1

Introduction

e The prerequisite for studying this chapter is that you have read and
understood Vol. 1 of this series of textbooks on software engineering.

e The aims are to motivate why the present volume is written, to motivate
why you should read it by outlining what it contains and how it delivers
its material, to explain the notion of formal methods “lite”, and to briefly
recall the main specification language of these volumes, RSL.

The objective is to set you firmly on the way to study this volume.
The treatment is discursive, informal and systematic.

1.1 Introduction

Volume 2 continues where Vol. 1 left off. Having laid the foundations for
discrete mathematics, Vol. 1, Chaps. 2-9, abstraction and modelling, Vol. 1,
Chaps. 10-18, and specification programming, Vol. 1, Chaps. 19-21, which we
consider the minimum for the pursuit of professional software engineering, we
need now to expand, considerably, the scope of areas to which we can apply
our abstraction, modelling and specification skills.

This chapter has two main sections: First we outline the justification for
and contents of this volume as well as how the material in this volume is pre-
sented. Then we give an ever-so-short primer on RSL: the syntactic constructs,
very briefly their “meaning” and their pragmatics, that is, which “main” uses
with respect to abstraction and modelling they serve to fulfill. The primer
can, of course, be skipped.

1.1.1 Why This Volume?

It is one thing to learn and be reasonably fluent in abstraction and modelling
as covered in Vol. 1 of this series. It is another thing to really master the prin-
ciples, techniques and tools. With the present volume our goal is to educate

4 1 Introduction

you to the level of a professional software engineer in: (i) specifying compli-
cated computing systems and languages, (ii) being aware of major semiotics
principles (pragmatics, semantics and syntax), (iii) being well acquainted to
means of handling concurrency, i.e., parallel systems, and real-time, and (iv)
formally conceiving reasonably sophisticated systems and languages.

1.1.2 Why Master These Principles, Techniques and Tools?

Why master these principles, techniques and tools? Because it is necessary.
Because, to be a professional in one’s chosen field of expertise, one must know
also the formal techniques — just as engineers of other disciplines also know
their mathematics. Just as fluid mechanics engineers handle, with ease, their
Navier—Stokes Equations [83,496], so software engineers must handle denota-
tional and computational semantics. Just as radio communications engineers
handle, with ease, Maxwell Equations [245,502], so software engineers must
handle Petri nets [238,400,419-421], message sequence charts [227-229], live
sequence charts [89,195,268], statecharts [174,175,185,193,197], the duration
calculus [557,559], temporal logics [105,320,321,372,403], etc. We will cover
this and much more in this volume.

The above explanation of the “why” is an explanation that is merely a
claim. It relies on “Proof by authority”! Well, here is the longer, more ra-
tional argument: Before we can design software, we must understand its re-
quirements. Before we can construct requirements, we must understand the
application domain, the area of, say human, activity for which software is
desired. To express domain understanding, requirements and software designs
we must use language. To claim any understanding of these three areas the
language used must be precise, and must be used such as to avoid ambigu-
ities, and must allow for formal reasoning, i.e., proofs. This entails formal
languages. To cope with the span from domains, via requirements, to designs
the languages must provide for abstraction, and refinement: from abstract to
concrete expressibility. The principles, techniques and tools of these volumes
provide a state-of-the-art (and perhaps beyond) set of such methods.

The complexities of the computing systems that will be developed in the
future are such that we cannot expect to succeed in developing such comput-
ing systems without using formal techniques and tools, such as covered and
propagated in these volumes.

1.1.3 What Does This Volume “Contain”?

Volume 1 covered basic abstraction and modelling principles, techniques and
tools. The major tool was that of the RAISE Specification Language (RSL).
The major new, additional tools of this volume will be those of the Petri
nets: condition event nets, the place transition nets, and the coloured Petri
nets [238,400,419-421]; the sequence charts (SCs): the message SCs (MSCs)
[227-229] and the live SCs (LSCs) [89, 195, 268]; the statecharts [174,175,

1.1 Introduction 5

185,193, 197]; the interval temporal logic (ITL) and the duration calculus
(DC) [557,559].

The major principles and techniques of abstraction and modelling cov-

ered earlier were: property- (sorts, observers, generators, axioms) and/versus
model-oriented abstraction in general, and the model-oriented techniques of
set, Cartesian, list, map and function, including type abstractions; and func-
tional, imperative and concurrent (parallel) specification programming tech-
niques in particular.

The new, additional principles and techniques of abstraction and modelling

in this volume fall along five axes:

1.

An advanced abstraction and modelling axis, covering hierarchical and
compositional modelling and models, denotational and computational se-
mantics, configurations: contexts and state, and time and space concepts.
This axis further extends the techniques of Vol. 1. The time concepts will
be further treated along axis (4).

A semiotics axis, covering pragmatics, semantics and syntax. This axis
treats, along more systematic lines, what was shown more or less indirectly
in Vol. 1 and previous chapters of Vol. 2 (notably Chap. 3). Axis (5) will
complete our treatment of linguistics.

A structuring axis, briefly covering RSL’s scheme, class and object con-
cepts, as well as UML’s class diagram concepts. This “short” axis, for the
first time in these volumes, brings other notational tools into our evolv-
ing toolbox. This “extension” or enlargement of the variety of notational
tools brings these volumes close to covering fundamental ideas of UML.
The next axis, (4), completes this expansion.

A concurrency axis, covering qualitative aspects of timing: the Petri nets
[238,400,419-421], the sequence charts, SCs, message SCs (MSCs [227-
229]) and live SCs (LSCs [89,195,268]), the statecharts [174,175,185,193,
197], and quantitative aspects of timing in terms of the interval temporal
logic (ITL) [105,320,321,372,403], and the duration calculus (DC) [557,
559]. These specification concepts, available in some form in UML, will
complete these volumes’ treatment of, as we call it, “UML-ising” Formal
Techniques.

A language development axis, covering crucial steps of the development of
concrete interpreters and compilers for functional (i.e., applicative), im-
perative (i.e., “classical”), modular, and parallel programming languages.
This axis completes our treatment of programming language linguistics
matters. The chapters in axis (5) will cover important technical concepts
of run-time structures for interpreted and compiled programs, compiling
algorithms, and attribute grammars.

1.1.4 How Does This Volume “Deliver”?

The previous section outlined, in a sense, a didactics of one main aspect of
software engineering.

6 1 Introduction

So this didactic view of software engineering as a field of activity whose
individual “tasks” can be “relegated” to one, or some simple combination, of
the topics within one or, say, two axes, as listed above offers one way in which
this volume “delivers”. That is, the reader will be presented with these topics,
more or less in isolation, one-by-one, but the practicing software engineer
(and the reader as chapter exercise solver) is expected to merge principles
and techniques of previous topics and tools when solving problems.

Another way in which this volume delivers is in the manner in which
each individual (axis) topic is presented. Each topic is presented by means of
many examples. Their “story” is narrated and the problem is given a formal
specification. Where needed, as for the qualitative and quantitative aspects of
concurrency,' a description is given of (i) their notational apparatus, (ii) the
pragmatics behind them, (iii) their syntax and (iv) their informal semantics.
Method principles and techniques are then enunciated. A heavy emphasis is
placed on examples. References are made to more theoretical treatments of,
in particular, the concurrency topics.

A third way in which this volume delivers is by presenting a “near-full”
spectrum of principles, techniques and tools, as witnessed, for example, by the
combination of using the RSL tool with those of UML’s class diagrams, the Petri
Nets, the (Message and Live) Sequence Charts, the Statecharts, the Interval
Temporal Logic and the Duration Calculus.

This can also be seen in the span of abstraction topics: hierarchy and com-
position, denotation and computation, configurations (including contexts and
states), temporality (in various guises) and spatiality, and both qualitative and
quantitative aspects of concurrency. Volume 3 covers further abstraction prin-
ciples and techniques. Finally this is also witnessed by the span of application
topics: real-time, embedded and safety critical systems, infrastructure com-
ponents (railways, production, banking, etc.), and programming languages:
functional, imperative, modular, and parallel. Volume 3 covers further appli-
cation topics.

1.2 Formal Techniques “Lite”

Although we shall broach the subject on several occasions throughout this
volume, when we cover formal techniques we shall exclusively cover formal
specification, not formal proofs of properties of specifications.

That may surprise the reader. After all, a major justification of formal
techniques, i.e., formal specifications, is that they allow formal verification.
So why do we not cover formal verification? First, we use, and propagate

!The qualitative aspects of concurrency are expressible when using the Petri
Nets, the Message and Live Sequence Charts and the Statecharts. The quantitative
aspects of concurrency are expressible when using the Interval Temporal Logic and
the Duration Calculus.

1.2 Formal Techniques “Lite” 7

the use of, formal techniques in the “lite”? manner. That is, we take formal
specification rather seriously. And hence we focus on principles and techniques
for constructing effective specifications, i.e., pleasing, elegant, expressive and
revealing specifications. We find (and have over more than 30 years found)
that systems developed in this manner come very, very close to being perfect!

Second, we find that principles and techniques for theorem proving or proof
assistance or model checking, even today (2005) are very much “bound” to
the specific notational system (i.e., specification language), and to its proof
system of rules and tools. And we also find that there is much less a common
consensus on whether proofs should be done in one way or in another way.

For a good introduction to a number of leading approaches to software
verification we refer to the following papers:

1. J. U. Skakkebaek, A. P. Ravn, H. Rischel, and Zhou Chaochen. Speci-
fication of embedded, real-time systems. Proceedings of 1992 Euromicro
Workshop on Real-Time Systems, pages 116—121. IEEE Computer Society
Press, 1992.

2. Zhou Chaochen, M. R. Hansen, A. P. Ravn, and H. Rischel. Duration
specifications for shared processors. Proceedings Symp. on Formal Tech-
niques in Real-Time and Fault-Tolerant Systems, Nijmegen 6-10 Jan.
1992, LNCS, 1992.

3. A. P. Ravn, H. Rischel, and K. M. Hansen. Specifying and verifying
requirements of real-time systems. IEEE Trans. Software Engineering,
19:41-55, 1992.

4. C. W. George. A theory of distributing train rescheduling. In FME’96:
Industrial Benefits and Advances in Formal Methods, proceedings, LNCS
1051,

5. C. W. George. Proving safety of authentication protocols: a minimal ap-
proach, in International Conference on Software: Theory and Practice
(ICS 2000), 2000.

6. A. Haxthausen and X. Yong. Linking DC together with TRSL. Proceed-
ings of 2nd International Conference on Integrated Formal Methods (IFM
2000), Schloss Dagstuhl, Germany, November 2000, number 1945 in Lec-
ture Notes in Computer Science, pages 25—44. Springer-Verlag, 2000.

7. A. Haxthausen and J. Peleska, Formal development and verification of a
distributed railway control system, IEEE Transaction on Software Engi-
neering, 26(8), 687-701, 2000.

8. M. P. Lindegaard, P. Viuf and A. Haxthausen, Modelling railway inter-
locking systems, Eds.: E. Schnieder and U. Becker, Proceedings of the
9th TFAC Symposium on Control in Transportation Systems 2000, June
13-15, 2000, Braunschweig, Germany, 211-217, 2000.

9. A. E. Haxthausen and J. Peleska, A domain specific language for railway
control systems, Sixth Biennial World Conference on Integrated Design

2«Lite” is an “Americanism”, and, as many such, is a nice one that indicates
that we take certain things seriously, but not necessarily all that “seriously”.

8 1 Introduction

and Process Technology, (IDPT 2002), Pasadena, California, Society for
Design and Process Science, P. O. Box 1299, Grand View, Texas 76050~
1299, USA, June 23-28, 2002.

10. A. Haxthausen and T. Gjaldbaek, Modelling and verification of interlock-
ing systems for railway lines, 10th IFAC Symposium on Control in Trans-
portation Systems, Tokyo, Japan, August 4-6, 2003.

One runs a danger by adhering too much to the above “liteness” principle
(perhaps it is one of lazy convenience?). That danger is as follows: Formulat-
ing which property is to be verified, of a specification, or, respectively, which
correctness criterion is to be verified “between” a pair of specifications, and
carrying through the proofs often helps us focus on slightly different abstrac-
tions than if we did not consider lemmas, propositions and theorems to be
verified, or verification itself. And sometimes these proof-oriented abstrac-
tions turn out to be very beautiful, very much “to the point” and also “just”,
specification-wise!

So what do we do? Well, we cannot cover everything, therefore we must
choose. These volumes have made the above choice. So, instead, we either refer
the reader to other seminal textbooks on correctness proving [20,97,151,205,
206, 363, 429], even though these other textbooks pursue altogether different
specification approaches, or to two books that pursue lines of correctness
development very much along the lines, otherwise, of this book: Cliff Jones’
book [247], which uses VDM, and the RAISE Method book [131].

1.3 An RSL Primer

This is an ultrashort introduction to the RAISE Specification Language, RSL.

1.3.1 Types

We refer the reader to Vol. 1, Chaps. 5 and 18.
The reader is kindly asked to study first the decomposition of this section
into its subparts and sub-subparts.

Type Expressions

RSL has a number of built-in types. There are the Booleans, integers, natural
numbers, reals, characters, and texts. From these one can form type expres-
sions: finite sets, infinite sets, Cartesian products, lists, maps, etc.

Let A, B and C be any type names or type expressions, then:

Basic Types

type
[1] Bool

1.3 An RSL Primer 9

Type Expressions

7] A-set
8] A-infset

16] A |B|..|C
17] mk 1d(sel a:A,...,sel_b:B)

[
[
[
%
[12]A » B
[
[
[
|
[18] sel _a:A .. selibB

The following are generic type expressions:

-

The Boolean type of truth values false and true.

The integer type on integers ..., -2, -1, 0, 1, 2,

The natural number type of positive integer values 0, 1, 2, ...

The real number type of real values, i.e., values whose numerals can be
written as an integer, followed by a period (“.”), followed by a natural
number (the fraction).

The character type of character values 'a

The text type of character string values ’ aa” ”aaa”, ... "abc”,
The set type of finite set values.

The set type of infinite set values.

The Cartesian type of Cartesian values.

The list type of finite list values.

mnomn
b",

. The list type of infinite list values.

. The map type of finite map values.

. The function type of total function values.

. The function type of partial function values.
. In (A) A is constrained to be:

e either a Cartesian B x C x ... x D, in which case it is identical to type
expression kind 9,

10 1 Introduction

e or not to be the name of a built-in type (cf., 1-6) or of a type, in
which case the parentheses serve as simple delimiters, e.g., (A 7 B),
or (A*)-set, or (A-set)list, or (A|B) = (C|D|(E = F)), etc.

16. The postulated disjoint union of types A, B, ..., and C.

17. The record type of mk_id-named record values mk_id(av,...,bv), where av,
..., bv, are values of respective types. The distinct identifiers sel_a, etc.,
designate selector functions.

18. The record type of unnamed record values (av,...,bv), where av, ..., by,
are values of respective types. The distinct identifiers sel a, etc., designate
selector functions.

Type Definitions
Concrete Types

Types can be concrete in which case the structure of the type is specified by
type expressions:

Type Definition

type
A = Type_expr

Some schematic type definitions are:

Variety of Type Definitions

[1] Type name = Type_expr /+ without |s or subtypes */

[2] Type_name = Type expr_1 | Type expr_ 2| ... | Type_expr_n

[3] Type_name ==
mk_id_1(s_al:Type_name_al,....s_ai:Type_name_ai) |

mk_id_n(s_z1:Type_name_z1,....s_zk:Type_name_ zk)

[4] Type_ name :: sel a:Type name_ a ... sel z:Type name_ 7z

[5] Type_name = {| v:Type_name' « P(v) |}

where a form of [2-3] is provided by combining the types:
Record Types

Type_name =A |B|..|Z
A==mk_id_1(s_al:A_1,..,s_ai:A_i)
B ==mk id 2(s bl:B 1,..s bjB j)

Z == mk_id_n(s_z1:Z_1,...s_zk:Z_k)

1.3 An RSL Primer 11

Subtypes

In RSL, each type represents a set of values. Such a set can be delimited by
means of predicates. The set of values b which have type B and which satisfy
the predicate P, constitute the subtype A:

Subtypes

type
A={|bB-Pb)|}

Sorts — Abstract Types

Types can be (abstract) sorts in which case their structure is not specified:

Sorts

type
AB, .., C

1.3.2 The RSL Predicate Calculus

We refer the reader to Vol. 1, Chap. 9.

Propositional Expressions

Let identifiers (or propositional expressions) a, b, ..., ¢ designate Boolean
values. Then:

Propositional Expressions

false, true
a, b, .., c
~a, aAb, avb, a=b, a=b, a#b

are propositional expressions having Boolean values. ~, A, V, =, = and # are
Boolean connectives (i.e., operators). They are read: not, and, or, if then (or
implies), equal and not equal.

12 1 Introduction

Simple Predicate Expressions

Let identifiers (or propositional expressions) a, b, ..., ¢ designate Boolean
values, let x, y, ..., z (or term expressions) designate non-Boolean values and
let i, j, ..., k designate number values, then:

Simple Predicate Expressions

false, true

a,b,...,c

~a, aAb, avb, a=b, a=b, a#b
X=y, X#Y,

i<j, i<j, 12, 1>], ...

are simple predicate expressions.

Quantified Expressions

Let X, Y, ..., C be type names or type expressions, and let P(z), Q(y) and
R(z) designate predicate expressions in which x,y and z are free. Then:

Quantified Expressions

Vx:X « P(z)
Jy:Y - Q(y)
3127« R(z)

are quantified expressions — also being predicate expressions. They are “read”
as: For all z (values in type X) the predicate P(z) holds; there exists (at least)
one y (value in type Y) such that the predicate Q(y) holds; and there exists
a unique z (value in type Z) such that the predicate R(z) holds.

1.3.3 Concrete RSL Types
We refer the reader to Vol. 1, Chaps. 13-16.

Set Enumerations

We refer the reader to Vol. 1, Chap. 13, Sect. 13.2.
Let the below a’s denote values of type A, then the below designate simple
set enumerations:

Set Enumerations

{{}, {a}, {a1,a2,...,am }, ...} € A-set
{{} {a}, {ar,a2,.8am }, ooy {a1,82,...}} € A-infset

1.3 An RSL Primer 13

The expression, last line below, to the right of the =, expresses set comprehen-
sion. The expression “builds” the set of values satisfying the given predicate.
It is highly abstract in the sense that it does not do so by following a concrete
algorithm.

Set Comprehension

type
A'B
P = A — Bool
Q=A5B
value

comprehend: A-infset x P x Q — B-infset
comprehend(s,P,Q) = { Q(a) | a:A~a€s A P(a) }

Cartesian Enumerations

We refer the reader to Vol. 1, Chap. 14, Sect. 14.2.

Let e range over values of Cartesian types involving A, B, ..., C' (allow-
ing indexing for solving ambiguity), then the below expressions are simple
Cartesian enumerations:

Cartesian Enumerations

type
AB, .., C
AxBx..xC
value
.. (el,e2,...,en) ...

List Enumerations

We refer the reader to Vol. 1, Chap. 15, Sect. 15.2.
Let a range over values of type A (allowing indexing for solving ambiguity),
then the below expressions are simple list enumerations:

List Enumerations

{0, (a), ..., (al,a2,...,am), ...} € A*
(), (a), ..., (al,a2,...,am), ..., (al,a2,....am,...), ...} € A%

14 1 Introduction

The last line above assumes e; and e; to be integer-valued expressions. It then
expresses the set of integers from the value of e; to and including the value of
ej. If the latter is smaller than the former, then the list is empty.

The last line below expresses list comprehension.

List Comprehension

type
A,B,P=A—>3Bool,Q=AS5B
value
comprehend: A x P x Q = B¥
comprehend(Ist,P,Q) =
(Q(Ist(i)) | i in (1..len lIst) = P(Ist(i)))

Map Enumerations

We refer the reader to Vol. 1, Chap. 16, Sect. 16.2.

Let a and b range over values of type A and B, respectively (allowing
indexing for solving ambiguity), then the below expressions are simple map
enumerations:

Map Enumerations

type

A'B

M=A » B
value

a,al,a2,....,a3:A, b,b1,b2,....b3:B

[], [a—Db], ..., [al—bl,a2—b2,....a3—b3]V € M

The last line below expresses map comprehension:

Map Comprehension

type
A B, C,D
M=A » B
F=A5C
G=B>D
P =A — Bool
value
comprehend: MxFxGxP — (C D)

1.3 An RSL Primer

comprehend(m,F,G,P) =
[F(a) = G(m(a)) | a:A » a € dom m A P(a)]

Set Operations

We refer the reader to Vol. 1, Chap. 13, Sect. 13.2.
Set Operations

value

: A x A-infset — Bool

: A x A-infset — Bool

: A-infset x A-infset — A-infset
: (A-infset)-infset — A-infset

: A-infset x A-infset — A-infset
: (A-infset)-infset — A-infset
A-infset x A-infset — A-infset
: A-infset x A-infset — Bool

: A-infset x A-infset — Bool

: A-infset x A-infset — Bool

#: A-infset x A-infset — Bool
card: A-infset = Nat

ITNN-=TD2DCCHmM

Set Examples

examples
a € {a,b,c}
a g {} ag{bc}
{a,b7c} U {a’b7d,e} = {a7b,c,d7e}
u{{a},{a,b},{a,d}} = {a,b,d}
{a,b,c} N {c,d,e} = {c}
ﬁ{{a},{a,b},{a,d}} = {a}
{a,b,c} \ {c,d} = {a,b}
{a,b} C {ab,c}
{a,b,c} C {a,b,c}
{a,b7c} = {a7b,c}
{a,b,c} # {a,b}
card {} =0, card {a,b,c} =3

16

1 Introduction

€: The membership operator expresses that an element is a member of a
set.

¢: The nonmembership operator expresses that an element is not a member
of a set.

U: The infix union operator. When applied to two sets, the operator gives
the set whose members are in either or both of the two operand sets.

N: The infix intersection operator. When applied to two sets, the operator
gives the set whose members are in both of the two operand sets.

\: The set complement (or set subtraction) operator. When applied to
two sets, the operator gives the set whose members are those of the left
operand set which are not in the right operand set.

C: The proper subset operator expresses that all members of the left
operand set are also in the right operand set.

C: The proper subset operator expresses that all members of the left
operand set are also in the right operand set, and that the two sets are
not identical.

=: The equal operator expresses that the two operand sets are identical.
#: The nonequal operator expresses that the two operand sets are not
identical.

card: The cardinality operator gives the number of elements in a finite
set.

The operations can be defined as follows (= is the definition symbol):

Set Operation Definitions

value
sus'"={alaAsacsVvacs'}
'ng"={alaAacs Aacs"}
"\s"={alaA-acs' Aags'}

VaAeaeces =>aes”
s"=s Cs"AJaAcacs" " ANags
s"=VaAcacsd =acs =sCs' As'Cs
s #£s"=s'ns"#£{}
card s =
if s = {} then 0 else
let a:A ca€sinl+ card (s \ {a}) end end
pre s [/« is a finite set */
card s = chaos /x tests for infinity of s %/

w_wn_n_n_®»
I NiN—2
m\
|

1.3 An RSL Primer 17
Cartesian Operations

We refer the reader to Vol. 1, Chap. 14, Sect. 14.2.

Cartesian Operations

type (va,vb,vc):G1
A B, C ((va,vb),vc):G2
g0: GO=A xB x C (va3,(vb3,vc3)):G3
gl: G1=(AxBxC)
g2:.G2=(AxB)xC decomposition expressions
g3:G3=Ax (BxC) let (al,bl,cl) = g0,
(al'b1l’cl’) = gl in .. end
value let ((a2,b2),c2) = g2 in .. end
va:A, vb:B, vc:C, vd:D let (a3,(b3,c3)) = g3 in .. end
(va,vb,vc):GO,

List Operations

We refer the reader to Vol. 1, Chap. 15, Sect. 15.2.
List Operations

value
hd: A 5 A
tl: A¥ 5 Av
len: A¥ 5 Nat
inds: A¥ — Nat-infset
elems: AY — A-infset
() A¥ x Nat = A
TrA*Y x AY 5 AV
=: AY x A¥Y — Bool
#: AY x AY — Bool

List Examples

examples
hd(al,a2,...,am)=al
tl(al,a2,...,am)=(a2,...,am)
len(al,a2,...,am)=m
inds(al,a2,...,am)={1,2,....m}
elems(al,a2,...,am)={al,a2,....am}
(al,a2,...,am)(i)=ai

18 1 Introduction
<a7b7c>/\<a’b7d> = <a7b7c7a7b’d>
<a7b7c>:<a’b7c>
<a7b7c> # <a7b7d>
e hd: Head gives the first element in a nonempty list.
e tl: Tail gives the remaining list of a nonempty list when Head is removed.
e len: Length gives the number of elements in a finite list.
e inds: Indices gives the set of indices from 1 to the length of a nonempty

list. For empty lists, this set is the empty set as well.

elems: Elements gives the possibly infinite set of all distinct elements in
a list.

£(7): Indexing with a natural number, i larger than 0, into a list £ having a
number of elements larger than or equal to i, gives the ith element of the
list.

~: Concatenates two operand lists into one. The elements of the left
operand list are followed by the elements of the right. The order with
respect to each list is maintained.

=: The equal operator expresses that the two operand lists are identical.

#: The nonequal operator expresses that the two operand lists are not
identical.

The operations can also be defined as follows:

List Operation Definitions

value

is_finite_list: A¥ — Bool

len q =
case is_finite_list(q) of
true — if ¢ = () then 0 else 1 + len tl q end,
false — chaos end

inds q =
case is_finite_list(q) of
true —» {i|i:Nat + 1 <i<lenq },
false — {i|i:Nat « i#0 } end

elems q = { q(i) | :Nat « i € inds q }

q(i) =
ifi=1
then

if q7()
then let a:A,q":Q » q=(a)"q' in a end

1.3 An RSL Primer

else chaos end
else q(i—1) end

fq " iq =
(if 1 <1i < len fq then fq(i) else iq(i — len fq) end
| i:Nat e if len iq#chaos then i < len fq+len end)
pre is_finite_ list(fq)
iq' =iq" =
inds iq’ = inds iq” A V i:Nat « i € inds iq' = iq'(i) = iq"(i)

iq' #iq" = ~(iq' = iq")

19

Map Operations

We refer the reader to Vol. 1, Chap. 16, Sect. 16.2.
Map Operations

value
m(a): M - A 5 B, m(a) =b

dom: M — A-infset [domain of map]
dom [al—bl,a2—b2,....an—bn] = {al,a2,...,an}

rng: M — B-infset [range of map]
rng [al—bl,a2—b2,....an—~bn] = {b1,b2,....bn}

: M x M — M [override extension |
[ab,aloy 2 b"] 1 [alksb b] = [aisbalisb a"osb]

U:M x M — M [merge U]

[a—b,a'=ba"b"] U [a”=b"'] = [a—b,a’—ba"—b" a" b]

\: M x A-infset — M [restriction by]
[ab,a'—ba"—b"]\{a} = [a'>b'a"=b"]

/: M x A-infset — M [restriction to]
[a—b,a'—b’a"=b"]/{a’a"} = [a'—Db'a"—Db"]

=72 M x M — Bool

20

1 Introduction

°: (A m» B) x (B m» C) = (A #» C) [composition]
[a—b,a'2b'] © [b=e,b'=c’ b e] = [arc,a’—c’]

m(a): Application gives the element that a maps to in the map m.

dom: Domain/Definition Set gives the set of values which maps to in a
map.

rng: Range/Image Set gives the set of values which are mapped to in a
map.

1: Override/Extend. When applied to two operand maps, it gives the map
which is like an override of the left operand map by all or some “pairings”
of the right operand map.

U: Merge. When applied to two operand maps, it gives a merge of these
maps.

\: Restriction. When applied to two operand maps, it gives the map which
is a restriction of the left operand map to the elements that are not in the
right operand set.

/: Restriction. When applied to two operand maps, it gives the map which
is a restriction of the left operand map to the elements of the right operand
set.

=: The equal operator expresses that the two operand maps are identical.
#: The nonequal operator expresses that the two operand maps are not
identical.

°: Composition. When applied to two operand maps, it gives the map from
definition set elements of the left operand map, m1, to the range elements
of the right operand map, ms, such that if a is in the definition set of m;
and maps into b, and if b is in the definition set of ms and maps into c,
then a, in the composition, maps into c.

The map operations can also be defined as follows:

Map Operation Redefinitions

value

rngm = {m(a) |a:A+a€ domm }

ml t m2 =
[a—b | a:Ab:B -
a € dom ml \ dom m2 A b=ml(a) V a € dom m2 A b=m2(a)]

ml Um2=[a—b|a:ADbB-
a € dom ml A b=ml(a) V a € dom m2 A b=m2(a)]

[
[

m(a) |a:Aca€ domm\ s |
m(a) |a:A-a€dommns |

m\ s ar
m/s ar

1.3 An RSL Primer 21

ml = m2 =
dom ml = dom m2 AV a:A « a € dom ml = ml(a) = m2(a)
ml # m2 = ~(ml = m2)

m°n =
[a—c | a:A,c:C e a € domm A ¢ =n(m(a))]
pre rng m C dom n

1.3.4 \-Calculus+Functions

We refer the reader to Vol. 1, Chaps. 6, 7 and 11.

The A-Calculus Syntax

We refer the reader to Vol. 1, Chap. 7, Sect. 7.2.
A-Calculus Syntax

type /* A BNF Syntax: */
(L) = (V) [(F) | (A)] ((A))
(V) == /* variables, i.e. identifiers x/
(F) == MV) « (L)
(A) = ((L)L))
value /+ Examples x/
(L): e, 1, a, ...
(V) x, ...
(FY: Axee, ..
(A): fa, (fa), f(a), (f)(a),

Sections 8.4-8.5 cover the notion of BNF grammars in detail.

Free and Bound Variables

We refer the reader to Vol. 1, Chap. 7, Sect. 7.3.

Free and Bound Variables

Let =,y be variable names and e, f be A-expressions.

e (V): Variable z is free in x.
e (F): zisfreein Ay e if z # y and z is free in e.
e (A): zis freein f(e) if it is free in either f or e (i.e., also in both).

22

1 Introduction

Substitution

We refer the reader to Vol. 1, Chap. 7, Sect. 7.4. In RSL, the following rules
for substitution apply:

Substitution

subst([N/x]x) = N;
subst([N/x]a) = a,
for all variables a# x;
subst([N/x](P Q)) = (subst([N/x]P) subst([N/x]Q));
subst([N/x](AzP)) = X y-P;
subst([N/x](A y*P)) = Ay+ subst([N/x]P),
if x#£y and y is not free in N or x is not free in P;
subst([N/x](Ay*P)) = Azesubst([N/z]subst([z/y]P)),
if y#Ax and y is free in N and x is free in P
(where z is not free in (N P)).

a-Renaming and B-Reduction

We refer the reader to Vol. 1, Chap. 7, Sect. 7.4.

a and 3 Conversions

a-renaming: AxsM

If x, y are distinct variables then replacing x by y in Ax*M results in
Ayesubst([y/x]M). We can rename the formal parameter of a A-function
expression provided that no free variables of its body M thereby become
bound.

B-reduction: (AxM)(N)

All free occurrences of x in M are replaced by the expression N provided
that no free variables of N thereby become bound in the result. (AxsM)(N)
= subst([N/x]M)

Function Signatures

We refer the reader to Vol. 1, Chaps. 6 and 11. For sorts we may want to
postulate some functions:

Sorts and Function Signatures

type

A, B, C

value

obs B: A — B,

1.3 An RSL Primer 23

obs C: A — C,
gen_A: BxC — A

Function Definitions

We refer the reader to Vol. 1, Chap. 11, Sects. 2-6. Functions can be defined
explicitly:

Explicit Function Definitions

value
fAxBxC—D
f(a,b,c) = Value_Expr

g: B-infset x (D 5 C-set) = A*
g(bs,dm) = Value_Expr
pre P(bs,dm)

comment: a, b, ¢, bs and dm are parameters of appropriate types

or implicitly:

Implicit Function Definitions

value
f:AxBxC—=D
f(a,b,c) as d
post Pi(a,b,c,d)

g: B-infset x (D 7 C-set) = A*
g(bs,dm) as al

pre Pz (bs,dm)

post P5(bs,dm,al)

comment: a, b, ¢, bs and dm are parameters of appropriate types

The symbol = indicates that the function is partial and thus not defined for
all arguments. Partial functions should be assisted by preconditions stating
the criteria for arguments to be meaningful to the function.

24 1 Introduction
1.3.5 Other Applicative Expressions

Let Expressions

We refer the reader to Vol. 1, Chap. 19, Sect. 19.2.
Simple (i.e., nonrecursive) let expressions:

Let Expressions
let a = & in &(a) end

is an “expanded” form of:

(Aa.&p(a))(Ea)

Recursive let expressions are written as:

Recursive let Expressions

let f = Aa:A - E(f) in B(f,a) end
is “the same” as:

let f = YF in B(f,a) end
where:

F = A\geda+(E(g)) and YF = F(YF)

Predicative let expressions:

Predicative let Expressions

let a:A - P(a) in B(a) end

express the selection of a value a of type A which satisfies a predicate P(a)
for evaluation in the body B(a).

Patterns and wild cards can be used:

Patterns

let {a} Us = set in ... end
let {a,_} Us=setin ... end

let (a,b,...,c) = cart in ... end
let (a,_,...,c) = cart in ... end

1.3 An RSL Primer

let (a)"¢ = list in ... end
let (a, ,b)"¢ =list in ... end

let [a—b] U m = map in ... end
let [a—b,] Um = map in ... end

Conditionals

We refer the reader to Vol. 1, Chap. 19, Sect. 19.5.
Various kinds of conditional expressions are offered by RSL:

Conditionals

if b_expr then c_expr else a_expr end

if b_expr then c_expr end = / same as: */
if b_expr then c_expr else skip end

if b expr 1then c expr 1
elsif b_expr 2 then c_expr 2
elsif b_expr_3 then c_expr_ 3

elsif b_expr_n then c_expr_n end
case expr of
choice_pattern_1 — expr_1,

choice_pattern_2 — expr_2,

choice pattern n or wild card — expr n
end

Operator/Operand Expressions

We refer the reader to Vol. 1, Chap. 19.

Operator/Operand Expressions

(Expr) =

(Prefix_Op) (Expr)
| (Expr) (Infix_ Op) (Expr)
I (Expr) (Suffix_Op)

26 1 Introduction

(Prefix_Op) =
—|~]U]|N|card|len | inds | elems | hd | t] | dom | rng

(Infix_Op) ==
=l#ZI=1+1-[«tT/I<|<|>[>[A]V]=
lelglulni\lclcl2ID]7|1]°

(Suffix_ Op) ==

1.3.6 Imperative Constructs

We refer the reader to Vol. 1, Chap. 20.

Often, following the RAISE method, software development starts with
highly abstract-applicative constructs which, through stages of refinements,
are turned into concrete and imperative constructs. Imperative constructs are
thus inevitable in RSL.

Variables and Assignment

We refer the reader to Vol. 1, Chap. 20, Sects. 20.2.1-20.2.2.

Variables and Assignment

0. variable v:Type := expression
1. v := expr

Statement Sequences and skip

We refer the reader to Vol. 1, Chap. 20, Sects. 20.2.5 and 20.2.4.
Sequencing is expressed using the ‘;” operator. skip is the empty statement
having no value or side-effect.

Statement Sequences and skip

2. skip
3.stm_1;stm 2;...;stm n

1.3 An RSL Primer

Imperative Conditionals

We refer the reader to Vol. 1, Chap. 20, Sects. 20.2.6 and 20.2.8.

Imperative Conditionals

27

4. if expr then stm_c else stm_a end
5. case e of: p_1—S_1(p_1),....p_n—S_n(p_n) end

Iterative Conditionals

We refer the reader to Vol. 1, Chap. 20, Sect. 20.2.7.

Iterative Conditionals

6. while expr do stm end
7. do stmt until expr end

Iterative Sequencing

We refer the reader to Vol. 1, Chap. 20, Sect. 20.2.9.

Iterative Sequencing

8. for b in list_expr « P(b) do S(b) end

1.3.7 Process Constructs

We refer the reader to Vol. 1, Chap. 21, Sect. 21.4.

Process Channels

We refer the reader to Vol. 1, Chap. 21, Sect. 21.4.1.

Let A and B stand for two types of (channel) messages and i:Kldx for

channel array indexes, then:

Process Channels

channel c:A
channel { k[i]:B - i:KIdx }

declare a channel, c, and a set (an array) of channels, k[i], capable of commu-

nicating values of the designated types (A and B).

28 1 Introduction

Process Composition

We refer the reader to Vol. 1, Chap. 21, Sects. 21.4.4-21.4.7.

Let P and Q stand for names of process functions, i.e., of functions which
express willingness to engage in input and/or output events, thereby commu-
nicating over declared channels.

Let P() and Q(i) stand for process expressions, then:

Process Composition

| Q(i) Parallel composition

[] Qi) Nondeterministic external choice (either/or)
[l Qi) Nondeterministic internal choice (either/or)
Q() Interlock parallel composition

ZRZEZ

express the parallel (||) of two processes, or the nondeterministic choice be-
tween two processes: either external ([]) or internal ([]). The interlock ({})
composition expresses that the two processes are forced to communicate only
with one another, until one of them terminates.

Input/Output Events

We refer the reader to Vol. 1, Chap. 21, Sect. 21.4.2.
Let c, k[i] and e designate channels of type A and B, then:

Input/Output Events

c?, k[i]? Input
cle, k[i] e Output

expresses the willingness of a process to engage in an event that “reads” an
input, and respectively “writes” an output.

Process Definitions

We refer the reader to Vol. 1, Chap. 21, Sect. 21.4.3.

The below signatures are just examples. They emphasise that process func-
tions must somehow express, in their signature, via which channels they wish
to engage in input and output events.

Process Definitions

value
P: Unit — in c out k[i] Unit
Q: i:KIdx — out c in k[i] Unit

1.4 Bibliographical Notes 29

~c? . Ki]le ..
L k[i]?7.icle.

The process function definitions (i.e., their bodies) express possible events.

1.3.8 Simple RSL Specifications

Often, we do not want to encapsulate small specifications in schemes, classes,
and objects, as is often done in RSL. An RSL specification is simply a sequence
of one or more types, values (including functions), variables, channels and
axioms:

Simple RSL Specifications

type
Valli-able
chz;;lnel
Val-l.l-e

axiom

1.4 Bibliographical Notes

The main references to RSL — other than Vol. 1 of this series — are [130,131].

