GASES

1.1 STATISTICS OF MOLECULES

Historically, “gas,” the gaseous phase of matter, was studied and understood
before all other phases. It remains as one of a few rigorously treated systems,
and therefore successful statistical interpretation of other phenomena often
depends on the possibility of reducing them to a gas model. For example, a
solid may be adequately represented by a mixture of electron and phonon
gases. Liquids are difficult to describe qualitatively just because they cannot
be modeled by a gas.

The idea that matter is composed of atoms goes back to the Greek philo-
sophers, notably Democritus. While the existence of atoms remained just a
hypothesis, it was not so easy to develop a molecular model of a gas; however,
this was the only direction to take that was at all feasible. The basic features of
the model are suggested by the well-known gas properties: a tendency to
expand indefinitely in free space and to exert pressure on the walls of a vessel
(“container’”). An ensemble of infinitesimal solid spheres—point masses—
would behave similarly. Having definite translational energy, the point masses
would absolutely fly out, if the opportunity arose, and exert pressure on any
wall met on their way. This qualitative picture could be made quantitative, if
anybody could calculate the equilibrium pressure value to show that it com-
plied with the ideal gas equation of state: pV = RT, where V' is the volume of
one mole of a gas, p is its pressure, 7T is the temperature, and K is the gas
constant.
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Pressure

If a gas is an ensemble of randomly moving point masses, then many of them
collide with a wall all the time. In the ith collision the wall obtains an elemen-
tary momentum Ap;. According to the law of conservation of momentum this
is exactly equal to the change in the molecule’s momentum in this ith collision
against the wall. The force acting on a wall is the total momentum imparted to
the wall by all collisions that happen per second:

F=pS=> Ap, (1.1.1)

where S is the area of the wall.

This force is not constant, but varies randomly (“fluctuates™) in time.
Similarly, the pressure differs at from moment to moment although it fluctu-
ates around a constant value if the gas is in an equilibrium state. The line above
>, Ap; denotes averaging, so by macroscopic pressure we imply the average
over all possible values of the random variable. Since a gas consists of a great
number of molecules, under equilibrium conditions any measurement, no mat-
ter when it is taken, cannot differ essentially from the mean. Noticeable devia-
tions (fluctuations) in any large ensemble are very rare, as, for example, an
accidental concentration of passengers in one airport when all other airports
are empty. Besides, the sluggish response of measuring instruments smooth out
most of the deviations themselves by not following very fast fluctuations of
>-; Ap;. Although the pointer of the instrument still “fluctuates” following
slow variations of the value being measured, the obtained result is just the
mean about which the readings fluctuate. Any macroscopic value is always
the average of many microscopic values. With this in mind, henceforth we
shall omit the sign of averaging, and the words “number of callisions” striking
the wall, as well as “number of molecules” with a definite velocity, and so on
will be used only in the sense of their mean values.

Though identical molecules represented by point masses lack almost any
specific features, they should be distinguished by one very important para-
meter, namely, the velocity of motion. For example, when a molecule moves
towards a wall perpendicular to the x axis, its velocity along this axis deter-
mines the magnitude of momentum imparted to the wall upon coliision. If the
collision is elastic: v}, = v,; v, = v,; v} = —v, (the primed symbols indicate the
velocity after collision, the unprimed symbols before it), then

Ap, = mv, — mie = 2mu,. (1.1.2)

To calculate the pressure one has to know the number of collisions with the
wall that occur per unit time with a velocity v, which is greater than v, but less
than v, + dv,. If dN(v,) is the number of such collisions from a total number
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of impacts per second N = [dN(v,), then the force acting on a wall can easily
determined to be

F=pS = Jvade (Vy)- (1.1.3)

The number of collisions with such a rigidly limited velocity is infinitesimal as
compared to N. This justifies the designations dN (not AN) and integration,
instead of summation, of momenta imparted to the wall by molecules with
different “attack™ velocities.

Now, if we select the subensemble of molecules with some particular velocity
v,, it becomes evident that number of their collisions with a wall is

dN(v,) = Sv.dn(v,). (1.1.4)

In the notation accepted here, dn(v,) denotes “a small fraction of molecules”
(from the total number per unit volume n) moving towards the wall with a
velocity that lies between v, and v, + dv,. The estimate (1.1.4) is similar to
counting rain drops falling on the surface of the area S per second. Rain drops
which are at a distance of more than v, from the surface have no time to reach
it. Only those confined in a parallelepiped with the base S and height v,
(Fig. 1.1) will succeed. Their number is equal to the volume Sv, multiplied
by the density dn(v,). As v, is the same for all drops, it makes no difference
whether the rain is slanted or straight. Therefore the molecular “rain’” may be
classified by only one variable—the value of v,, because after that we can apply
Eq. (1.1.4) to each group of molecules. Using it in Eq. (1.1.3) we find

p = Joo 2myidn(v,) = 2anOO VW (v,), (1.1.5)
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Figure 1.1 Molecules of the same velocity v, which impact with an element of area S of a wall
per second. The arrows are unit vectors with direction of the velocities.
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where integration is extended to all molecules moving towards the wall
(v, > 0). Of course, v, cannot exceed the speed of light ¢. Since such rapid
molecules are usually very few, they actually do not contribute to the integral
so the integration may be extended to infinity, provided that temperatures are
not too high.

Statistical Distribution

Equation (1.1.5) gives a microscopic, kinetic definition of pressure. The quan-
tity involved

dW(v,) = d”i”x) (1.1.6)

is a “probability of finding a molecule moving with the velocity v,.” It denotes
the fraction of particles (from the total number per unit volume #) possessing
the required property, that is, having a velocity in a small interval dv, around
the defined value. The number of molecules may be different in different
intervals of the same size, but having tried all the possibilities, we count all
molecules per unit volume: [dn(v,) = n. Similarly, the probability of finding a
molecule with a higher or a lower velocity is not equal, but the detection of a
molecule moving somewhere and somehow is an authentic event whose prob-
ability is equal to unity:

JdW(vx) _ L‘%”—x) — (1.1.62)

This is a probability distribution normalized to 1. In this sense dn(v,) may be
considered as a distribution of particles normalized by their density. The
option of using either the distribution of probabilities dW(v,) or that of par-
ticles dn{v,) depends on the problem, and, sometimes, on the specific proper-
ties of a gas.

In the absence of external fields (electric, magnetic, gravitational, etc.) there
is no preference for any direction of motion. Thus molecules moving towards
or away from the wall are to be observed equally often, and the probability
dW(v,) of detecting them remains unchanged when v, reverses sign.
Consequently,
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and

00 —+00 —_
p = 2an VAW (v,) = an dW(v,) = mnl. (1.1.7)
0

—00

The Statistical Average

The averaged value of F(a) is by definition
Fla) = J F(a)dW(a).

In Eq. (1.1.7) this definition was applied to F(v,) = v% . It implies that integra-
tion is performed over the whole domain of a random variable: —co < v, < 00
in our case. o

__Since there is no preference for any direction, v does not differ from either
v} or v2. No axis has an advantage over any another. Therefore,

VE=0vi+ v+l =302

so Eq. (1.1.7) may be written as follows

p = lmnv =3 = — ne. (1.1.8)

To continue further is impossible without ascertaining the form of the prob-
ability (1.1.6).

However, by representing n as N/V, we can note the similarity between Eq.
(1.1.7) and the ideal gas equation of state pV' = RT:

pV = Nmi2. (1.1.9)

The statement of the problem follows from the above equality. Its left-hand
side coincides with the corresponding side of the equation of state. To calculate
the right-hand side it is necessary, first, to know the velocity distribution, and,
second, to perform the averaging of 2 using this distribution.

1.2 DISTRIBUTION FUNCTION

To determine the distribution function is the primary goal of statistical physics.
However, from where can we get information about it? Up until the midnine-
teenth century an experimental study of the velocity distribution was out of the
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question. Even the very existence of atoms and molecules was still a hypothesis.
Therefore it is surprising that only these a priori assumptions made by Maxwell
from the basis of pure thought proved to be sufficient for the determination of
this distribution.

Obviously, the number of molecules with a “definite” velocity depends on
the accuracy of its determination. The smaller the interval of velocities
(vy, vy +dv,) the lower the probability of finding molecules moving with
such velocities. The probability that a molecule will have a strictly specified
velocity (dv, = 0) is equal to zero. With this in mind, we can write for the
isotropic space (where no direction is preferable):

dW(v,) = flv)dv,, dW(v,) = flv,)dv,, dW(v,) = flv.)dv., (1.2.1)

where the distribution function f{({) is the same for ¢ either v,, v, or v,. The
general relation

dW(a) = fla)da (1.2.2)

remains valid for any continuous random variable a, whether it be velocity
coordinate, angular momentum, energy, etc. If a is a vector quantity, for
example, velocity v, then to find the “probability of detecting a definite velo-
city” means the determination of the probability that its projections in the
intervals dv,, dv,, and dv, are near the given values of the components. In
other words, the end of the velocity vector must be within the confines of a
cube with the sides dv,, dv,, dv, constructed around the point with the coor-
dinates vy, v,, v, (Fig. 1.2). The less the volume of the cube dv = dv.dv,dv,, the

Figure 1.2 An element of velocity space.
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more rarely are the molecules encountered whose velocity vector is directed to
such a precisely indicated velocity space region. Thus

dw(v) = g(v)dv.dv,dv, = g(v)av. (1.2.3)

Since all directions are equivalent the distribution function cannot depend on
spherical angles of the vector v ( 8 and ). Hence, it must depend solely on its
modulus v = /(¥2 + vﬁ +v2), that s,

glv) = g(v). (1.2.4)

The identity of all distributions in Eq. (1.2.1) and the constraint imposed by
Eq.(1.2.4) is all the information we can extract from the isotropy of space. Due
to these limitations the choice of f{v) and g(v) is not absolutely arbitrary, but
we need some additional idea to remove the residual uncertainty.

This idea follows from the concept of independent random motion in any
direction. It seems plausible that the probability of detecting a molecule that
moves along the x axis with the velocity v, is completely independent of the
projections of v on the other axes. If the given value v, admits any v, and v,
and gives no preference to any particular value, then the above assumption is
valid. This means that the three accidental events, namely, the detection of
different values of three velocity components, are independent of one another.
The value of one of them says nothing about any other. In this case

dw(v) = dW(v,) -dW(v,) - dW(v,). (1.2.5)

This is a mathematical formulation of the probability multiplication theorem:
the probability of accidental coincidence of several independent events is equal
to the product of their probabilities. For example, the probability that three
cubic dice cast at a time will show 1is 1/6 x 1/6 x 1/6 = 1/216. In general, the
probability of getting any three a priori specified numbers, for instance, 2,4,1 or
3,5,2 is the same. Accidental detection of three numbers, v,, v,, v, differs from
the above example only in that the probabilities of their different values are not
equal, and, moreover, are still unknown. However, only the assumption that
they are independent makes it possible to use the multiplication theorem (1.2.5)
and this is sufficient for their determination.

Substituting distributions (1.2.1) and (1.2.3) into (1.2.5) in view of (1.2.4)
yields

g(y) = f(Ux) 'f(Uy) 'f(Uz)' (126)

Taking the logarithm of the above equality and differentiating it with respect to
v,, we get
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Differentiation with respect to v, and v, gives similar results. Together with
(1.2.7) they may be represented as

1 dg(v) 1 dfw) 1 df(v)

glv) dv fvy) vedv, Sfvy) Uydvy
1wy
_f(UZ) vdr, = 2. (1.2.8)

Here o is a constant, since functions of different arguments may identically
coincide over the whole domain only if all of them are equal. Upon integrating
Eq. (1.2.8), we obtain

gv) = %exp (—a?), f(&) = ZL(, exp (c€?), (1.2.9)

where £ = v,,v,,v,. By virtue of (1.2.6) there is a simple relationship between
the integration constants Z and Z

zZ =27 (1.2.10)

So if the motion in different directions is statistically independent, then the
distribution functions must be of the form (1.2.9) and no other. However, it
should be remembered that statistical independence is just a hypothesis, and
not so evident as might appear at first sight. If, for example, one of the velocity
components is equal to ¢, the speed of light, then the other components are
obviously zero, that is, strictly specified. As a result the velocity distributions of
photons are qualitatively different from (1.2.9) as we shall see in the next
chapter. The Maxwell hypothesis gives correct results for classical molecular
gases just because at ordinary temperatures atoms and molecules cannot move
with relativistic velocities. For quantum gases—bosons and fermions—the
situation is different. The phonon and electron velocity distributions at low
temperatures do not satisfy the functional equation (1.2.6), nor, hence, (1.2.5).
Thus there is some element of luck that the idea of independent motion of
molecules in different directions proved to be valid for classical (not too cold)
but at the same time nonrelativistic (not very hot) gases. This is a happy
thought and a great piece of luck for the theory of Maxwell, who had to
proceed from more or less arbitrary premises for lack of any other.

It is also remarkable that Maxwell’s hypothesis was sufficient to determine
the precise shape of f(£) and g(v). The uncertainty still remaining in Eq. (1.2.9)
is the unknown Zj. This uncertainty is easily eliminated by taking into account
the normalization condition
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—00 ZO —00
It gives
+00 +o0 p
7= | nod = | exp(-aae = \[a (12.11)

which is the so-called Poisson integral. The following calculations show that it
is actually equal to /7/a:

z = (Jmf(f)df)z - Jm e Jm dnexp [~a(r +€)] =

—00 —00 — 00

2 00 ) 00 T
= J do J e ¥pdp = J e ¥dz=—. (1.2.12)
0 0 0 67

By substitution of (1.2.11) into (1.2.9) and (1.2.1), we obtain

Sflvx) = \/% exp (—ar}), dW (v,) = \/%exp(—avi) dv,.  (1.2.13)

The remaining freedom in choosing the parameter « is by no means the draw-
back of the theory. This degree of freedom actually exists in the system under
study. The smaller is «, the more frequently molecules with high velocities, and,
therefore, with high kinetic energies, are observed (Fig. 1.3). The measure of
the kinetic energy of a substance is evidently its temperature. So the smaller is
a, the greater is T. To make the character of this dependence clearer, it is
necessary to carry out the second part of our plan: to perform the averaging
of vi and use it in Eq. (1.1.9) to compare the equation obtained with the
familiar gas equation of state.

1.3 IDEAL GAS EQUATION OF STATE

Let us calculate the root-mean-square velocity using Eq. (1.2.13)

y)zc — J yi \/%e_m}i dyx = — \/% % J e—avi dl}X. (131)
—50 —00

This result shows that the desired average may be obtained by differentiating
Z, as defined in Eq. (1.2.11):

iz, 1
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(13.2)
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Figure 1.3 The Maxwellian distribution of a component of the molecular velocity at different
temperatures: (1) a = 107"°, (2) a =9 x 1071,

Substituting (1.3.2) into (1.1.9) gives

Nm
V = —.
4 2a

(1.3.3)
If we deal with one mole of a gas, then N is equal to Ny, the Avogadro number.
In this case, the equation pV = Ngm/2c is equivalent to the equation pV = RT,
and the required exact correspondence between « and T follows from the
identity of the two definitions of one and the same law

T _RT, o= o— (1.3.4)

where k = R/Ny = 1.38*166rg/K. According to Avogadro’s law, N, is a funda-
mental physical constant. So &, the ratio of two fundamental constants, is also
a fundamental constant—the Boltzmann constant. In view of (1.3.4), we can
obtain instead of (1.3.2)

piZ m? kT (2 +73+33)
2 2 2 2’ - 2

3
= —kT 3.
kT, (1.3.5)

It is seen that the value 3k7/2 defines the average kinetic energy of
translational motion of gas molecules. At T=300K it is equal to
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6.2 x 107 erg =4 x 107 2eV. For comparison, it should be noted that the
bonding energy of an atom in a molecule is greater by two orders of magnitude.
The difference between room thermal energy of molecules and the energy of
electrons in atoms, or that of accelerated particles is even more impressive.
Still, the thermal energy of molecules is sufficient for them to move at
rather high velocities. For example, for oxygen: (1/2)1/2 = \/2¢/m
= (12.4 x 10714/5.3'x 1072)"/2 = 4.8 x 10*cm/s while for hydrogen the velo-
city is four times greater.

Finally let us return to the previous discussion and analyze the assumptions
made, in particular, the model of an “ideal” gas. Purely qualitative property of
a gas—the tendency to disperse in all directions, if no walls prevent the expan-
sion—has been considered as an indication that gas molecules are not linked by
intermolecular forces. In such a strong statement this assumption is not quite
justified. A gas will disperse provided that the average kinetic energy € exceeds
the attraction energy when molecules are at the average distance from one
another. In fact, the energy of intermolecular interaction is not negligible, as
it is responsible for the condensation of a gas into a liquid or solid. This fact, as
well as the finite sizes of molecules which were previously considered as point
masses, leads to the conclusion that the equation of state is essentially different
from pV = RT. For most gases the ideal gas law holds only approximately and
only at rather low pressures and high temperatures. However, the limited
applicability of the ideal gas model does not remove its advantages. Due to
its simplicity, an exact mathematical treatment is possible. The model of non-
interacting point masses provides information about the most important fea-
tures of molecular motion in a gas and sheds light upon the basic distinctions
between the classical gas and ideal photon and phonon gases which will be
considered later. The theoretical basis of the model is consistent and clear. It
may be used as a skeleton upon which to build models suited to reveal the
specific features of real objects. Abandoning ideal model simplifications one
after another, we shall discover effects or phenomena omitted in the simplest
scheme. Transfer phenomena are associated with finite sizes of molecules,
chemical reactions—with molecular destruction, electric conduction—with
their ionization, and so on. The advantages of the ideal model are elegance
and strictness, while the advantage of the real models is their applicability to a
variety of phenomena and physical situations.

According to (1.3.3) and (1.3.4), in an ideal gas

p = nkT. (1.3.6)

In a real gas nonlinear corrections in » appear which become dominant in
condensed phases.
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1.4 MAXWELL DISTRIBUTION

Substituting (1.2.9) into (1.2.3) in view of (1.2.10) and (1.2.11), we find

32
AW(v) = (%) () gy v v, (1.4.1)

where o = m/(2kT). The probability of detecting the velocity defined by the
value and direction cannot depend on the shape of an elementary volume in
velocity space which contains the end of the vector v. Thus (1.4.1) may be
recast as

AW(y) = (%) T o gy (1.4.2)

where by dv (or d’v) we mean the volume of the element of arbitrary shape in
the velocity space containing the group of molecules we are interested in. In
particular, if we wish to know the probability of finding a molecule with the
definite velocity v whose orientation in the space is specified by spherical
coordinates 6 and ¢, it is necessary to calculate the volume dv defined by the
increments dv, df, dp. As is seen from Fig. 1.4a, this volume is equal to the
product of the height of the spherical layer dv and the area of its base:
(vsin 8dp)vdh, so that dv = v*dv sin 0ddyp = v dvd), where dQ) is a spherical
angle limiting the direction dispersion of velocities. Thus in these coordinates
the Maxwell distribution is of the form

3/2 2 3/2 2
dW(v) = (9) e Vdyd) = (%) e Pdvsin§dodp.  (1.4.3)

Figure 1.4 Elements of velocity space in (a) spherical and (b) Cartesian coordinates.
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Summation of Probabilities

Sometimes, only part of the information obtainable from (1.4.1) or (1.4.3) is
necessary to solve a problem. For example, in calculating the pressure, we need
only know the velocity of a molecule moving towards the wall along the x axis,
independent of its projections on the other axes. What is wanted for the cal-
culation of v2, and, hence, p, is the distribution dW(v,). How can this
particular distribution be obtained from the general Maxwell distribution
(1.4.1)?

The recipe is given by the summation theorem: the probability of observing
one of a number of incompatible events, no matter which of them, is equal to
the sum of probabilities of these events. To appreciate the physical meaning of
the theorem, just remember that the probability of a state is the relative num-
ber of particles in this state: dn(v,,v,,v,)/n = dW(v). For the given value v,
other projections are not essential: they may be identical, different, great or
little. All molecules with the same v, which differ only in other projections
should be counted. The ratio of their total number to the corpuscular density »
gives the desired probability

[ dn(vy, vy, v,) = J J dW(vy,v,,v,) = \/ge_(’”i av,.

dW(v,) = lL y
(1.4.4)

n
y

Substituting (1.4.1) into (1.4.4), we can readily see that this equality is valid.
The summation theorem also has a clear geometrical meaning. The quantity
dW(v) is the probability that the end of the velocity vector will find itself in
one of a number of equal cubic elements dv confined between two planes
v, =const and v, + dv, = const, while dW(v,) is the probability that it will be
found in any of these cubes, that is, in any point of the infinite plane layer
(Fig. 1.4b).

Reasoning similarly, it is easy to calculate the probability that a molecule
will move at the absolute velocity v (which is greater than v and less than
v+ dv), irrespective of the direction. Obviously, all points of a spherical
layer confined between two spheres of the radius v and v + dv fit the criterion
thus formulated. At whichever point the end of the vector v finds itself, its
modulus will meet the requirement, while the direction may be arbitrary. The
probability of moving with the same velocity but in a strictly specified direc-
tion—within the limits of the spherical angle d€)}—was defined by the general
distribution (1.4.3). To find from it the required probability, it is necessary to
integrate over all angles, taking into account the entire volume of the spherical
layer:

2T T 3/2
AW(w) = L dy L AW (v) = 47r(3) e v2dy. (1.4.5)

™
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Statistical Weight

Let us consider the origin of the multiplier v? which appears in Eq. (1.4.5) but
was not involved either in (1.4.1) or in (1.4.4). Through the following analogy
we can deduce that it is associated with different definitions of the “states™
whose probability is being sought. Compare a many-storied pyramid-shaped
building with a box-like skyscraper, assuming that all living units inside are of
equal size and quality (Fig. 1.5). If they are inhabited uniformly the probability
of finding a tenant in any apartment in the daytime is one and the same
regardless of the story or the architecture. However, the probability of finding
a person in a particular story is less, the nearer the story to the top of the
pyramid house. This is because the greater the number of apartments on the
story, the greater the probability of a successful search. As far as a box-like
house is concerned, the apartment distribution over stories is uniform, and the
probability of finding a person in any of them is the same.

The unit volumes of the velocity space may be associated with
“apartments.” The number of units in a spherical layer increases with distance
from the origin of coordinates as 47v*dv. The probability of finding the end of
the vector v in the layer of the width dv is proportional to statistical weight
4112, On the other hand, the number of units between two parallel planes
remains unchanged when the planes are shifted together either to the right
or to the left. Thus the corresponding statistical weight is invariant with respect
to the position of a flat layer (see Fig. 1.4).

The previous analogy is not quite precise. The probability of occupancy of
equal elements of the volume dv at different spherical “‘stories” is not the same:
it decreases exponentially as e~ “*7_ Imagine that most of the rooms in a hotel
are vacant and the few visitors occupy apartments as they like. If there is no
escalator in the hotel, then the visitors will prefer those on the lower floors,
even though the rooms are equal in size. The statistical weight p(v) is a measure
of the “state” (spherical layer) capacity while the Boltzmann factor e~ /KT
relates the attendance of each unit in the state to its energy.

By the “‘state” whose probability is given by (1.4.3) we mean the element
defined by the increments dv, df, dy, which is the spherical layer delimited by
two close meridional cross-sections. Its volume increases the nearer it is to the
equator and is equal to zero at the poles. Correspondingly, the statistical
weight is p(v,0) = v*sinf. Using the summation theorem, we can find the

Figure 1.5 lllustration of the concept of statistical weight.
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probability of moving in a definite direction irrespective of the absolute value
of the velocity:

_ sinfdfdp _ dfd

e it (1.4.6)

Aw(Q) = J dW(v)

This is just what we expected, due to the space isotropy.

From (1.4.5) we can also derive the probability “to be in a definite energy
state,” that is, to have kinetic energy greater than e, but less than e+ de.
Substituting v = 1/2¢/m, Eq. (1.4.5) is brought to the form

aw(©) = 2 22) " exp (<229) v = (7 )" exp () el
€ = m p m e = \omkrt AP kT)'D6 ©

where

ple) = 2 (3) . Ve (1.4.7a)

1s the statistical weight.
The general definition of the statistical weight following from the above
examples is given by the equality

dv = p(q)dg, (1.4.8)

where g is any variable or a set of variables expressed in terms of v,, v, v,, and
p(q) is the statistical weight.

Mean Values

The probability density that enters the Maxwell distribution dW(q) = g(q)dq is
as follows

8(a) = 5 exp [~aclg)] la),

where Z is the normalization constant (partition function). As the exponential
factor and statistical weight change inversely with ¢, g(g) has a sharply defined
maximum (Fig. 1.6). The most probable velocity v, and the most probable
energy €, may be determined from the conventional condition dg/dg = 0.
Using Egs. (1.4.5) and (1.4.7) one can get
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Figure 1.6 Distribution of (a) the molecular speed and (b) kinetic energy.

2kT kT
_ ./ - 1.4.9
v, - and €, 7 ( )

Note that ¢, # mv? /2. This is hardly surprising: an ensemble of molecules with
different velocities is poorly described by a simplified model that divides all
particles into three groups moving with equal velocities along the coordinate
axes. This model is often used for rough kinetic estimates, but it is only within
this model that the relations between energy and velocity of a single particle
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remain valid both for extreme and average values. What actually happens after
averaging over the Maxwell distribution is that o coincides with rms value
(v?)!/2 as well as with v, only up to an accuracy of a constant multiplier.
Different experiments deal with different averages: m, v, v, and so on. Of
course, the order of magnitude of any quantity being measured may be eval-
uated by replacing v by one assumed value (i.e., the root-mean-square one), but
a correct calculation always calls for actual averaging of the required quantity.

For example, let us calculate a number of particles striking a unit area of the
wall per unit time. According to Eq. (1.1.4) the elementary flux is

dj=dN/S =v.dn(v,), (1.4.10)
while the total flux is an integral over positive values of v,:

nlvl. (1.4.10a)

N —

J = J vudn(vy) =
0

If all molecules were moving with the same velocity to and fro, then the
velocity would be chosen to be |v,|, giving exactly the same flux as in the
Maxwellian gas. It is obvious that

fo.l = 2[;’0 vdW(vy) = \/% = \/Zc—mT (1.4.11)

coincides neither with the root-mean-square nor with the average modulus of
the velocity, given by

o l/dW(l/) = —“—,_Wa = W

Using this mean value the expression (1.4.10) can be recast in the form

vV =

J 2 8KT (1.4.11a)

j= g (1.4.12)

This result coincides with that for a flux of particles moving in all directions
but with a single speed .

Stern Experiment

The concept of chaotic thermal motion and the shape of Maxwell’s distribution
were experimentally verified by Otto Stern in 1920. In this experiment, a hollow
rotating cylinder, called the vacuum analyzer, is placed in the path of a mole-
cular jet. During the short time interval when the vertical slot of the analyzer is
aligned with the jet, molecules can enter the cylinder (Fig. 1.7). These inertially
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Figure 1.7 Configuration of the analyzer (a) at the time when molecules enter it and (b) at the
moment of their adsorption.

A

moving molecules reach the screen on the opposite side of the analyzer at
different times Af = D/v , depending on their velocity (D is the cylinder dia-
meter). Due to the fact that during the time A¢ the cylinder rotates by a certain
angle, the molecules encounter the screen not along the line opposite the slot
but at a position which depends on their velocity: the lower their velocity the
farther from this line (Fig. 1.7b). At a rather low analyzer temperature almost
all the particles are deposited on the screen at the points of collision. Atoms of
silver form a stratum on the screen, the thickness of which allows one to
determine the number of deposited particles. Knowing the rotation angle of
the analyzer o = wAf provides a means to judge the velocity of particles which
are deflected through this angle: v = D/At = Dw/c. Therefore one is able to
reconstruct the distribution of absolute velocities of atoms which pass through
the slot. The experimental determination and study of this distribution were a
strong argument in favor of the existence of atoms and verified the validity of
the a priori assumptions which were of fundamental importance in the deriva-
tion of the Maxwell distribution.

Structure of the Flux

However, we have not yet been given sufficient evidence to believe that the
distribution thus obtained coincides with the Maxwell one. In the Stern experi-
ment the distribution was reconstructed not for particles in the container but in
the jet. The number of rapid molecules leaving the container is greater than the
number of slow molecules escaping in the same time. For this reason alone, the
distribution obtained by Stern must differ from the Maxwell distribution. The
distribution of speeds in a jet is different from that in the volume, which is
Maxwellian.

As follows from Egs. (1.4.10), (1.4.3) and (1.4.5), the flux of particles with a
given velocity is

40

di = vndW({v) = vcos 9dW(v) - -n )
s

(1.4.13)
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To obtain the normalized velocity distribution of particles in a jet we have only
to divide (1.4.13) by its integral value (1.4.12):

di

g _ ga’W(v) cos 9d2 _
j v

™

AW (v)dW;(S). (1.4.14)

Here the distribution of the speeds of the particles is

v 1 rm\2 mv? 3
and
aQ
Q) = I0)5,  1(9) = 2cos ¥ (1.4.16)

is the distribution of the directions of motion within a semisphere.

In Stern’s experiment the velocity distribution of particles moving along the
bunch axis (¢ = 0) in a finite but small spherical angle Af) is measured. It was
shown to coincide with Eq. (1.4.15). Apart from an unimportant constant this
distribution differs from the Maxwell one by the extra factor v. As is clear from
Eq. (1.4.13), its origin is associated with the advantage which rapid molecules
have over slow molecules in escaping from the container in a given time. That
is why both the average velocity and the average energy of particles in the
bunch are greater than the Maxwell ones:

<] Sy

3
Fj:Jude: ~ Ty, ?:mJude:——zsz:

)

1.5 BAROMETRIC FORMULA

In the absence of an external field, it is natural to consider all points of the
space filled by gas to be equivalent. Then the probability of entering any
element of equal volume is identical:

dxdyd
AW (x,,2) = =5 (1.5.1)

However, this is not true if the gas in the vessel is under the influence of a
gravitational field. In this case, different volume elements differ in the value of
the potential energy of molecules contained in them. Generally speaking, one
should take
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dw = f(x, y, z)dxdydz, (1.5.2)

and special considerations are necessary for the determination of
f(x,y,z)  const. If the gravitational force acts in the z direction, then the
variation of f{z) has the result that the gas density #» = n(z) is different at
different heights. Due to Eq. (1.3.6) this must also affect the pressure.

The variation of pressure with the height is inevitable, at least because the
gas confined in the vessel has weight only when the pressure on the bottom
exceeds that on the lid. Assuming that the vessel is a weightless box in the form
of a parallelepiped with a bottom area S the weight of the gas is

P = S[p(0) — p(H)] = SKT[n(0) — n(H)). (1.5.3)

On the other hand, the gas weight is the product of the total number of
molecules in the vessel and the molecular weight which is mg at reasonably
small heights H:

H
P = mgN = mgSJ n(z)dz. (1.5.4)
0

Since the identity

H
mg L n(z)dz = kT [n(0) — n(H))

is valid at any H,n(z) must satisfy the equation

dn mg
The solution of this equation
mgz
n(z) = n(0) exp [—7&;—} (1.5.6)

contains the integration constant n(0) which is the gas density at the bottom of
t}}f vessel. Substituting (1.5.6) into the normalization condition
Iy n(z)dz = N/S determines n(0) to be

g [l—exp (—%{H_l. (1.5.7)

With mgH < kT (not very tall container or rather high temperatures) the gas
density n(z) =~ n(0), that is, it is practically uniform over the whole vessel, just

n(0) = g

3l
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as in our everyday experience. However, when mgH > kT, the decrease in
density with height becomes noticeable.
Conditions of the type

mET _ Leo (1.5.8)

are typical for statistical physics. They represent a competition between deter-
ministic mechanical action (in the given case, the gravitational force) and
chaotic thermal motion. The gravitational force tries to make all molecules
fall to the bottom of the vessel, while the thermal kinetic energy enables them
to overcome the gravitation and move upwards. The dimensionless exponent
(1.5.8) defines the relative magnitude of the two effects which is determined by
the ratio of the corresponding energies: mgH and k7. Concentration of a gas at
the bottom of the vessel may take place only when 7'« 7.. At H = 1 m the
characteristic temperature 7, =mgH/k=~5- 1072 x 10° x 102/1.4 x 10716
~ 3 x 1072K. As a rule, the gaseous phase cannot exist at such low tempera-
tures. Therefore the space inhomogeneity of a gas in a vessel of real size at a
usual temperature 7' >> T, is insignificant and should be taken into account
just for the correct definition of the gas weight. One may hope to detect the gas
inhomogeneity in a taller vessel, but from the same formula it follows that at
room temperature a noticeable decrease in density (by a factor of ) is observed
at H = kT/mg = 1.4 x 107'¢ x 300/5 x 107 x 10* = 10°cm = 10km.
Obviously, it is impossible to imagine such a vessel but this suggests another
possibility: comparison with the Earth’s atmosphere.

The decrease in atmospheric density with height is a well-known fact. If it
could be described by Eq. (1.5.6), then the corresponding pressure fall would be
defined by the “barometric” formula

mgz}

T (1.5.9)

p(2) = p(0) -exp -

It is also seen from Eq. (1.5.6) that the separation of gases with height, which
actually happens, is due to different molecular weights

" % exp [ﬁ’%&] (1.5.10)

Good qualitative agreement between these conclusions and well-known
facts suggests an attractive idea: to use the above formula for the quantitative
description of the composition and density of the atmosphere at different
altitudes. However, such an extrapolation is not quite adequate. The approx-
imate law F = —mg used to describe the action of the gravitational force is not
valid at high altitudes. It should be replaced by Newton’s law of gravitation.
According to this law
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R mM 1 1
U = fJRD T dr = fmM (Fo_ﬁ)' (1.5.11)

It has not yet been made clear, however, how this can be realized. The dis-
tribution of particles far from the Earth’s surface is not one-dimensional, but
has a spherical symmetry. Thus before employing (1.5.11), it is necessary to
generalize the results obtained.

1.6 THE BOLTZMANN DISTRIBUTION
As the gas density at small height z is

n(z) = dN(z)Sdz = (N/S)dd—I;V,

the one-dimensional distribution of particles may be obtained from Eq. (1.5.6):

n(0)S mgz 1 mgz
dWw(z) = (N) exp {—k—i} dz = — €XP {_k_g;“} dz, (1.6.1)

where Z = N/n(0)S. This is the probability to find a molecule in a layer of
thickness dz. Though this distribution is obtained for the particular potential
energy u(z) = mgz the form of the distribution density

u(z)
Z) = S eXp |—=+ 1.6.2
16 = oo |52 (162)
indicates how to generalize this for other forms of »(z). In particular, it is clear
that even in the case considered, the reference system does not necessarily
coincide with the most convenient one where the z axis is parallel to the
force of gravity. Thus in the general case, the distribution (1.6.1) takes the form

1 1
dW(x,y,z) = — €Xp [— %} dxdydz = — ©XP [— %} dr.  (1.6.3)

It differs from the Maxwell distribution only in that the potential energy plays
the role of the kinetic energy and dr is the element of volume in ordinary
coordinate space, not in the space of velocities. This is the Boltzmann distribu-
tion.

By analogy with Eq. (1.4.3), for a spherically symmetrical field it may be
represented as

1
dW(R,0,¢) = — exp [— %;—)} R*dR sin 0dfdep, (1.6.4)
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where Z = [exp[—u(R)/kT |dR. If we are interested in the composition of gas
in the near-Earth layer of thickness AR, it is natural to employ (1.6.4). If the
variation of density or pressure is of interest, we pass from the probability
distribution to the density distribution and get the analog of the barometric
formula

_ NaW(R) N uy
nR) = L RaR ~Z P ('k*T> =

= n(0) exp [—ﬁ:—;/[ (RLO - %)} (1.6.5)

Thus knowing the density near the Earth’s surface, we could, in principle,
estimate its variation with height. Unfortunately, any conclusions on the
Earth’s atmosphere density following from (1.6.5) are substantiated only qua-
litatively. Quantitative agreement is impossible, at least, for the reason that Z
diverges. Besides, the atmosphere is not in thermodynamic equilibrium. Its
temperature near the Earth’s surface differs from that at different altitudes,
while in equilibrium it must be the same at all points of space. The difference in
temperature is responsible for convectional gas flows (winds), heat exchange
among neighboring layers and other phenomena incompatible with equili-
brium. So this example is not perfect for a quantitative verification of the
theory.

However, nature has indeed provided systems which are, on one hand, much
more convenient from the experimental standpoint, and, on the other hand, are
adequately modeled by the ideal gas. These are so-called suspensions or emul-
sions: solutions of noninteracting solid or liquid macroscopic particles, sus-
pended in a transparent solvent. The fact that small particles of this kind
perpetually move around in a random manner was first observed by Brown,
a botanist, in the nineteenth century. Brownian motion is caused by random
collisions of the small particles with molecules of the solvent. They alternately
gain or lose momentum due to unbalanced collisions with molecules from all
sides. As a result the Brownian particles participate in thermal motion along
with the solvent molecules themselves in spite of the difference in size. In
studies of such properties as distribution with height this difference is not
essential; only the mass of dissolved particles is of importance. The mass
may be chosen such that the distribution inhomogeneity can be easily observed
in a vessel of moderate size.

Since a particle with mass m and density p suspended in a liquid of density
po experiences a buoyant force its weight in solution is mg — mgp,/p. Therefore
the analog of the barometric formula for Brownian particles is

n(z) = n(0) exp[—% (1 —@)] (1.6.6)
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Random motion of Brownian particles and their distribution with height has
defied any explanation other than that given above. Thus the quantitative
study of such systems performed by Perrin, in particular, the experimental
verification of barometric formula (1.6.6), were a real triumph of both atomic
and statistical theory, and finally led to their acknowledgment as the valid
theories. Moreover, owing to Perrin’s measurements the Avogadro number
Ny = R/k was first determined to high accuracy using

= @5 __p_O Zy — Zy
- T <1 p) In[n(z;)] ~Infn(z)] (1.6.7)

The Boltzmann constant was found from Eq. (1.6.7) by calculating the particle
density at different heights, then measuring the particles’ mass by several
methods to obtain the exact value.

As soon as k is known, the inverted problem may be solved with the same
formula (1.6.7). This is the problem of the determination of small masses,
which is of practical interest. The smailer the masses, the greater the distances
that are required to reveal the difference between them at a given accuracy of
density measurements. Since the height of the vessel is restricted, essential
progress can only be achieved by enhancing the potential field. This aim is
achieved by replacing the gravitational field by that of centrifugal force
F = mw?r, which can be extremely strong in modern centrifuges. With this
replacement, Perrin’s method has become a technique which is extensively
employed in chemistry and biology as an effective way of separating substances
similar in molecular weight.

With the centrifugal potential

R 2 p2
u = - J mtrdr = — 72 R , (1.6.8)
0 2
the Boltzmann distribution is of the form
AWR) = + ex m ol R (1.6.9)
= Z P T ’ >
or, in cylindrical coordinates,
1
dW(R,p,z) = Eexp[BR2] RdRdpdz | (1.6.10)

where B = mw* /2kT. For example, we centrifuge milk and wish to determine
the number of oil particles in a layer of the thickness AR. The best way is to
integrate the distribution (1.6.10) with respect to ¢ and z. However, if one is
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interested in the density of particles it is better to proceed from Eq. (1.6.9)
bringing this distribution into a “barometric form”

_NdW N

n="m ~zl

BR*] = n(0) exp[BR?] . (1.6.11)

The greater the angular frequency of rotation w, the more inhomogeneous is
the distribution of particles along the radius: the density at the periphery
increases and that near the rotation axis decreases.

1.7 CANONICAL DISTRIBUTION

If one wishes to know the velocity of the molecule and at the same time its
position, the answer is given by the product of corresponding probabilities—
(1.4.1) and (1.6.3):

1
dW(r,v) = dW(r)dW(v) = zexp | — £ dxdydzdv,.dv,dv, 1.7.1
zZ kT 4

where £ = € + u = mv*/2 + u(x,y, z) and

3/2
Z = ZyZs= J e—mv2/2devJeAu/der - (—m—) e PTGy
2nkT

(1.7.1a)

This is the Maxwell-Boltzmann distribution defined in so-called p-space, the
six-dimensional configurational space parametrized by the six coordinates
X,¥,2,Vx, Uy, ;. The Maxwell and Boltzmann distributions are obtained from
this distribution as particular cases by the familiar summation procedure

aw(y) = ”JdW(r, Vdr,  dW(r) = J“dW(r, v)dv . (1.7.2)

The Maxwell-Boltzmann distribution (1.7.1) gives a complete description of
the translational degrees of freedom, which is quite sufficient in the case of
monoatomic gas. However, for molecules, it is desirable also to know the
probability of their rotation and orientation, energy of vibration, and so on.
Hence, many other distributions may be required.

Generalizing Eq. (1.7.1) by induction, one can expect that the distribution
applicable to various motions of the molecular system is similar in form to
(1.7.1):

1 &
) Z\4dr 1.7.
aw Zexp( T)d , (1.7.3)
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where £ is the total energy. It is necessary only to adjust the space element I’
to the product of the coordinate increments associated with a definite type of
motion. However, as we have already seen, the element dI" has different sta-
tistical weights depending on the coordinates chosen to describe the motion. In
order to determine its value, it is sufficient to calculate the statistical weight in
some particular coordinate system. Then, by changing variables, we shall auto-
matically obtain it in other coordinates. For example, one may find a coordi-
nate frame in which the statistical weight is equal to unity, that is, indicate the
phase space where the probability of entering isoenergy elements of equal size is
identical. In other words, one should determine coordinates in which incre-
ments constitute equivalent ‘“‘rooms,” but not “stories” of different capacity.
Formerly, this problem seemed obvious. Equal elements of Cartesian space
dxdydz were naturally considered equivalent, while the similar elements in
spherical coordinates drdfdyp, were weighed correspondingly. Nevertheless,
this was just a hypothesis; generally speaking it might be quite the reverse.
This is our belief that only equal elements of real physical space are indistin-
guishable and therefore equiprobable.

Unfortunately, obvious things hide misunderstanding and confusion, parti-
cularly when they serve as a basis for generalization. What seems unquestion-
able in the case of ordinary coordinate space is not so evident even in the space
of velocities, to say nothing of rotational or vibrational motion. Thus relation
(1.7.3) becomes a law only after the element 4l is exactly defined.

For reasons to be clarified in Section 1.10, the probability of entering equal
elements is considered to be identical only in the phase space of canonical
variables ¢g; and p;, which are generalized coordinates and momenta. It is
known from mechanics that when the generalized coordinates ¢; and the cor-
responding velocities §; = dg,/dt are chosen, the generalized momenta may be
found by the formula

_ O0L(gi,qi) _ Ole(qi, §:) — u(qi; 4]
pi = 9, = a, . (1.7.4)

Here € is the kinetic energy, u is the potential energy, and L = e — u is the
Lagrange function.
The value 4I" in the canonical Gibbs distribution (1.7.3) is

dr = dpdq = [[ dadp; , (1.7.5)

so the statistical weight is equal to unity only in coordinate-momenta space.
Hence, for a system of noninteracting point masses the Gibbs distribution is of
the form

1 €+ u
dW = — exp [_W] dadp (1.7.6)



1.8 DIELECTRIC PROPERTIES OF GASES 27

where [ dW =1, so

Z = gpe " dqdp . (1.7.7)

Substitution of p; = mq; = mv,; reveals the identity of this distribution and the

Maxwell-Boltzmann one. The constant statistical weight »° is not essential,

because it may be excluded by renormalization of the partition function Z.
The formula

dT' = dpdq = |I|dadb . (1.7.8)

enables one to transform the canonical variables used in the Gibbs distribution
to any other system. The Jacobian [ of this transformation defines the statis-
tical weight in the new variables. Should we need a more specific form of the
distribution free of unnecessary variables, the particular expression for the
statistical weight is obtained by integration with respect to “‘unwanted” vari-
ables.

1.8 DIELECTRIC PROPERTIES OF GASES

Generalized Coordinates and Momenta

To illustrate the application of the canonical distribution to some system, we
consider a linear rotator—a rigid diatomic molecule whose atoms carry alter-
native charges +e. Such a molecular dumb-bell (Fig. 1.8) is characterized
(apart from the mass M = m; + m,) by two more constants—the moment of
inertia in the center-of-mass system I = mlr% + myr} and the permanent dipole
moment q = e(r, — r;) = e(r, + r1)a where a=r,/r, = —r;/r;. Accordingly,
its kinetic energy along with the energy of translational motion involves the
kinetic energy of rotation

'2 2 I
= 2 T2 Eaz (1.8.1)

~

T, T,

Figure 1.8 Configuration of masses and charges in a diatomic molecule relative to the center of
mass.
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and potential energy depending on the orientation of the dipole in an external
electric field E,

u = —qE=—¢q.E=—qEcosf. (1.8.2)

Since the potential energy is easily expressed via the angle 6 between the dipole
and the field, it is natural to choose as generalized coordinates the two sphe-
rical coordinates § and  with respect to the molecular axis. In this case the
kinetic energy should be expressed as a function of the generalized velocities 8
and ¢. The coordinate space of the linear rotator and the space of its general-
ized velocities are two-dimensional.

Let us bring the origin of coordinates into coincidence with the molecular
center-of-mass. In this frame the translational motion vanishes The radius-
vector

a = (asinfcosp, asindsing, acosb) (1.8.3)

completely represents a molecule in this reference system. It circumscribes a
sphere about the center-of-mass, each point of which is a possible state of the
system. To be more exact, this is a set of states coincident in position but
differing in the rotational velocity

a = a(écos&cosgn—g’:sin&singr, 9cosﬂsin<p+<,bsinﬁcos<p, —ésinﬁ)

Squaring this expression and substituting it into (1.8.1), we have
I S P
€rot = 5 [6° + sin® 6 7] . (1.8.4)

Using this result in (1.7.4) and bearing in mind that the potential energy does
not depend on # and ¢, we derive

Do = Isin® 9 ¢, ps = 10. (1.8.5)

The generalized momentum p,, corresponds to rotation about the z axis, and p,
to rotation about the axis perpendicular to the plane passing through the z axis
and the instantaneous position of the molecular axis. As is seen from Eq.
(1.8.5) and Fig. 1.9, at a given velocity ¢ the angular momentum p,, is the
function of 6, and at 6 = 0 it is equal to zero. Thus, unlike py and 6, the ratio
between generalized momentum p,, and generalized velocity ¢ is not a con-
stant.
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Figure 1.9 Components of angular velocity and momentum in spherical coordinates.

Probability Distribution

According to the Gibbs canonical distribution it is essential that
dT' = dbdpdpedp, (1.8.6)

but not dddpddde. In view of (1.8.2), (1.8.4) and (1.8.5), the total energy in
canonical variables is as follows

2 2
_ P Py

= + —gEcos6 . 1.8.7
20 2usine 7 (1.8.7)

£ (9) ¥y Das pgo)

Now the distribution (1.7.3) can easily be made more specific. Using (1.8.6) and
(1.8.7), we put it into the form

1 P Py qE
_ - = 0\d dody .
dW(0,0,pp,P9) = ZoXp |~ 55 SETETg +37C0s Ipedp ,dod

(1.8.8)

The partition function is
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7(Py)

) Py
Figure 1.10 Distribution of angular momentum components at different orientations of the
molecular axis given by ©.

872 I(kT)* . . (qE
Z = T sinh (ﬁ .

According to (1.8.8), the probability of finding a certain value p,, depends on 6.
This is quite natural: the smaller the angle 6, the less probable are large values
of p,. At 6 =0, all p, are improbable, except zero (Fig. 1.10).

Now we express the distribution of molecules in terms of generalized coor-
dinates and velocities. In view of (1.8.5)

o1 19*  Isin®0y°
dW(ev%W):z""P[‘m‘W+
qE 2 .2 <.
+ 5 cos | I sin® 6abdpdfdp, (1.8.9)

where p(6, ¢,6, ) = *sin® 4 is the statistical weight, which is not equal to
unity in these variables (in contrast to canonical ones) and could not be
inferred beforehand.

If we are interested in the dipole orientation rather than in the rotation rate,
then, following the routine procedure, we have

. «
T drsha

dw(8,p) = J J dw (8, v, pe, p,) e sin 0ddyp , (1.8.10)
pe Jp

©

where o = qE/kT. For a > 1, significant deflections of the molecular axis
from the z axis are highly improbable, while at o < 1, all directions are almost
equiprobable (Fig. 1.11).
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o1 a>1

Figure 1.11 Distribution of dipole moments related to the extermnal field E at (a) high and (b) low
temperatures.

Electric Polarization

Let us calculate the equilibrium polarization of a gas in an electric field, which
is the average dipole moment per unit volume

Q = Jqdn(q). (1.8.11)

The average number of molecules with a given orientation of the dipole
moment q contained in the unit volume is

dn(q) = ndWi(0,p) . (1.8.12)

Due to the axial symmetry of the dipole moment distribution (1.8.10), the mean
values of the transversal components of the dipole moment are equal to zero,
and the problem reduces to the averaging of the longitudinal component

0 = nqj J cos 8dW (8,¢) = nqL{a), (1.8.13)
0 Jp

where L(a) is the so-called Langevin function

a>1
Lia) = @ _

l_e"+e_a_l Va
T sha a e*—e® a \

(1.8.14)

W R =

akl’
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Thus the equilibrium polarization of the gas is parallel to the applied field, and
its absolute value is a function of the field and temperature. So the two limiting
cases may be distinguished

Q:W%=%%¥E:xE at a<l; (1.8.15a)
Q = gn at a> 1. (1.8.15b)

At rather high temperatures, or, correspondingly, low fields, the polarization is
linear in the field and the quantity

q2

- 91 18.16
T ( )

X

is called the electric susceptibility per unit volume. At low fields the excess of
dipoles lined up with the field is fairly insignificant, but increases in direct
proportion to E. In this case, the linear field theory, or linear optics, is said
to be valid, if we deal with alternating fields. Retaining the components quad-
ratic in £ in a power expansion of the Langevin function gives rise to the effects
of nonlinear optics. Finally, at very strong fields (« > 1), almost all molecules
become orientated with the field, and further increase of E has practically no
effect on the polarization (“‘saturation effect”). In ordinary fields and at room
temperatures this case is realized only rarely. As a rule, § = xE, where Y,
according to (1.8.16), increases in inverse proportion to the absolute tempera-
ture (the Curie law).

1.9 REAL GAS

With the advent of the Gibbs distribution, the problem with the ideal statement
may be considered to be solved. All properties of a gas consisting of noninter-
acting particles are rigorously described by it, however complicated the struc-
ture of an isolated molecule.

Intermolecular Interaction

However, as soon as intermolecular interaction is taken into account, the
situation becomes different. The ideal gas equation of state pV = RT is not
observed to be a universal law. Even real gases do not strictly obey it. In fact,
there are as many equations of state as there are gases, since the interaction is
specific for each particular kind of molecule. Any general regularity can be
inferred only from a rough, idealized model of actual intermolecular interac-
tion. The simplest and most general model of an angle-independent interaction
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is that involving only two parameters: one for mutual attraction, and the other,
for repulsion of molecules.

The mere existence of condensed phases of a substance—liquids and
solids—suggests that at low temperature molecules are bound together by
attraction forces. However, mutual attraction prevailing at remote distances
gives way to repulsion at very close proximity. The origin of repulsion is even
easier to understand than that of attraction. When molecules approach one
another up to their “eigenvolume,” further approach encounters stiff resis-
tance, since it can result in the deformation of the molecules’ structure or
atomic shells. A quantitative measure of this resistance is the potential energy
of interaction u(r). It abruptly increases after passing through the minimum at
r = gy where attraction and repulsion forces balance, then changes sign at r = d
and tends to infinity (Fig. 1.12). The approach of one molecule towards the
other becomes energy-consuming as soon as their centers come closer than d.
Thus the interaction law can be simplified assuming that at the distance d a
molecule encounters a potential wall. This is equivalent to assuming that the
molecules can be modeled as rigid impenetrable sphere of radius d/2. The only
advantage of such a simplification is that we can easily allow for the
“eigenvolume” (or excluded volume) of molecules vd:%(d/2)3, neglecting

REPULSION
T POTENTIAL wALL

Figure 1.12 Actual intermolecular potential (solid line) and its approximation within the model of
attracting hard spheres (dashed line).
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the details. This is just the acknowledgment of the fact that the molecules are
particles of finite size rather than point masses. The derivation of the van der
Waals equation is based exactly on this idealization of molecules as hard
spheres attracting one another.

Repulsion

First let us see what we obtain by making allowance for the molecules’ eigen-
volume. Consider one molecule as a point mass, and all the other molecules as
hard spheres of radius d (Fig. 1.13). In our previous discussion, a point mass
could be found at any point in space, while now a part of the space is excluded,
equivalent to a total volume of spheres of doubled radius. Since the volume of
such a sphere is 8v,, then in any cubic centimeter very remote from the vessel
walls the fraction of excluded volume is 8v,4n, while that of accessible volume is
1—8vz. Thus in the vessel of a volume V, the total free volume is
Vi=V(l-8usm). In the elementary volume 4V the free part is
dVy=dv (1 — 8yzn).

Since penetration into the occupied part of the space is impossible, only
equal elements of the free part are occupied equiprobably. In other words,
the probability of finding a molecule in any space element free of other mole-
cules is dV;/ V. So far, this makes no difference, since the total volume and its
unoccupied part are related in the same way: dW = dV;/V; = dV/V. However,
for elements in the immediate vicinity of the walls the relationship between dV
and dV is somewhat different. Since the molecules are actually hard spheres
with the radius /2, none of them including the chosen one can approach the
wall closer than d/2. Therefore only semispheres presented inside the vessel
constitute the excluded volume inaccessible near the wall while the opposite
semispheres are of no importance. Each molecule in contact with the wall
reduces the free part of the space by half as much as the molecule inside the
volume (Fig. 1.14), namely, 4v,. If the corpuscular density in the neighborhood
of the wall is n, in each near-surface unit volume just 4n.v, is filled by the
matter, while the remaining part is a free volume dV,=dV(l —4dyn).

SELECTED MOLECULE

Figure 1.13 Excluded volume in a collision of hard spheres (shaded).
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Figure 1.14 Excluded volume near the wall and in the interior of a gas container. The layer of
width d/2 is unavailable to the ccnter of any molecule.

Accordingly, the probability of finding a molecule near the surface is somewhat
greater than that away from it.

dv, 1—4yg dV
V1 —=8uym V

For this reason we have to distinguish between the near-surface density #, and
the average density n = N/ V. Obviously,

NdW, 1 — duyn,
v 1-8uym 7

SO

n

s = 1—41/dn ’

(1.9.1)

The near-wall increase in the particles density also affects the pressure applied
to the wall

(1.9.2)

This is essentially the simplest estimate of thermal pressure of hard-sphere gas
p=UnkT. Since T'=1/(1 —4vyzn) > | at v;#0 the real gas pressure is
greater than that in the ideal gas (point mass) model.

Attraction

If one takes into account now the mutual attraction of molecules, the opposite
results are obtained. Consider a molecule far from the wall that is being
attracted by each molecule nearby. Such a molecule is thrown from side to
side, since the resultant of the attractive forces varies randomly in magnitude
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Figure 1.15 The resultant attractive force (near the wall and inside the gas container) and its
potential u(z).

and direction. However, the time-averaged force is equal to zero, because
the molecule is pulled in different directions and none of them is preferred
(Fig. 1.15).

However, a molecule near the surface experiences attraction only from the
inside of the vessel, because the wall is still considered as ideal. Thus, despite
fluctuations, the time-average resultant of attractive forces differs from zero.
Due to symmetry, this average force must be perpendicular to the wall and
directed inward. As a molecule moves away from the wall, the direction of the
force remains the same, while its magnitude decreases and, eventually, goes to
zero. At any point the average force is the increasing function of the density of
molecules whose collective efforts draw a periphery molecule inside the vessel:

f=zn. (19.3)

The coefficient v(z) must be equal to zero deep inside the vessel (with z — o),
but increases monotonically when the wall is approached, reaching its max-
imum at z = 0. As with any other field, this field of average force may be
associated with a certain potential going to zero away from the walls

u(z) = n JOO Y(z)dz . (1.9.4)

The distribution of molecules in such a field is described by the barometric
formula:
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(o9}

n(z) = nexp (- k—”T- J 7(z)dz> . (1.9.5)

Naturally, the gas density decreases approaching the wall, though the precise
dependence is unknown due to the lack of knowledge of v(z). Fortunately, this
is of minor importance. To find the pressure, we need only know the density in
the vicinity of the wall

n(0) = nexp (_ Z—;) , (1.9.6)

which is expressed in terms of the single unknown parameter ¥ = fgo ¥(z)dz.
The quantity yn has the meaning of the “work expended on escaping from the
gas,” that is, the energy spent by a “surface molecule” in overcoming the
coupling forces that bind it to other inolecules inside the gas. The parameter
7 describes the attraction of molecules, just as v, determines the repulsion
effect. It is seen from Eq. (1.9.6) that the pressure on the wall is

p = n(0)kT = nkT exp (— Z—;) .

(1.9.7)
It is not surprising that the pressure is less than that of the ideal gas: attraction
forces acting from inside partly prevent the boundary molecules from striking
the walls.

Equation of State

Equation (1.9.2) is valid for noninteracting hard spheres and Eq. (1.9.7) for
point particles attracting each other. These models can be synthesized so that
both repulsion and attraction will be taken into account. For this purpose it is
sufficient to generalize Eq. (1.9.6) by considering the near-border gas compres-
sion, as was done before for Eq. (1.9.1). Finally, we arrive at

n{(0) n ny
= = i 1-9.8
BT 4w T 1-dum exp( kT ) (19.8)
and, consequently:
nkT ny
_ _mMy 1.9.9
P = T aum e"p( kT) (19:9)

This is the so-called Dieterici equation of state. When the exponent is much less
than unity, one can easily derive, by power expansion of Eq. (1.9.9), the fol-
lowing equation for one mole of gas:
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RT A
_ _ 9.
P=y—F " 2 (1.9.10)

where B = 4N,yv, and 4 = N34. This is the famous van der Waals equation. It
may be represented as

P =D —PDi;

where thermal pressure p, is the same as in Eq. (1.9.2), while the internal
pressure p; = A/ V? accounts for attraction of particles. We will see that
even two parameters, used to take roughly into account repulsion and attrac-
tion, are sufficient to reveal important qualitative features of real gases, includ-
ing their capability to condense into a liquid state.

This phase transition occurs in the region where the van der Waals isotherm
makes a “loop” (Fig. 1.16). Above and below the loop, at any given pressure
there is a single equilibrium state on the isotherm, while within the loop there
are three of them. The side-states correspond to the equilibrium states of liquid
(point) and vapor (circle). The states marked with crosses are in the interior of
the loop, between the minimum and maximum, which is characterized by a
positive sign of the derivative (0p/0V);. These states are unstable. If any
volume fluctuation occurs there, it would tend to develop, thus returning the
system to one of the stable branches of the isotherm (either left or right).

The instability of intermediate states prevents a gradual liquid—vapor
transition, which would correspond to a successive movement along the

P
OVERCRITICAL
REGION
):\
Pe {,‘
Py
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+ /0
VAPOR
40 GAs
oV, vy v

Figure 1.16 Liquid (e), unstable (+), and gaseous (o) states on the van der Waals isotherm.
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loop, including its inner region. Instead, a homogeneous phase decomposes
into liquid and vapor and, thus, transforms into a binary system. When the
pressure exerted on a dense homogeneous fluid tends to decrease at constant
temperature, both phases and an interface appear simultaneously at p = py.
The pressure of the saturated vapor p, remains constant until all liquid is
evaporated. Only after the liquid—-vapor transition is complete does the system
again becomes homogeneous and the gas pressure starts to fall upon expan-
sion.

The homogeneous systems may not be distinguished if they are disordered.
One can distinguish between the gas and liquid if only they are the integral
parts of the binary system. The criterion is the density, which makes a “jump”’
at the interface. In Fig. 1.16 this jump is characterized by the difference
between molar volumes, V/; and V. This difference decreases with rising
temperature and goes to zero once the critical temperature T, is achieved.
For all T > T, (overcritical region) the existence of a binary system is impos-
sible and, consequently, liquid and gas are indistinguishable.

For any temperature below critical the liquid is in equilibrium with its vapor
at a distinct pressure py, kept constant on a horizontal “Maxwell shelf,”” that
joins the corresponding states on Fig. 1.16. The vapor pressure may be esti-
mated on the basis of the so-called Maxwell rule (see Eq. (5.6.24) in Chapter 5):

Vv

pv(Vy = Vi) =JV p(V,T)av. (1.9.11)

Thus, py is determined from the equality of the areas below the Maxwell shelf
and the van der Waals loop joining the same states.

The extent to which the van der Waals theory represents the qualitative
features of the behavior of real gases can be judged from Fig. 1.17, which
depicts a family of nitrogen isotherms. They are plotted according to an
empirical equation of state, which is far more complex than the van der
Waals equation but approximates experimental data within the error.
Parameters of the equation are adjusted using data related to stable isotherm
branches (liquid and gas). In the unstable region, one can only extrapolate
these data to it, relying on analytical continuation of well established isotherms
p(V). If the extrapolation is reliable, both branches are linked within the
unstable region, thus demonstrating a behavior typical for the van der Waals
loop. This was shown to be the case at a few different temperatures below
critical one. Moreover, when estimating the vapor pressure using the Maxwell
rule applied to the restored loops it was verified that p, so obtained coincides
with the experimental one. This is evidence that the van der Waals loop is
something real.

Points connected by the Maxwell shelves lie on curve a (Fig. 1.17), called a
binodal. An ascending branch of the binodal is called a liquid line and a
descending branch a gas line. By carefully expanding a very pure liquid, it is
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Figure 1.17 Nitrogen isotherms at corresponding temperatures 7= T/T.: (a) binodal
(coexistence line), (b) spinodal. The loop for r = 0.92 is hatched. (From A. A. Vasserman
Russ. J. Phys. Chemn. 38, 1289 (1964).)

possible to cross the binodal and move down along the isotherm to approach
its minimum, unless it lands in the negative pressure region. Similarly, it is
possible to advance upwards along the gas branch of the isotherm to its max-
imum. In these cases the homogeneous metastable states of the overexpanded
liquid or supersaturated vapor are attained. Although unstable with respect to
division into two phases they are still realizable. Totally unstable are the inner
parts of the isotherms between the extrema situated on curve b, which is called
spinodal (see Fig. 1.17). While its ascending branch corresponds to a maxi-
mally expanded condensed state, its descending branch corresponds to a maxi-
mally condensed gas state. Metastable states located between the binodal and
spinodal may be also related either to an overbeated liquid or to an overcooled
vapor, provided they are compared with stable phases at the same pressure.
The binodal and spinodal have a common apex at the critical point. The
critical isotherm is bent at this point, and at higher temperatures
(0p/O0V) 7 < 0 all along the isotherms.
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The whole picture is described semiquantitatively by the van der Waals
equation. Positions of isotherm extrema that constitute the van der Waals
spinodal are located by the conventional condition:

o\ _  RT 24 _
(6V)T_ (V_B)2+V3_0. (1.9.12a)

As the temperature increases, the extrema come closer to each other and even-
tually merge at T = T, creating an inflection point, which is determined by an
additional condition:

a%p 2RT 64
<6V2>T_(V—B)3_W_O' (1.9.12b)

Using both equations (1.9.12) one can find, within the van der Waals theory,
the coordinates of the critical state:

8 4 A

The last coordinate was determined by substituting V.. and 7T, into Eq. (1.9.10).
All the parameters taken together determine the van der Waals gas compres-
sibility factor at the critical point: p.V./RT, = F, = 3/8 = 0.375. It turns out
to be much higher than the experimental value. For example, for a series of
saturated hydrocarbons F. = 0.267. This value is in much better agreement
with the value found by the Dieterici equation (F, = 0.2706). However, any
equations that use only two parameters can hardly claim to provide good
quantitative agreement with experiment over wide ranges of p and V. Still,
from the heuristic viewpoint these equations are very valuable owing to their
simplicity and transparency as regards the physical sense.

The difference in size of molecules and in the cohesive force between them
has quite a strong effect on the van der Waals parameters and, eventually, on
critical characteristics of real gases (1.9.13). To facilitate and unify comparison
of different molecular media, van der Waals put forward the idea of their
“corresponding states,” which are determined by the following reduced vari-
ables:

T=—, wW=—, T=—. (1.9.14)

With these variables, the van der Waals equation (1.9.10) acquires universality,
independent of the nature of the gas:
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(1.9.15)

This universality is a useful guide for estimating the behavior of dense gases
and liquids. It was formulated as a “principle of corresponding states™: all
substances taken at the corresponding temperatures and pressures also have
the same corresponding density.

As found, the principle of corresponding states is in good agreement with
experimental data despite the fact that the van der Waals equation itself is not
very accurate. In other words, the principle has far wider applications than the
equation it is based on. Isotherms of various gases plotted as functions of the
reduced variables (1.9.14) are, in fact, very close to each other and are nearly
the same for gases having intermolecular interactions of the same type.

Compressibility Factor

The Hougen and Watson chart shown in Fig. 1.18 was prepared by averaging
data for seven gases (H;, N,, CO, NH;, CH,, CyHg and C5H,). It depicts
the isothermal pressure dependence of the gas compressibility factor,
F=pV/RT. A modern analog of this chart for N, is shown in Fig. 1.19.
The latter gives an idea of isothermal behavior of F( p) over much wider ranges
and, in addition, for both gas and liquid states.

On these charts the ideal gas is presented by a single point: p =0, F= 1. All
isotherms begin from this point corresponding to an infinitely rarefied state,
but behave differently as the pressure increases. For high-temperature iso-
therms the compressibility factor increases from the beginning. For low-tem-
perature isotherms it first decreases and undergoes a sharp jump downwards
upon gas liquefaction and only then tends upwards, returns to its starting value
F =1 and eventually exceeds it. This is because attraction makes compressi-
bility smaller, while repulsion enhances it. With increasing temperature or
pressure the role of repulsion increases and finally becomes dominating even
if initially it was relatively low.

To make these arguments more concrete let us present the van der Waals
compressibility factor as density expansion in the vicinity of the ideal gas state:

1 A B—A/RT  (B\®* (B\’
F= —~ = = =)+ 9.
EV RV Tt (V> +(V> + (1.9.16)

This form of the van der Waals equation can be regarded as a particular case of
the virial expansion:

B
F=1450 4 o

Dy
% "V—z'f‘ﬁ—f-..., (19.17)
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Figure 1.19 The contemporary Hougen—-Watson chart for nitrogen.

whose coefficients are expressed in terms of intermolecular forces (Latin vires).
Generally speaking, each of the coefficients depend on the forces of attraction
and repulsion. However, within the approximate van der Waals model it is the
second virial coefficient alone that takes care of both forces. This coefficient is
defined as:

A
By = B—-—. 1.9.18
: = (19.18)

The competition between attraction and repulsion affects not only the value,
but also the sign of the coefficient, which determines the isotherm slope at
p=0:

B, B,
Fxl+—=x14+— t 1—-F 1. 9.
+V +RT‘D a | | < (1.9.19)

The second virial coefficient is equal to zero at the so-called Boyle’s tempera-
ture. Within the van der Waals theory this is:
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A

Tp = —— .
2~ BR

(1.9.20)
Below Boyle’s temperature, upon isothermal compression of a real gas the
compressibility factor first falls. Above Boyle’s temperature the compressibility
factor increases from the very beginning to the very end.

On inspecting Figs. 1.18 and 1.19 one can easily see that below Boyle’s
temperature the compressibility factor equals unity at two points of any iso-
therm. One of the points, which is common for all isotherms, corresponds to
the true ideal gas state at p = RT/V — 0, when both van der Waals corrections
are equal to zero. The second point corresponds to a “pseudoideal” state. In
this state both corrections are significant, but are equal and opposite in sign
and so cancel one another. As a result, one obtains again pV = RT.
Pseudoideal states correspond to the points where isotherms cut the line
F=1. Their abscissae depend on the temperatures (both on pressure and
density scales).

The locus where gas becomes pseudoideal is the ““ideal gas curve,” or the
“orthometric curve.” The latter notion was originally introduced by
Batschinski. Assuming F =1 and taking into account the definition of
Boyle’s temperature one can readily derive from the van der Waals equation
the corresponding equation of the orthometric curve:

1 - B/V=TgT.

From this it follows that density on the gas orthometric line falls linearly with
increasing temperature:

No T 1 T

This surprising and impressive linearity (see Fig. 4.16) discovered by Batsch-
inski in 1906 was a subject of intensive studies made in the last century's six-
ties and seventies by Vasserman, Nedostup, Burshtein and Shokhirev. Quite
recently this phenomenon was subjected to a new investigation by Fersch-
bach et al. who gave it a new name: "Zeno line".

Along this line the pressure changes parabolically:

p:nkT:—RE]: (1 ——Tg) . (1.9.22)

It is seen that the orthometric curve p(T) is a parabola with an apex at the
point T/2. The maximum orthometric pressure is

RT; A
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Figure 1.20 Nitrogen orthometric (“ideal gas") curve. The coexistence line (binodal) shown in
the lower part of the graph comes to an end at the critical point C.

These conclusions of the van der Waals theory are in excellent agreement with
experimental studies of orthometric curves of noble and molecular gases, which
condense in “‘simple liquids” (see Chapter 4). Fig. 1.20 shows a nitrogen ortho-
metric curve, plotted using the most reliable experimental data of different
authors. The curve is, indeed, parabolic along the whole length. Everywhere
under this curve attraction forces dominate over repulsion, while above the
situation is opposite. The liquid—vapor coexistence curve that ends with a
critical point is deep inside the region where attraction plays a governing role.

The fact that the pressure, where pseudoidealization occurs, first increases
with temperature and then falls is seen on close inspection of Fig. 1.19. Taking
into account that near the orthometric maximum the pressure changes only
slightly, one can expect that a few isotherms having temperatures close to 75/2
will pass through pseudoideal states under nearly the same pressure. Due to the
selection of exactly such isotherms for the Hougen—Watson chart (Fig. 1.18), it
appears that they cross in at a common point. Apparently, the abscissa of the
intersection point is nothing else but p)—the maximum orthometric pressure.

With relation (1.9.13) it is possible to obtain the following estimates of
typical orthometric curve parameters:

27 27
TB = — ch Do = 'ch . (1924)

However, empirically, the actual Tp/T, ratio is close to 2.64 rather than to 3.37
as follows from (1.9.24). It is exactly for this reason that the temperature of the
orthometric maximum is very close to the critical temperature: 75/2 = 1.3 T,.
Similarly, the maximum pressure, which according to the Hougen-Watson
chart is equal to 8p,, is notably higher than the value obtained from (1.9.24):
po = 6.8 p.. However, one should not expect better from the van der Waals
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equation, which uses only two parameters and is quantitatively valid for only
low pressures.

1.10 BASIC IDEAS OF STATISTICAL THERMODYNAMICS

The above derivation of the van der Waals equation is possible due to the
essential simplifications of the intermolecular potential. In any attempt to do
it more rigorously and accurately we have to deal with actual interactions of
particles, in which it is difficult or even impossible to separate attraction and
repulsion. Fortunately, there is an alternative method which leads to a stan-
dard recipe for the calculation of thermodynamic properties of macroscopic
systems with arbitrary interparticle interactions. This method was advanced by
Gibbs.

The Gibbs Ensemble

The main idea was to consider N interacting particles as a unit rather than
separately. To define the “‘gas state” as a whole, we need now to specify the
positions and momenta of all N molecules. Formerly, the “state” was defined
by the six variables (coordinates and velocities or coordinates and momenta) of
a single molecule; now we need the 6N variables of all molecules in the given
volume. To specify 6N numbers means to indicate the point in the 6 N-dimen-
sional configurational space (“T- space’) that defines the state of the entire gas,
while the point in the ordinary 6-dimensional ““u-space” specifies that of one
particle only.

In fact, in moving to the I'-space terminology we can define by one point in
I-space the distribution of N points in g-space. This distribution is not, how-
ever, the Maxwell-Boltzmann distribution. For an arbitrarily chosen point in
I'-space, the distribution of particles corresponds to an instantaneously
“photographed” gas state. Some time later, the state is changed and is there-
fore associated with another point in I'-space or with another distribution of
particles in p-space. The gas as a mechanical system develops in time: the
particles move, change their position, and, upon collisions, their velocity.
The system passes through a series of states lying on a trajectory in I'-space
(Fig. 1.21a). In u-space distributions permanently change from one to another.
To illustrate this, consider, for example, the energy distribution in p-space (Fig.
1.21b). A given point in I'-space corresponds to one distribution, another point
to another distribution, and thus Maxwell’s f may be found only by exhausting
all trajectory points, that is, by averaging over all possibie distributions. It is
easily seen that this procedure is similar to the determination of the average
pressure (see Section 1.1). Each state of the system is associated with a certain
pressure F(7)/S that oscillates randomly in time about its mean value (Fig.
1.21c). Similarly, the instantaneous distribution of molecules in a gas differs



48 GASES

f 2 7 b
3
3
F(t)
5 1 €
J
Pl S - >
v ﬁ
2 S

Figure 1.21 (a) The points of the trajectory in I'-space, (b) the corresponding energy distribu-
tions, and (c) pressure acting on the wall at successive moments of time 1, 2, and 3.

from the time-averaged distribution which is the only appropriate one for a
description of the system’s equilibrium properties.

How can we find the time-averaged distribution? Before averaging the dis-
tributions, it is necessary to know the frequency of their realization, that is, the
probability that the system will find itself at one or another point in I'-space.
This is the statement of the main problem of statistical mechanics. To clarify,
let us imagine, as suggested by Gibbs, a collection of identical systems—an
“ensemble” of identical boxes containing the same number of identical parti-
cles. Obviously, while the macroscopic gas state is the same in each of them, the
microscopic states of the ensemble’s systems do not necessarily coincide: each is
associated with a different point in I"-space. How can one find the equilibrium
distribution of these points in I'-space?

Microcanonical Distribution

Some information on the form of this distribution may be obtained from the
fact that all points representing these systems in I'-space move along the cor-
responding phase trajectories. We want the result of any averaging over the
ensemble to be time-independent, as this is just what happens under equili-
brium conditions. Therefore, we should require that the density of points in
any ['-space element be constant, despite motion. In other words, the prob-
ability of any microstate realization must be time-invariant. If all systems of the
ensemble are isolated from heat and mass exchange with the environment, their
internal motion conserves energy and they are described by ordinary mechan-
ical laws. By these laws, when in motion, the points in the I'-space of
canonical variables (coordinates and momenta) behave as marked points of
incompressible liquid: their density in a flow does not vary with time
(“Liouville’s theorem”). For everything to be time-invariant, the points must
be distributed uniformly along the trajectory. Then the number of points enter-
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ing any I'-space volume element will coincide with the number of points leaving
it in the same period of time. Thus it is the Liouville theorem that distinguishes
the phase space of canonical variables as unique (between other configurational
spaces). In this space and this space only the distribution over equal isoener-
getic elements is assumed to be equiprobable (see Section 1.7). However, the
Liouville theorem does not define the distribution of points in the phase space
in a unique fashion. To meet the condition of equilibrium, we need only dis-
tribute the points uniformly along each trajectory. However, many trajectories
have the same energy, and it is unknown how the point density will vary from
one trajectory to another.

However, all trajectories are indistinguishable from any point of view. If
isolated, the system has the same energy for any accessible point of I'-space,
that is, all points of I'-space lie on a hypersurface of equal energy. Thus the
only possible distinguishing feature disappears and the only way out is to
assume that all trajectories are equivalent. Therefore, the equal volume ele-
ments of different trajectories must also be equivalent and consequently
equally populated. In other words, the distribution of systems in I'-space
may be reasonably assumed to be completely uniform. Of course, such an
extension of the conclusion following from the Liouville theorem should be
considered as a principle. Its final statement is known as Gibbs’ microcanoni-
cal distribution: an isolated system may be found equiprobably at any acces-
sible state of the prescribed energy £ (between E and E+ AE), while the
probability of finding it outside this energy layer is equal to zero. As usual,
the probability is proportional to the volume of the element 4" where the
system is sought:

d—F:q)dl“ E<E<E+AE,
aw = { Al (1.10.1)
0 E<E E£>E+AE.

Here AT is the complete volume of the I'-space accessible to the system at the
given energy.

Gibbs’ Canonical Distribution

The Gibbs canonical ensemble may be thought of as an ensemble of systems
which are “Gibbs’ boxes” disposed in a heat reservoir. Such systems are no
longer isolated, but have a heat contact with the environment. In each system
the temperature is held constant (equal to that of the reservoir), while the
energy may vary. Due to the energy exchange with the reservoir, the system
is able either to gain or to lose energy, thus moving from one isoenergy surface
to another. As for a microcanonical ensemble, each system always remains on a
single defined surface (within the layer of the thickness AE).
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Therefore the microcanonical and canonical distributions differ in that the
former has no exponential multiplier, while the latter includes this factor:

dw = lexp (— i) dl' = (&} dl, 0< &< o0 (1.10.2)

This has nothing to do with the system’s size. The canonical distribution is
applicable both to an isolated molecule and to the gas on the whole.

In fact the availability of different energies leads to the introduction of a
probability density ®(€) in (1.10.2), which is the exponentially decreasing func-
tion of energy. Even considering it unknown, we can write

dW = ®(&)dT .
However, if the system consisted of two weakly interacting parts, so that
E=E+E& + &n» N= N;+ N,, then the same relation would obviously be
valid for each of them. Assuming them to be independent by virtue of weak

interaction: &£ € &1, &,, it is possible to determine the probability of finding
the entire system in a certain state by the multiplication theorem:

dW(&) = dW(E)dW(E,).
Therefore
()AL = @(&)P(E,)dTdT, . o

As dT" = dT'dT'; and &, is negligible, (&, + &,) = ®(£,)P(E,). By analogy
with (1.2.6), this equation immediately gives

where o = 1/kT and
z = J exp(—E/kT)dT | (1.10.2)

where dI' = dqdp,dq,dp,...dgydpy. A similar distribution for an isolated mole-
cule may be obtained only for an ideal classical gas when £ = Z 1 €. Only in
this case dW = H dW;, so simply summing probabilities we get from (1.10.2)

—e /kT
W _ W _ ¢ " dq.dp,
d (QI:PI) = J2 JNd (1,2,,N) = T, (1103)
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that is, the conventional Maxwell-Boltzmann distribution. This result seems
quite natural, since any classical molecule is a subsystem that interacts with the
gas as with a thermostat, and the Gibbs distribution is well applicable to it.

In the case of an ideal (but not classical!) gas, passing from I'-space to
u-space requires much greater effort and leads to distributions differing from
the Maxwell-Boltzmann one. The reason is that even noninteracting quantum
particles cannot be considered as independent subsystems.

For a classical real gas, a reduction of the type (1.10.3) is impossible for a
different reason. If in total energy

& =%+U(q1, 9 - -,9N) (1.10.4)

U is not ignored, then dW # [],dW,, and it is impossible to describe a real gas
by any distribution in u-space.

Entropy

So we return to the problem posed at the very beginning. Now the distributions
in I'-space are known, but we still do not know how to use them. Even in the
derivation of the ideal gas equation of state, the problem was divided into two
parts: firstly to find the distribution dW{(v), and then to establish the relation-
ship between this distribution and the observed quantity, for example, pres-
sure: p=nm | v2dW(v). This second part until now has remained uncertain.
For an isolated system, we know the volume and internal energy (V and &) of
the gas, along with (1.10.1). In the case of an open system, its volume ¥ and
temperature T as well as distribution (1.10.2) are known. To define the state of
the gas completely, the two known variables must be complemented by a third
one. This need not be the pressure as determined earlier from 7 and V. But,
whatever the third parameter is, it should be calculated from distributions
related to the gas as a whole: either (1.10.1) or (1.10.2) according to the situa-
tion.

Let us vary the gas volume V with either £ = const (isolated system), or
T = const (open system). This will cause a change in the gas pressure and other
characteristic quantities. However, in this process the distributions (1.10.1) and
(1.10.2) will remain unchanged, except for the normalization constants A" and
Z. This suggests that these quantities contain the required information.

For example, for the ideal gas AT’ = [dT" VN, Consequently, a twofold
increase in the vessel’s volume will lead to an increase in accessible phase
volume AT by a factor of 2 and, correspondingly, to a decrease in the prob-
ability density @ of the same factor. The greater the number of accessible
states, the smaller the normalized probability of attaining any one. For an
isolated system the quantity
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AT = de: uudql...de

q I4 V,E=const

is a measure of the macroscopic state degeneration, that is, the number of ways
N molecules with any velocity may be arranged within the vessel, provided that
the total energy of the system is kept within the specified range AE.

If an ideal gas is constituted of molecules of two types, both may be con-
sidered as subsystems with particle number N; and N, (N = N; + N,). Each
subsystem may be in any one of the states of its phase volume ATy or Al',
respectively. The total number of all possible states of the whole system is
determined by the product of these volumes AT = [dT'; [dT', = AT'|AT,.
Hence, the relation between AI' and any additive macroscopic characteristic
of the system must be only of the form

S = kInAT'. (1.10.5)
Only a logarithmic relationship ensures the additivity of
S = klnAF1 + klnAF2 = SI + Sz

when A’ = ATy Al', is multiplicative. However, the realization that S in the
relationship (1.10.5), is the entropy was reached first by Boltzmann. He recog-
nized that entropy is the measure of the system’s disorder. The greater the
number of distinguishable microstates which are compatible with the particular
value of V and £, the greater the entropy.

Fluctuations

It should be noted that not all states of an isolated system can be identified with
the macroscopic equilibrium. For example, if all ideal gas molecules are con-
centrated in a small portion of the vessel, with the equilibrium velocity dis-
tribution remaining unchanged, this state should be considered as a fluctuation
although it is accessible (belongs to AT'). The state when all molecules are
uniformly distributed over the vessel and move with the same velocity
v = (2€/Nm)"? is also a fluctuation.

Fortunately, such states which differ drastically from the average one are
very few in number. For the majority of states, the corresponding distributions
of molecules in the space of coordinates and velocities differ little from the
equilibrium, time-averaged distribution. Due to the huge number of particles in
an isolated system, the number of states of the system which are actually
distinguishable from the equilibrium is a minute fraction of all states contained
in AT'. Thus it makes no difference how the entropy of an isolated system is
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defined: as a logarithm of the number of equilibrium states, or as a logarithm
of all states compatible with the specified ¥ and &, as in Eq. (1.10.5).

Free Energy

In the case of an open system (canonical ensemble) the situation is quite
different. Such a system can find itself in a state with arbitrary energy, that
is, the whole volume of I'-space is accessible to it. Naturally, the entropy
cannot be expressed in terms of the total volume AI' which is infinite, but
solely in terms of the finite part AI', that actually corresponds to equilibrium.
Despite the possibility of an energy exchange with the environment, the open
system is much more frequently found in this part of space than in the rest of it.

The reason for this is that the statistical weight p}é‘) increases sharply with
energy. In the case of one particle it increases as £/2, while in a system of N
noninteracting Particles the degeneration of states with the same total energy
increases as £/, Such an abrupt rise of p(€) competes with the equally dra-
matic decrease of the exponential factor exp(—&/kT). Consequently, there is a
sharp maximum near £ = £, and any significant deviations of energy from £
are improbable (Fig. 1.22). So, by order of magnitude

de - J@(S)sz@(é)AI‘e _ 1,

where AT, = p(£)AE = 1/®(€) is the volume of that part of phase space
where dW/d€ = ®(E)p(€) is essentially different from zero. The definition of

ddi;/ s Th

AE

)

0 £ €

Figure 1.22 The canonical energy distribution for large system.
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of entropy which remains the measure of equilibrium state degeneracy must be
generalized as follows:

S = kln AT, = —kln®(£), (1.10.5a)

For isolated systems the definition of entropy thus generalized is identical to
the previous one, since ®(£) = ®(£) = 1/AT. As for the canonical ensemble
(thermostated systems), substituting ®(€) = exp(—£/kT)/Z yields

F=€E-TS = —kThhZ. (1.10.6)

Here F is the Helmholtz free energy, and the average energy is exactly the
internal energy of the system & (the line above it is omitted here and below).

Computational Scheme

From Egs. (1.10.5) and (1.10.6) we are abie to calculate either the entropy or
the free energy of the system, provided that the corresponding normalization
constants A" or Z are known. With the above formulae we can calculate the
macroscopic characteristics of the substance without determining the distribu-
tions in p-space. That is why this procedure is applicable to both ideal and real
gases as well as to condensed media. In outline it is as follows.

In the case of a microcanonical ensemble, the main problem is the calcula-
tion of the accessible phase volume AI'(V,€) for a multiparticle mechanical
system, provided the number and mass of molecules as well as their total
energy £ and the vessel’s volume ' are known. If this problem is solved,
formula (1.10.5) immediately gives the entropy as a function of the given
variables: S(V,&). Using equilibrium thermodynamics any other macroscopic
parameters may be obtained from this relation which carries the full informa-
tion about the system including the equation of state. In particular, from Eq.
(5.2.36)

TdS = dE + pdV (1.10.7)

it follows that

o€ o€
b= _(W>S’ T = (5§>V, (1.10.7a)

thus both the pressure and the temperature are determined. As is customary in
thermodynamics, the state parameters to be considered constant in differentia-
tion are noted by indices to the right of the brackets.

If the ensemble is described by the canonical distribution, the main difficul-
ties lie in the calculation of the statistical sum Z as a function of the volume V
and the temperature T. This problem is usually a little easier than the previous
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one. Once it is solved, Eq. (1.10.6) immediately yields the free energy F(V, T)
which satisfies Eq. (5.5.8)

dF = —pdV - SdT, (1.10.8)

This then gives information about the rest of the parameters:

R @_If/)T S = - @_J;)V. (1.10.8a)

The results obtained from the microcanonical or canonical distributions are
identical, because the equilibrium properties do not depend on whether the

- system is thermally isolated or not. However, mathematically, estimation of the
statistical sum Z is often more convenient than that of ATL.

Ideal Gas

The validity of these general recipes may be easily verified using the simplest
model of an ideal gas which is well known. For example, let us make use of the
canonical distribution. As £ = 3N | p?/2m, all variables in (1.10.2a) separate,
and upon integration we have

Z = VY QmmkT )M

In view of (1.10.6), we find

F = —NkTIn [(27rka)3/2V] , (1.10.9)
and (1.10.8a) gives
p = -A%T S = kNin [V(27rka)3/2J + %kN. (1.10.10)

In particular, we have attained the aim of the derivation of the equation of
state. The general method gives the required result: p = RT/V. However,
neither free energy nor entropy are proportional to N as must be the case as
when the system’s volume increases with constant density. This is quite a
surprise, because both F and S are additive quantities. One can always run
into difficulties in developing a new theory, but they are particularly undesir-
able at the end of a road which has appeared to be right! Naturally, it is
tempting to overcome this impediment by making some minimal changes.



56 GASES

Identity of Microparticles

To get an idea of the required modifications, compare S from Eq. (1.10.10)
with the Sackur-Tetrode formula (identical to Eq. (5.8.2) of Chapter 5) which
is free of this problem:

S = kNln{% (27rka)3/2} + %kN, (1.10.11)

This differs from Eq. (1.10.10) only by the term —&NIn N/e, that would appear
in (1.10.10) if Z were divided by N!:

Z = % QamkT)*¥? N (1.10.11a)

Using the well-known Stirling formula In Nt =~ N1In N/e, the substitution of
(1.10.11a) into (1.10.6) leads to the additive quantity

F = —NkTln [(27rka)3/2 %/} , (1.10.12)

which in turn yields the correct result (1.10.11). The redefined F as well as S
depend on specific volume v = V/N, but not on the volume itself, so the
paradox is resolved.

However, the multiplier N! may enter Z solely from the canonical distribu-
tion which, therefore, must differ from (1.10.2):

1 £\ dT
dW =  exp (— k—T> - (1.10.13)

Similarly the microcanonical distribution should be modified

dr

W = T M

E<E<E+AE. (1.10.14)

This innovation is well justified. The distributions themselves do not suffer any
significant change; only the absolute weight of each state is redefined.
Therefore if the problems are successfully remedied by this redefinition, the
price is not too high. Moreover, innovations that are useful often prove to be
necessary as well. Here the multiplier N! in fact is a result of the fundamentally
important property of microparticles, discussed in Chapter 5 (Section 5.8):
their “identity” or indistinguishability. Due to this property, there is no mean-
ing in discriminating between states of the system which differ only by permu-
tation of the particles. These are all a single state, because identical particles
cannot be numbered or marked.
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®@|° ®® Oo °
Figure 1.23 (a) Different states of distinguishable particles obtained by permutation and (b) a
single state of indistinguishable particles.

This peculiarity manifests itself even in a system of two particles. If the
particles were distinguishable (like billiard balls), then each configuration
would be counted twice (owing to possible permutation), while if not, then
only once (Fig. 1.23). Another example: after an exchange of apartments the
tenants can always be identified, at least by fingerprints, if not by marked
individuality. However, it is impossible to differentiate among electrons, pro-
tons, or identical atoms. We can say: there are two atoms occupying these two
positions, but not: the first atom is here, and the second there. In calculating
the number of states in I'-space, this specific property of microparticles has so
far been ignored: all states differing by the permutation of N particles (in all,
NY) were considered in 4T as different. To correct this mistake, we now have to
divide the result by N! This is just what was done in (1.10.13) and (1.10.14).

Real Gas

Although in general the procedure is clear, the calculation of particular parti-
tion functions presents considerable problems once we pass to the real gas. The
energy of any real system is composed of kinetic and potential energies. In the
simplest case, the latter is additive with respect to the pair intermolecular
interaction uy = u(q; — q;):

U=> u. (1.10.15)

k>i

The partition function of distribution (1.10.13) is

1 N 5 )

(1.10.16)

This differs from its ideal analogue Z,; defined in (1.10.11a) in the presence of
the extra multiplier, the dimensionless configurational integral

d d d
* - U/kT q; . q; 4N 1.10.17
0 L...JNe Sk D (1.10.17)

that is difficult to calculate. This may be considered as the result of averaging
the integrand over a uniform distribution of N particles in the volume V.
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Denoting the averaging by a bar and taking account of (1.10.15), we repre-
sent the configuration integral as

N-1

dql qu qu
L o 21 . 22 AN _ O, 1.10.18
Q Jl JN E 1 Ir Ir Ir H 1 ( )

where ©; = exp|[— Z,]LM u(q, — q;)/kT| describes the interaction of the ith
particle only with the N — i particles with higher ordinal number. All ©; are
of the same nature: they define the effect produced on the ith particle by its
surroundings. As the arrangement of particles in the space changes, all ©,
fluctuate over the entire range of possible values. At low gas densities the
action of the surroundings on any particle is naturally assumed to be indepen-
dent, that is, the mean of the product is equal to the product of means:

N-1 —1

o =J[e =1]]®. (1.10.19)

i— i
This assumption simplifies further calculations of the configurational integral,
however, it restricts the region of applicability to relatively rarefied gases.
Changing variables to r, = q;, — q;, we have

N
o dq;  dqy
o,=| .. - —q,)/kT | = ...
; Ji JN exp [ k;} u(q —q,)/ } X
~J J exp i u(rg)/kT i1 dry (1.10.20)
—_ es - k T e e e T . . .
i+l N Pt Vv vV
This expression may be presented as the product of equal multipliers:
N = N—i
oy dr dr
- —u(r ) /kT C Tk —u(r,) kT Xk
O; klll J e % “ e VJ )

For scalar interactions depending solely on the distance between particles,
further simplifications are possible:

‘| Vin-i)/V

R 2 N R 2
— 4mr-dr d7redr
o, = —u(r) /T _ 1 J ( “u() /KT 1)
[JO ¢ Vv + 0 ¢ V

(1.10.21)

Here R is the radius of the volume filled with gas. For simplicity, it is con-
sidered spherical. The last expression is given in a form convenient for passing
to the limit V' — oo (R — 00) at constant gas density. This is quite justified,
since the number of particles in the system is macroscopically large. The final
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result must depend solely on the density as a universal parameter, and this is
just what we have upon passing to the limit

©; = exp [N ; ’J:O {exp (—%) - 1}47rr2dr] . (1.10.22)

Substituting this result into (1.10.19) yields

i N(N -1 ©  drrtd
0 zexp[(T)ﬂ} =[O 1) ”;/ T
As N is large
. N2 N2 00 5
Q" = exp S H| = exp EI—/JO flr)daridr| | (1.10.23)
where
fir) = exp <_u_(rz> -1. (1.10.24)
kT

As the distance between molecules increases, the function f{r) tends rapidly to
zero (Fig. 1.24), thus providing the convergence of the integral in (1.10.23).

Substituting (1.10.23) in (1.10.16) and calculating the free energy by formula
(1.10.6), we find

N3kT r’

F=Fu- 5y

fr) 4nr* dr | (1.10.25)
0

where F; is the free energy of an ideal gas (1.10.12). Therefore, the pressure

f(r) |
|

Figure 1.24 A qualitative view of the function f(r) and its approximation in a model of attracting
hard spheres (dashed line).
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NikT

Sy L 1 (r) 4nr* dr (1.10.26)

P = Did—

proves to be different from p,; = RT/V. In virial form this equation of state
appears as

143 (1.10.27)

I f(r)AnrPdr
" 2 =Ty

F=1

Here we can easily recognize the reduced form of Eq. (1.9.19) with the second
virial coefficient

N o0
By — 7o J [1 _ e—u(r)/kr] Anrdr (1.10.28)
0

expressed in terms of the intermolecular interaction potential.

In the van der Waals model of “hard spheres attracting one another,” the
repulsive branch of the interaction is replaced by a potential wall at the dis-
tance of a molecular diameter: u(d — 0) = oo (dashed line in Fig. 1.24). Taking
this model and assuming that the average kinetic energy of particles exceeds the
potential well depth, we get from (1.10.28) in the first approximation with
respect to u/kT

RN LR TG DS |
By =~ 2 [3 wd +L k—T47rrdr = B RT (1.10.283)
Bo 4
B
1
0 T —>
1 3
. Tg/T
-1- a
-2

Figure 1.25 The second virial coefficient (a) in the van der Waals theory and (b) in the Lennard-
Jones approximation of the interparticle potential.
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From a formal standpoint, this result coincides with expression (1.9.18)
obtained in the van der Waals theory, moreover, here the parameter
4Nyv,; = B is defined identically, and A is expressed in terms of the intermole-
cular interaction potential:

A = 27N} J |u (r)| Pdr . (1.10.29)
0

Agreement with the van der Waals theory is achieved at the cost of considering
the interaction potential in a rough approximation. Obviously, this introduces
an error in the theoretical estimation of the second virial coefficient. It can be
avoided by using the actual interaction potential in a rather rigorous and
general formula (1.10.28). For noble and simple gases, the so-called “6-12
Lennard-Jones” potential

u(r) = de [(g)” _ (%ﬂ , (1.10.30)

is most often used. Here o and € are molecular constants
c=3+6x10%cm, e=1=+30x10""erg.

The first term in (1.10.30) corresponds to repulsion, and the second to attrac-
tion of two particles separated by a distance r. The temperature-dependence of
the second virial coefficient determined from (1.10.28) with this potential is
given in Fig. 1.25. It is seen that in the high-temperature region it deviates
essentially from the linear, van der Waals dependence. The reason is that for
particles with high kinetic energy of particles, even a repulsive potential
decreasing as abruptly as r~'? departs noticeably from a vertical wall.

On the other hand, the original van der Waals equation (1.9.16) describes
the state of condensed media much better than Eqs. (1.10.27) and (1.9.19),
however rigorous the definition of the second virial coefficient may be.
Although using a rough potential model the van der Waals equation does
allow for all orders of virial expansion, while here we have only succeeded in
the correct determination of the first, linear in density term of the virial expan-
sion (1.10.27). Although more sophisticated statistical methods allow one to
express all virial coefficients in terms of (r) this does not improve the situation
very much. It is impossible to sum up the series or reduce it to any expression
similar to the van der Waals equation. As the density increases, the description
of the substance requires not only linear but also quadratic and cubic correc-
tions to be taken into account. For condensed matter the entire series is neces-
sary, but even this is deficient, because the virial expansion diverges as the
critical region is approached. Thus the virial expansion cannot in principle
be applied to media of higher than critical densities.



62 GASES

N

Figure 1.26 The dependence of the compressibility factor F = pV/RT on the corpuscular
density n. The dashed sections of the isotherms are their extrapolation to the density region
intermediate between the vapor and the liquid or between the liquid and the crystal. n, and n, are
the densities of the saturated vapor and liquid at boiling point while r, is the density of the
tensionless state of the crystal.

To clear up this important point, consider the variation of the compressi-
bility factor with density as schematically given in Fig. 1.26. In fact, the virial
equation of state is equivalent to the Taylor series expansion about zero den-
sity. Its linear variant (1.10.27) is obviously inapplicable even to describe gas
isotherms in the range 7, < T < Tj to the right of the indicated minimum. For
liquids, the entire series is not sufficient, because the curve has discontinuities
associated with condensation, and the behavior of F(n) is open to speculation
(dashed line in Fig. 1.26). This is also valid for the solid phase. For this reason,
it is useful to have an alternative to virial expansion, that is, an approximation
intended for highly condensed media. This is the free volume theory of
Lennard-Jones and Devonshire to be outlined below.

Free Volume Theory

The starting point in the calculation of configurational integral (1.10.17) of a
condensed system is the model of dense packing of particles (Fig. 1.27a).
Surrounded by neighbors on all sides, such particles move in a potential well
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Figure 1.27 (a) A perfect simple lattice and (b) the expanded substance leaving room for a
multiple occupation of cages.

with the effective potential ®(q,). As a rule they do not leave the well, and the
center-of-mass of each particle is always within the bounded free volume. Thus
the molecules can be considered separately, with integration over spatial coor-
dinates being restricted to a small cell, a region of order A. If the center of cell
is placed at the origin of coordinates, its depth is ®(0), and the total potential
energy can be represented as

N N
U=3 @(0)+; A (q;) . (1.10.31)

Here A®(q) = ®(q) — $(0) is the cage potential delimiting the free volume,
while the first term is the total potential energy of the substance when all
particles are in the center of their cells. It is half as large as N®(0), because
the interaction of a molecule with any other is counted twice in the sum
Zfi , ,(0) = N®(0). This is taken into account by dividing the sum by 2.

Using the model (1.10.31), we can easily calculate the configuration integral
(1.10.17) which is the product of the integrals over different cells summed over
all possible permutations of particles:

. N0 _ .
VNQN = exp (— —ZT(T—)> JV-'-JV € 2 AR(@)/kT dq,..dqy =

AN e [ N®(0)
= Nlyy exp( T )

(1.10.32)

Here

vy = JA exp [— M)(q)} dy (1.10.33)
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is the free volume of the cell formed by summing the space elements accessible
to a particle weighted by the probability of finding the particle in them.

Using Stirling’s formula, substituting (1.10.32) into (1.10.16) and the result
into (1.10.6) yields

20

1.10.34
. (11034

F = Fi+ NkT— NkT In %f+N

where v = V/N is the specific volume, and F; is defined in (1.10.12). This
result is quite reliable for crystals, where the migration of particles between
cells is very unlikely. However, in a liquid the neighborhood of the particle is
not impenetrable, and under further rarefaction the notion of a cell becomes a
mere conventionality. This limits the application of formula (1.10.34).

Its drawback is revealed in passing to the lowest densities. Although poten-
tial barriers are removed (A® — 0 at v — oo) and almost the entire cage
volume (see Fig. 1.27b) becomes accessible to the particle (v, — v), the sample
free energy F — F,; + NkT still differs from the ideal gas value by NkT. The
ideal gas pressure calculated by this formula proves to be correct, but the
entropy differs from the ideal value: S = S;; — Nk. Obviously, this failing of
(1.10.34) is due to the excessive order of the imposed cell structure, which
underestimates the disorder arising in a real system under rarefaction. This
drawback may be eliminated by introducing an additional parameter, the so-
called “collective entropy” & which varies from 1 to e with increasing v, thus
correcting the asymptotic behavior of the free energy

F = Fu+NkTh< —Nlen%HN%O—). (1.10.35)
(22

Unfortunately, the explicit form of the &(v) dependence remains unknown.
This leads to some uncertainty in the equation of state

1 /OF
p = N (5)T— Pt — Pi, (1-10~36)
where
1 d®(0)
= = .10.37
Di 3 (1.10.37a)

is the so-called internal pressure, while

8 In(ovy) RT (0 In(5vy)
P =1 ( Olnv )T v ( dlnv )T (1.10.37b)
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has the meaning of motional or thermal pressure. The former is analogous to
the van der Waals term A/ V2 in Eq. (1.9.10) and depends on the volume only.
However, the latter is created by particle motion, which is thermal in origin at
real gas temperatures. From a phenomenological point of view the equation

p+pi=p (1.10.38)

is valid for all phases of the substance, although the particular form of the
components is different.

The free-volume theory was first advanced by Lennard-Jones and
Devonshire in 1937. It became immediately evident that despite all simplifica-
tions of the model, it was still too complicated for particular calculations. This
is partly due to the fact that the potential of a cell resulting from an actual
crystallographic arrangement of the neighboring molecules proved to be too
cumbersome for analytical calculation of the free volume. Thus the authors of
the theory and their adherents preferred to use the angle averaged potential

_ |2 2, 2 ;
AD(q) = C[ﬂ Jju (\/a + ¢* — 2aq cos 0> sin 8dfdp — u(0) | .

(1.10.39)

This implies that particles of the first coordination sphere equally distant from
the cell center are uniformly distributed over the sphere of radius a.

Even for hard spheres of diameter o it is customary to employ a “‘smeared‘
or “‘sphericalized” free volume. The structures of the first shell in simple liquids
and their crystals are similar. Each molecule in a cell of a face-centered cubic
lattice has 12 nearest neighbors, a distance of « away. The volume per molecule
is v =a*/v/2 and the cell corresponding to this volume is dodecahedron. If
v¥ =v/0> > 1(a > o) the full volume of a cell is available for a center of
molecule (“wanderer’’) inside it, but the cell borders are just conditional,
because they are transparent. At higher densities each face is partly protected
from penetration of a wanderer by a spherical body of corresponding neighbor.
The emigration is possible only through the chinks between them at the tops of
dodecahedron (Fig. 1.28). At even higher densities (v < 26°) the wanderer can
not escape from the “cage” formed by its nearest neighbors. So the region of
applicability of the free volume theory to hard sphere model is actually

20° >v>0°/V2,

where the lowest limit corresponds to the tightest possible packing. At such
densities the shape of a cage becomes rather whimsical and its volume, which is
free for wanderer center, is hardly available for calculation. On the contrary,
the smeared free volume is the largest sphere which can fit inside the exact
cages shown in Fig. 1.28. This approximation is appropriate for untransparent



66 GASES

Figure 1.28 The figures in the top row show the shape of the exact free volumes at different
densities for face-centered lattice (v* = v/5%). The corresponding “smeared” free volumes are
shown in the bottom row. (From R. J. Buehler, R. H. Wentorf, J. O. Hirschfelder, and C. F.
Curtiss, J. Chem. Phys., 19, 61 (1951).)

cages but becomes questionable at lower densities when the wanderer is no
longer confined to the cage formed by the nearest neighbors.

In (1.10.39) only the contribution from the nearest neighbors is taken into
account but the contribution of remote particles has to be also averaged in a
similar fashion. The best version of the theory took account of the three nearest
spheres which turned out to be quite sufficient for the short-range Lennard-
Jones potential. The results of the calculations are illustrated in the original
diagram presented in Fig. 1.29. Qualitatively they reproduce the behavior of
the isotherms given in Fig. 1.26, but the breaks due to evaporation and crystal-
lization of the substance are absent. The reason is that the collective entropy
was taken to be equal to unity because the recipe for its calculation had not yet
been found. Within the framework of this theory, thermodynamic properties of
solids may be described semiquantitatively, while those of liquids only qualita-
tively. In fact, the theory is applicable only in the neighborhood of the knot
point shown in Figs. 1.26 and 1.29. Conversely the virial expansion is valid in
the region of quasilinear variation of F(r) near the ideal gas state which is also
the knot point of the compressibility factor isotherms.

1.11 HEAT CAPACITY OF GASES

Sometimes it happens in science that the most radical innovations appear
under most prosaic circumstances. One of the problems facing statistical phy-
sics was the calculation of the molecular heat capacity of ideal gases. No
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Figure 1.28 The compressibility factor F as a function of the reduced density 1/v*. The curves
are isotherms labeled by the values of the reduced temperature T* = kT /. (From R. H. Wentorf,
R. G. Buehler, J. O. Hirschfelder and C. F. Curtiss, J. Chem. Phys. 18, 1484 (1950); see also Fig.
4.7-3 in Molecular Theory of Gases and Liquids by J. O. Hirschfelder, C. F. Curtiss, B. R. Bird.)

fundamental difficulties were expected. However, this problem proved to be
one of the “hard nuts to crack” which served to verify the newly born physical
theory.

According to the formal definition, the molar specific heat at constant

volume is given by
0E dE
oy —_ = - - - 1'
Cy (8T>V Ny a7 (1.11.1)

For an ideal gas it is expressed via the total heat energy per molecule E includ-
ing all possible types of intramolecular motion. In the simplest case of an
atomic gas, the particles are capable of nothing but translational motion,
thatis, E= € = %kT, and Cp = %R ~ 3 cal/mole - deg. The validity of this con-
clusion is verified experimentally: the heat capacity of single-atom molecules is
temperature-independent and is equal to three. However, this is the only point
of excellent agreement between the theory and experiment. Extension of the
calculation to diatomic molecules capable not only of translation, but aiso of
rotation and vibration leads to the conclusions which do not show even qua-
litative agreement with experiment.

To clarify the essence of the problem, let us note that in the most general
case E is uniquely expressed in terms of Z:



68 GASES

d(In2Z)

— 1 E
E=—|E — — ) dpdg = —
Zj exp( kT> P 9 (z7)

(1.11.2)

Thus the calculation of heat capacity is reduced to that of the partition func-
tion:

Z = L L exp (— %) dpdq . (1.11.3)

For translational, rotational and vibrational motion (in the harmonic approx-
imation) calculations are similar and give identical results. Let us see it for
ourselves.

Translational Motion
In the absence of external fields E= 3, ( p?/2m), and

Z = V(2mmkT)*?. (1.11.4)

There is one translational degree of freedom per axis, each associated with the
multiplier (27rka)1/ 2in Z. The average energy kT/2 accounts for any of them
according to Eq. (1.11.2). Since there are three translational degrees of free-
dom, the total heat energy E = %kT. It is remarkable that it does not depend on
the molecular mass but is completely determined by the temperature. As has
already been shown, the corresponding specific heat is %R.

Rotational Motion

In the absence of orienting fields the calculation is similar to the previous one.
The Gibbs distribution obtained from (1.8.8) with E = 0 takes the form

1
aw (p(% pcp: 97 80) = 2 exXp

s P2
- _ ¢ dpydp. df dio .
20kT ~ 20kT sin? 9] Po @by 48 4¢

The substitution p; = py, p; = p,/siné brings the distribution to a more
conventional form:

1 2 2
dW (pi, p2, 0, ¢) = - exp ) p—ﬂ dp, dp, sin 0d0dp . (1.11.5)

zZ T 2IkT  2IkT
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In these variables, the energy is a coordinate-independent quadratic function of
momenta. Thus

2 2
Z = J exp <_ 2;’/&) dp, J exp (- 25’;T) dp, J dQ = 87%IkT | (1.11.6)

which involves two equal multipliers v27IkT which yield kT/2 each, if sub-
stituted into (1.11.2). Therefore, E = kT/2 + kT/2 and Cy = R = 2 cal/mole -
deg. As in the previous case, the average energy does not depend on the para-
meters of the molecule itself such as the moment of inertia.

The presence of only two components k7/2 in the expression for average
rotational energy is due to the specific geometry of linear molecules. Such
molecules have only two rotational degrees of freedom. The molecule’s rota-
tion about its own axis is neglected for reasons which will be clarified later.
Only nonlinear molecules have three rotational degrees of freedom. As before,
each contributes one k7/2, whatever the magnitude of the corresponding
moment of inertia. In this case, the total energy E = 3 (kT/2), and C =3R.

Vibrational Motion

It is reasonable to choose the quantity ¢ = x, — x; — a as one of canonical
variables describing the vibrational motion of diatomic molecules (a is the
equilibrium distance between atoms located at the points x; and x;). The
greater the bond stretching ¢, the greater the effort required to return the
atoms to their equilibrium position. In the harmonic approximation they are
proportional and opposite in sign

F=—pq. (1.11.7)

If linear dependence holds within the whole range of ¢, the oscillator is called
harmonic. The corresponding equation of motion

mj =F = —fg (1.11.8)

shows that the vibrational frequency wy = +/3/m is the basic characteristic of
the oscillator. The total energy of harmonic vibrations

2 2 2 2
p p mwoqd
_ = £ 0T 1.11.9
E = 2 +J Bqdq 5 + R ( )

where p = mq. Thus

2 2 2
muw 2nkT
Z = J exp (— 2rikT) dp J exp (— q—2k—T0) dq = el (1.11.10)
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Although in this case the multipliers appearing on integration over different
variables (coordinates and momenta) are not equal to each other, the difference
is insignificant. On substitution into (1.11.2) and differentiation, all T-indepen-
dent parameters disappear. Thus we arrive at the same result

p KT AT

2+2 and Cy = R.

Equipartition Law

It is seen that identity of all estimates of the mean heat energy and its invar-
iance to the type of motion are due to similar dependence of mechanical energy
on the corresponding coordinates. In all examples given above the energy
proved to be a quadratic form of coordinates or momenta. Thus the following
generalization is justified: if the energy takes the form

i

E =Y &, (1.11.11)

=1

then its average equilibrium value at any -, is

- Lo kT kT
E = ; € = ; S =i5, (1.11.12)

where / is the number of quadratic terms in Eq. (1.11.11).

Sometimes this statement is formulated as a law or the principle of equiparti-
tion of energy among the various degrees of freedom. It is implied that each
quadratic term in (1.11.11) is associated with one or another degree of freedom
of mechanical motion. Therefore the corresponding mean energy is equal to
kT/2, whatever the value of ~,. Thus for translational motion there are always
three degrees of freedom, for rotational motion, either two or three, depending
on the molecule’s shape. As for vibrational motion, note that, according to
(1.11.9), the expression for energy involves two (not one) quadratic terms
corresponding to vibrational motion: one term is related to the kinetic part
of the energy, the other, to the potential part. For each of the terms there is one
kT/2. Hence, the above formulation of the law will remain valid, provided that
not one but two degrees of freedom are assigned to each vibrational mode of a
molecule.

Unfortunately, an artificial “doubling” of vibrational degrees is not the only
correction to the “‘equipartition” law that should be taken into account. In the
presence of external fields translational and rotational degrees of freedom also
have not only kinetic but potential energy as well. However, potential energy
terms like mgz or gE cos @ are not quadratic in the coordinates, so they do not
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fall under the equipartition law at all. Leaving them for later consideration, let
us concentrate on a gas free from external fields which is the best object for the
verification of the equipartition law.

Temperature Anomalies

If the total number of the gas molecules’ degrees of freedom is i, then, accord-
ing to (1.11.12) and (1.11.1), Cpy = iR/2 = ical/mole - deg, that is, the absolute
value of specific heat coincides numerically with i.

This consequence of the equipartition law, and, in fact, the Gibbs distribu-
tion itself, did not agree with experimental findings concerning polyatomic
molecules. In particular, the experience shows that for diatomic molecules at
ordinary temperatures Cp = %R, not %R, as follows from the equipartition law
taking that there are three translational, two rotational and two vibrational
degrees of freedom. Even if we assume that the molecule does not oscillate, the
agreement is violated as soon as the temperature falls, because the heat capa-
city falls as well approaching the atomic value % (Fig. 1.30). For molecular
hydrogen, for example, this limit is reached at temperatures below 80°C. On
the other hand, the specific heat of diatomic and polyatomic gases increases
with rising temperature, and, eventually, becomes equal to iR/2 (unless dis-
sociation takes place) in excellent agreement with the equipartition law, but in
contrast with their room temperature values which are SR/2 and 3R, respec-
tively, as if vibrations were absent.

We run into a paradoxical situation: though the deductions of the theory do
not completely agree with experiment, they are by no means senseless and
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Figure 1.30 A schematic plot of the diatomic specific heat as a function of temperature.

Characteristic temperatures for rotation and vibration are @, and 8, correspondingly.
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adequately represent physical reality in a restricted temperature range.
Obviously, the theory should be not abandoned, but modified somehow so
that we can predict which degrees of freedom and what temperature range
should be taken into account, and which degree must be considered to be
not involved in the heat motion. The problem is: can it happen that some
type of motion contributing to the heat capacity under certain conditions
will prove to be inessential in another circumstances? To see that this situation
is quite possible, let us consider the potential part of translational and rota-
tional motion energy in external field and its contribution to heat capacity.

(a) Assume that a vessel with a gas is in a uniform gravitational field. Then
integrating over coordinates, we can see that the multiplier ¥ in Eq. (1.11.4) is
replaced by the following partition function

H mgz SkT mgH
Z = dexdy Jo exp (_ﬁ) dz = s [1—exp<—ﬁ>} )

(1.11.13)

The corresponding part of the heat energy, naturally separated from other
(kinetic) components, is

(1.11.14)

With mgH < kT, the total center of gravity is approximately in the center of
the vessel and U = imgH — 5 [((mgH)? /kT]. Naturally, the heat capacity is
close to zero, since the distribution of molecules in height, and, therefore,
their total potential energy are essentially unaffected by the temperature varia-
tion: Cy = No(dU/dT) = (R/12)[(mgH)/kT)* < R. As the temperature rises,
Cy ox 1/T? — 0, because the distribution becomes more uniform.

On the contrary, at mgH > kT, U = kT. Similarly to the equipartition
law, the corresponding specific heat is constant although C, = R, instead of
R/2. The heat capacity is height-independent because the gas is at the bottom
of the vessel and the position of the lid is of no importance. As the temperature
increases, energy is expended in shifting the center of gravity of the gas
upwards, R for each degree.

In general, the dependence of C, on T may be inferred from Fig. 1.31: the
boundary between the region of constant €} and hyperbolic disappearance of
the specific heat is governed by the characteristic temperature 7, = mgH/k.

(b) Now take the case that molecules with a dipole moment are placed in a
uniform electric field. The potential energy related to a rotation by the angle 6
may be determined by the procedure described above. However, this is quite
unnecessary, as U = —g,E, and g, = qgL(c) has already been calculated in
(1.8.13). So we immediately obtain
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Figure 1.31 The ideal gas heat capacity in a homogeneous gravitationa! field.
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where a = qE/kT as before. An analysis of this expression shows that under
saturation conditions (gE > kT'), the heat capacity is equal to R, while at high
temperatures (¢gE < kT) it tends to zero by a hyperbolic law:
Cy = (R/3)(qE/kT)?, just as in the previous example (see Fig. 1.31).

The nature of the extra heat capacity of a dielectric in an external field is
rather obvious. The increase in temperature turns some dipoles opposite to the
field increasing their potential energy at the expense of the heat taken out of the
thermostat. As soon as a uniform distribution of dipoles in all directions is
attained, further rise of temperature is no longer of any importance, and the
heat supply ceases.

In both examples the heat capacity goes to zero above a characteristic
temperature. Of course, this cannot be attributed to the fact that the energy
is nonlinear in the coordinate. The decrease in the heat capacity is due to a
limited phase space. The first example demonstrates this most clearly: if the
vessel were infinitely tall (H = oo), that is, z varied from 0 to oo, then the
specific heat would remain constant (equal to R) over the whole temperature
range. In the second case, we have the same situation: the projection of the
moment on the z axis affecting the energy U = —¢q, - E is bounded from above
(lg2| < @). If one had g = oo, the characteristic temperature T, = gE/k could
also never be reached.

In the case of translational, rotational and vibrational motions, the corre-
sponding canonical variables vary in an infinite range. Besides, a comparison
of Figs. 1.30 and 1.31 shows that the anomalous behavior of Cy(T) corre-
sponding to these types of motion is opposite in character. At high tempera-
tures excellent agreement with the equipartition law is observed, and only at
fairly low temperatures does the heat capacity decrease, tending to zero. An
explanation could be found if the phase space of these variables proved to be
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bounded from below rather than from above. This important point will enable
us to clear up the cause of the heat capacity paradox.

1.12 HARMONIC OSCILLATOR QUANTIZATION

Freezing out of Vibrations

The problems of the classical theory of heat capacity cannot be eliminated by
perfecting the gas model. They are fundamental. The equipartition law is a
direct consequence of the Gibbs distribution. Its failure means that either the
distribution itself is invalid, or the use of classical mechanics is not justified;
and at first glance one will tend to blame the former.

However, the reason proved to be different. It lies in the unjustified exten-
sion of Newton’s mechanics to elementary particles. The mechanical properties
of atoms and molecules could not be predicted a priori. This unsuccessful
attempt to describe them classically brought about innovations in principle
which helped to resolve the paradox of heat capacities and formed the basis
for the first quantum postulates. The most revolutionary principle of quantum
mechanics had been formulated long before direct experimental study of ele-
mentary particles became feasible.

This principle was established by Planck in order to eliminate the so-called
“ultraviolet catastrophe”—another consequence of the equipartition law (see
Chapter 2, Section 2.3). In outline, it is as follows: a radiation field may be
treated as an ensemble of harmonic oscillators which are described in the same
fashion as harmonic vibrations of molecules. If the field is in equilibrium with
the substance, then, according to the equipartition law, the thermal energy per
oscillator is equal to k7. However, as the number of field oscillators is infinitely
large (with frequencies between 0 and oc), their total energy is to be oo! Of
course, this is not the case. By analyzing the experimental energy spectrum of
equilibrium radiation Planck discovered that the mean thermal energy per
oscillator is

— hv
E -_ W ) (1.12-1)

where h=6.610"""erg-s is the Planck constant. At low frequencies
(v < kT/h) this expression reduces to the classical result E = k7, while at
high frequencies it goes to zero. The absence (freezing out) of high frequency
vibrations resolves the ultraviolet paradox, but is completely inconsistent with
the equipartition law, according to which the mean energy of vibrations does
not depend on their frequency.

The experimentally obtained formula (1.12.1) also eliminates the difficulties
in the theory of heat capacities related to the vibrational energy of molecules. It
is seen that for each oscillator with vibration frequency v there is a character-
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istic temperature © = hv/k. At higher temperatures E = kT, C, = R, and at
lower ones E = hvexp(—hv/kT) and Cy — 0 with T — 0 (vibrations are fro-
zen out). However, we still do not know what drawback in the previous calcu-
lations must be rectified to derive this formula theoretically.

Energy Quantization

With a contradiction of this kind, it is useful to examine it from different
viewpoints. Sometimes this helps to reveal the cause of the difficulty. In the
case under discussion, it is profitable to reconsider the problem in energy space.
To this end, it is necessary to carry out the change of variables from p and ¢ to
E =p*/2m+ (muw?q*/2) and ¢ = arctg(p/q) (energy and phase of vibration)
with the subsequent integration over phases (from 0 to 27). As usual, the first
step is to calculate the Jacobian

O(E ) m*w? + 1870

I= p,q) ~ m(1+1g2p)

The element of the phase space in the new variables is as follows

dEdy m dEdy
dpdq I m2w? + tg?p cos? ¢

(1.12.2)

The isoenergy states constitute an ellipsoid-shaped strip (Fig. 1.32), the area of
which is found by direct integration over (:

mdy 27 dE
dF:j{szdEf 5 5 >— = —dE = — . (112.3)
o (m*w* + 1g°p) cos*p W v
|0
ar
dy

Figure 1.32 An isoenergy strip of the phase space of the harmonic oscillator.
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With this in mind, we can write two equivalent definitions for Z

Z = ”e*E/"T dpdg = J vt 4E (1.12.4)
0

v

Either of them yields the same result: (1.11.10). However, the second expres-
sion has an advantage: its structure gives a clue to a possible way to modify the
theory.

Let us state the question in the following way: what value of Z, if substituted
into (1.11.2), will lead to the correct result (1.12.1)? Accordingly, we equate
(1.11.2) to (1.12.1). Then the desired value of Z is defined by a simple differ-
ential equation

dnZ 1
doe  expa—1~

where o = hv/kT. Its solution is

¢ C
z = 1 —exp(—a) - 1 —exp(—hv/kT) ~ (1.12.5)

Now the problem is laid bare and brought to the point where making the next
step requires outstanding shrewdness. The question arises: is there any analogy
between the expression (1.12.5) obtained from experimental data and its the-
oretical analog (1.12.4)7 It is not so easy to reveal the analogy, but to use it for
a radical modification of the theory is even more difficult. Making such gen-
eralizations calls for extraordinary courage. However, this is just what enabled
Planck to derive his famous quantum principle.

Planck has noted that expression (1.12.5) may be rewritten using the familiar
geometric progression formula

Z oo [o.9)
== D oe N =Y BT (1.12.6)
N=0 N=0

This result resembles the last version of expression (1.12.4), if we assume
(without proof!) that integration should be replaced by summation, taking

Ey = Nho, N=012 ... 0. (1.12.7)

However, in this case we have to hold that the system’s energy cannot take any
values, but only those rigorously specified, that the energy changes discretely
rather than continuously, and that one allowed value is separated from the next
by an energy interval, or quantum, of magnitude Av. Thus the oscillator cannot
be found in any state as before, but only in some definite states of motion with
energies as specified by Eq. (1.12.7).



1.12 HARMONIC OSCILLATOR QUANTIZATION 77

So the introduction of formula (1.12.7) is not simply an ordinary working
hypothesis, or an improved model of the phenomenon: the quantization of
energy reveals the qualitative inadequacy of classical mechanics in its failure
to describe the mechanical behavior of atoms and molecules.

High Temperature Limit

The new physical concept does not exclude the previous one, but just reveals its
narrowness. This is a brief formulation of the “correspondence principle,”
according to which a general physical theory must reduce to a particular one
in a region where the latter is applicable. To verify the results of the classical
theory, we need to show that at high temperatures the sum over states (1.12.6)
reduces to the partition function (1.12.4). The procedure is rather simple. For

hv

Z <1 12
o7 < (1.12.8)

the summation in (1.12.6) may be replaced by integration

N=0 0

o0

e MIRT g = CJ o tnr 9E. (1.12.9)
0 hv

It can be easily seen that this asymptotic formula is similar or even identical to
the estimate of Z given by expression (1.12.4). The only difference, the constant
multiplier, is eliminated by an appropriate choice of C.

Quantum Cells

However, this should be done without haste. The simplest choice is to put
C = h, but the requirements of the correspondence principle can also be met
in another way. In fact, previously any distribution was determined to be
accurate up to a constant multiplier G

l E E
dw = zexp <_k_T> GdrT, Z = GJexp <_k_T> dar.

Nothing depended on this constant, except the setting of a zero for the ther-
modynamic functions (1.10.5) and (1.10.6). So we have always considered
G = 1. However, now it is time to make another choice: we put G = 1/h and
C =1, thus making (1.12.9) correspond to (1.12.4). With this correction, the
classical canonical distribution appears as

1 EN dT 1 E
- — ) == = - ——dT. 121
aw Zexp( kT> = Z hJexp( kT> (1.12.10)
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On the other hand, the quantum distribution takes the conventional form

1 EN = EN
= _ i = _ 1.12.11
Wy = —exp ( kT)’ Z _5_ exp ( kT) ; ( )

N=0

where Wy is the dimensionless probability of a state N.

The question of the definition of the constants C and G, that is, whether the
Planck constant should appear in the classical distribution or in the quantum
one, may seem pointless: at first sight, nothing depends on the answer.
However, there are reasons to prefer the solution which leads to (1.12.10)
and (1.12.11). If the phase space volume is measured in units of A, as in
(1.12.10), then

dT(E) dE _

s dn . (1.12.12)
This equality following from (1.12.3) and (1.12.7) establishes a common termi-
nology, that is, a correspondence between the classical “phase volume™ and the
quantum ‘“‘number of states.” Now the statement that the probability of find-
ing an oscillator with energy E is proportional to the volume dT'(E) is not quite
correct. It is better to say that this probability is measured by the number dN of
possible quantum states falling within this interval (it is implied that dE > hv).

In fact, when one has a discrete set of states, the question of how they can be
counted does not arise. Nonetheless, if calculations are done in the space of
continuously varying variables p and ¢, the same result may be obtained by
dividing it into cells of volume 4, with each cell containing one real state. In the
case of the harmonic oscillator, the cells are concentric ellipsoidal strips sepa-
rated by permitted phase trajectories.

Bohr’s Postulate

So far the above reasoning has referred to the harmonic oscillator only. Now
let us generalize. Rewriting (1.12.12) in integral form, and bearing in mind that
the area bounded by the phase trajectory of the system is to be found, we get

T(E) = }{pdq _ Nk (1.12.13)

This relation carries double information: the classical oscillator property
(1.12.3) which can be represented as I'(E) = fOE dT = E/v and the quantization
condition (1.12.7) selecting solely allowed values £ = Nhv. Remarkable that
the frequency of vibration v, which is the special parameter of the oscillator, is
absent in the final expression (1.12.13) although it appears in both premises.
When applied to the oscillator, Egs. (1.12.7) and (1.12.13) serve equally well for
energy quantization. However, from the viewpoint of generalization, Eq.
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(1.12.13) is preferable, because this expression does not depend on specific
features of the system. The idea of applying it to the quantization of transla-
tional and rotational motion, as well as the motion of an electron inside an
atom, is very attractive. This idea belonged to Bohr who applied Eq. (1.12.13)
to find permitted orbits, and, therefore, energies of electrons in hydrogen-like
atoms. The great success of the Bohr theory in the explanation of atomic
spectra has verified the general character of this quantization rule. Without
going into detail (otherwise, we will find ourselves deep inside the field of
atomic physics), we shall simply note that before the emergence of rigorous
quantum mechanics, Bohr’s quasiclassical quantization rule (1.12.13) was the
only reliable basis for interpreting and calculating line spectra of elements—the
stumbling block of classical prequantum physics.

1.13 FREEZING OUT OF HEAT MOTIONS

Though in principle any type of motion is subjected to quantization, it is not
always necessary. At temperatures 7> © = hv/k, even an oscillator may be
described classically. Each type of motion has its own characteristic tempera-
ture © = AE;/k where AE; is the energy difference between the lowest
(ground state) and the first excited state of the discrete energy spectrum. The
effect of quantization is significant only in the range 0 < 7' < ©, but © takes
different values for different types of motion. For molecular vibrations with a
typical frequency v ~ 10'* Hz, the characteristic temperature

v 6.6-1077 . 10"

(S i ———
k 1.4-10716

= 471 K = 200°C

is so high that at room temperatures vibrations are frozen out (most molecules
do not vibrate). On the other hand, the characteristic temperature for transla-
tion is so close to absolute zero that the classical approximation is applicable at
practically all temperatures.

An example will be illuminating. Placing a particle into a cubic box with the
edge L, we see that the phase trajectory of translational motion between the
opposite walls is a rectangle (Fig. 1.33) of the area

£/2
fpdq = ZJ pdg = 2pL.
L2

According to the quantization rule (1.12.13), the momentum along any axis is
strictly specified:

p=N— N=012 .. (1.13.1)
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Figure 1.33 Quantum cages of a particle freely moving between the walls of potential well.
Hatched regions are onefold and twofold areas of a cage.

Here g is any of x, y, z, and p is any of p,, p, p,, so

h h h
= N, — . = N, — = N, —
Px x2£7 py v2£7 P: zzﬁv
and
2 L& 2 2 2 2 2
P = 4_/;2]\/’ N = Ni+N,+N; =0,1, ... (1.13.2)

Thus AE; = h*/8mL?. In a vessel of the size 1 cm

o_ P _ 43.10°%
T 8mLk  8-4-1072.1.4-10716

= 107"K. (1.13.2a)

This is an extremely low, unattainable temperature. Nearly all gases condense
long before they are cooled to such temperatures. Therefore, in the gaseous
phase (at 7' > ©) translation is of classical character. This explains the success-
ful interpretation of gas properties on the basis of the Maxwell and Boltzmann
distributions.

However, the determination of © by comparing &7 with the first quantum
from below may seem questionable. Unlike a harmonic oscillator, the
quantized spectrum of translational energy e = P’ /2m is not equidistant.
The energy difference between the neighboring levels Aey =
EN — En_1 = h2(2N— 1)/8£2m increases with increasing N. Even if kT is
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large as compared with A¢;, we may be quite sure that it is less than some
rather large Aey. However, this is not important. In the classical limit
€= 3l’cT p?/2m, so the quantum number of the corresponding energy level
is N V3kTm(2L/h) = \/3T/20. As the temperature rises, this number
increases along with the distance between neighboring levels
Aey ~ ' N/4L*m. However, the ratio Aey/ey = 2N/N* = 2/N < 1 decreases
monotonically with temperature. It can exceed unity at N < 1 only, that is, at
T <« ©. This is just the case where the first quantum may be compared with k7T,
since all higher levels are already empty.

Hence, vibrational motion at room temperatures is practically frozen out,
while translational motion is classical. Rotational motion occupies an inter-
mediate position. Applying the same quantization rule (1.12.13) to angular
momentum projections, we get for each

fp(pdcp = 2mp, = Nh; p, = Nh. (1.13.3)

Thus angular momentum takes values of integer multiplies of % = h/2x.
Similarly, for a molecule rotating about all three axes, we obtain
N N N2 N3#?
21 21 2

(1.13.4)

In general, the moments of inertia I; are different for different axes. At
I, = 107* g cm?, the characteristic temperature is

I 107>
o =1 o ~ 30K . 1.13.5
2Lk 2-10%.14.10°16 ( )

Rotational motion of molecular hydrogen is frozen out at a temperature near
80K, because it has the lowest moment of inertia, and correspondingly the
largest ©. The larger a molecule, the lower the freezing temperature of rota-
tional motion.

If we have a linear molecule, the moment of inertia for rotation around the
molecular axis is obviously equal to zero, and the characteristic temperature
corresponding to this degree of freedom is infinitely high. That is why the mean
energy of such a rotation is equal to zero, and it makes no contribution to the
heat capacity. Thus the fact that linear molecules have two instead of three
rotational degrees of freedom is exclusively of quantum origin. Consider a
planar triatomic molecule of H,O type. This is an isosceles triangle rotating
in all three directions (Fig. 1.34). The minimum moment of inertia is associated
with the axis parallel to the base H — H of the triangle, since the vertex angle is
obtuse. Now imagine that this angle increases: the inertia moment under dis-
cussion will decrease to become zero at the angle 180°, that is, when the
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Figure 1.34 The geometrical structure of (a) a water molecule and (b) a linear molecule like
CO,.

molecule is linear. The corresponding © will increase gradually and become
infinite in a linear molecule. In this limit the related degree of freedom may be
excluded from consideration when calculating the heat capacity.

Summing up, we can say that at extremely low temperatures gas molecules
execute only translational heat motion, at room temperatures, translational
and rotational motions, and only if heated considerably will there be all
three types including vibrational motion. This explains the general pattern of
the variation of heat capacity with temperature as shown in Fig. 1.30.
However, the mechanisms of the unfreezing of rotational and vibrational
motions are quite different. When vibrational degrees of freedom appear, the
heat capacity increases monotonically with rising temperature, gradually
approaching the classical limit. In the case of rotational motion the specific
heat of linear molecules passes through the maximum before the classical limit
is reached (see Fig. 1.30). These subtle details of the behavior of Cy(T') beha-
vior near characteristic temperatures cannot be understood in the context of
Bohr’s quasiclassical theory. Although effective in estimating the magnitude of
quanta, it does not allow one to correctly determine the positions of levels in
the energy spectrum.

To deal with this difficulty, let us take proper account of the results of a
consistent quantum theory. According to (1.13.4), the r?}zational energy of a
diatomic moleculeise = (7*/21) N* where N = (N2 + N3) " However, actually

h2
c=ZNWV+1). (1.13.6)

Each energy level, except the lowest one, is degenerate, that is, consists of
2N +1 sublevels differing only in the spatial orientation of the angular
momentum (Fig. 1.35a). As for the harmonic oscillator, its spectrum, if rigor-
ously calculated, proves to be similar to the quasiclassical spectrum (1.12.7),
but differs from it in that all levels are shifted upward along the energy axis by
a half quantum:
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Figure 1.35 The energy spectra of (a) a linear rotator and (b) an oscillator.

E=(N+Ym. (1.13.7)

This difference implies that even at T = 0, when thermal motion is completely
frozen out, the energy of vibrations is not zero. In the lowest state, the oscil-
lator is not at rest, but executes purely quantum motion (zero vibrations) with
energy equal to v /2 (Fig. 1.35b).

Taking this into consideration let us calculate the real state sums of the
quantum rotator and oscillator to disclose the origin of the abovementioned
difference in the temperature dependence of their heat capacities. For rotator
with spectrum (1.13.6), the state sum

= Y (2N +1)e @/ (1.13.8)
may be transformed using the Euler-Macloren formula

c — f(O) m
Y I e TAURE AL



84 GASES

into the following series in ©/T:

16 1 [6)*
1+—§ 7_,+1—5 (?) +:| . (1-13'9)

Thus the mean rotational energy of the molecule in the high temperature limit
may be estimated as follows:

T

zZ = —
S

e e
E__omz T 1 16 o 1131
e 30/T) 6 3 & 7T’ <7 (1.13.10)

It differs from its classical limit € = k7. As the temperature rises, this deviation
decreases to a constant value equal to k©/3, but does not disappear completely
(Fig. 1.36a). Besides, there is a point of inflection on the curve €(7') at which
the specific heat C, = Nyde/dT is at its maximum shown in Fig. 1.30. This
follows from the fact that the specific heat calculated from Eq. (1.13.10)
approaches its limit from above

1 (6\°
CV_R|:1+B (7,)

, O<T.

g/xT} E/xT
Ve
2’0 A7 N
b \/\>
J g\cy

1,0 ///
Wi
7
//
v/

e 1,0 20 T/8

Figure 1.36 Average thermal energies of (a) the linear rotator and (b} the oscillator as a function
of temperature.
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A different situation arises with the harmonic oscillator. Its mean energy differs
from the quasiclassical value found earlier only by a constant Av/2:

/1 1 1
E = <N+§> hy = kO |—————+=| . (1.13.11)

exp <9> -1 2
T

In the high temperature limit the energy approaches its asymptotic value from
above (see Fig. 1.36b):

2
E~kT {l—%% (?‘) } , O«T. (1.13.12)
Thus, the heat capacity increases monotonically as shown in Fig. 1.30.

In a real theory of heat capacities it is necessary to allow for the fact that
actually molecular vibrations are never purely harmonic: the vibrational levels
are equidistant only deep in the potential well where it has a near-parabolic
shape. In reality, as the energy increases, the difference between levels
decreases. However, more importantly, at high energies the molecules become
unstable and dissociate. This leads to an increase in the total number of par-
ticles and a qualitative change in their degrees of freedom.

At significantly high temperatures one must also take account of the excita-
tion of electrons in molecules and atoms to higher energy levels. These excita-
tions are associated with quanta of the order of electronvolts, so the electrons
motion remains frozen out up to 10° + 10* K. However, with enough heating,
the electrons become involved in thermal motion; first they are excited to
higher levels, and then leave the particles (“heat ionization™).

Finally, at temperatures of millions, in fact dozens of millions of degrees,
when all molecules have already dissociated and all atoms have been ionized, it
is time for atomic nuclei excitation and fission will occur. This is just what
takes place deep inside the Sun and other stars (thermonuclear reactions).

1.14 GAS PARAMAGNETISM

The angular momentum of a molecule or an atom is due to the rotation of their
constituents, ions and/or electrons. As they are charged particles, simulta-
neously, there arises a magnetic moment. Due to their common origin, the
two moments are directly proportional with coefficient + called the gyromag-
netic ratio. The potential energy of a magnetic moment in a constant magnetic
field H,
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depends on the angle between the moment and the field, just as the energy of a
dipole in an electric field. One might then infer that the picture of magnetic
polarization must be similar to the electric one described in detail in Section
1.8.

Actually, this is not true. According to the quantum interpretation of charge
rotation, the magnetic moment is quantized in the same way as the correspond-
ing angular momentum (1.13.3)

K, = Yp, = VAN, (1.14.2)

where N is the quantum number, and ~v4 ~ 1072 erg/G. The quantization of
magnetic moment brings about the quantization of the potential energy

Uy = —u,H = —vhiHN . (1.14.3)

As the z-projection of magnetic dipole cannot exceed its magnitude
(|pez] < p=~HJ), N varies within the finite limits

N=—-J —J+1, .., J-1,J. (1.14.4)

All in all, there are 2J + 1 values of the moment projection (Fig. 1.37). Thus
paramagnetic polarization is a purely quantum phenomenon disappearing in

Hz
I
]

I

-7

Figure 1.37 The quantized states of a magnetic moment in an external field.
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the classical limit attained at # — 0. The quantum number J defining the
absolute value of the moment can be either integer or semiinteger. If the
magnetic moment is created solely by the orbital movement of electrons in
atoms, J is an integer. At the same time, the electrons themselves have a
moment—‘spin”—different from zero and equal to 5. As a result, the total
moment of the atom, composed of the orbital and the spin moments, is integer
if the number of electrons is even, and semiinteger if it is odd.

This brief excursus into quantum mechanics is quite sufficient for the sta-
tistical calculation of paramagnetic polarization. From (1.14.3) we see that for
fields of attainable strength ~ 10* - G,

AU = Uy —Uy_; = vhH ~ 10 erg; (1.14.5)

that is at room temperatures, AU is considerably less than k7. Although
magnetic quanta take an intermediate position between rotational and transla-
tional quanta, they are not as small as the latter and may not be ignored. Like
dielectric polarization, paramagnetic polarization saturates at rather low tem-
peratures: © = AE/k ~ 1K.

in 1
Spin ;
To be specific, first consider pure spin magnetism with J = % In this case, the
calculation of magnetization is even more simple than in the classical situation.
According to (1.14.14), now we have N = £1 | that is, only two states instead
of a continuous set. The spins are aligned either with the field or against it.

Correspondingly, they have the energy of either the lower or the upper level
(Fig. 1.38):

AENINEES
AT

Figure 1.38 Distribution in a two-level system of projections of spin 1/2 in a magnetic field H.
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As there are only two states the whole distribution (1.12.11) reduces to two
probabilities

exp (a/2) exp (—a/2)

Wi = exp (a/2) +exp(—a/2) ’ 2= exp (a/2) +exp (—a/2) ’
(1.14.7)

where a = vhH/kT. These are also the probabilities of the corresponding
orientation of magnetic moment. Under equilibrium conditions, the spins are
distributed over projections in accordance with these probabilities

N] = nWl, N2 = an, (1148)

where »n is the total number of paramagnetic particles in unit volume.
Naturally, their average magnetic moment

M = uN,—pN, = pn(W, — W), (1.14.9)

where p = ~k/2. It is determined merely by the excess of spins parallel to the
field over those aligned against it. According to (1.14.9) and (1.14.7), the mean
magnetic moment of a unit volume is

W = un 1—-¢“
T T e

(1.14.10)

In the high temperature limit, with o = 2uH/kT < 1, we can obtain the Curie
law simply by expanding the exponents in Eq. (1.14.10)

- p*n " - v h*n
kT 4kT

H = xH. (1.14.11a)

When the magnetization is proportional to the applied field, the paramagnetic
susceptibility decreases in inverse proportion to temperature. The close simi-
larity between magnetic and dielectric polarization in the linear region is
emphasized by the formal resemblance of (1.14.11a) to (1.8.15a). In the low
temperature range where o >> 1 the situation is quite different. In this case, as
in (1.8.15b), the saturation effect is observed:

M=ypun. (1.14.11b)

Under intense cooling, almost all spins are orientated parallel to the field, and
at absolute zero those aligned against it disappear as completely as dissidents in
a totalitarian system. However, the ordering in paramagnetics and dielectrics
proceeds variously.
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Figure 1.39 Temperature-dependence of two-ievel system heat capacity.

This difference is particularly pronounced in the temperature dependence of
the heat capacity related to the polarization effect. Obviously, the polarization

energy of a unit volume is nU = —MH, while the molar specific heat is
dUu dM

As is seen from this formula and Eq. (1.14.10), the heat capacity associated
with magnetic polarization is nowhere constant (Fig. 1.39). In the high tem-
perature (classical) limit it is not equal to “R” for the same reason as the
specific heat of polarized dielectric is not: the phase space is bounded above.
Comparison of Fig. 1.31 and Fig. 1.39 shows that in this region the heat
capacities vary according to the hyperbolic law Cy, = R(pH /kT)Z. However,
in the opposite case, where saturation takes place, the dielectric specific heat
was found to be constant in qualitative agreement with the classical equiparti-
tion law. On the contrary, the specific heat of paramagnetics departs from
classical result Cy, = R and goes to zero.

This is due to the fact that the spin phase space is bounded both from above
and from below. All intermediate energies between U, and U, are forbidden by
quantization; thus Cy, — 0 as soon as kT becomes less than AU = U, — Uj,.
So, if there is a continuous set of orientations (as in the dielectric), the system’s
ordering by cooling requires that R calories be removed for each degree bring-
ing the gas closer to absolute zero. In the case of two orientations, the closer to
zero, the less energy is needed.

General Case

The difference between magnetic and dielectric polarization is particularly
pronounced in the case of the spin equal to % because only two possible orien-
tations are compared with the continuous set. In fact, the electric dipole orien-
tations are also quantized, but this fact was neglected because of the great
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number and small value of the corresponding energy quanta. The difference
between discretely and continuously oriented dipoles must disappear with
increasing absolute value of the moment J and the number of its orientations,
provided that the energy interval which is being divided into the increasing
number of quanta remains constant.

According to (1.14.2), (1.14.3), (1.14.4), and (1.12.11), the magnetic polar-
ization of unit volume containing molecules with moment J is the following
mean value:

dinZ
do

J
M=n Z YAINWy = nvyh
N=J

(1.14.13)

Direct calculation of the state sum, which is a finite geometric progression,
yields

z=3Y V=2 (1.14.14)

On substituting (1.14.14) into (1.14.13) and differentiating, we derive

Jea.l + (J+ 1)67a(1+1) e @

M = 'yhn e — e~a(J+1) o ] —e @

(1.14.15)

This result is the most general estimate of magnetization suitable both for
J =1/2 when it reduces to (1.14.10) and for any other J, either integer or
semiinteger. In this formula the purely quantum nature of paramagnetism
manifests itself in the fact that at # — 0 M becomes zero as well. However,
it is also possible to pass to another limit:

J—o oo, h—0 at p = vhJ = const, (1.14.16)

This results in an infinite increase in the number of quanta within the fixed
energy range (—uH, pH). In this case, Eq. (1.14.15) gives

_ euH/kT_equ/kT kT ,U«H

This formula differs only in notations from Eqs. (1.8.13) and (1.8.14). Passing
to the limit (1.14.16) makes the energy space so finely divided that it is practi-
cally continuous, so that the result of the classical theory of orientational
polarization is again valid.
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1.15 COLLISIONS

Though the equilibrium state of matter was studied and described without any
connection with its origin, the reasoning thus far has assumed the ability of
isolated macrosystems to return into equilibrium from any nonequilibrium
state. Formally one can apply the microcanonical distribution either to a single
particle in a box or to an ensemble of point masses isolated in it. However,
neither of these systems is appropriate for thermodynamic treatment. Once in a
state different from equilibrium, such a system will remain that state, because
point particles do not collide with one another and their speeds are conserved
in elastic collisions with the walls. Thus, an originally non-Maxwellian distri-
bution will remain so in all future times.

However, in real systems the Maxwell distribution of velocities and the
Boltzmann distribution of positions are always restored. Transformation of
the initial distribution into an equilibrium one is called a relaxation process,
and it may proceed in velocity and coordinate spaces with different relaxation
times. Why and how does relaxation occur? The answer to this question is to be
found in the context of physical kinetics.

Relaxation

The answer first came through Krylov’s stirring hypothesis. In outline, this is
as follows. It is supposed that an isolated macrosystem is able, in a fairly short
time, to get from almost any state accessible to it to any other element of the
phase volume. In physical kinetics this hypothesis is as fundamentally impor-
tant as the microcanonical distribution in the equilibrium theory.

Let us consider as an example the rapid expansion of gas into a larger
volume. The point representing the system in I'-space starts from the region
initially accessible to the system and, following an intricate trajectory, crosses
the expanded phase space in all directions. At first it cuts it roughly into a few
pieces, which are in their turn divided later into smaller fractions and so on.
Owing to this, in a rather short time approximately equal shares of the trajec-
tory are found in equal volumes of the phase space. Further, the system point
continues to move in such a way as to effectively continue this partitioning
process. So, the longer the time elapsed from the start, the more truly one can
say that all equal elements of phase space contain the same fraction of the
phase trajectory. The more uniform is the “stirring” of the trajectory in the
accessible phase space, the less the deviation from equilibrium. If most trajec-
tories emerging from the small fraction of the phase space specified by the
initial conditions are well stirred, then systems starting from adjacent or nearby
points may be found in quite different places. As the starting point is not
known with certainty, after a lapse of the relaxation time, the expanded system
can be found in any element of the new phase space with the same
(microcanonical) probability.
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Not all the systems are capable of “stirring.” Roughly speaking, the system
has this property if it consists of a great number of particles bound to each
other by a definite interaction. Obviously, neither a free particle in a box, nor
an ensemble of point masses meet these requirements. When considering an
ideal gas, the interparticle interaction ensuring stirring has not even been men-
tioned. However, this should be taken into account as soon as the question
about the attainment of equilibrium arises. The efficiency of this interaction
affects the relaxation time. In gases the interaction results in scattering of
molecules during collisions. They makes the trajectory of each molecule extre-
mely intricate, to say nothing of the gas on the whole. That is why the required
property of stirring is inherent in real gases.

Not all interaction and not every system may result in sufficiently effective
stirring. For gases, the existence of this property determined exactly by such a
collisional mechanism was theoretically proved by Krylov and subsequently
verified by computer simulations. By computer one can follow the trajectory of
a many-particle system, on condition that it obeys Newton’s laws, and colli-
sions are elastic. It turns out that two or three collisions of a particle are
enough for the original distribution in velocities to go over the Maxwell one,
and for the entropy to attain its equilibrium, that is, maximum, value.

However, there are systems which are not capable of stirring at all. In this
case, equilibrium is attained exclusively by external action. The interaction
with the environment, which is in equilibrium itself, gradually brings the sys-
tem under discussion into equilibrium state with the same temperature. This is
how, for example, the equilibrium distribution over vibrational and rotational
states is attained in the gas phase. Translational degrees of freedom act as the
environment. The relaxation of intramolecular motion proceeds at the expense
of the kinetic energy of colliding particles. Also the equilibrium properties of
extremely rarefied gases are established due to inelastic collisions with the
vessel’s walls, provided that the walls are thermostated.

Velocity-Dependent Collision Rate

Is the rate of collisions in the gas phase high enough to ensure fairly rapid
attainment of equilibrium? The answer is given by an elementary estimate of
the number of collisions suffered by a rigid molecule of radius r;, moving
through a gas of hard spheres of radius r,. The idea can easily be understood
if we imagine that all particles are immobile except the molecule under con-
sideration. It follows its own path, colliding from time to time with other
particles. In a second the molecule covers a distance equal to its speed, and
experiences as many collisions as there are hard spheres on the way.

The last statement needs clarification. In the case of a real, smooth interac-
tion between particles, it is not so easy to determine which molecules collided,
and which did not. The advantage of the hard sphere model is that here the
problem is solved geometrically. Molecules collide, if they touch, otherwise,
collision does not take place. Enclosing the center of the moving molecule in a
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sphere of the radius ; + r, = R, we can consider other molecules as the point
masses. Collision will occur only with those of them whose distance from the
trajectory of the moving molecule’s center is not larger than R. In other words,
in one second of motion, only particles whose centers are confined within a
cylinder of cross-section o = 7R® and length v will collide with the moving
molecule. The volume of the cylinder is ov, the density of particles in the
unit volume is #, therefore, the number of collisions per unit time

v = nov. (1.15.1)

The above estimate would be satisfactory if the velocity of the moving
particle were considerably greater than the velocities of particles which are
targets. For example, such is the case for the electrons moving in a gas
whose thermal velocity is greater than that of the molecules because of the
difference in masses. When molecules of comparable masses collide, to say
nothing of identical particles, the calculation must be adjusted.

It turns out that even in this case the calculation can be reduced to the
previous one. We need only apply the procedure which is extensively used in
kinetics: to divide the ensemble of colliding particles into subensembles.
Moving to a coordinate system associated with the chosen molecule which
moves with velocity v, we can classify other molecules by their relative velocity
w. This classification is determined by the Maxwell distribution of the velocities
v’ of the target molecules which may be represented as a distribution of the
relative velocities w = v/ — v:

1

: 1
W) = — T =

2 oMW RT g AW, (w) . (1.15.2)

Here m is the mass of target particles, different from M, which denotes the
mass of the chosen particle.

Now if we select the subensemble of particles where all molecules have the
given relative velocity w (Fig. 1.40), all arguments leading to (1.15.1) may be
repeated once again. Thus the rate of collisions with the given subensemble is

dv, = owndW, (w) . (1.15.3)

The total number of collisions that the molecule with the velocity v experiences
with all subensembles is as follows

no

v, = L din(w) = — [2—11} ®(Vav) + ov®(Vov) + \/ge“"z} , (1.15.4)

where the probability integral ®(x) = (2/v/7) J; e dz, and o = m/2kT. With
vav > 1, when the speed of the chosen particle is essentially greater than the
mean speed of molecule-targets, ®(\/av) =~ 1 and the rate of collisions
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Figure 1.40 The target molecule (hatched) in a fiux of particies moving with velocity w. Those
of them contained in the cylinder with base o and height w will collide within a second.

1
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Figure 1.41 The increase of collision rate with velocity of a molecule moving through a gas.

v, — hov, just as in (1.15.1). However, unlike the case of immobile targets, at
v — 0 the number of collisions does not go to zero, but proves to be equal to
20n/\/ma = nov'. It is greater, the more intense the heat motion of surround-
ing molecules impacting the immobile particle (Fig. 1.41).

The Mean Collision Rate

Now let us make allowance for the fact that after each collision the velocity of
the molecule changes. The fraction of time the molecule spends in the state with
the given velocity v is determined by the Maxwell distribution dW(v). The
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average number of collisions it experiences moving from time to time with
different velocities is

v = J v, dW(v) = on J J wdW(¥)dW(v) . (1.15.5)
Converting to the variables w and vy = (Mv + mv')/(M + m), we obtain

dW(v)-dW(') = dW(w)-dW(v,),

where dW(w) = (p/ (27rkT))3/ 2 ¢7#%'/%T 4 is the unconditional distribution of
relative velocities, and dW(v,) that of the velocity of the center of gravity of the
colliding molecules (1 = mM/(m + M) is the reduced mass).

Upon integration over v, in (1.15.5), we find

1/=0'nJWdW(W) = onw (1.15.6)

or

8kT / M /
v =noy— = m nov' = m+Mnaz7, (1.15.7)
T M m

where v = \/8kT/7M, v’ = /8kT/7m.

Thus the total number of collisions is obtained from (1.15.1) by substituting
w for v, and the dependence v(7) is qualitatively similar to the dependence
v,(v) given in Fig. 1.41, provided that ¥ is considered as a function of M at

fixed temperature. When M = m, (1.15.7) yields

v = V2nov . (1.15.8)

As is seen the motion of similar partners increases the number of collisions by a
factor of 1.4 compared to the case where they are immobile.

Now we can estimate the order of the molecules’ free path time under
normal conditions: n =10 cm™, # = 10° cm/sec; r; =r, =2 - 10°% cm. In

this case the cross-section of collisions is equal to 50 - 1071 cm?, and
v = +v2-50-107'%-.10" - 10° =~ 7-10° Hz . (1.15.9)

Consequently, if the Maxwell distribution of velocities is violated somehow, it
is recovered within nanoseconds.
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Experimental Verification

When a new physical idea or concept is advanced, it is always desirable to have
direct experimental verification of its existence. In an experiment in which
molecular beam was passed through a gas of rather low density, the collisions
were visualized through the scattering of the beam molecules and the free path
distribution was easily measured.

At some time each molecule experienced a first collision. As a result it
changed its direction of motion, and left the beam. So the number of molecules
in the beam decreased gradually with distance from the source (Fig. 1.42). This
number could be measured by erecting a screen in the beam’s path. It was
established that the number of molecules which settled on the screen decreased
exponentially depending on the distance between the screen and the source.

This exponential decrease was foreseen even by Clausius. The number of
molecules involved in collisions and thrown out of the beam between x and
X + dx must be proportional to dx and to the number of molecules N(x) which
safely reached the borderline, that is, avoided collisions in the interval (0, x).
Therefore

—dN = a- N(x)dx . (1.15.10)

In the gas phase, the coefficient @ cannot depend on x, for there is no reason to
believe that in any interval dx collisions occur more often than in any other.

Mi
MO)

g T, T, T3 Ty Ty I, x

Figure 1.42 The scattering of a molecular jet in a gas, showing the resulting number density at
section x.
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This is a homogeneous flux of events, but their density in space ¢ may depend
on the velocity of the molecules in the beam, as in (1.15.4).

Solving (1.15.10), we obtain the number of particles which covered the
distance x without a single collision

N(x) = N(0)e * . (1.15.11)

The thickness of the layer of molecules settied on the screen must be propot-
tional to this value. This dependence was verified experimentally both qualita-
tively and quantitatively; moreover, plotting In N against x, the value a was
easily measured by the straight line slope.

Free Path

By definition the mean free path is

{= J:o xdW(x)

where dW(x) is the probability of colliding in the interval dx after passing the
distance x without a collision. This probability is defined by the ratio of the

number of molecules involved in the first collision in the interval dx to the total
number of molecules N(0) which “went to the starting line,” that is,

av - _ a de = ae “dx .

W == N = * Mo

Thus, the mean length of the molecules’ free path in the gas

= aJ xe “dx = —1—, (1.15.12)
0 a

is equal to inverse g and the distribution of free paths may be represented as
follows:

dW(x) = exp(—x/¥) de . (1.15.13)

The free path length £ is related to the free path time 5 = vy I

(= vr. (1.15.14)
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I
2
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Wy w

Figure 1.43 The spectrum of a Lorentzian wave: monochromatic radiation with its phase bro-
ken at each collision.

In view of x = v1, substitution of (1.15.14) into (1.15.13) yields the distribution
in the free path times of

1
dw () = — e dr (1.15.15)

70

This may be also subjected to experimental (spectroscopic) test. According
to the Lorentz model, each collision results in an abrupt change in the phase of
the electromagnetic wave frequency w, radiated by the excited atom. The
duration of a monochromatic piece of wave (Fig. 1.43) is determined by the
probability of spending the time without collisions: Wy = exp(—t/7). It can be
shown that in this case the radiation spectrum shape is defined as

o0 t . To/T
w) = — exp |- —+ilwg—-wt|dt = —————— . 1.15.16
g(w) Gy Jo p[ To (o =) (W—w)? g +1 ( :

Such a profile is called Lorentzian or impact. One can find the free path time of
gas molecules from its width.

As 1y depends on v, the free path length ¢(v) = v/v,(v) increases monoto-
nically with increasing velocity, tending to its upper limit 1/a0 which is reached
at v > v'. The average length of the free path may be defined as

v v 1 m
—) === — = A. 1.15.17
(Vv> v no \m+ M ( )

It depends on the gas density only, and does not exceed the value 1/no. Two
mutually related parameters v and A are of fundamental importance in the
construction of physical kinetics in the gas phase. At ordinary densities
n~10Ycm™> and o =5-10"cm® A=2-10" cm. However, A may be
essentially extended by exhausting the gas from the vessel: at p = 10™* atm
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A~ 0.2 cm, while at p = 107 atm X ~ 2 cm. Under more intense evacuation of
the vessel, A exceeds the vessel size, and the gas turns into the so-called physical
vacuum or ultrararefied gas. We shall see further that the latter is distinctly
different in all its properties from a dense, ordinary gas.

Poissonian Statistics

It is of interest to ask what is the probability that only one collision occurs in
the interval (0, ¢) at time ¢; < ¢. Evidently this is a coincidence of two indepen-
dent events:

* that the molecule moving through the gas experiences its first (after t = 0)
collision in time element d¢; and

* that this collision will be the first and the last, i.e., there will be no more
collisions between #; and ¢.

The probability of such a realization of molecule’s trajectory is given by the
product of the corresponding probabilities: to have a first collision at the given
time

aw = Letimgy,

To
and to have no collisions between ¢; and ¢
Wy =e =)/ (1.15.18)

The result does not depend on ¢; if we assume for simplicity that 7y is v-
independent (M > m):

dny

To

AW, =dW - -Wy=e /" (1.15.19)

The probability that only one collision happened anywhere between 0 and ¢ is
the following integral

t
W, — J dw, = v L (1.15.20)
0 To

A simple generalization shows that the probability for two successive
collisions to happen at times ¢; and ¢, is

dy diy

To 7'0’

AW, = et/ (1.15.21)
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while the probability of having just two collisions anywhere in the interval (0, 1)
is

e—t/ro i 1 12
W2 = 3 J dlz J dll = eit/‘ro ﬁ . (11522)
o Jo 0 Ty

For an arbitrary number of collisions » we obtain in the same way

n
w, = <i> et/ (1.15.23)

o n! To

This is the normalized Poissonian distribution of collisions: } .-, W, = 1. The
average number of collisions in time ¢ is evidently

A= nW,=t/mn, (1.15.24)
n=0

but the distribution about the mean is determined by the Poisson distribution
(1.15.23).

Velocity Relaxation

Collisions of hard spheres are instantaneous, while those of real molecules are
not. However, they are still considered as instantaneous in the so-called impact
approximation as their duration in rare gases is much less than the free path
time 7,. Temporal change of the velocity in the impact approximation is a
so-called purely discontinuous random process. While constant between impacts,
the velocity abruptly changes at the moments of collisions as is shown in
Fig. 1.44 for an arbitrary projection of velocity. The successive values of the
projection v; form a Markovian chain because any subsequent value depends
only on a previous one. This dependence is given by the probability F(v,7)dv
to obtain the value v after collision if the velocity before it was ¢/,

Many different realizations of a random process lead to the same value v at
time ¢ when initially (at time 0) it was v,. The chain between these values may
be shorter or longer depending on how many collisions happen in the interval
(0,¢). The conditional probability of the event (v, #;v4,0) must sum up all
possibilities as follows:

(0, 1:0,0) = 8(v = ) Wo o+ Flv o) Wi + | Flwvi )i Flwn, ) W + .

= [6(v — vy) + ®le”/™
(1.15.25)
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Vo

Vo

Figure 1.44 Time variation of a velocity component in three collisions: realization of a
Poissonian process.

where

2

t
® =F(v,vq) p + JF(U, NV F' ) 2—::7_7
i

3
t
+ JF(U, v')dv'JF(U',vl)dvlF(v],vo)gﬁ . (1.15.26)
.TO
satisfies the integral equation
. 1 1
b (v, 5, 0) = — F(v, ;) +—JF(U,U’)<1>(1/, £ vy, 0)lt/ (1.1527)
To To

with initial condition ®(0) = 0. Differentiating (1.15.25) taking into account
(1.15.27) we find the Kolmogorov-Feller equation for the conditional prob-
ability:

(,b(l/, £ v, t) = —Ti() |:(,0(l/, L v, 0) - JF(Uv Ul)(p(v’, L v, O)dy' ’ (11528)

that must be solved with initial condition ¢(0) = 6(v — vy).
Starting from any initial value v, the velocity distribution must relax in time
to the equilibrium Maxwellian distribution:
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p(v,00;v9,0) = f(v). (1.15.29)

Therefore ¢ — 0 at + — oo and we find from Eqs. (1.15.28) and (1.15.29) the
condition of stationarity of the equilibrium velocity distribution:

ﬂﬂ:JHudV@%M. (1.15.30)

This may be considered as a direct consequence of the principle of detailed
balance ensuring the equality of the rates of forward and back transitions
between any two elements of the phase space:

F@W,v)f(v) = F(v,/)f(V) (1.15.31)

The identity of the two statements is proved by integration of the last, taking
into account the normalization condition: [ F(v/,v)dv’ = 1. This puts a limita-
tion on the choice of F(v,v/).

The most popular model for this kernel was proposed by Keilson and
Storer:

Fv,v)=F(@w-+). (1.15.32)

Its particular shape is uniquely determined by Eq. (1.15.30) if f{(v) is known.
For the one-dimensional Maxwellian distribution (1.2.13) it is

2
a alv—y)
Fv—y)= exp| — 1.15.33

(V ’ﬂ/) 71_(1_’_)/2) p( 1_’72 )7 ( )
where ~ is a real numerical parameter with |y| < 1. Its physical sense becomes
clear after an estimate of the average velocity after collision:

+o00 +00

zF (z)dz + fyv’J F(z)dz=v/. (1.15.34)

—0Q0

<v>:JVF(U—’yv’)dv:J

—00

Collisions are strong at v = 0 as each of them completely restores the equili-
brium: after collision

F=f(v) (1.15.35)
whatever is the velocity before it. Collisions are weak at v — 1 as the velocity

decreases just a little (v times) after a single collision and relaxes to 0 as a result
of a long sequence of them (see Fig. 1.45).



1.15 COLLISIONS 103

f(w) |

Figure 1.45 The Keilson—Storer kernel F(v) for weak collisions in comparison with the one-
dimensional Maxwellian distribution f(v).

To find the relaxation law one has to multiply the Kolmogorov-Feller
equation (1.15.28) by v and integrate, taking into account (1.15.34):

AR LA 7 (1.15.36)
70 T0
where
1 -«
T= = no,v (1.15.37)
70

is the relaxation rate of velocity. The effective cross-section of the process o,
may be less than geometrical o. The solution of Eq. (1.15.36) leads to expo-
nential velocity relaxation

v/vy = exp(=T), (1.15.38)

that is identical to W, = exp(—1/7,) only in the limit of strong collisions.

Strong and Weak Collisions

The efficiency of hard sphere collisions depends on the masses of the colliding
objects. If the target particle is so heavy that it may be considered as practically
immobile, then the result of the collision is the elastic scattering of the light
molecule center from a sphere of radius R. The scattering angle depends on the
point of contact which is different for different molecules in a flux of point
masses flying towards the sphere with the same initial velocity ¢'. Since the
angle of incidence « is equal to the angle of reflection, the scattering angle
© = 2a (Fig. 1.46). This angle is the same for all points inside a differential
cross-section do which is an area increment of the circle of radius Rsin a:

do = d(nR*sin® o) = 2rR*sina cos o dox . (1.15.39)
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Figure 1.46 Elastic collision of a light molecule with a heavy one at an angle « with radius-
vector of a contact point (the scattering angle © = 2q).

The solid angle of scattering is
dQ) =27sin© dO = 8rsina cosa da. (1.15.40)
Hence, the differential cross-section

2
da:%dﬂ (1.15.41)

does not depend on « and the full cross-section o = (R /4) [dQ = TR? is
purely geometrical.

The average projection of the velocity of the scattered molecule on the initial
direction of motion is

<v>= —Jv'cos@do/o.

From this we obtain, taking into account (1.15.39),

/2
<v>= —v’J cos2a sin2a da = 0. (1.15.42)
0

Thus the light particle (for example, an electron) is scattered uniformly in all
directions, unlike the energy which is conserved in this approximation because
|v| remains the same after collision. Therefore the real cross-section of electron
energy relaxation though nonzero is much less than o.
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On the other hand, the velocity of a heavy molecule moving in a light gas is
not significantly changed in a single collision and it requires many collisions to
relax. Since both the velocity and the energy are slowly changing, the collisions
may be considered as weak. The limit v — 1, when

1
M>»m and T<—, (1.15.43)

To

is appropriate for Brownian particles.

To give a proof of the strong collision limit is more problematic.
Simultaneous relaxation to equilibrium of both the direction and magnitude
of the velocity are required in each collision. In order to meet these require-
ments the colliding particles must be of comparable or equal masses:

if M=~m then I‘:s—l—, (1.15.44)
70

and hence v = 0. Although approximate, the strong collision model is very
useful for simple estimates and is widely used in kinetics.

Collisional relaxation of angular momentum is very similar to that of trans-
lational velocity and even the cross-sections are comparable. Vibrational
relaxation, especially in diatomic molecules, is much slower and the rates of
energy and phase relaxation are rather different. The slowest is spin relaxation
in gases (governed by very weak magnetic interaction) whose cross-section may
be many orders of magnitude less than o.

1.16 TRANSFER PHENOMENA

Local Equilibrium

We can now proceed to the solution of the basic kinetic problem: the descrip-
tion of irreversible processes. Unfortunately, it is not so easy to apply general
ideas of stirring to particular problems. These ideas serve to strengthen our
belief that one or two strong collisions are quite sufficient for the complete
recovery of the equilibrium velocity distribution at any point of the system. In
practice, this assurance is embodied in the concept of local equilibrium which is
of fundamental importance in considering the majority of irreversible, non-
equilibrium processes. It is supposed that energy-momentum exchange between
particles proceeds in such a way that after the first strong collision each mole-
cule acquires equilibrium properties typical for the point of space where the
collision occurred. The domain of validity of this hypothesis is bounded by
slow irreversible processes, when the notion of local temperature, density, and
so on, may be introduced at each point of the space. Primarily, these are
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transfer phenomena—heat conduction, diffusion, viscosity—which, as is evi-
dent in everyday experience, are fairly slow.

For example, if heat flows from a hot glass to a cool one through a plane gas
layer in the double window frame, the “local temperature” at any point
between the glasses can be easily measured, but no temperature can be assigned
to the gas on the whole, which is in a nonequilibrium state. Thus one can speak
about “local equilibrium” at its own temperature in each microregion with
linear extent of the order ). The flux of particles from other regions continually
disturbs this local equilibrium, but it is recovered again and again in a time of
the order 7, = 1/v. The spatial size of the microregions is determined by the
fact that molecules retain their properties solely during the free path, and
change them abruptly upon collision. That is why, despite the large velocities
of molecules 7 ~ 10° cm/s, the energy transfer proceeds gradually, from micro-
region to microregion, rather than immediately from one wall to another.
Moving from hot regions to cool ones, a molecule releases its excess energy
upon collision after each free path. It retains just the energy typical for the
microregion where the collision occurred. On the other hand, molecules mov-
ing in the opposite direction heat up progressively, so they are not treated as
alien inclusions in any region, and equilibrate with the ‘“‘natives” immediately
after the first collision.

This qualitative picture—the gradual adaptation of molecules to the proper-
ties of those space points (and at that time) where (and when) they experience
collisions—forms the basis of the kinetic theory of quasistatic transfer phenom-
ena. However, the calculations may be more or less rigorous, from quite pri-
mitive to rather complicated, depending on how accurately the different details
of a phenomenon are taken into account. In order to elucidate the essence of
the method, let us begin from the most elementary approach.

Heat Conduction

Consider heat transfer through some section perpendicular to the energy flux.
If diffusion is absent the fluxes of particles j, and j_, passing through the
section from the right and from the left are equal to one another:
J+ =J- = jo. However, the energy transferred by particles moving in opposite
directions is not the same. The particles moving from the left are “more hot,”
while those coming from the right are “more cool,” if dT/dx < 0 (Fig. 1.47).
What are their energies? Here some simplifications are necessary. Suppose
that all particles suffer their last collision before reaching the section at point x
exactly at the distance A from it. Then the particles, moving through the section
from the left, will transfer the mean heat energy €(x — )) characteristic for the
point x — A, while those coming from the right will approach the same section
with the energy €(x + ). The dependence of mean energy on x is conditioned
by the fact that € = C, T/N, , while T = T(x). The resultant heat (energy) flux
through the section is expressed as the difference of the two opposite fluxes:
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Figure 1.47 Heat transfer through a window with paraliel glass panes at 0 and at L, one
neighboring the high interior temperature T; and the other the low exterior temperature Te.
The figure shows the variation of temperature in the intervening space, and denotes the flux of
molecules in the direction of positive temperature gradient by j, and in the direction of negative
gradient by j_.

q=&(x—A)j-—elx+A)Jj;

_ 20 dT
NO dx ’

S T =) — T(x+ N)] = (1.16.1)

Ny
The above expansion of T(x—\) and T(x+ \) as a power series with an
accuracy to the first-order terms is justified by the assumption that X is
small compared to the macroscopic scale of T variation.

Strictly speaking, it is incorrect to assign the same energy to all particles in
the flux, since the kinetic energy depends on the velocity of motion and cannot
be averaged independently of j,. However, this error is partly justified by the
fact that the flux itself is estimated by the Joule method, wherein the same
velocity # is assigned to all particles. Besides, taking that all particles move
solely in three perpendicular directions (along coordinate axes ), with the same
number of particles moving back and forth in each direction, one can easily see
that jo = Lom, so

L CypandT _ _ dT

§ NO dx E )

g = — (1.16.2)

This is the “Fourier law.” It claims that the heat flux is proportional to the
temperature gradient and opposite to it in sign. Of course, the verification of
this empirical dependence by direct kinetic calculation is important, but even
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more essential is a disclosure of the microscopic sense of thermal conductivity &
and its dependence on different gas parameters:

1 CVI_/A}’! 1 CV mv
- _. = . X, 1.16.3
K 3 NO 3 M p ’ ( )

where M is a molar mass. In particular, though surprisingly at first sight, & is
independent of the gas density, as A =~ 1/nc.

Viscosity

Internal friction, or viscosity, is revealed when a gas is in motion: flows
through a tube, or around some surface. Layers adjacent to solid surfaces
are retarded by friction against the surface, while layers away from it rub
against each other. As a result, the flow is gradually slowed down as it
approaches the lower (immobile) surface (Fig. 1.48), and the relative velocity
of the layer adjacent to an upper (moving surface) is also zero.

However, how does it happen that the gas layers experiencing internal fric-
tion though the molecules do not interact with each other most of time? Again,
this is due to collisions. The heat velocity of molecules is much greater than the
macroscopic speed of any gas layer u(x). Being orientated in different direc-
tions, thermal motion freely carries a molecule from a slow layer to one moving
more rapidly, and vice versa. Upon collision in the new layer, the molecule
changes its macroscopic speed to become indistinguishable from its new neigh-
bors, that is, the molecule is either accelerated or retarded, giving up the
difference in momentum to an other. The total momentum carried by the
“emigrants’ from one layer to another per unit time is equal to the friction
force acting in the section separating the layers (see Fig. 1.48).

Thus the calculation should proceed similarly to the previous one. The only
difference is that in this case it is not energy which is transferred, but the
macroscopic momentum mu(x) where u(x) is the velocity of the gas flux per-
pendicular to the x axis. Now C/ Ny is replaced by m, and T'(x) by u{x); all
the rest remains unchanged. So, by analogy with (1.16.2), we can immediately
write

» U
FRICTION Of—————" STRESS
-+ ——— — ——F

E— 17

—
——— > > F+——
FORCES *  SHEARING

s
Xy

Figure 1.48 Velocity distribution in a l[aminar stream between two parallel plates the upper of
which moves to the right.



1.16 TRANSFER PHENOMENA 109

1 du Ou
F=——-pmodn—=—n_—. 16.
3 MUAR o s (1.16.4)
The viscosity
| 1 mv
n = é-nmv)\ =35 (1.16.5)

is independent of the gas density as well as thermal conductivity (Maxwell’s
law).

Comparing formulae (1.16.5) and (1.16.3) gives an important relation
between the kinetic coefficients, which is independent of the microscopic para-
meters:

M (1.16.6)
nCy
Experiments confirm that this ratio is really constant and universal. Such a
relation between such apparently different phenomena could seem paradoxical,
if they had not been considered from a common standpoint, which is a concept
of local equilibrium.

In fact, the numerical value M /nCy varies from one gas to another,
although it remains of order of magnitude unity. This is no surprise. In such
rough calculations there is an inevitable error in estimating the numerical
parameter. However, the information on the nature of the phenomena and
semiquantitative estimates of the kinetic coefficients is so valuable that we
have to reconcile ourselves to this inaccuracy of the method. Further we
shall consider possible causes of the trouble and methods of eliminating them.

Diffusion

It is well known that diffusion is the penetration of one substance into another
due to the thermal motion of molecules. If we deal with a gas, an example is the
spread of perfume from a person who has just visited a hairdresser’s or barber’s
shop. However, the gas mixing process may be accelerated by convectional
flows due to wind or even breathing, that is, solely mechanical mixing which
has nothing to do with diffusion. Thus pure diffusion can only be observed
under experimental conditions, for example in the experiment carried out by
Loschmidt.

In this experiment, two tubes filled with different gases at one and the same
pressure are brought in contact. Then the partition separating them is taken
away, and the gases begin mixing. Checking the gas composition some time
later, one can see that the longer the time period since the start of the experi-
ment, the more homogeneous the mixture. It is to be noted that this is a lengthy
process (hours), so over a short time interval it may be treated as quasista-
tionary, that is, with the concentration gradient approximately constant. Thus
this process can be considered from the same standpoint as the above phenom-
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ena. For simplicity, let us concentrate on self-diffusion, which is observable in
the case when molecules are different isotopes of the same gas distinguishable
by some appropriate technique.

How can we calculate the flux of particles through a perpendicular section,
if the gas is nonuniform in density? In other words, what should we mean by n
in the Joule estimate l1np =j.? At which point should n(x) be taken?
According to the hypothesis of local equilibrium, the density of particles mov-
ing in columns towards the section is specified by the points where they started.
After each free path ), the columns are rearranged, adjusting to the density of
particles at the points where they experienced collision. The last path before the
section begins a distance A from it; therefore, the density of particles in the flux
passing through the section is n(x — A), if they move from left to right, and
n(x+ ) in the opposite case.

Thus j_ = (#/6)n(x — X), and j, = (7/6)n(x + A). Because of the difference
between j_ and j, the resulting diffusion flux is

. 1 _ 1_. dn dn
J=]- —]+ = EU[H(X—/\)—H(X+/\)] = —gvAd—x = —Da 5 (1167)
where
1 v
D=-0\x_— .16.
JUAN (1.16.8)

is the diffusion coefficient.
Comparing (1.16.8) with (1.16.6) and (1.16.3), we find two more relations
connecting the transfer coefficients

piD =1, (1.16.9)
pDCy
—r =1 (1.16.10)

where p = nm. A more rigorous theory adjusts the above relations for a gas of
hard spheres:

kM n

=M mo_3
6

2 pDCV_IZ
nCy 2 pD

’ kM 25 °

(1.16.11)

In view of these numerical corrections, we obtain

a |T cal 8 g y T cm?’
=2 s—— 5=2VTM . D=, i
"o VMem- deg - sec =3 cm - sec nko VM sec’

wherea =6,2-107*; $=28,4-10"°; ~=8,3-10".
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Refinement of Calculations

The method employed above simplifies rather brutally the picture of the phe-
nomenon for the sake of brevity and simplicity of description. Nevertheless, the
dependence of the kinetic coefficients on any varying parameters seems to be
reasonable. To be sure of this, let us consider heat and matter transfer once
again, abandoning, as far as possible, the most rough assumptions.

Let molecules move in all directions, with any velocity, and experience their
last collision at arbitrary distance from near the section under consideration.
From the entire flux of molecules passing through this section, we first separate
those moving towards it with a speed v inside a solid angle d€2 which is inclined
at angle 6 to the x axis (Fig. 1.49). From these molecules we select those which
suffered their last collision at a distance R from the section. How many such
molecules pass through the chosen unit section per unit time? The flux is equal
to v.dn = v cos @ ndW; however, the probability dW that we are dealing with
molecules starting at a distance R with the speed v is defined by the product of
probabilities dW(v)dW(R). Here dW(R) is the distribution in free path lengths
(1.15.13), and dW({v) = g(v)dv is the ordinary Maxwell distribution with the

density
kT \ ~*? e

where T(x) is a function of the point where the collision occurred.
So the magnitude of the flux depends on the temperature at the point where
the particle starts from and on the density there n(x). The fluxes of particles

x+ Rcos8

x-Rcos8

Figure 1.49 Opposite fluxes of particles moving with the same speed away from the points of
last collision equidistant from section x.
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from two opposite points lying on a sphere with radius R (see Fig. 1.49) differ
only in the magnitude of the multiplier ng:

dji_ =vcosf(ng)_dvdW(R), (1.16.13a)

dj, =vcosf(ng), dvdW(R) (1.16.13b)

The subscripts + and — mean that the value of ng is taken, respectively, at the
points x + Rcosf and x — Rcos6, where the last collisions before the
“finishing line” took place. It is of interest that dj_ # dj, even at n =const,
provided that there is temperature inhomogeneity. By virtue of the difference
between g_ and g, the flux of high energy particles moves from hot points to
cold ones, while low energy particles move from cold to hot points. The result-
ing flux of particles with the given velocity is as follows

di = dji_—dj, = vcost|(ng)_—(ng), |dvdW(R). (1.16.14)

The partial flux dj can differ from zero even when the total is zero (i.e.
Jj= [ dji =0). This ensures heat transfer from hot points to cold ones in the
absence of diffusion.

If the starting points are offset by A from the section and this distance may
be considered small compared to the macroscopic scale, we can use the trun-
cated expansion

(ng)_ —(ng), = =2 %@ R cosf. (1.16.15)

Substituting (1.16.15) into (1.16.14) gives

d
di = —2v % v*dv cos® §dQL RAW(R) . (1.16.16)

This expression is easily integrated with respect to angles and free path lengths

. d(ng) 2. 2p 0 o d(ng)
di = —2p 208 29y — _ 10 24RE) 16.
lj 2v » drvdvcos- 64 3 v dv, (1 16.17)

since, according to (1.15.14), £=J RAW(R)=v7,, and cos? 6 =[cos® 0dQ) /4m=1.

Using a constant 7, = 1 /v instead of 73(v) and integrating over velocities in
(1.16.17), we obtain

P= =t | nertewa] - - d(Zf) - TR (a6
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Differentiating, we find

dn ar
= -D— — B— 1.16.
j B, (1.16.19)
where
kT 2
p=rr_vr 5 _ ke (1.16.20)
m 3 m

The second term in (1.16.19) describes the phenomenon known as thermodiffu-
sion. It differs from ordinary diffusion in that the particles move from hot
points to cold ones due to the higher velocity of motion rather than higher
density.

Allowing another dependence 7o(v) in (1.16.18) will result only in numerical
changes to the conclusion. For example, in the case of the diffusion of light
particles in a heavy gas 7y = [nav]'l_z A/v, and on averaging over v, we get
D=lux= 7*1,./3 (i.c., D o 72, not v2), just as in (1.16.8). Within the frame-
work of the hard sphere model both results are reasonable, but in reality the
dependence 7y(v) should be found allowing for the actual intermolecular inter-
action, taking into account both repulsion and attraction.

Let us estimate the flux of heat, that is, thermal energy transferred by
moving molecules. In the simplest case of monoatomic gas only kinetic energy
is considered,* so at 75(v) = 7, we find using (1.16.17):

4 = -

B mt mr, d(n_z) _ 57k d(nTz)
1= JT 6 dc ~ 2m dx

Differentiating, we have

= -y — — Kk — 1.16.21
q de K ( )
where

(kT)? . _ SKTrn
m Te = —m -

(1.16.22)

It is seen that heat transfer is stimulated both by the temperature gradient and
the concentration gradient, since energy is transferred together with the matter
carrying it. This fact makes difficult a comparison between the result obtained

*For polyatomic molecules g = [[(m?/2) + i(kT/2)] dj where i = total number of excited degrees
of freedom except translational ones.
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and the simple estimate of thermal conductivity given above. The latter was
found under the additional condition » = const, while Eq. (1.16.21) describes
the more general and usual situation. For example, it arises when heat exits a
house through a double window frame, the inner glass of which is at room
temperature T}, while the outer one at the outside temperature 7, (see Fig.
1.47). The pressure at all points of the air layer between the glasses is constant
(normal). In the ideal gas approximation

1 dn 1 dT
p = nkT = const or T T T d

(1.16.23)

that is, the concentration gradient is proportional to the temperature gradient

although opposite in sign. Eliminating it from (1.16.21) with the use of

(1.16.23), we obtain the Fourier law for a stationary flux
B] dT dTr

= —|lk—y=Z| == = —HZI= 1.16.24

7 {K X D} dx dx’ ( )

where H is the thermal conductivity in the ordinary sense. Substituting for-
mulae (1.16.20) and (1.16.22) into (1.16.24), we can see that H differs from « in
(1.16.22) just by a factor of 2:

B 5k*Tr.n Sk
H=K—y== ¢ = i 1.16.25
XD 2m 16V 20 ( )

The change in corpuscular density from the hot to the cold glass does not
essentially affect the heat conductivity of the gas. Comparison of its magnitude
with the approximate estimate (1.16.3) where M = Nym, Cyp = %kNO shows
that they differ only by a numerical factor. In view of the uncertainty in 7 in
(1.16.3), this is of no fundamental significance. The most important features of
the process, the dependence of H on temperature and its independence of
density, are quite satisfactorily represented by the simplest calculation.

Heat Transfer

To demonstrate the significance of the above results let us apply them to the
calculation of the heat flux through the double window frame. As the tempera-
tures inside and outside the house vary rather slowly, the process may be
regarded as being stationary, but the temperature-dependence of the thermal
conductivity must be essentially taken into account:

5
H = AT'?, 4 = % K (1.16.26)
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This expression is used in Eq. (1.16.24) which can now be treated as a differ-
ential equation for the T(x)-dependence:

dr q
—vr = =1 .16.
\/_dx 'l (1.16.27)

where ¢ is a constant to be defined later. Solving (1.16.27), we find

3¢q
T3 = c -2 x. .16.
D (1.16.28)

The boundary conditions are given by the temperatures of the internal and
external glasses:

TO) =T,; T =T,. (1.16.29)

The first condition serves to determine the integration constant in (1.16.28):
C=T,; 3/2_ Then, using the second condition, one can calculate the flux itself

P i

: . (1.16.30)

In this final expression the heat flux is expressed directly in terms specified by
the experimental conditions: T;, T,, L. If H(T) were other than (1.16.26) this
expression could be different.

The independence of thermal conductivity on density deserves special con-
sideration. This fact is really paradoxical and points to a limited applicability
of the results obtained. Indeed, how it can be explained that the decrease in the
number of particles involved in energy transfer does not affect heat transfer? In
normal gas this is attributed to the fact that the increasing length of the free
path compensates for the decrease in molecular density. However, one can
exhaust a gas from a vessel until vacuum is reached. Obviously, in this case
the heat conduction will go to zero due to the absence of heat carriers.
However, the mere existence of such an alternative cannot be inferred from
the results obtained: H = const whatever the degree of the gas rarefaction.

Ultrararefied Gas

In view of the above reasoning, it is necessary to discuss the limits of applica-
tion of the whole approach, based on the concept of local equilibrium. It was
supposed that each point within a microregion of the scale A may be considered
as almost at equilibrium, with its own local characteristics of state: temperature
and density. However, is this always true? Remember that A = 1 /no = kT/po;
therefore, by decreasing the pressure we can make the path length a macro-
scopic quantity which exceeds considerably the vessel’s size. In this situation,
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the molecules will collide against the walls more often than with other mole-
cules. From a kinetic standpoint, such a ultrararefied gas (physical vacuum)
behaves quite differently to dense gases.

It should be noted that collisions with the walls are not necessarily elastic.
Moreover, the molecules may be adsorbed onto a wall, leveling the energy with
it. If the wall is warmer than the gas, the molecules take away some energy, and
give it up in the opposite case. The heat exchange between gas and environment
proceeds owing to adsorption—desorption processes. In order to heat a gas, we
need only heat up the walls of the vessel.

The external heat exchange promotes attainment and maintenance of equi-
librium in ultrararefied gas. The “stirring” property of such a system is so
depressed that equilibrium is more rapidly established by the interaction
with the exterior medium. This fact has an essential effect on all transfer
phenomena. The concept of local equilibrium becomes meaningless. Since
molecules move freely in the vessel, heat is transferred directly from one wall
to another, rather than in the relay fashion (from molecule to molecule), as
before.

Let us assume that from j molecules colliding against the wall per second, aj
adhere to it. Under stationary conditions the same number of molecules eva-
porate each second taking with them the mean energy corresponding to the
temperature of the surface. Also, there are (1 — )/ particles in the reflected
flux whose energy remains unchanged due to elastic collisions with the wall. In
such a model there are two groups of particles between the walls moving in
opposite directions (Fig. 1.50). The total flux and density are correspondingly

j=jT+j5 =ji+j3 and n=nf+ni+n +n; . (1.16.31)

Here the signs denote the direction of motion, and the indices label which wall
the molecules are in equilibrium with. Obviously, the heat flux is

(R . I W

Ry

VACUUM l I] L

R

T

Frrrrrtt

Figure 1.50 Opposite fluxes in an ultrararefied gas carrying out the heat transfer.
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Cy

¢ = 5 (103 =3) + TG =i, (116.32)

In order to calculate ¢, one has to determine the relative magnitude of all
fluxes. It is clear that the molecules with the “foreign” temperature only appear
in the reflected flux j7 = (1 — @)/, while those with the native one are either
reflected or desorbed: j; = (1 — @)j; + «j. Hence, it follows from the balance
considerations that

i =js+af ; jir=0-a)j7;
Jr=0=-a)ji; it =JT +aj7

The system on the left refers to the lower wall (Fig. 1.50), while that on the
right to the upper one. Thus

(I-e)j; =jf =j7 = (1-a)jf. (1.16.33)
Each of the fluxes consists solely of particles moving “forth™ (they return in
another flux). So, unlike (1.4.12), we have

it = info;, i=12, (1.16.34)

Generally speaking, all n are different.

The difference in density between the opposing fluxes can be readily illu-
strated by the following experiment. Joining two vessels filled with rarefied gas
at temperatures 7; and 7, by a short tube, one can see that eventually the
fluxes in the tube in both directions become equal to one another: j{ =j;. In
view of (1.16.34), this is only possible at n,/n; = 7, /v,, since the gas density is
related to its pressure, so py/p; = To0 /T v, = (T,/ Tl)l/z, that is, the pressure
in the joined vessels together ceases to be the same, which is just what was
observed.

Using (1.16.33) and (1.16.34) in (1.16.31), we get

Dl'Dz
1+

j=@-aj; = 2-a)jf =3 (1.16.35)

L

On substitution of (1.16.33) into (1.16.32) and in view of the above result, we
can easily obtain

o Cva EI_/I'DZ
_NO(Z—a) 2171+l72

q (T, - T). (1.16.36)
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Figure 1.51 Density-dependence of the effective thermal conductivity «.

The quantity

Cya oL o 0 (1.16.37)

H=N0(2—(1) 2 1_/1+i/2

has the meaning and dimension of thermal conductivity and is linear in the
density of the remaining molecules.

This result holds when X >> L. With increasing of density the sign of the
inequality is reversed, and local equilibrium is restored. Only then the previous
estimate of H (1.16.25) becomes valid. Thus the estimate independent of the
gas density holds in the limited density range n > 1/oL (Fig. 1.51).

Current in Gases

Although at room temperature and atmospheric pressure any gas is a dielectric,
there is always a small equilibrium concentration of charges brought about by
heat ionization of molecules. When the electric conductivity of a gas becomes
observable, the concentration of ions in the unit volume is still much less than
the density of neutral particles. Note that this concentration can exceed the
equilibrium one, if it is created by external sources: penetrating radiation or
emission of electrons from a cathode. Whatever their origin, the charges which
find themselves in the spark-gap respond to the applied field and drift in the
direction of the force acting upon them. Moving with velocity w, they transfer
electricity between electrodes, thus making the gas a conductor.

When electric conduction is unipolar, that is, when all carriers have the same
sign, the current density

i = ewn, (1.16.38)
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where # is the concentration of ions, and e is the absolute magnitude of their
charge. If the drift speed w is directly proportional to the field

w = ukE, (1.16.39)
then Ohm’s law holds

i = oE. (1.16.40)
The conductivity is

o = eun, (1.16.41)

where u is the mobility of the current carriers. To prove Ohm’s law, it is
sufficient to assume that ions completely change the direction of their motion
in each collision. Because of this, the mean velocity after collision is equal to
zero as in Eq. (1.15.42). In other words, on the average, each collision makes
the ion stop, and its acceleration in the next free path starts afresh. That is why
charge drift is uniform, despite quadratic increase of the free path with time
typical for uniformly accelerated motien (Fig. 1.52).

Indeed, the free path in the direction of the field averaged over initial velo-
city directions,

S
Y= 2m -~ 2m
q S
a(t3—t2)2
2
alt,~t,)?
2
2
aty
2
w=Z
t
¢, Z, t t

Figure 1.52 Averaged ion drift (straight line) accomplished by a sequence of free paths in an
extemal electric field (polygonal line).
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should also be averaged over the distribution of free path times (1.15.15):

— E [® Eré
E:e—J Paw (1) = £

2m0

Now it is clear that the drift speed is proportional to the field

w = Jf_— AW (v)=uE, (1.16.42)

7o
and the mobility of carriers is equal to

wn e (1.16.43)

m m/8kT/mp

Naturally, the lighter the charge carriers and the lower the density of the gas
they pass through, the greater the mobility.

These qualitative conclusions were verified experimentally by Rutherford,
although the measured mobility was found to be less by an order of magnitude
than the expected result

e, 5-107'°.3.107° _ 2
v ﬁ - 300 - 10-2 ~ 50 cm®/(V - sec) (1.16.44)

This anomaly is partly due to an inappropriate estimation of the ion mass. As a
rule, owing to their charge, the gas ions attract some neutral particles and form
associates which move as a unit. Such ions have greater mass, and therefore are
less mobile. Another source of error is the rough nature of the model of hard
spheres. The charged particle is the source of a long-range Coulomb field. This
affects the ion’s trajectories far beyond the limits of their own diameter, that is,
in fact, collisions occur at greater distances than one can infer on simple geo-
metric grounds. To put it another way, the effective cross-section of an ion
exceeds the sizes of the neutral molecules. Consequently, the frequency of
collisions is greater, and the interval between them 7. is less than was assumed
in (1.16.44). These peculiarities of charged particles gave a stimulus for the
refinement of electric conduction theory which proved to be quite satisfactory
for ions of any substance and both signs.

The single but very important exception from the rule is the case where
charge is carried by free electrons. This mechanism of electric conduction
was taken to explain the extremely high mobility of negative carriers in some
experiments (up to 10* cm? /V -sec). In inert gases and strong fields the elec-
trons adhere weakly to molecules and become free, undergoing only elastic
collisions. In this case the charge mobility becomes much greater, because
the electron’s mass is less than that of a negative ion by a factor of 10°. On
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closer examination of formula (1.16.43), it is seen that the mobility increases by
a factor of \/M/m = 200, and this was verified experimentally.

However, this is not all. When free electrons take the role of carriers, the
character of their movement through the gas changes. Due to the sharp dif-
ference in mass, the energy exchange between electrons and molecules resulting
from collisions is hampered. The share of energy transferred from light to
heavy particles in collisions is determined by the ratio of their masses. This
can easily be seen if one tries to play cherry stones against billiard balls. The
energy Ae lost by an electron upon collision accounts for just a small fraction
g = Ae/e = m/M = 107> of the total energy e it carries. Thus the local equili-
brium principle which formed the basis of the previous consideration is vio-
lated. Collisions are unable to correct the electron’s energy in such a way as to
make it correspond to the local temperature of the points where the collisions
occur. On the contrary, moving through the gas along the field, the electron
accumulates gradually the energy imparted to along the free path. Only an
insignificant share of this energy is converted into heat at collisions.

Although unable to take away all the electron’s energy, collisions essentially
affect the direction of its motion. Owing to this, the work executed by the field
accelerates the motion of electrons uniformly in all directions, thus establishing
a distribution similar to the Maxwell one. However, the electron temperature T,
appearing in this distribution is greater than the local temperature 7 of the gas.
It is determined by the mean electron energy € = %kT .

As long as the energy of electrons is fairly small the electron temperature
increases linearly approaching the anode:

2
kT, = ™ s eEx . (1.16.45)
2 2
However, this rise of temperature cannot continue indefinitely, since upon each
collision a gth portion of the electron’s energy is lost. At higher ¢, it is no longer
a small value compared with the additional energy acquired in free path.
Eventually, € ceases to increase, and all the energy taken from the field is
converted to heat transferred to the surroundings.

Accumulation of energy by a drifting electron is described by the equation

de q
E = eEw — 5[6—60],

where ¢y = %kT‘ If the second term is neglected, then ¢ = eEwt = eEXx, as in
(1.16.45). On the other hand, in the stationary regime de/dt = 0, while

eEwt, eEwr,
€E = ¢+ —mR—,

q q

if electrons become hot enough. Using (1.16.42) and (1.16.43), we obtain
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or

W — (gﬁ)”z.

As is seen, the drift speed is less than the root mean square velocity by a factor
of /q/2. Revealing the meaning of w with the help of Egs. (1.16.42) and
(1.16.43), we find

el N q—
;n—l_) E = 3 [ 2
and
3 m?  eAE
kT, = —~— . 1.16.46
Thus the kinetic energy of an electron in a stationary drift is q_l/ ? times as

great as the work executed by the field in one free path. The electron tempera-
ture T, exceeds considerably the temperature of the environment, and it is T,
that should be substituted for 7 in formula (1.16.43) to estimate the electrons’
mobility

u = (ex yg/mE)"* . (1.16.47)

So it turns out that, due to the dependence of the electron temperature on the
field, the direct proportionality between w and E is replaced by the relation

w = uE = (eAEyg/m)'"*. (1.16.48)

Thus the notion of mobility becomes less significant, as this quantity is no
longer a constant. Under normal conditions, for a field of 10 V/cm,
u~10°cm?/V - sec, T, ~ 1000 K, and the kinetic energy of electrons is about
0.1eV.

Formulae (1.16.45) and (1.16.46) describe two opposite limits. The former
accounts for the electron acceleration interval where losses are very low, while
the latter the stationary regime where the gain and expenditure of energy
compensate one another. On its way from the cathode to anode, the electron
passes from one region to another. Obviously, the boundary is the point where,
according to both approximate estimates, the electron temperature is the same:
(eAE)/\/q = eEx,. Thus
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X = 2= (1.16.49)

is approximately one hundred times greater than the free path length. At
normal pressure, it is still a small value: x; ~ 1072 ¢m. So, under normal
conditions, the electron drift is stationary over almost the entire discharge
gap, except in a very narrow layer. However, at pressures a thousand times
less than atmospheric, the acceleration interval extends to macroscopic sizes. If
the electrodes are separated by a distance of the order of several centimeters,
the stationary regime is not reached at all. As is seen from formula (1.16.45), in
this case the electron temperature is measured merely by the distance covered.
Thus any a priori prescribed energy may be imparted to the electrons by
installing a grid near the cathode within the acceleration interval. The energy
of the electrons which reach the grid will be specified by the difference in
potential between the grid and the cathode.

So, the violation of local equilibrium results in the coexistence of two gases
in the spark-gap: molecular and electron, each having its own temperature. The
difference in temperature is maintained and controlled by the field: the source
of energy accumulation. Thus one can easily increase the field to such a degree
that the energy of heat motion of electrons will be sufficient for excitation, and
ultimately for ionization of neutral particles of the matter. Atoms and mole-
cules excited upon collisions with electrons can radiate the acquired energy in
the visible range. In principle, the operation of gas-filled tubes which remain
relatively cool, despite the daylight they create, is based just on this phenom-
enon. At high electron temperatures, ionization of molecules also becomes
possible. The chain ionization results in an avalanche increase of current car-
riers. Positive ions also contribute to gas conductivity. Among other things,
they bombard the cathode knocking additional electrons out of it. Thus at a
definite potential difference, the “breakdown” of a gas may take place—a
sudden conversion into a highly ionized conducting matter (plasma).





