing with
the issues of space and time efficiency.

As with any mathematics-based conclusion, the conclusion only follows if
one accepts the definitions. If someone’s conception of intelligence fundamen-
tally can’t be cast into the form of a behavior-based maximization criterion,
then these ideas aren’t relevant for AGI as that person conceives it. How-
ever, we believe that the behavior-based maximization criterion approach to
defining intelligence is a good one, and hence we believe that Hutter’s work
is highly significant.

The limitations of these results are twofold. Firstly, they pertain only to
AGI in the “massive computational resources” case, and most AGI theorists
feel that this case is not terribly relevant to current practical AGI research
(though, Schmidhuber’s OOPS work represents a serious attempt to bridge
this gap). Secondly, their applicability to the physical universe, even in prin-
ciple, relies on the Church-Turing Thesis. The editors and contributors of this
volume are Church-Turing believers, as are nearly all computer scientists and
AI researchers, but there are well-known exceptions such as Roger Penrose. If
Penrose and his ilk are correct, then the work of Hutter and his colleagues is
not necessarily informative about the nature of AGI in the physical universe.

For instance, consider Penrose’s contention that non-Turing quantum grav-
ity computing (as allowed by an as-yet unknown incomputable theory of quan-
tum gravity) is necessary for true general intelligence [44]. This idea is not
refuted by Hutter’s results, because it’s possible that:

• AGI is in principle possible on ordinary Turing hardware;
• AGI is only pragmatically possible, given the space and time constraints

imposed on computers by the physical universe, given quantum gravity
powered computer hardware.

The authors very strongly doubt this is the case, and Penrose has not
given any convincing evidence for such a proposition, but our point is merely
that in spite of recent advances in AGI theory such as Hutter’s work, we have

5There are some important details here; for instance, computing the “expected
value” using probability theory requires assumption of an appropriate prior distri-
bution, such as Solomonoff’s universal prior.
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no way of ruling such a possibility out mathematically. At points such as this,
uncertainties about the fundamental nature of mind and universe rule out the
possibility of a truly definitive theory of AGI.

From the perspective of computation theory, most of the chapters in this
book deal with ways of achieving reasonable degrees of intelligence given rea-
sonable amounts of space and time resources. Obviously, this is what the
human mind/brain does. The amount of intelligence it achieves is clearly lim-
ited by the amount of space in the brain and the speed of processing of neural
wetware.

We do not yet know whether the sort of mathematics used in Hutter’s work
can be made useful for defining practical AGI systems that operate within our
current physical universe – or, better yet, on current or near-future computer
hardware. However, research in this direction is proceeding vigorously. One
exciting project in this area is Schmidhuber’s OOPS system [48], which is a
bit like AIXItl, but has the capability of operating with realistic efficiency in
some practical situations. As Schmidhuber discusses in his first chapter in this
book, OOPS has been applied to some classic AI problems such as the Towers
of Hanoi problem, with highly successful results.

The basic idea of OOPS is to run all possible programs, but interleaved
rather than one after the other. In terms of the “meta-program” architecture
described above, here one has a meta-program that doesn’t run each possible
program one after the other, but rather lines all the possible programs up in
order, assigns each one a probability, and then at each time step chooses a
single program as the “current program”, with a probability proportional to
its estimated value at achieving the system goal, and then executes one step of
the current program. Another important point is that OOPS freezes solutions
to previous tasks, and may reuse them later.

As opposed to AIXItl, this strategy allows, in the average case, brief and
effective programs to rise to the top of the heap relatively quickly. The result,
in at least some practical problem-solving contexts, is impressive. Of course,
there are many ways to solve the Towers of Hanoi problem. Scaling up from toy
examples to real AGI on the human scale or beyond is a huge task for OOPS
as for other approaches showing limited narrow-AI success. But having made
the leap from abstract algorithmic information theory to limited narrow-AI
success is no small achievement.

Schmidhuber’s more recent Gödel Machine, which is fully self-referential,
is in principle capable of proving and subsequently exploiting performance
improvements to its own code. The ability to modify its own code allows the
Gödel Machine to be more effective. Gödel Machines are also more flexible in
terms of the utility function they aim to maximize while searching.

Lukasz Kaiser’s chapter follows up similar themes to Hutter’s and Schmid-
huber’s work. Using a slightly different computational model, Kaiser also takes
up the algorithmic-information-theory motif, and describes a program search
problem which is solved through the combination of program construction
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and the proof search – the program search algorithm itself, represented as a
directed acyclic graph, is continuously improved.

4 Toward a Pragmatic Logic

One of the primary themes in the history of AI is formal logic. However, there
are strong reasons to believe that classical formal logic is not suitable to play a
central role in an AGI system. It has no natural way to deal with uncertainty,
or with the fact that different propositions may be based on different amounts
of evidence. It leads to well-known and frustrating logical paradoxes. And it
doesn’t seem to come along with any natural “control strategy” for navigating
the combinatorial explosion of possible valid inferences.

Some modern AI researchers have reacted to these shortcomings by re-
jecting the logical paradigm altogether; others by creating modified logical
frameworks, possessing more of the flexibility and fluidity required of compo-
nents of an AGI architecture.

One of the key issues dividing AI researchers is the degree to which logical
reasoning is fundamental to their artificial minds. Some AI systems are built
on the assumption that basically every aspect of mental process should be
thought about as a kind of logical reasoning. Cyc is an example of this, as
is the NARS system reviewed in this volume. Other systems are built on
the premise that logic is irrelevant to the task of mind-engineering, that it
is merely a coarse, high-level description of the results of mental processes
that proceed according to non-logical dynamics. Rodney Brooks’ work on
subsumption robotics fits into this category, as do Peter Voss’s and Hugo de
Garis’s neural net AGI designs presented here. And there are AI approaches,
such as Novamente, that assign logic an important but non-exclusive role in
cognition – Novamente has roughly two dozen cognitive processes, of which
about one-fourth are logical in nature.

One fact muddying the waters somewhat is the nebulous nature of “logic”
itself. Logic means different things to different people. Even within the domain
of formal, mathematical logic, there are many different kinds of logic, including
forms like fuzzy logic that encompass varieties of reasoning not traditionally
considered “logical”. In our own work we have found it useful to adopt a very
general conception of logic, which holds that logic:

• has to do with forming and combining estimations of the (possibly proba-
bilistic, fuzzy, etc. ) truth values of various sorts of relationships based on
various sorts of evidence;

• is based on incremental processing, in which pieces of evidence are com-
bined step by step to form conclusions, so that at each stage it is easy to
see which pieces of evidence were used to give which conclusion

This conception differentiates logic from mental processing in general, but
it includes many sorts of reasoning besides typical, crisp, mathematical logic.
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The most common form of logic is predicate logic, as used in Cyc, in
which the basic entity under consideration is the predicate, a function that
maps argument variables into Boolean truth values. The argument variables
are quantified universally or existentially. An alternate form of logic is term
logic, which predates predicate logic, dating back at least to Aristotle and his
notion of the syllogism. In term logic, the basic element is a subject-predicate
statement, denotable as A→ B, where → denotes a notion of inheritance or
specialization. Logical inferences take the form of syllogistic rules, which give
patterns for combining statements with matching terms, such as the deduction
rule

(A→ B ∧B → C)⇒ A→ C.

The NARS system described in this volume is based centrally on term
logic, and the Novamente system makes use of a slightly different variety
of term logic. Both predicate and term logic typically use variables to handle
complex expressions, but there are also variants of logic, based on combinatory
logic, that avoid variables altogether, relying instead on abstract structures
called “higher-order functions” [10].

There are many different ways of handling uncertainty in logic. Conven-
tional predicate logic treats statements about uncertainty as predicates just
like any others, but there are many varieties of logic that incorporate un-
certainty at a more fundamental level. Fuzzy logic [59, 60] attaches fuzzy
truth values to logical statements; probabilistic logic [43] attaches probabili-
ties; NARS attaches degrees of uncertainty, etc. The subtle point of such sys-
tems is the transformation of uncertain truth values under logical operators
like AND, OR and NOT, and under existential and universal quantification.

And, however one manages uncertainty, there are also multiple varieties
of speculative reasoning. Inductive [4], abductive [32] and analogical reason-
ing [31] are commonly discussed. Nonmonotonic logic [8] handles some types
of nontraditional reasoning in a complex and controversial way. In ordinary,
monotonic logic, the truth of a proposition does not change when new in-
formation (axioms) is added to the system. In nonmonotonic logic, on the
other hand, the truth of a proposition may change when new information (ax-
ioms) is added to or old information is deleted from the system. NARS and
Novamente both use logic in an uncertain and nonmonotonic way.

Finally, there are special varieties of logic designed to handle special types
of reasoning. There are temporal logics designed to handle reasoning about
time, spatial logics for reasoning about space, and special logics for handling
various kinds of linguistic phenomena. None of the approaches described in
this book makes use of such special logics, but it would be possible to create
an AGI approach with such a focus. Cyc comes closest to this notion, as its
reasoning engine involves a number of specialized reasoning engines oriented
toward particular types of inference such as spatial, temporal, and so forth.
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When one gets into the details, the distinction between logical and non-
logical AI systems can come to seem quite fuzzy. Ultimately, an uncertain
logic rule is not that different from the rule governing the passage of activation
through a node in a neural network. Logic can be cast in terms of semantic
networks, as is done in Novamente; and in that case uncertain logic formulas
are arithmetic formulas that take in numbers associated with certain nodes
and links in a graph, and output numbers associated with certain other nodes
and links in the graph. Perhaps a more important distinction than logical
vs. non-logical is whether a system gains its knowledge experientially or via
being given expert rule type propositions. Often logic-based AI systems are
fed with knowledge by human programmers, who input knowledge in the
form of textually-expressed logic formulas. However, this is not a necessary
consequence of the use of logic. It is quite possible to have a logic-based AI
system that forms its own logical propositions by experience. On the other
hand, there is no existing example of a non-logical AI system that gains its
knowledge from explicit human knowledge encoding. NARS and Novamente
are both (to differing degrees) logic-based AI systems, but their designs devote
a lot of attention to the processes by which logical propositions are formed
based on experience, which differentiates them from many traditional logic-
based AI systems, and in a way brings them closer to neural nets and other
traditional non-logical AI systems.

5 Emulating the Human Brain

One almost sure way to create artificial general intelligence would be to ex-
actly copy the human brain, down to the atomic level, in a digital simulation.
Admittedly, this would require brain scanners and computer hardware far ex-
ceeding what is currently available. But if one charts the improvement curves
of brain scanners and computer hardware, one finds that it may well be plausi-
ble to take this approach sometime around 2030-2050. This argument has been
made in rich detail by Ray Kurzweil in [34, 35]; and we find it a reasonably
convincing one. Of course, projecting the future growth curves of technologies
is a very risky business. But there’s very little doubt that creating AGI in this
way is physically possible.

In this sense, creating AGI is “just an engineering problem.” We know
that general intelligence is possible, in the sense that humans – particular
configurations of atoms – display it. We just need to analyze these atom
configurations in detail and replicate them in the computer. AGI emerges as
a special case of nanotechnology and in silico physics.

Perhaps a book on the same topic as this one, written in 2025 or so, will
contain detailed scientific papers pursuing the detailed-brain-simulation ap-
proach to AGI. At present, however, it is not much more than a futuristic
speculation. We don’t understand enough about the brain to make detailed
simulations of brain function. Our brain scanning methods are improving
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rapidly but at present they don’t provide the combination of temporal and
spatial acuity required to really map thoughts, concepts, percepts and actions
as they occur in human brains/minds.

It’s still possible, however, to use what we know about the human brain to
structure AGI designs. This can be done in many different ways. Most simply,
one can take a neural net based approach, trying to model the behavior of
nerve cells in the brain and the emergence of intelligence therefrom. Or one
can proceed at a higher level, looking at the general ways that information
processing is carried out in the brain, and seeking to emulate these in software.

Stephen Grossberg [25, 28] has done extensive research on the modeling
of complex neural structures. He has spent a great deal of time and effort in
creating cognitively-plausible neural structures capable of spatial perception,
shape detection, motion processing, speech processing, perceptual grouping,
and other tasks. These complex brain mechanisms were then used in the
modeling of learning, attention allocation and psychological phenomena like
schizophrenia and hallucinations.

From the experiences modeling different aspects of the brain and the hu-
man neural system in general, Grossberg has moved on to the linking between
those neural structures and the mind [26, 27, 28]. He has identified two key
computational properties of the structures: complementary computing and
laminar computing.

Complementary computing is the property that allows different processing
streams in the brain to compute complementary properties. This leads to a
hierarchical resolution of uncertainty, which is mostly evident in models of the
visual cortex. The complementary streams in the neural structure interact,
in parallel, resulting in more complete information processing. In the visual
cortex, an example of complementary computing is the interaction between
the what cortical stream, which learns to recognize what events and objects
occur, and the where cortical stream, which learns to spacially locate those
events and objects.

Laminar computing refers to the organization of the cerebral cortex (and
other complex neural structures) in layers, with interactions going bottom-
up, top-down, and sideways. While the existence of these layers has been
known for almost a century, the contribution of this organization for control
of behavior was explained only recently. [28] has recently shed some light on
the subject, showing through simulations that laminar computing contributes
to learning, development and attention control.

While Grossberg’s research has not yet described complete minds, only
neural models of different parts of a mind, it is quite conceivable that one
could use his disjoint models as building blocks for a complete AGI design. His
recent successes explaining, to a high degree of detail, how mental processes
can emerge from his neural models is definitely encouraging.

Steve Grand’s Creatures [24] are social agents, but they have an elaborate
internal architecture, based on a complex neural network which is divided
into several lobes. The original design by Grand had explicit AGI goals, with
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attention paid to allow for symbol grounding, generalization, and limited lan-
guage processing. Grand’s creatures had specialized lobes to handle verbal
input, and to manage the creature’s internal state (which was implemented
as a simplified biochemistry, and kept track of feelings such as pain, hunger
and others). Other lobes were dedicated to adaptation, goal-oriented decision
making, and learning of new concepts.

Representing the neural net approach in this book, we have Peter Voss’s
paper on the a2i2 architecture. a2i2 is in the vein of other modern work on
reinforcement learning, but it is unique in its holistic architecture focused
squarely on AGI. Voss uses several different reinforcement and other learning
techniques, all acting on a common network of artificial neurons and synapses.
The details are original, but are somewhat inspired by prior neural net AI
approaches, particularly the “neural gas” approach [41], as well as objectivist
epistemology and cognitive psychology. Voss’s theory of mind abstracts what
would make brains intelligent, and uses these insights to build artificial brains.

Voss’s approach is incremental, involving a gradual progression through
the “natural” stages in the complexity of intelligence, as observed in children
and primates – and, to some extent, recapitulating evolution. Conceptually,
his team is adding ever more advanced levels of cognition to its core design,
somewhat resembling both Piagetian stages of development, as well as the
evolution of primates, a level at which Voss considers there is enough com-
plexity on the neuro-cognitive systems to provide AGI with useful metaphors
and examples.

His team seeks to build ever more complex virtual primates, eventually
reaching the complexity and intelligence level of humans. But this metaphor
shouldn’t be taken too literally. The perceptual and action organs of their
initial proto-virtual-ape are not the organs of a physical ape, but rather visual
and acoustic representations of the Windows environment, and the ability
to undertake simple actions within Windows, as well as various probes for
interaction with the real world through vision, sound, etc.

There are echoes of Rodney Brooks’s subsumption robotics work, the well-
known Cog project at MIT [1], in the a2i2 approach. Brooks is doing something
a lot more similar to actually building a virtual cockroach, with a focus on the
robot body and the pragmatic control of it. Voss’s approach to AI could easily
be nested inside robot bodies like the ones constructed by Brooks’s team; but
Voss doesn’t believe the particular physical embodiment is the key, he believes
that the essence of experience-based reinforcement learning can be manifested
in a system whose inputs and outputs are “virtual.”

6 Emulating the Human Mind

Emulating the atomic structure of the brain in a computer is one way to let
the brain guide AGI; creating virtual neurons, synapses and activations is
another. Proceeding one step further up the ladder of abstraction, one has



20 Pennachin and Goertzel

approaches that seek to emulate the overall architecture of the human brain,
but not the details by which this architecture is implemented. Then one has
approaches that seek to emulate the human mind, as studied by cognitive
psychologists, ignoring the human mind’s implementation in the human brain
altogether.

Traditional logic-based AI clearly falls into the “emulate the human mind,
not the human brain” camp. We actually have no representatives of this ap-
proach in the present book; and so far as we know, the only current research
that could fairly be described as lying in the intersection of traditional logic-
based AI and AGI is the Cyc project, briefly mentioned above.

But traditional logic-based AI is far from the only way to focus on the
human mind. We have several contributions in this book that are heavily
based on cognitive psychology and its ideas about how the mind works. These
contributions pay greater than zero attention to neuroscience, but they are
clearly more mind-focused than brain-focused.

Wang’s NARS architecture, mentioned above, is the closest thing to a
formal logic based system presented in this book. While it is not based specif-
ically on any one cognitive science theory, NARS is clearly closely motivated
by cognitive science ideas; and at many points in his discussion, Wang cites
cognitive psychology research supporting his ideas.

Next, Hoyes’s paper on 3D vision as the key to AGI is closely inspired by
the human mind and brain, although it does not involve neural nets or other
micro-level brain-simulative entities. Hoyes is not proposing to copy the precise
wiring of the human visual system in silico and use it as the core of an AGI
system, but he is proposing that we should copy what he sees as the basic
architecture of the human mind. In a daring and speculative approach, he
views the ability to deal with changing 3D scenes as the essential capability
of the human mind, and views other human mental capabilities largely as
offshoots of this. If this theory of the human mind is correct, then one way to
achieve AGI is to do as Hoyes suggests and create a robust capability for 3D
simulation, and build the rest of a digital mind centered around this capability.

Of course, even if this speculative analysis of the human mind is correct,
it doesn’t intrinsically follow that 3D simulation centric approach is the only
approach to AGI. One could have a mind centered around another sense, or a
mind that was more cognitively rather than perceptually centered. But Hoyes’
idea is that we already have one example of a thinking machine – the human
brain – and it makes sense to use as much of it as we can in designing our
new digital intelligences.

Eliezer Yudkowsky, in his chapter, describes the conceptual foundations
of his AGI approach, which he calls “deliberative general intelligence” (DGI).
While DGI-based AGI is still at the conceptual-design phase, a great deal of
analysis has gone into the design, so that DGI essentially amounts to an orig-
inal and detailed cognitive-science theory, crafted with AGI design in mind.
The DGI theory was created against the backdrop of Yudkowsky’s futurist
thinking, regarding the notions of:
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• a Seed AI, an AGI system that progressively modifies and improves its own
codebase, thus projecting itself gradually through exponentially increasing
levels of intelligence; [58]

• a Friendly AI, an AGI system that respects positive ethics such as the
preservation of human life and happiness, through the course of its pro-
gressive self-improvements.

However, the DGI theory also may stand alone, independently of these
motivating concepts.

The essence of DGI is a functional decomposition of general intelligence
into a complex supersystem of interdependent internally specialized processes.
Five successive levels of functional organization are posited:

Code The source code underlying an AI system, which Yudkowsky views as
roughly equivalent to neurons and neural circuitry in the human brain.

Sensory modalities In humans: sight, sound, touch, taste, smell. These gen-
erally involve clearly defined stages of information-processing and feature-
extraction. An AGI may emulate human senses or may have different sorts
of modalities.

Concepts Categories or symbols abstracted from a system’s experiences. The
process of abstraction is proposed to involve the recognition and then
reification of a similarity within a group of experiences. Once reified, the
common quality can then be used to determine whether new mental im-
agery satisfies the quality, and the quality can be imposed on a mental
image, altering it.

Thoughts Conceived of as being built from structures of concepts. By im-
posing concepts in targeted series, the mind builds up complex mental
images within the workspace provided by one or more sensory modali-
ties. The archetypal example of a thought, according to Yudkowsky, is
a human sentence – an arrangement of concepts, invoked by their sym-
bolic tags, with internal structure and targeting information that can be
reconstructed from a linear series of words using the constraints of syn-
tax, constructing a complex mental image that can be used in reasoning.
Thoughts (and their corresponding mental imagery) are viewed as dispos-
able one-time structures, built from reusable concepts, that implement a
non-recurrent mind in a non-recurrent world.

Deliberation Implemented by sequences of thoughts. This is the internal
narrative of the conscious mind – which Yudkowsky views as the core of
intelligence both human and digital. It is taken to include explanation,
prediction, planning, design, discovery, and the other activities used to
solve knowledge problems in the pursuit of real-world goals.

Yudkowsky also includes an interesting discussion of probable differences
between humans and AI’s. The conclusion of this discussion is that, eventu-
ally, AGI’s will have many significant advantages over biological intelligences.
The lack of motivational peculiarities and cognitive biases derived from an
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evolutionary heritage will make artificial psychology quite different from, and
presumably far less conflicted than, human psychology. And the ability to
fully observe their own state, and modify their own underlying structures and
dynamics, will give AGI’s an ability for self-improvement vastly exceeding
that possessed by humans. These conclusions by and large pertain not only
to AGI designs created according to the DGI theory, but also to many other
AGI designs as well. However, according to Yudkowsky, AGI designs based
too closely on the human brain (such as neural net based designs) may not
be able to exploit the unique advantages available to digital intelligences.

Finally, the authors’ Novamente AI project has had an interesting relation-
ship with the human mind/brain, over its years of development. The Webmind
AI project, Novamente’s predecessor, was more heavily human brain/mind
based in its conception. As Webmind progressed, and then as Novamente was
created based on the lessons learned in working on Webmind, we found that
it was more and more often sensible to depart from human-brain/mind-ish
approaches to various issues, in favor of approaches that provided greater ef-
ficiency on available computer hardware. There is still a significant cognitive
psychology and neuroscience influence on the design, but not as much as there
was at the start of the project.

One may sum up the diverse relationships between AGI approaches and
the human brain/mind by distinguishing between:

• approaches that draw their primary structures and dynamics from an at-
tempt to model biological brains;

• approaches like DGI and Novamente that are explicitly guided by the
human brain as well as the human mind;

• approaches like NARS that are inspired by the human mind much more
than the human brain;

• approaches like OOPS that have drawn very little on known science about
human intelligence in any regard.

7 Creating Intelligence by Creating Life

If simulating the brain molecule by molecule is not ambitious enough for you,
there is another possible approach to AGI that is even more ambitious, and
even more intensely consumptive of computational resources: simulation of
the sort of evolutionary processes that gave rise to the human brain in the
first place.

Now, we don’t have access to the primordial soup from which life pre-
sumably emerged on Earth. So, even if we had an adequately powerful su-
percomputer, we wouldn’t have the option to simulate the origin of life on
Earth molecule by molecule. But we can try to emulate the type of process
by which life emerged – cells from organic molecules, multicellular organisms
from unicellular ones, and so forth.
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This variety of research falls into the domain of artificial life rather than
AI proper. Alife is a flourishing discipline on its own, highly active since the
early 1990’s. We will briefly review some of the best known projects in the
area. While most of this research still focuses on the creation and evolution of
either very unnatural or quite simplistic creatures, there are several projects
that have managed to give rise to fascinating levels of complexity.

Tierra, by Thomas Ray [45] was one of the earlier proposals toward an ar-
tificial evolutionary process that generates life. Tierra was successful in giving
rise to unicellular organisms (actually, programs encoded in a 32-instruction
machine language). In the original Tierra, there was no externally defined fit-
ness function – the fitness emerged as a consequence of each creature’s ability
to replicate itself and adapt to the presence of other creatures.

Eventually, Tierra would converge to a stable state, as a consequence of
the creature’s optimization of their replication code. Ray then decided to
explore the emergence of multicellular creatures, using the analogy of parallel
processes in the digital environment. Enter Network Tierra [46], which was a
distributed system providing a simulated landscape for the creatures, allowing
migration and exploitation of different environments. Multicellular creatures
emerged, and a limited degree of cell differentiation was observed in some
experiments [47]. Unfortunately, the evolvability of the system wasn’t high
enough to allow greater complexity to emerge.

The Avida platform, developed at Caltech, is currently the most used ALife
platform, and work on the evolution of complex digital creatures continues.

Walter Fontana’s AlChemy [14, 13] project focuses on addressing a dif-
ferent, but equally important and challenging issue – defining a theory of
biological organization which allows for self-maintaining organisms, i.e., or-
ganisms which possess a metabolic system capable of sustaining their persis-
tence. Fontana created an artificial chemistry based on two key abstractions:
constructiveness (the interaction between components can generate new com-
ponents. In chemistry, when two molecules collide, new molecules may arise
as a consequence.) and the existence of equivalence classes (the property that
the same final result can be obtained by different reaction chains). Fontana’s
artificial chemistry uses lambda calculus as a minimal system presenting those
key features.

From this chemistry, Fontana develops his theory of biological organiza-
tion, which is a theory of self-maintaining systems. His computer simulations
have shown that networks of interacting lambda-expressions arise which are
self-maintaining and robust, being able to repair themselves when components
are removed. Fontana called these networks organizations, and he was able
to generate organizations capable of self-duplication and maintenance, as well
as the emergence of self-maintaining metaorganizations composed of single
organizations.
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8 The Social Nature of Intelligence

All the AI approaches discussed so far essentially view the mind as something
associated with a single organism, a single computational system. Social psy-
chologists, however, have long recognized that this is just an approximation.
In reality the mind is social – it exists, not in isolated individuals, but in
individuals embedded in social and cultural systems.

One approach to incorporating the social aspect of mind is to create indi-
vidual AGI systems and let them interact with each other. For example, this
is an important part of the Novamente AI project, which involves a special
language for Novamente AI systems to use to interact with each other. An-
other approach, however, is to consider sociality at a more fundamental level,
and to create systems from the get-go that are at least as social as they are
intelligent.

One example of this sort of approach is Steve Grand’s neural-net architec-
ture as embodied in the Creatures game [24]. His neural net based creatures
are intended to grow more intelligent by interacting with each other – strug-
gling with each other, learning to outsmart each other, and so forth.

John Holland’s classifier systems [30] are another example of a multi-agent
system in which competition and cooperation are both present. In a classifier
system, a number of rules co-exist in the system at any given moment. The
system interacts with an external environment, and must react appropriately
to the stimuli received from the environment. When the system performs the
appropriate actions for a given perception, it is rewarded. While the individ-
uals in Holland’s system are quite primitive, recent work by Eric Baum [5]
has used a similar metaphor with more complex individuals, and promising
results on some large problems.

In order to decide how to answer to the perceived stimuli, the system
will perform multiple rounds of competition, during which the rules bid to be
activated. The winning rule will then either perform an internal action, or an
external one. Internal actions change the system’s internal state and affect the
next round of bidding, as each rule’s right to bid (and, in some variations, the
amount it bids) depends on how well it matches the system’s current state.

Eventually, a rule will be activated that will perform an external action,
which may trigger reward from the environment. The reward is then shared
by all the rules that have been active since the stimuli were perceived. The
credit assignment algorithm used by Holland is called bucket brigade. Rules
that receive rewards can bid higher in the next rounds, and are also allowed
to reproduce, which results in the creation of new rules.

Another important example of social intelligence is presented in the re-
search inspired by social insects. Swarm Intelligence [6] is the term that gener-
ically describes such systems. Swarm Intelligence systems are a new class of
biologically inspired tools.

These systems are self-organized, relying on direct and indirect commu-
nication between agents to lead to emergent behavior. Positive feedback is
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given by this communication (which can take the form of a dance indicating
the direction of food in bee colonies, or pheromone trails in ant societies),
which biases the future behavior of the agents in the system. These systems
are naturally stochastic, relying on multiple interactions and on a random,
exploratory component. They often display highly adaptive behavior to a dy-
namic environment, having thus been applied to dynamic network routing [9].
Given the simplicity of the individual agents, Swarm Intelligence showcases
the value of cooperative emergent behavior in an impressive way.

Ant Colony Optimization [11] is the most popular form of Swarm Intelli-
gence. ACO was initially designed as a heuristic for NP-hard problems [12],
but has since been used in a variety of settings. The original version of ACO
was developed to solve the famous Traveling Salesman problem. In this sce-
nario, the environment is the graph describing the cities and their connections,
and the individual agents, called ants, travel in the graph.

Each ant will do a tour of the cities in the graph, iteratively. At each
city it will choose the next city to visit, based on a transition rule. This rule
considers the amount of pheromone in the links connecting the current city
and each of the possibilities, as well as a small random component. When the
ant completes its tour, it updates the pheromone trail in the links it has used,
laying an amount of pheromone proportional to the quality of the tour it has
completed. The new trail will then influence the choices of the ants in the
next iteration of the algorithm.

Finally, an important contribution from Artificial Life research is the An-
imat approach. Animats are biologically-inspired simulated or real robots,
which exhibit adaptive behavior. In several cases [33] animats have been
evolved to display reasonably complex artificial nervous systems capable of
learning and adaptation. Proponents of the Animat approach argue that AGI
is only reachable by embodied autonomous agents which interact on their own
with their environments, and possibly other agents. This approach places an
emphasis on the developmental, morphological and environmental aspects of
the process of AI creating.

Vladimir Red’ko’s self-organizing agent-system approach also fits partially
into this general category, having some strong similarities to Animat projects.
He defines a large population of simple agents guided by simple neural net-
works. His chapter describes two models for these agents. In all cases, the
agents live in a simulated environment in which they can move around, look-
ing for resources, and they can mate – mating uses the typical genetic oper-
ators of uniform crossover and mutation, which leads to the evolution of the
agent population.

In the simpler case, agents just move around and eat virtual food, accu-
mulating resources to mate. The second model in Red’ko’s work simulates
more complex agents. These agents communicate with each other, and mod-
ify their behavior based on their experience. None of the agents individually
are all that clever, but the population of agents as a whole can demonstrate
some interesting collective behaviors, even in the initial, relatively simplistic
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implementation. The agents communicate their knowledge about resources in
different points of the environment, thus leading to the emergence of adaptive
behavior.

9 Integrative Approaches

We have discussed a number of different approaches to AGI, each of which has
– at least based on a cursory analysis – strengths and weaknesses compared to
the others. This gives rise to the idea of integrating several of the approaches
together, into a single AGI system that embodies several different approaches.

Integrating different ideas and approaches regarding something as complex
and subtle as AGI is not a task to be taken lightly. It’s quite possible to
integrate two good ideas and obtain a bad idea, or to integrate two good
software systems and get a bad software system. To successfully integrate
different approaches to AGI requires deep reflection on all the approaches
involved, and unification on the level of conceptual foundations as well as
pragmatic implementation.

Several of the AGI approaches described in this book are integrative to
a certain extent. Voss’s a2i2 system integrates a number of different neural-
net-oriented learning algorithms on a common, flexible neural-net-like data
structure. Many of the algorithms he integrated have been used before, but
only in an isolated way, not integrated together in an effort to make a “whole
mind.” Wang’s NARS-based AI design is less strongly integrative, but it still
may be considered as such. It posits the NARS logic as the essential core
of AI, but leaves room for integrating more specialized AI modules to deal
with perception and action. Yudkowsky’s DGI framework is integrative in a
similar sense: it posits a particular overall architecture, but leaves some room
for insights from other AI paradigms to be used in filling in roles within this
architecture.

By far the most intensely integrative AGI approach described in the book,
however, is our own Novamente AI approach.

The Novamente AI Engine, the work of the editors of this volume and their
colleagues, is in part an original system and in part an integration of ideas
from prior work on narrow AI and AGI. The Novamente design incorporates
aspects of many previous AI paradigms such as genetic programming, neural
networks, agent systems, evolutionary programming, reinforcement learning,
and probabilistic reasoning. However, it is unique in its overall architecture,
which confronts the problem of creating a holistic digital mind in a direct and
ambitious way.

The fundamental principles underlying the Novamente design derive from
a novel complex-systems-based theory of mind called the psynet model, which
was developed in a series of cross-disciplinary research treatises published
during 1993-2001 [17, 16, 18, 19, 20]. The psynet model lays out a series of
properties that must be fulfilled by any software system if it is going to be an
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autonomous, self-organizing, self-evolving system, with its own understanding
of the world, and the ability to relate to humans on a mind-to-mind rather
than a software-program-to-mind level. The Novamente project is based on
many of the same ideas that underlay the Webmind AI Engine project carried
out at Webmind Inc. during 1997-2001 [23]; and it also draws to some extent
on ideas from Pei Wang’s Non-axiomatic Reasoning System (NARS) [54].

At the moment, a complete Novamente design has been laid out in detail
[21], but implementation is only about 25% complete (and of course many
modifications will be made to the design during the course of further im-
plementation). It is a C++ software system, currently customized for Linux
clusters, with a few externally-facing components written in Java. The overall
mathematical and conceptual design of the system is described in a paper
[22] and a forthcoming book [21]. The existing codebase implements roughly
a quarter of the overall design. The current, partially-complete codebase is
being used by the startup firm Biomind LLC, to analyze genetics and pro-
teomics data in the context of information integrated from numerous biolog-
ical databases. Once the system is fully engineered, the project will begin a
phase of interactively teaching the Novamente system how to respond to user
queries, and how to usefully analyze and organize data. The end result of this
teaching process will be an autonomous AGI system, oriented toward assisting
humans in collectively solving pragmatic problems.

10 The Outlook for AGI

The AGI subfield is still in its infancy, but it is certainly encouraging to
observe the growing attention that it has received in the past few years. Both
the number of people and research groups working on systems designed to
achieve general intelligence and the interest from outsiders have been growing.

Traditional, narrow AI does play a key role here, as it provides useful
examples, inspiration and results for AGI. Several such examples have been
mentioned in the previous sections in connection with one or another AGI
approach. Innovative ideas like the application of complexity and algorithmic
information theory to the mathematical theorization of intelligence and AI
provide valuable ground for AGI researchers. Interesting ideas in logic, neural
networks and evolutionary computing provide both tools for AGI approaches
and inspiration for the design of key components, as will be seen in several
chapters of this book.

The ever-welcome increase in computational power and the emergence of
technologies like Grid computing also contribute to a positive outlook for
AGI. While it is possible that, in the not too distant future, regular desktop
machines (or whatever form the most popular computing devices take 10 or
20 years from now) will be able to run AGI software comfortably, today’s
AGI prototypes are extremely resource intensive, and the growing availabil-
ity of world-wide computing farms would greatly benefit AGI research. The
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popularization of Linux, Linux-based clusters that extract considerable horse-
power from stock hardware, and, finally, Grid computing, are seen as great
advances, for one can never have enough CPU cycles.

We hope that the precedent set by these pioneers in AGI research will in-
spire young AI researchers to stray a bit off the beaten track and venture into
the more daring, adventurous and riskier path of seeking the creation of truly
general artificial intelligence. Traditional, narrow AI is very valuable, but, if
nothing else, we hope that this volume will help create the awareness that
AGI research is a very present and viable option. The complementary and
related fields are mature enough, the computing power is becoming increas-
ingly easier and cheaper to obtain, and AGI itself is ready for popularization.
We could always use yet another design for an artificial general intelligence in
this challenging, amazing, and yet friendly race toward the awakening of the
world’s first real artificial intelligence.
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Summary. Is there an “essence of intelligence” that distinguishes intelligent sys-
tems from non-intelligent systems? If there is, then what is it? This chapter sug-
gests an answer to these questions by introducing the ideas behind the NARS (Non-
axiomatic Reasoning System) project. NARS is based on the opinion that the essence
of intelligence is the ability to adapt with insufficient knowledge and resources. Ac-
cording to this belief, the author has designed a novel formal logic, and implemented
it in a computer system. Such a “logic of intelligence” provides a unified explana-
tion for many cognitive functions of the human mind, and is also concrete enough
to guide the actual building of a general purpose “thinking machine”.

1 Intelligence and Logic

1.1 To Define Intelligence

The debate on the essence of intelligence has been going on for decades, but
there is still little sign of consensus (this book itself is evidence of this).

In “mainstream AI”, the following are some representative opinions:

“AI is concerned with methods of achieving goals in situations in
which the information available has a certain complex character. The
methods that have to be used are related to the problem presented by
the situation and are similar whether the problem solver is human, a
Martian, or a computer program.” [19]

Intelligence usually means “the ability to solve hard problems”.
[22]

“By ‘general intelligent action’ we wish to indicate the same scope
of intelligence as we see in human action: that in any real situation
behavior appropriate to the ends of the system and adaptive to the
demands of the environment can occur, within some limits of speed
and complexity.” [23]

Maybe it is too early to define intelligence. It is obvious that, after decades
of study, we still do not know very much about it. There are more questions
than answers. Any definition based on current knowledge is doomed to be


