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Polymer Dynamics in Melts

Andreas Wischnewski and Dieter Richter

Abstract

The dynamics of linear polymer chains in the melt depends strongly on the
chain length: for short, unentangled chains, the dynamics is determined by a
balance of viscous and entropic forces; for long chains, topological constraints
are dominant. In this chapter, the experimental exploration of chain dynamics
is introduced and discussed in detail. The focus is on neutron spin-echo (NSE)
spectroscopy, which is one of the most powerful tools to explore the different
dynamic regimes in polymer melts on a microscopic scale. It allows direct
observation of the transition from a regime of free relaxation at short times,
which can be described in terms of the Rouse model, to constrained motion
at longer times. The constrained motion is caused by the entanglements
that emerge in long-chain polymer systems. The tube concept models these
topological confinements by assuming the chain to be confined in a virtual
tube formed by adjacent chains. This concept of chains reptating in a tube is
strongly supported by experiments in the limit of long chains.

However, there is also strong experimental evidence that the tube model
starts to fail if the polymer chains become shorter. In this regime of interme-
diate chain length, neither the Rouse model nor the pure reptation concept
are applicable. A close comparison of linear rheology data with the predic-
tions of the reptation model indicates the existence of additional degrees of
freedom that release the topological confinement. Fluctuating chain ends that
destroy the tube confinement starting from both ends were proposed as one
candidate. This process, called contour length fluctuations (CLF), indeed ac-
counts for the observed behavior of the mechanical relaxation function. In this
chapter, we present a systematic study of this mechanism on a microscopic
scale.
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A second relaxation process that appears to limit the topological confine-
ment in polymer melts is the relaxation of the tube itself (constraint release).
Since the tube is formed by adjacent chains, which themselves accomplish
all motions that are permitted for an observed test chain, the topological con-
straints that are represented by the tube are not fixed in time. In this chapter,
the loosening of confinement by the constraint release effect, which can be
observed on a molecular scale, will be investigated.

1.1
Introduction

In this chapter, the dynamics of flexible polymers in the melt – one of the
most fascinating topics in the field of polymer science – will be discussed. The
structure of polymer chains has been the subject of intensive scientific work
at both theoretical and experimental levels, so it is a logical consequence of
the activity in that field to focus on the problem of how these large molecules
move. This question becomes all the more challenging because the static
properties alone are surprising. Drawing the structural formula of a polymer
on paper, one could be tempted to conclude that the chains in reality are
prolate objects. The fundamental investigation of Flory (1953) has shown
that this is not the case. His prediction that the spatial extent of a large chain
molecule should be coil-like rather than rod-like (stretched) was confirmed by
neutron scattering experiments (Kirste et al. 1973). This was at the same time
one of the first applications of neutron scattering to polymer science. The
coil conformation is a consequence of the large number of internal degrees
of freedom, a common property of soft matter systems. Further “soft matter
properties” of polymers are the weak interaction between the structural units
(chains) and the significant role of entropy.

The mechanical properties of polymers are extraordinarily diverse. Ad-
dressing the response to strain, condensed matter is generally divided into
solids and liquids: for solids, the stress is proportional to the strain at least for
small deformations (elastic behavior); for liquids, the stress is proportional
to the change in strain, i.e. viscous behavior is observed. For a polymer, the
mechanical response can be solid-like, rubber-like or viscous depending on
the temperature or load time. For long-chain polymer melts at intermediate
frequencies, a plateau in the relaxation function reflects elastic behavior. In
the low-frequency region, i.e. at longer times, the same material behaves in a
viscous manner. This “viscoelastic” behavior is a good reason for comparing a
long-chain polymer melt with a network, where chains are chemically cross-
linked. In a melt, there are no chemical cross-links; however, if the chains
are long enough, they build entanglements, which are not stable but may act
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temporarily as network points. In this picture, the plateau in the relaxation
function is caused by a temporary network and, in analogy to the mesh size in
a real network, one can define a distance between the entanglements in the
melt: typical distances are in the order of some nanometers. Compared with
the segment length (around 0.5 nm) and the radius of the coil of the entire
chain (around 100 nm), this distance defines an intermediate length scale.

We have seen that the dynamics of polymers strongly depend on the time
scales and temperature under consideration. One may also focus on differ-
ent length scales. If a polymer is subjected to a mechanical strain, complex
molecular rearrangements are provoked. This relates not only to molecular
dimensions but also to individual bonds. Since local bond dynamics is gov-
erned by local potentials, the rearrangements are comparably fast to a normal
solid (picosecond range). For distances between the bond length and the en-
tanglement distance, entropic forces are dominant. For even larger distances,
the motion of the chain is restricted due to the entanglements, and the chain is
localized. All these dynamic processes, starting from lengths of about 0.1 nm
and times in the picosecond range up to the size of the polymer chain (about
100 nm) and up to macroscopic times, determine the viscoelastic properties
of a polymer system.

Thus, the dynamics of polymers is manifold: the relevant length scales
vary from atomic distances to the length of the polymer macromolecule. This
leads to time scales that are comparable to the characteristic time scales of
atomic vibrations up to very long “macroscopic” times. The wide range of rel-
evant time and length scales for polymers leads to their various mechanical
properties. The huge variety of applications in conjunction with their simple
production and processing makes polymers particular and interesting. Poly-
mers are an integral part of our daily lives and they are of utmost importance
for industry.

It is evident that a discussion of polymer dynamics over the entire range
of time scales is far beyond the scope of this chapter. Here, we will focus on
polymers at high temperatures, far beyond the glass temperature Tg, where
a polymer is in the liquid-like “melt state”. Furthermore, we will not discuss
the local dynamics or glass aspects, but concentrate on the mesoscopic dy-
namics, i.e. on intermediate to large length scales that are in the order of the
entire polymer chain, or some units of it. The manifold dynamic behavior on
mesoscopic length scales is completely unknown from conventional solid-
state physics. Consequently, specific experimental techniques and theoretical
approaches are required. For instance, if a macromolecule that “prefers” the
coil conformation is stretched a little bit – say by Brownian motion of neigh-
boring molecules – the entropy will try to bend it back. On the other hand, the
molecule has to overcome friction if it wants to move. How can this behavior
be described? Another aspect to address is the question of how these large
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molecules diffuse and on what time scale. As mentioned above, long polymer
chains will build entanglements, or packing constraints will strongly affect
the freedom to move. What kind of chain motion will this condition allow?

One fascinating property of polymers on large length scales is universality.
The principles we are going to discuss in this chapter do not depend on local,
chemical details. This leads to the fact that we can focus our studies on one
or two polymers to elucidate the main features of dynamical behavior.

One ultimate goal of polymer science is an understanding of macroscopic
dynamic and mechanical properties on a molecular basis. The hope is that
revealing all dynamic processes in polymer systems not only gives an es-
sential contribution to fundamental research but also allows the design of
materials with specific macroscopic properties by selectively manipulating
microscopic parameters like architecture or composition. This “molecular
design” presumes an understanding of all relevant relaxation processes in
polymers, and we hope that the following pages serve as a first step in this
direction.

In Section 1.2 the basic properties of polymer chains are discussed. Here,
a brief introduction to the synthesis of polymer chains and their characteri-
zation is also given. In Section 1.3, experimental techniques that allow one to
access the mechanical and dynamic properties will be introduced. Sections 1.4
to 1.6 describe theoretical approaches that are available and can explain the
main features of polymer melt systems, starting from the Brownian dynamics
of a single segment of a polymer chain to the large-scale diffusion of an entire
macromolecule. These concepts will be scrutinized by experiments. The re-
sults demand the consideration of secondary relaxation processes, which will
be discussed and again tested by experiments in Sections 1.7 and 1.8. Finally,
in Section 1.9 the chapter will be summarized and an outlook will be given.

1.2
What is a Polymer?

Polymers are large molecules that are built from a repeat unit, the monomer.
If all monomers are of the same species, the polymer is called a homopolymer.
If a chain consists of several parts (blocks) that are chemically different, they
are denoted as diblock or multiblock copolymers. The segments may be linked
one after another, which leads to linear chains, or, by introducing branching
points, versatile complex architectures can be produced. In polymer science,
star polymers with different numbers of “arms” (one branching point), struc-
tures with one backbone chain and two (H-shaped) or more (pom-poms) arms
at each end (two branching points), and even more complex molecules with a
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Fig. 1.1 Schematic representation of different polymer architectures.

comb-like structure have been considered and intensively investigated in the
past decades (see Fig. 1.1).

In addition to the variation of the chemical structure within one chain or
the architecture of the molecules, interesting features are found in mixed sys-
tems, e.g. in polymer blends that consist of different homopolymers, chains
with different length (polydisperse systems) or architecture. Also, polymer
solutions should be mentioned here.

Converging to an understanding of the basic dynamic properties in poly-
mers presumes an understanding of the simplest systems. Therefore, we
will focus in this chapter on homopolymers with a linear architecture in the
melt state. They are the ideal probe to investigate the motions on the scale of
segments and chains, respectively. In the following sections, we will see that
the main features of polymer dynamics strongly depend on the length of the
chains or the number of monomers N , respectively.

1.2.1
Synthesis of Polymers

Modern polymer chemistry generally distinguishes between two basic poly-
merization mechanisms (Odian 1991). These are either step growth or chain
growth polymerizations. Step growth polymerization proceeds by the step-
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wise reaction between the functional groups of reactants, which can be ei-
ther monomers, oligomers or polymers. In such polymerizations, the size of
the polymer increases at a relatively slow rate and reaches a high molecular
weight only if high conversion is reached. Typical examples for step growth
polymerizations are the formation of polyamides by the reaction of diamines
with dicarboxylic acids or the formation of polyurethanes by reaction of diiso-
cyanates with diols. In contrast to step growth, chain growth polymerizations
require an initiator. The initiator produces a reactive center, which may be
either a free radical, cation, or anion. The monomer reacts exclusively with
the reactive center and not with other monomers, oligomers or polymers.
Chain growth polymerization can be subdivided into four elementary steps,
i.e. initiation, propagation, chain transfer, and termination.

• During the initiation step, a reactive center, I∗, is formed, which initiates
chain growth by reaction with the monomer M:

I −→ I∗

I∗ + M −→ I–M∗

• During propagation, the reactive species repeatedly reacts with the mono-
mer:

I–M∗ + nM −→ I–(M)n–M∗

where n denotes the number of monomers incorporated into the grow-
ing chain and n + 1 = N is the degree of polymerization (number of
monomers of the terminated chain).

• Termination is the step where the reactive center is destroyed by reaction
with a compound S. At this point, the polymer chain, P, is inactive and
ceases to grow:

I–(M)n–M∗ + S −→ P

• An additional reaction step that has to be considered is chain transfer.
This step involves reaction with a compound S–X leading to a terminated
polymer chain P–X, but at the same time to a new reactive species S∗, which
itself acts as an initiator for chain growth:

I–(M)n–M∗ + S–X −→ P–X + S∗

A special case of chain growth polymerization is obtained when termi-
nation and chain transfer can be suppressed. This process is called living
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polymerization, which in particular is essential for the preparation of model
polymers as outlined in the following paragraph. A detailed description of the
definitions of, criteria for and consequences of living polymerizations can be
found in the literature (Hsieh and Quirk 1996; Matyjaszewski and Sawamoto
1996; Kamigaito et al. 2001).

Under living polymerization conditions it is possible to synthesize model
polymers with well-defined composition and structure, e.g. block copolymers
by consecutive polymerization of two or more monomers, or star polymers
by reaction with an appropriate coupling agent. The molecular weight of the
polymers can be anticipated simply by the ratio of the mass of monomer to the
moles of initiator provided that 100% conversion is reached. Polymers with
narrow molecular-weight distribution can be prepared if the initiation rate is
fast or comparable to the propagation rate and a rapid mixing of the reactants is
ensured. Hence, polymerizations accomplished under such conditions yield
model polymers suitable in particular for fundamental research in polymer
physics. In this respect anionic polymerization of styrene and dienes with
alkyllithium initiators has turned out to be the most powerful method (Young
et al. 1984), even though living cationic and living radical polymerization have
become increasingly important in recent years. In the following we will focus
on the preparation and properties of some polyolefins, which are of particular
importance for this chapter.

Polyolefins are saturated hydrocarbon polymers that exhibit superior sta-
bility toward thermal, oxidative, and radiation-induced degradation. They are
therefore suitable for fundamental studies under extreme conditions, e.g. in
the high-T limit. Polyolefins can be prepared by Ziegler–Natta and metal-
locene catalysts or by free-radical polymerization. Unfortunately, the poly-
mers prepared by these methods usually possess a relatively broad poly-
dispersity and the molecular architecture is difficult to control. In order to
produce model polyolefins with narrow molecular-weight distribution, pre-
defined molecular weights, and controlled architecture, the synthetic strategy
involves the preparation of polydienes by living anionic polymerization, which
are subsequently saturated with hydrogen to the corresponding polyolefins,
e.g. polyethylene (PE) and poly(ethylene-alt-propylene) (PEP) can be made
from polybutadiene and polyisoprene, respectively (see Fig. 1.2). Such poly-
merized polyolefins differ from pure linear chains by the appearance of a
certain amount of side chains. This is due to the microstructure of the parent
polydienes, which consists of four modes: cis-1,4-, and trans-1,4-, 1,2- and 3,4-.
Polymerization of 1,3-butadiene in hydrocarbon solvents (benzene, cyclohex-
ane) with alkyllithium initiator concentrations below 10−2 mol l−1 leads to
a microstructure of about 51% trans-1,4-, 42% cis-1,4- and 7% 1,2- addition.
The 1,2- and 3,4- isomers are identical in polybutadiene.
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Fig. 1.2 Schematic illustration of possible microstructures of polyiso-
prene and polybutadiene and their transformation to the respective
polyolefins by hydrogenation.

The microstructure of polyisoprene prepared under similar conditions con-
sists of about 70% cis-1,4-, 23% trans-1,4- and 7% 3,4- units. The 1,2- addi-
tion does not appear in hydrocarbons. The composition of the microstructure
changes drastically when polymerizations are performed in polar solvents like
tetrahydrofuran or diethyl ether. The cis-1,4- and trans-1,4- units are clearly
reduced, while beside an increased amount of 3,4- also 1,2- units are ob-
tained. In the case of polybutadiene, the presence of 1,2- addition can be
driven to almost 100% with dipiperidinoethane as polar cosolvent in a molar
excess of at least 4 over the initiator. The polydienes can be saturated in a
post-polymerization reaction by addition of hydrogen to the corresponding
polyolefins. Several homogeneous and heterogeneous catalytic methods have
been applied to get polyolefins with the same molecular characteristics as the
parent polydienes. It turns out that heterogeneous catalytic hydrogenation by
means of a palladium/barium sulfate catalyst is the most effective for this
requirement. In particular, for the hydrogenation of polybutadienes and poly-
isoprenes, no chain scission and complete saturation are observed. There is
also no metal contamination due to the ease of catalyst extraction.
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The amount and type of side chains in the polyolefins prepared via this
route obviously depend on the microstructure of the polydiene precursors.
The hydrogenation product from cis-1,4- and trans-1,4-polyisoprene is an al-
ternating poly(ethylene–propylene) (PEP) copolymer, the 1,2- structure trans-
forms into poly(1-methyl-1-ethylethylene) (PMEE) and the 3,4- structure into
poly(isopropylethylene) (PiPE). Hence, the hydrogenation product from poly-
isoprene prepared in a hydrocarbon solvent is in fact an alternating copolymer
of ethylene and propylene with a random distribution of 7% isopropylethy-
lene units. However, the abbreviation PEP has been accepted for this material
and will be also used in this chapter.

A similar but less complicated scenario is obtained for polybutadiene. The
cis-1,4- and trans-1,4- structures yield linear polyethylene (PE), and the 1,2-
structure poly(ethylethylene) (PEE). PEE is formally the polymerization prod-
uct of 1-butene. Therefore, the hydrogenation product of polybutadiene is a
random copolymer of ethylene and 1-butene. The widely accepted abbrevia-
tion for this polymer is PEB-x [poly(ethylene-co-butene)-x], where the integer
x denotes the number of ethyl side branches per 100 backbone carbons. Ac-
cording to this nomenclature, the hydrogenation product of a polybutadiene
with 93% 1,4- and 7% 1,2- units is PEB-2 and that of 100% 1,2- polybutadiene
is PEB-50.

Due to the presence of side chains, the average molar mass of a repeat
unit M0 is calculated as typically shown for PEB-2 in the following: If we
cut from a long PEB-2 polymer chain a subchain with 100 carbon atoms
(M = 1200g mol−1), it has200−2 = 198hydrogen atoms (M = 198g mol−1)
and two ethyl branches C2H5 (M = 58 g mol−1), which yields a molecular
weight of 1456 g mol−1, i.e. M0 ≈ 14.6 g mol−1. In analogy to PEP and for
the sake of clarity, we use PE for PEB-2 and PEE for PEB-50 throughout this
chapter.

1.3
Experimental Techniques

1.3.1
Neutron Scattering

Neutron scattering (Squires 1978) is a powerful tool for the investigation
of the structure and dynamics in condensed matter samples at atomic and
intermediate scales. Neutrons may be produced by a nuclear chain reaction
in a reactor. They are moderated by, for example, D2O before they react with
the next nucleus. To produce slow (“cold”) neutrons, a cold source is inserted
into the reactor, which moderates the thermal neutrons to low temperatures
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(e.g. by hydrogen with a temperature of 20 K). An alternative method for the
production of neutrons is spallation, where a high-energy beam of hydrogen
ions hits a heavy-metal target so that neutrons evaporate from the cores. For
a pulsed operation of the ion accelerator, a broad band of wavelengths may
be used for the scattering experiments.

Thermal and cold neutrons have de Broglie wavelengths from λ = 0.1 nm
up to 2 nm, corresponding to typical distances in condensed matter systems.
The kinetic energy of the neutrons compares with the excitation energies of
atomic or molecular motions like vibrations or phonons. Therefore, motions
of the scatterers in condensed matter samples are detectable by a velocity
change of the neutron. The spatial character of the motion may be inferred
from the angular distribution of the scattered neutrons. The fact that neutrons
deliver information about the structure and the dynamics at the same time
makes them one of the most important tools in condensed matter research.

The energy E and momentum p of a neutron can be defined by the velocity
v (here, the neutron is seen as a particle) or the wavenumber k = 2π/λ (here,
the neutron is seen as a wave with wavelength λ):

p = mnv = �k (1.1)

E =
mn

2
v2 =

(�k)2

2mn
(1.2)

where mn is the mass of the neutron. Fig. 1.3 shows the principle of a scatter-
ing experiment. A neutron beam of intensity I0 with neutrons of energy Ei

and a wavevector ki is scattered at the sample. The interaction of the neutron
with the sample can be divided into two types. The first type is the magnetic
interaction, where the magnetic moment of the neutron interacts with the

Fig. 1.3 Principle of a scattering experiment.
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magnetic moment of the electrons or the cores. This type of interaction has
no relevance for the topic discussed here, so we will focus on the second type,
the scattering of the neutron at the core potential by the strong interaction.
The strength of this interaction is represented by the scattering length bj , a
complex number that varies with the mass number of the core in an unsys-
tematic way. The real part of bj represents the scattering, and the imaginary
part the absorption of the neutrons.

In the solid angle δΩ steradians, the scattered neutrons δZ can be char-
acterized by energy Ef and wavevector kf . The energy and momentum that
were transferred by the scattering process is given by

∆E = �ω = Ei − Ef (1.3)

∆p = �Q = �(ki − kf) (1.4)

where Q is the scattering vector. If Ei = Ef , the scattering process is called
elastic. Following Eq. (1.2), this also means that ki = |ki| = kf = |kf | = 2π/λ.

We have to distinguish between coherent and incoherent scattering. The
nucleus as well as the isotope distribution determine how much of these
fractions contribute to the scattering. For elements that have a nucleus with
spin zero and only one isotope, the scattering is purely coherent, i.e. the
scattering of different atoms interferes. If the spin is not zero, the scattering
amplitude may depend on the relative orientation of the nuclear and neutron
spins, respectively. Then we are dealing with a mean scattering amplitude,
which contains a coherent part and fluctuations of the scattering amplitude
that contribute to the intensity without interference of waves emitted from
different atoms. The latter represents the behavior of single atoms and is called
incoherent. For vanadium or hydrogen, for example, incoherent scattering is
significantly stronger than coherent scattering.

Let us describe coherent scattering of an atom by the mean scattering
length squared b

2
and incoherent scattering by the scattering cross-section

σinc = 4π(b2 − b
2
). The coherent part of the double differential cross-section

of N equal atoms is given by (Marshall and Lovesey 1971)

(
d2σ

dω dΩ

)
coh

=
kf

ki

1
2π

∫ ∞

−∞
dt e−iωt b

2
N∑

i,j=1

〈
e−iQRi(0)eiQRj(t)

〉
(1.5)

The angle brackets denote an ensemble average. The incoherent part of the
double differential cross-section is given by(

d2σ

dω dΩ

)
inc

=
kf

ki

1
2π

∫ ∞

−∞
dt e−iωt σinc

4π

N∑
i=1

〈
e−iQRi(0)eiQRi(t)

〉
(1.6)
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Now we can express the cross-sections by a normalized dynamic structure
factor S(Q, ω):

Scoh(Q, ω) =
ki

kf

1

Nb
2

(
d2σ

dω dΩ

)
coh

(1.7)

The polymer systems that will be discussed in this chapter are isotropic with-
out any preferential direction. Thus, we may use

Scoh(Q, ω) = Scoh(Q, ω) (1.8)

For incoherent scattering Sinc(Q, ω) is

Sinc(Q, ω) =
ki

kf

4π

Nσinc

(
d2σ

dω dΩ

)
inc

(1.9)

It can be shown that the coherent dynamic structure factor is the Fourier
transform (with respect to space and time) of the van Hove pair correlation
function Gpair(R, t) (van Hove 1954). In a classical interpretation this func-
tion stands for the probability of finding an atom j at position Rj at time t,
if any atom i has been at position Ri = 0 at time t = 0. In analogy to the
pair correlation function, the self-correlation function Gself(R, t) is obtained
by a Fourier transform of the incoherent scattering factor. Then Gself(R, t)
represents the probability of finding the atom i at position Ri at time t if the
same atom has been at Ri = 0 at time t = 0.

Finally, before discussing two important neutron scattering techniques,
which are vital for the understanding of the dynamics in polymer systems,
we define the elastic scattering function as S(Q, 0) ≡ S(Q, ω=0) and the
static scattering function S(Q), which is directly measured by small-angle
neutron scattering (SANS):

S(Q) ≡ S(Q, t=0) =
∫ ∞

−∞
S(Q, ω) dω (1.10)

As we will see below, in the neutron spin-echo technique, the Fourier trans-
form of S(Q, ω) can be measured directly. The coherent scattering function
in the time domain, also called the intermediate scattering function, can be
calculated by the Fourier transform of Eq. (1.7) and using Eq. (1.8):

Scoh(Q, t) =
1
N

N∑
i,j=1

〈
e−iQRi(0)eiQRj(t)

〉
(1.11)
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The respective incoherent scattering function is given by the Fourier trans-
form of Eq. (1.9):

Sinc(Q, t) =
1
N

N∑
i=1

〈
e−iQRi(0)eiQRi(t)

〉
(1.12)

Small-Angle Neutron Scattering (SANS)
At a given wavelength of the probing radiation, large objects scatter into small
angles. Long polymer chains are much larger than single atoms – their size
is mesoscopic. To obtain information on the chain conformation, small scat-
tering angles and therefore small Q-values have to be resolved. This can be
realized by small-angle neutron scattering (SANS). In this technique, no en-
ergy analysis of the scattered neutrons is performed; the integral over all en-
ergies is detected. The measured scattering function S(Q) therefore contains
information about the structure of the sample but not about the dynamics.

The schematic picture of the experimental setup is shown in Fig. 1.4. A
polychromatic neutron beam from a cold moderator is monochromated by
a neutron velocity selector. This is a rotating cylinder with tilted absorbing
lamellas. Only neutrons with a defined wavelength λ (∆λ/λ ≈ 0.1) can pass.
Neutron guides bring the neutrons to the collimation aperture. Then, the
neutrons propagate freely to the sample aperture, which defines the diver-
gence of the beam. The neutrons hit the sample and some are scattered. The
transmitted (non-scattered) neutrons hit the beam stop on the detector and
are used to measure the transmission of the sample. The scattered neutrons
are detected on a position-sensitive detector, which is used to measure the
cross-section of the sample. The collimation and detector distances are varied
to achieve lower or higher resolution.

Fig. 1.4 Schematic picture of a SANS experiment.
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One assumes that the size of the sample is much smaller than the distances
from the source to the sample and from the sample to the detector. The wave
fields of the incident and scattered beams are described by the wavevectors ki

and kf respectively. The scattering vector is defined as the difference between
the incident and the scattered wavevectors. The absolute value of the scattering
vector for an elastic scattering process is given by

Q = |ki − kf | = 2k sin
θ

2
=

4π

λ
sin

θ

2
(1.13)

where λ is the wavelength of the neutrons adjusted by the velocity selector.
The scattering angle θ is depicted in Fig. 1.4.

The elastic scattering function S(Q, 0) and the static scattering function
S(Q) have been defined above. SANS does not analyze the energy of the scat-
tered neutrons and therefore cannot distinguish between elastic and inelastic
scattering processes, i.e. it measures the integral over all energies S(Q). Why
can we then use Eq. (1.13), which assumes elastic scattering ki = kf? SANS
accesses large objects or large volumes in real space. As an example, the fast
atomic vibrations of a single atom in a polymer chain are not detected by
SANS, while the slow motion of the entire macromolecule is. The energy
transfer that is detectable in this Q-value regime is in the range ∆E < µeV,
while the neutrons have energies in the meV range. Therefore, it is justified to
assume the scattering to be elastic, although the measured function is S(Q)
and not S(Q, 0). Equation (1.13) is also applicable for the neutron spin-echo
(NSE) technique to be discussed in Section 1.3.1, because ki ≈ kf still holds.
However, as will be explained in detail later, the NSE technique is able to
detect the very tiny energy transfers in this Q-value regime by exploiting a
property of the neutrons that has not been considered so far.1)

Since for SANS the detected volumes in the relevant Q-value regime are
significantly larger than the volumes of single atoms, the description of the
scattering in terms of atomic scattering lengths is not appropriate. As shown
below, the coherent scattering is determined by different scattering length
densities of volumes which are – with respect to their size – relevant for the
Q-values under consideration.

As mentioned above, the Q dependence of the scattering gives informa-
tion about the structure within the sample. Imagine, for instance, the Bragg
equation (first order):

λ = 2d sin
θ

2
(1.14)

1) Note, however, that even at small angles inelastic scattering processes originating from higher
momentum transfers may contribute to S(Q) if the primary forward scattering is not very
strong.
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Here, d is the distance between lattice planes. Combining Eq. (1.13) with the
Bragg equation (1.14) yields Q = 2π/d, illustrating the relation between the
scattering vector and a “typical” distance in the sample.

The resulting scattering intensity should be treated by corresponding re-
duction procedures to obtain the scattering cross-section, which is indepen-
dent of the experimental setup and the background. The measured intensity
is connected to the cross-section dΣ/dΩ by

I = IiDe∆ΩATd

(
dΣ
dΩ

)
(1.15)

where Ii is the incident beam intensity, De is the detector efficiency, A is the ir-
radiated sample area, d is the sample thickness, T is the sample transmission,
and ∆Ω is the angle of one detector element. For the absolute calibration, a
reference material with a flat cross-section in the measured Q range can be
used (e.g. Lupolene).

The structure factor is given by

S(Q) =
dΣ/dΩ

K
(1.16)

where K is the contrast factor, which describes the interaction of the neutrons
with the sample. Let us, for instance, consider a two-component system like
a polymer in a solution. Then K is given by ∆ρ2, where ∆ρ is the difference
in the coherent scattering length densities of the polymer and the solution.

Neutron Spin-Echo (NSE) Spectroscopy
How do these large objects move? As we have seen above, we need to detect
the intensity scattered at small angles. However, if we would like to follow the
motion of such an object, what is the time scale involved? One can imagine
that – in contrast to atomic vibrations, for example – the velocity of these large
objects is very low. Imagine a drop of honey that flows from a spoon – it may
have a velocity of a few millimeters per second. In contrast to that, neutrons
have a velocity of a few hundred meters per second, which in turn means that
we would like to detect a velocity change of neutrons in the order of 10−5, at
small angles.

In this section we will introduce neutron spin-echo (NSE) spectroscopy,
which combines small-angle scattering with the desired energy resolution.
To get that high energy resolution, a trick is needed where the neutron spin
plays an important role. Instead of using a trick, we could also try to cut from
an incoming neutron beam – with a Maxwellian distribution of velocities – a
band that is narrow enough to allow for a detection of velocity changes in the
order of 10−5 by removing all neutrons with unwanted velocity. But then the
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remaining intensity would be so poor that a scattering experiment would not
be feasible in a realistic time frame.

The essence of the NSE technique is a method to decouple the detectability
of tiny velocity changes caused by the scattering process from the width of
the incoming velocity distribution. This allows one to run NSE instruments
with 10–20% width of the velocity distribution yielding about 104 times more
neutrons in the primary beam than the direct 10−5 filtering. The neutron
spin is the key element to realize this decoupling. The basic NSE instrument
invented by F. Mezei (Mezei 1980) works as follows (see also Fig. 1.5). A beam
of longitudinally polarized neutrons, i.e. neutrons with spins pointing into
the beam direction, enters the instrument and traverses a π/2 flipper located
in a low longitudinal magnetic field. During the passage of this flipper, the
neutron spins are rotated by π/2 and are then perpendicular to the beam,
e.g. the spins are all pointing upward. Immediately after leaving the flipper,
they start to precess around the longitudinal field generated by the primary
precession solenoid. As they proceed into the precession coil, the Larmor
frequency ΩL, which is proportional to the field, increases up to several MHz
(e.g. about one turn per 0.1 mm length of path) in the middle of the solenoid.
The field and ΩL decrease to low values again on the way to the sample. Upon
arriving at the sample, the neutron may have performed many thousand
precessions. Keeping in mind that different neutrons with velocities different
from the incoming 10–20% distribution have total precession angles that
differ proportionally, the ensemble of neutron spins at the sample contains
any spin direction perpendicular to the longitudinal field with virtually equal
probability.

Fig. 1.5 Schematic picture of the geometry of a NSE spectrometer
(Monkenbusch et al. 1997).
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Nevertheless, each single neutron is tagged with respect to its velocity by the
individual precession angle (modulo 2π) of its spin. The spin therefore can be
viewed as the neutron’s own stopwatch. Now near to the sample position there
is a π flipper which, during passage of the neutron, turns its spin by π around
an upward-pointing axis. Thereby the sign of the accumulated precession
angle is reversed, i.e. the “spin stopwatch” times are set to their negative
values. Then the neutrons enter the secondary part of the spectrometer, which
is symmetric to the primary part. During the passage of the second main
solenoid, provided the sample did not change the neutrons’ velocity, each spin
undergoes exactly the same number of precessions as in the primary part. Due
to the reversing action of the π flipper, this leads to the result that all neutron
spins arrive at the same precession angle, pointing upwards, at the second
π/2 flipper, irrespective of their individual velocity. This effect is called the
spin-echo in analogy to similar phenomena in conventional nuclear resonance
experiments. The π/2 flipper turns these spins by 90◦ into the longitudinal
direction. This switches off any effect of the precession on the longitudinal
spin polarization. Further down the neutrons enter an analyzer that transmits
only neutrons with axially parallel (or antiparallel) spins to the detector. If now
the neutrons undergo a velocity change ∆vs in the course of scattering by the
sample, the final spin direction is rotated by an amount proportional to ∆vs

with respect to the upward direction of the echo. The second π/2 flipper
rotates the upward (echo) direction into the longitudinal direction. Thereby
the precession angle with the echo direction is preserved (as the angle of the
precession cone after the π/2 flipper) and the time measurement of the “spin
stopwatch” is effectively stopped. The subsequent analyzer has a transmission
that depends on the longitudinal component of the spin.

Since only the cosine of the pointer angle counts, the analyzer works as
a cosine modulating filter. The filter period ∆vc is controlled by the average
number of precessions, e.g. by the average neutron velocity and the magnetic
field inside the main precession solenoids. Due to the cosine modulating filter
function, the NSE instrument measures the cosine transform of S(Q, ω), the
so-called intermediate scattering function S(Q, t):

S(Q, t) ∝ 1
2

[
S(Q, 0) ±

∫
cos
(

Jλ3γ
m2

n

2πh2︸ ︷︷ ︸
t

ω

)
S(Q, ω) dω

]
(1.17)

where J =
∫
path |B|dl is the integral of the magnetic induction along the

flight path of the neutron from the π/2 flipper to the sample, and γ =
1.830 33 × 108 radian s−1 T−1 is the gyromagnetic ratio. The sign of the
integral depends on the type of analyzer and on the choice of the sign
of the flipping angle of the secondary π/2 flipper. The time parameter,
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t = Jλ3γm2
n/(2πh2), may be easily scanned by varying the main solenoid

current I0 to which J is (approximately) proportional.
Note that the maximum achievable time t, e.g. the resolution, depends

linearly on the (maximum) field integral and on the cube of the neutron
wavelength λ!

The fact that the instrument measures the intermediate scattering function
directly makes it especially useful for relaxation-type scattering because the re-
laxation function is measured directly as a function of time. Furthermore, the
correction for instrumental resolution is easier. For instruments that measure
S(Q, ω), the correction for the instrumental resolution function R′(Q, ω) has
to be realized by a tedious deconvolution. For NSE, a simple point-by-point
division by the result of a measurement of an elastically scattering reference
sample is sufficient (Mezei 1980; Monkenbusch et al. 2004). The resolution
leads to a decreasing R(Q, t) with increasing Fourier time for purely elastic
scattering, where it would be unity for ideal instrument resolution. This is
mainly caused by the fact that the neutrons travel slightly different paths lead-
ing to different field integrals and therefore to a dephasing of the echo signal.
This decay is accounted for by dividing the sample signal S(Q, t) by R(Q, t).

What is the meaning of the scattering function measured by NSE? This
depends on the sample. For a deuterated polymer matrix that contains some
(about 10–15%) protonated chains,S(Q, t) is dominated by the coherent single-
chain dynamic structure factor in the SANS regime. The scattering is deter-
mined by the difference in scattering length density between the protonated
test chains and the environment (the deuterated matrix) as explained in the
section about the SANS technique. For low Q-values the coherent scatter-
ing is dominant (see Fig. 1.6). The higher the Q-values, the more important
becomes the incoherent background from the protonated chains as well as
from the smaller incoherent scattering of deuterium. At the intersection of
the dashed and thick solid lines in Fig. 1.6, the two contributions have equal
magnitude and, since the incoherent signal is phase-shifted by π (see below),
the echo signal may even vanish in a certain region of Q and t.

For a sample that contains only fully protonated chains, the incoherent scat-
tering function is measured, which reflects the self-correlation of the protons
– or in the Q-value range discussed here – of the chain segments. We may
call this the segmental self-correlation function. It can be derived easily from
Eq. (1.12) in Section 1.3.1 for a Gaussian chain. The derivation and the def-
inition of a Gaussian chain will be discussed in detail below. The result for
the incoherent scattering function may be anticipated at this point:

Sinc(Q, t) = exp[− 1
6Q2〈r2(t)〉] (1.18)

From this scattering function, the segmental mean square displacement
〈r2(t)〉 can easily be extracted.
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Fig. 1.6 Distribution of coherent and inco-
herent scattering intensity computed for
polyethylene (PE) melts of Mw = 50 000,
10000 and 2000 g mol−1 containing 15%
(volume fraction) of H-labeled chains and
the levels of incoherent background. At
the intersection of the polymer structure
factors (thick solid lines) with the dashed
line, representing one-third of the inco-
herent scattering (spin flip, see text), the
two contributions have equal magnitude.
Increasing the amount of labeled compo-

nent shifts the limit to higher Q-values.
For a fully (100%) protonated sample,
the incoherent level is higher by a factor
of 100/15. On the other hand, to have
a reasonable transmission, the sample
volume has to be lower by a factor of 10.
Therefore, the lines give a realistic esti-
mate for the ratio of the coherently (with
15% protonated chains in a deuterated
matrix) and the incoherently scattered
intensity.

However, incoherent scattering has some difficulties. Two-thirds of the spin
incoherent scattering events flip the neutron spin (Squires 1978); the one-
third spin-flipped neutrons compensate the one-third that are not flipped. In
the end the resulting intensity consists of one-third spin-flipped neutrons (i.e.
the echo is phase-shifted by π compared to a coherent signal) on a background
of two-thirds depolarized neutrons:

1↑ - - - - - >︸ ︷︷ ︸
incoherentscattering

2
3↓ + 1

3↑ = 1
3↓ + depolarized background (1.19)

What is even more important is the fact that the incoherent intensity lacks
any amplifying interference effects and, as a sum from N independent point-
like centers, it is scattered into the full solid angle, in contrast to the coherent
scattering, which focusses most of the intensity in the low-Q region according
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to the coherent structure factor. Fig. 1.6 shows calculated scattering intensi-
ties for a polymer with three different molecular weights. The shape of the
scattering function is discussed in Section 1.4; here we focus on the intensi-
ties. As described above, the dashed line in Fig. 1.6 refers to the incoherent
scattering of protonated chains (15%) in a deuterated matrix (taking into ac-
count the factor 1/3 due to the spin flip). The incoherent scattering of a fully
protonated sample will be higher by a factor 100/15. On the other hand, the
thickness of typical incoherent samples must be lower by a factor of about 10
to get a reasonable transmission. This leads to the fact that the dashed line
in Fig. 1.6 gives a good estimate for the incoherent scattering intensity of a
fully protonated sample. Comparing the two intensities, we realize a differ-
ence of up to two orders in magnitude (depending on the molecular weight of
the labeled chains). Due to the low incoherent intensity, the sample and the
background have to be measured carefully and for long times. This requires
an extremely stable instrument configuration.

1.3.2
Rheology

Now we will make an excursion from molecules to the macroscopic proper-
ties of polymers. The term “rheology” is derived from the Greek word rheos
(flow); it measures and describes the relation between elongation or shear
displacement and stress or torque for different materials.

Looking at a polymer at low temperature, we mainly observe elastic prop-
erties. Heating up the material, however, reveals liquid-like characteristics.
Instead of varying the temperature, we may focus on different time scales. A
very short, shock-like impact on a water surface illustrates that a liquid can be
very stiff at short time scales. Elasticity and viscosity – viscoelasticity – are the
keywords related to macroscopic properties of polymer systems which can
be explored by observing the response of the material to mechanical forces
over a broad frequency range. The elasticity leads to deformation, while the
viscosity causes the flow of the material. Elastic deformation is a change to
the molecular configuration associated with the storage of energy (like in a
spring) while flow is an irreversible dissipative process.

A typical mechanical perturbation that can be applied to the system is a
small-amplitude oscillatory shearing. This is realized in a rheometer with, for
example, parallel disks, where one of the disks rotates with frequency ω. The
oscillatory deformation (strain) is then

γ(t) = γ0 sin(ωt) (1.20)

By definition and using the Boltzmann linear superposition of the strain
history for a viscoelastic body (Ferry 1970), the resulting time-dependent stress
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is given by

σ(t) = γ0[G′(ω) sin(ωt) + G′′(ω) cos(ωt)] =: γ0G(t). (1.21)

The frequency-dependent moduli are obtained by a Fourier transformation
of the relaxation function G(t):

G′(ω) = ω

∫ ∞

0
G(t) sin(ωt) dt (1.22)

G′′(ω) = ω

∫ ∞

0
G(t) cos(ωt) dt (1.23)

Here, G′(ω) is a measure for the elastic energy stored in the sample, and is
therefore called the storage modulus. It is in phase with the strain. G′′(ω) is a
measure for the energy that is dissipated in the system (viscous dissipation),
and is called the loss modulus. It is out of phase with the strain by π/2. We will
focus here on small-amplitude deformations, i.e. on the linear viscoelastic
regime.

Let us investigate the response in the two extreme cases of a Newtonian fluid
and an elastic solid. For the Newtonian fluid, the shear stress is proportional
to the shear rate, with the viscosity η as the constant of proportionality. This
means that the modulus G′, which reflects the elastic response, vanishes,
while G′′ = ηω is a linear function of the frequency.

For the second extreme case of an ideal elastic solid, the shear stress is pro-
portional to the strain (Hooke’s law for small deformations), with a constant
of proportionality G0. Here, G′′ = 0 and G′ = G0. For a viscoelastic material,
we expect a viscous behavior at low frequencies (long times) and an elastic
behavior at high frequencies (short times), which should be reflected in a
constant G′ and for low frequencies in a linear increase of G′′ with frequency.

To explore the short-(long-)time behavior, first the frequency window of the
rheometer is exploited. If the maximum frequency ωmax of the rheometer is
reached, one could fix the frequency at ωmax and lower the temperature. Then
1/ωmax fixes the time scale and, by decreasing the temperature, faster pro-
cesses are shifted into this particular time window, i.e. they become “visible”.
Qualitatively it is obvious that the response now refers to a virtual higher
frequency, because the system becomes stiffer with decreasing temperature.
The same holds for increasing the temperature at fixed ωmin, which relates to
“virtually” lower frequencies. Then 1/ωmin determines the longest time scale,
and increasing the temperature speeds up slow processes, which thereby shift
into the accessible time window. If the relation between time (or frequency)
and temperature is known for all relaxation processes in the sample, the vari-
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ation of temperature allows the accessible frequency range to be expanded to
typically eight to ten decades instead of three.

This time–temperature superposition is valid for most polymers above their
glass transition temperature. Rheologically simple behavior means that a sin-
gle horizontal shift factor aT for all relaxations in these viscoelastic systems
yields a master curve, if, additionally, a vertical shift factor bT , which relates
the strength of the relaxations to temperature, is applied (Ferry 1970; Gotro
and Graessley 1984). Usually the Williams–Landel–Ferry (WLF) law for aT

applies (Ferry 1970):

log(aT ) =
[ −c1(T − T0)
c2 + (T − T0)

]
(1.24)

At T = T0, where T0 is the reference temperature, aT as well as bT are unity;
c1 and c2 are material-specific constants that themselves also depend on T0.
Fig. 1.7 shows how the typical frequency range of an instrument is extended
by performing a time–temperature sweep and applying time–temperature
superposition.

The lower part of Fig. 1.7 shows the time–temperature superposition for
a polyisoprene sample. The storage modulus shows a pronounced plateau
at intermediate frequencies. This plateau is a signature of elasticity before
the polymer melt starts to flow at lower frequencies (or longer times). It
has been demonstrated that the plateau region expands to lower frequencies
when the molecular weight is increased while the high-frequency behavior
remains constant (Onogi et al. 1970). The plateau, i.e. the elastic behavior
at intermediate times, which becomes more dominant the longer the chains
are, is one of the most important features in long-chain polymer melts. It will
play a fundamental role in this chapter.

1.4
Static Properties

To describe the basic static properties of a polymer chain, let us take polyethy-
lene as an example. There the CH2 units are linked together as shown in
Fig. 1.8. The bond length l0 between the carbon atoms is fixed. We now con-
sider the model of a freely jointed chain as shown schematically in Fig. 1.9.
It assumes N consecutive backbone bonds that have no restrictions on the
bond angles, the only condition being that l0 is fixed. One may then ask for
the end-to-end distance vector:

Ree =
N∑

i=1

ri (1.25)



1.4 Static Properties 39

Fig. 1.7 Principle of time–temperature
superposition. The frequency range of the
instrument is three orders of magnitude
(upper figure). By measuring at different
temperatures and applying horizontal
time–temperature superposition to a
reference temperature (here 25 ◦C) as

well as a vertical T -dependent correction,
the range is extended to about eight
orders of magnitude (lower figure). Data
are from a polyisoprene sample with a
molecular weight of Mw = 250 kg mol−1

(Blanchard 2004).
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Fig. 1.8 Schematic sketch of a polyethylene chain with definitions of
angles: θi is the bond angle, and φi is the torsional angle.

Fig. 1.9 A sketch of a freely jointed chain. The bond vector has a constant
length l0, but the angle is totally free. The end-to-end distance Ree is
described by the sum of all bond vectors.

The end-to-end distance vector is defined as the sum of all the bond vectors
connecting two consecutive monomers (since ri,j connects the monomers
i and j, we define ri ≡ ri−1,i). Since there is no restriction concerning the
bond angles – only the bond length is fixed – the chain has no preferential
direction. This means that the average of the end-to-end distance – and of
every other vector in the system – has to be zero.
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The second moment is the average of

R2
ee =

N∑
i,j=1

ri · rj =
N∑

i=1

r2
i + 2

∑
1≤i<j≤N

ri · rj (1.26)

Since in our simple model we have no correlation of different bonds, the
averaging leaves a contribution only from the first part of Eq. (1.26):

〈
R2

ee
〉

=
N∑

i=1

〈
r2

i

〉
+ 2 × 0 = Nl20 (1.27)

The result of our simple model, that the end-to-end distance is proportional
to the square root of N , holds also for more general models. Assuming a
chain with fixed bond length and fixed angle between the bonds, which can
rotate freely around the bonds, again gives the same scaling of the end-to-
end distance. In fact, one can show that in general, as long as a chain is
subject to any local restriction, in all models for flexible polymer chains the
characteristic size increases with the square root of N .

This dependence on the number of segments shows that the characteristic
size of a chain is much smaller than the full extension (a stretched chain).
Only for a rigid rod-like chain is the end-to-end distance just the number of
segments times their length, i.e. it is proportional to N .

At this point it might be helpful to remember the basic law for the diffusion
of a particle, which is given by a continuous random walk. To travel a distance
R, the particle must make

N =
(

R

l0

)2

(1.28)

steps, where l0 is the mean free path. That means that the chain conformation
is nothing other than a random walk with a “step length” given by the bond
length l0 and the number of steps given by the number of bonds N . The
end-to-end distance then represents the distance the particle has traveled.

Next to the end-to-end distance, the radius of gyration is often used to
describe the chain size. It measures the size of a molecule in the manner of
a moment of inertia. The vectors of all monomers relative to the center of
mass are squared (assuming the same weight of all monomers). This sum
is normalized by the number of monomers. The radius of gyration therefore
measures the average extension of a chain relative to the center of mass.
Without derivation we write

〈
R2

g
〉

= 1
6

〈
R2

ee
〉

(1.29)
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It is obvious that real chains are not random walks where the angle between
two steps is randomly distributed in a mathematical sense. The probability
for high angles is lower compared to low angles due to the stiffness of the
chains. The stiffness of a chain will depend on its chemical structure, side
groups, etc. Therefore we will introduce a stiffness parameter C∞ with

l2 = C∞l20 (1.30)

and call l the effective bond length.
Before discussing the Gaussian chain, we define the frequently used Kuhn

segment length. A model-independent parameter for polymer chains is the
contour length L, which is calculated by multiplying the number of effective
bonds by their length, L = Nl. Now, it is obvious that one can divide the
chain into (arbitrary) larger segments l′ in such a way that the contour length
L = N ′l′ is constant. One important definition of such an l′ is the Kuhn
segment length lK, which is a measure for the distance over which correlations
between bond vectors are lost. The idea is quite simple. If the number of bonds
per segment lK is large enough to erase any correlation between different
Kuhn segments, the chain can be regarded as a freely jointed chain with NK

segments of length lK. This means that real polymer chains, as long as they
are long enough, can be mapped to a freely jointed chain. The Kuhn segment
length is defined by

lK = C∞l0 (1.31)

The Gaussian chain is a more general model of a freely jointed chain. The
idea is that the number of bonds in a segment of a Gaussian chain is already
sufficiently large that the distribution function of a single segment can be
approximated by a Gaussian distribution. Then the distribution function of
such NK segments can be written as

W (r1, . . . , rNK) = ( 2
3πl2K)−3NK/2 exp

(
− 3

2l2K

∑
i

r2
i

)
(1.32)

or, using the difference of monomer vectors instead of the effective bond
vectors,

W (R0, . . . ,RNK) = ( 2
3πl2K)−3NK/2 exp

(
− 3

2l2K

∑
i

(Ri − Ri−1)2
)

(1.33)

This distribution function can be compared with a thermodynamic partition
function:
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Fig. 1.10 A Gaussian chain represented by a number of effective
monomers, which are connected by elastic springs (the spring–bead
model).

W ∝ exp
(

− 1
kBT

3kBT

2l2K

∑
i

(Ri − Ri−1)2︸ ︷︷ ︸
Hamiltonian

)
(1.34)

where T is the temperature and kB the Boltzmann constant. The Hamil-
tonian in Eq. (1.34) describes NK Hookean entropic springs with a single
temperature-dependent spring constant. The Gaussian chain can therefore
be described as beads connected by NK hypothetical springs, the spring–bead
model (see Fig. 1.10).

Let us now discuss how the size of a polymer chain can be measured. As
discussed in Section 1.3 the structure factor S(Q) can be measured by SANS.
We will see in the following that the size of a polymer in terms of, for example,
the radius of gyration Rg can be directly extracted from the measured S(Q).
The static structure factor for a single chain is given by a sum over all possible
pairs of monomers i, j reflecting all possible interferences of elementary
waves originating from monomer pairs. We calculate S(Q) for a Gaussian
distribution of the Ri − Rj (Gaussian chain):

S(Q) =
1
N

N∑
i,j

〈
exp [iQ(Ri − Rj)]

〉
(1.35)

=
1
N

N∑
i,j

exp
〈− 1

2 [Q(Ri − Rj)]2
〉

(1.36)

=
1
N

N∑
i,j

exp
〈− 1

6Q2(Ri − Rj)2
〉

(1.37)

=
1
N

N∑
i,j

exp[−1
6 l2Q2 |i − j| ] (1.38)

=
1
N

∫ N

0
di

∫ N

0
dj exp(−1

6Q2 |i − j| l2) (1.39)
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We will discuss Eqs. (1.35) to (1.39) step by step. Equation (1.36) is obtained
from Eq. (1.35) by Gaussian transformation (only valid for Gaussian chains);
the next step is the result of an average projection. The averaging is executed
from Eq. (1.37) to Eq. (1.38). Finally, we replace the summation by an integra-
tion, which is correct for a Gaussian chain with a large number of monomers
N . The result of this double integral reads

S(Q) =
2N

R4
gQ

4 [exp(−R2
gQ

2) − 1 + (R2
gQ

2)] (1.40)

which is the so-called Debye function. The asymptotic form of S(Q) is given
by

S(Q) =




N(1 − R2
gQ

2/3) for QRg 
 1

2N/R2
gQ

2 for QRg � 1
(1.41)

The Debye function may be approximated by the simpler form:

S(Q) =
N

1 + Q2R2
g/2

(1.42)

Fig. 1.11 shows the Debye function and different approximations.

Fig. 1.11 The Debye function normalized by N versus QRg (thick solid
line). The dashed lines represent the asymptotic forms, and the thin solid
line is the approximation of Eq. (1.42).



1.5 Brownian Motion, Viscous and Entropic Forces: the Rouse Model 45

Fig. 1.12 Spring–bead model of a Gaussian chain as assumed in the
Rouse model. The two arrows on the left side illustrate the forces as
indicated on the left-hand side of Eq. (1.44). D represents the center-
of-mass diffusion.

1.5
Brownian Motion, Viscous and Entropic Forces: the Rouse Model

We now consider the dynamics of a Gaussian chain in terms of the so-called
Rouse model. We will start with a Gaussian chain, which we now consider
as a coarse-grained polymer model where beads represent several monomers
connected by hypothetical springs (see Fig. 1.12). It has been shown in Sec-
tion 1.4 that the spring–bead model is an equivalent description of a Gaussian
chain.

The equation of motion contains the entropic springs k = 3kBT/l2 as the
source of restoring forces, a simple local friction ξ as the sole interaction of
the chain with the embedding melt of identical chains, and a random force
f i(t) with

〈fiα(t1)fjβ(t2)〉 = 2kBTξδijδαβδ(t1 − t2)

representing the interaction with the heat bath. Here, α and β denote the
Cartesian components. The resulting Langevin equation is

ξ
dRi

dt
− 3kBT

l2
(Ri+1 − 2Ri + Ri−1) = f i(t) (1.43)

Assuming a continuous index variable i we obtain

ξ
∂Ri

∂t
− 3kBT

l2
∂2Ri

∂i2
= f i(t) (1.44)
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with the boundary conditions (∂Ri/∂i)|i=0,N = 0. The solution is obtained
by a transformation to normal coordinates

Xp(t) =
1
N

∫ N

0
di cos

(
pπi

N

)
Ri(t) (1.45)

yielding

2Nξ
∂Xp

∂t
+

6kBTπ2

Nb2 p2Xp = fp(t) (1.46)

Here, fp(t) are again random forces that are independent of each other. The
transformation of Eq. (1.44), which describes coupled oscillators, to Eq. (1.46),
is realized by a set of normal coordinates Xp(t), which can move indepen-
dently, and therefore allows a description of the dynamics of the polymer
chain by independent motions, which are called “modes” p.

The correlation functions for p > 0 are given by

〈Xpα(t)Xqβ(t)〉 = δαβδpqkBT
Nl2

3kBT2πp2 exp
(

−t
p2

τR

)
(1.47)

with

τR =
ξN2l2

3π2kBT
(1.48)

where τR is called the Rouse time.
Mode p = 0 denotes the center-of-mass diffusion, which is exactly the

Einstein expression for the diffusion of a particle with friction coefficient Nξ:

〈X0α(t)X0β(0)〉 = δαβ
2kBT

Nξ
t (1.49)

The scattering of the polymer chain is obtained by the summation of the
segmental scattering amplitudes lumped into the beads with the proper phase
factors:

S(Q, t) =
1
N

〈
N∑

i,j=1

exp[iQ · (Ri(t) − Rj(0))]

〉
(1.50)

This is the scattering function defined in Eq. (1.35) but with time-dependent
position vectors. In analogy to the calculation in Section 1.4, we can now,
under the assumption of a Gaussian chain, calculate the averages 〈 〉:

〈exp[iQ · (Ri(t) − Rj(0))]〉 = exp
[− 1

6Q2 〈(Ri(t) − Rj(0))2〉︸ ︷︷ ︸
Φij(t)

]
(1.51)
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Repeating the steps demonstrated in Section 1.4 in Eqs. (1.35) to (1.38) yields
the scattering function:

S(Q, t) =
1
N

∑
i,j

exp[−1
6Q2Φij(t)] (1.52)

The mean square displacement Φij(t) may be decomposed into three contri-
butions:

Φij(t) = ΦD(t) + Φ0
ij + Φ1

ij(t) (1.53)

where Φ0
ij = |i − j| l2 describes the correlation due to the structure of the

Gaussian chain. Inserting this expression for Φij(t) in Eq. (1.52) reproduces
the static structure factor as derived in Section 1.4 (Eq. 1.38), which finally
gives the Debye function (Eq. 1.40.)

The dynamics is taken into account by two contributions. The first, ΦD(t) =
6Dt, is the center-of-mass diffusion, which is, as for any diffusing object,
represented by a common factor:

Sdiffusion(Q, t) = exp(−Q2Dt) (1.54)

The second contribution, Φ1
ij(t), is obtained by first calculating the inverse

transform of the normal coordinates as defined in Eq. (1.45):

Ri(t) = X0 + 2
∑
p=1

Xp(t) cos
(

pπi

N

)
(1.55)

By inserting Eq. (1.55) in Φij(t) as defined in Eq. (1.51) and omitting the
diffusion and structural correlations, we get, after some algebraic transfor-
mations,

Φ1
ij =

4Nl2

π2

∑
p=1

1
p2 cos

(
pπj

N

)
cos
(

pπi

N

)[
1 − exp

(
− tp2

τR

)]
(1.56)

representing the internal dynamics of the chain, which vanishes for t = 0:
Φ1

ij(t=0) = 0. Inserting all contributions of Φij(t) (three addends in Eq. 1.53)
into Eq. 1.52, we finally get the Rouse scattering function:

S(Q, t) =
1
N

∑
i,j

exp
{

− Q2Dt − 1
6Q2|i − j|l2 (1.57)

− 2Q2Nl2

3π2

∑
p=1

1
p2 cos

(
pπj

N

)
cos
(

pπi

N

)[
1 − exp

(
− tp2

τR

)]}
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The Rouse model provides a good description of the dynamics of a Gaus-
sian chain. It is valid for real linear polymer chains on an intermediate length
scale. The specific (chemical) properties of a polymer enter only in terms of
two parameters Nl2 = 6R2

g and l2/ξ, i.e. the dimension of the chain and an
effective friction. This of course means that for high Q-values, where neutrons
start to detect the chemical structure of single monomers, one expects devi-
ations from pure Rouse behavior. Indeed this has been found in simulation
and experiments (Paul et al. 1998; Richter et al. 1999).

The friction parameter ξ/l2 is often expressed in terms of the so-called Rouse
rate,

Wl4 = 3kBT l2/ξ (1.58)

and the center-of-mass diffusion may be expressed as

D =
kBT (l2/ξ)

6R2
g

=
Wl4

18R2
g
. (1.59)

In modeling the Rouse expression (at intermediate Q), the parameters N and
l are somewhat arbitrary as long as the physical values l2/ξ and Rg are kept
constant.

What is the static structure factor S(Q, t=0) = S(Q) in the framework of
the Rouse theory? Starting from Eq. (1.57) we get

S(Q) =
1
N

∑
i,j

exp(−1
6Q2|i − j|l2) (1.60)

Replacing the summations by integrals, we end up with what was derived in
Section 1.4 (see Eq. 1.39), i.e. we get the Debye function.

Before comparing the model to experimental data, let us consider the mean
square displacement of a single segment in the framework of the Rouse model
for very short times. Neglecting the diffusion for short times, we start from
Eq. (1.56) and get, for one segment n,

Φ1
n =

4Nl2

π2

∑
p=1

1
p2 cos2

(pπn

N

)[
1 − exp

(
− tp2

τR

)]
(1.61)

Since we are interested in short times, the large p-numbers dominate, and
we can replace the cos2 by the average 1/2. Transforming the sum into an
integral finally yields:2)

2) Note that the approximate prefactor of Eq. (6.104) in Doi and Edwards (1986) differs from the
exact result given here by a factor

√
12/π .
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Φ1
n =

4Nl2

π2

∫ ∞

0
dp

1
p2

1
2

[
1 − exp

(
− tp2

τR

)]
(1.62)

=
(

12kBT l2t

ξπ

)1/2

=
(

4Wl4t

π

)1/2

(1.63)

The main result of this approximation is that the mean square displacement
of a segment at short times is ∝ t1/2 in the Rouse model. This represents
a sub-Fickian motion due to correlations of displacements along the chain
away from the probe monomer n. With Eqs. (1.18) and (1.63) the incoherent
scattering function for Rouse dynamics is given by

Sinc(Q, t) = exp

[
−Q2

3

(
Wl4t

π

)1/2
]

(1.64)

1.5.1
Experimental Studies of the Rouse Model

We have seen in Section 1.3 that the mean square segment displacement
can be extracted directly from the incoherent scattering function S(Q, t) by
−6 ln[Sinc(Q, t)]/Q2 = 〈r2(t)〉 (Eq. 1.18).

Incoherent NSE experiments have been performed at the NSE spectrom-
eter at the DIDO research reactor FRJ2 in Jülich, Germany (Monkenbusch
et al. 1997) on a fully protonated poly(ethylene–propylene) (PEP) sample of
0.3–0.4 mm thickness and a molecular weight of Mw = 80 kg mol−1. The
wavelength of the incoming neutrons was λ = 0.8 nm. The data will be
discussed in more detail in the next section. Here, we focus on the mean
square displacement at short Fourier times. Fig. 1.13 shows the data. Using
Wl4(T=492 K) = 3.26 nm4 ns−1 (Richter et al. 1993), they are in excel-
lent agreement with the Rouse prediction of Eq. (1.63). Note that the line in
Fig. 1.13 was calculated without any adjustable parameter.

Now we will consider the single-chain dynamic structure factor, measured
by coherent NSE. In the high-Q regime, where S(Q) = 2N/(R2

gQ
2) (see

Eq. 1.41), and neglecting the diffusion, the following form for S(Q, t) can be
derived (Doi and Edwards 1986):

S(Q, t) =
12

Q2l2

∫ ∞

0
du exp

[− u −
√

Γ(Q)t h
(
u/
√

Γ(Q)t
)]

(1.65)

which contains the characteristic relaxation rate

Γ(Q) =
kBT

12ξ
Q4l2 =

Wl4Q4

36
(1.66)
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Fig. 1.13 NSE data of protonated PEP (H-PEP) with Mw = 80 kg mol−1

at 492 K. The scattering vector is Q = 1 nm−1. The solid line shows
the Rouse prediction.

and

h(u) =
2
π

∫ ∞

0
dx cos(xu)

(1 − e−x2
)

x2

=
2√
π

e−u2/4 + u[erf(u/2) − 1] (1.67)

For t = 0, Eq. (1.65) is not the Debye function but yields its high-Q limit-
ing behavior ∝ Q−2. It is only valid for QRg � 1. In that regime the form
of Γ(Q) immediately reveals that the local (intra-chain) relaxation increases
∝ Q4 in contrast to normal diffusion ∝ Q2. The form of S(Q, t)/S(Q) ob-
tained from Eq. (1.65) depends on x =

√
Γ(Q)t only. NSE data obtained for

different Q plotted versus x should collapse onto a common master curve if
the Rouse model is valid, and they indeed do. Fig. 1.14 shows the single-chain
dynamic structure factor of 10% H-PEE in a deuterated matrix (D-PEE) in the
Rouse scaling representation [S(Q, t)/S(Q) versus the so-called Rouse vari-
able Q2l2(Wt)1/2] for several Q-values at T = 473 K. All data merge onto
one master curve. Fig. 1.15 shows Γ(Q) as derived from a Rouse fit in the
short-time regime of the same data compared to Eq. (1.66) (dashed line). Tak-
ing into account center-of-mass diffusion (solid line), excellent agreement is
found (Montes et al. 1999).

Fig. 1.16 shows NSE data of PE with Mw = 2 kg mol−1, taken at the
MESS NSE spectrometer at the LLB, Saclay, France, in the representation
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Fig. 1.14 Single-chain dynamic structure factor measured on a melt
of 10% protonated polyethylethylene (H-PEE, Mw = 21.5 kg mol−1) in a
deuterated matrix of polyethylethylene (D-PEE) (Mw = 24.5 kg mol−1)
in a Rouse scaling plot (Monkenbusch et al. 1997; Montes et al. 1999).
Shown are seven different Q-values between Q = 0.5 and 2 nm−1.

S(Q, t)/S(Q) versus Fourier time t. The data were taken at T = 509 K for
five different Q-values with a neutron wavelength of λ = 0.6 nm. The solid
lines represent a fit with the Rouse model (Eq. 1.57). Since the segment length
l = l0

√
C∞ = 4.12 Å (Boothroyd et al. 1991) for polyethylene is known and

the number of segments can easily be calculated by N = Mw/M0 = 137,
the only free parameter to fit all Q-values simultaneously is the Rouse rate
Wl4 or the friction coefficient ξ. Fig. 1.16 shows that the data are described
perfectly. In conjunction with the agreement demonstrated in Fig. 1.13 for the
incoherent data, the dynamic structure factor results demonstrate the validity
of the rather simple concept of a chain in a heat bath where the relaxation of
thermally activated fluctuations is determined by a balance of viscous forces
(velocity, friction) and entropic forces.

For Q-values larger than Qmax (interestingly Qmax ≈ 1.5 nm−1 seems to be
a more or less universal value for many polymers), deviations from the Rouse
model are observed. At high Q, effects of local chain stiffness and internal
viscosity start to play a role (Richter et al. 1999). However, in the Q-value range
shown in Fig. 1.16, the local structure of the polymer chain does not play any
role and the Rouse model is valid.
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Fig. 1.15 Initial slope extracted from the same PEE data as shown in
Fig. 1.14 as a function of Q. The dashed line represents Γ(Q) as calculated
by Eq. (1.66). The solid line takes translational diffusion into account
(Montes et al. 1999).

Fig. 1.17 shows data of PE with Mw = 12 kg mol−1 measured at the
IN15 NSE spectrometer at the ILL, Grenoble, France, in the representation
S(Q, t)/S(Q) versus Fourier time t. Due to the availability of a sufficiently
high intensity of long-wavelength neutrons [in the case of the data shown
in Fig. 1.17, the wavelength is λ = 1.5 nm (open symbols)], the IN15 holds
the world record with respect to resolution (Schleger et al. 1999). Following
Eq. (1.17) the maximum Fourier time is proportional to the wavelength cubed.
The accessible Fourier time for λ = 1.5 nm is about 165 ns. However, if the
sample is a strong scatterer, one can use neutrons with even longer wavelength
(at the cost of intensity), e.g. λ = 2 nm, which would yield a maximum Fourier
time of 390 ns.

The data in Fig. 1.17 were fitted with the Rouse model. Forcing an agree-
ment at very short Fourier times by restricting the fits to 5 or 10 ns, it is evident
that the data strongly deviate from the Rouse prediction at longer times. How-
ever, the only difference between the samples shown in Figs. 1.16 and 1.17 is
the molecular weight, the chains in the latter sample being six times longer
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Fig. 1.16 NSE data of PE with Mw = 2 kg mol−1 at T = 509 K for
various Q-values (Richter et al. 1994). The solid lines represent a fit with
the Rouse model.

Fig. 1.17 NSE data of PE with Mw = 12 kg mol−1 at 509 K for various
Q-values. Filled symbols: wavelength of the incoming neutrons λ =
0.82 nm (maximum Fourier time 28 ns); open symbols: λ = 1.5 nm
(maximum Fourier time 165 ns). The solid lines represent a fit with
the Rouse model.

than in the former. For the longer chains the free three-dimensional Rouse-
like relaxation is obviously perturbed. After an initial decay of S(Q, t), the
relaxation slows down, and we will see later that for even longer chains the
relaxation in the NSE time window stops completely.
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Fig. 1.18 NSE data of PE with Mw = 36 kg mol−1 at 509 K for various
Q-values in a Rouse scaling plot. Lines are guides to the eye.

Fig. 1.18 shows how NSE data from long PE chains look if plotted in the
Rouse scaling. In contrast to the data presented in Fig. 1.14 for PEE, here the
four shown Q-values of a sample with molecular weight Mw = 36 kg mol−1

do not at all merge onto one master curve. They show a distinct splitting for
different Q-values already at short Fourier times, pointing to a significant
deviation from the Rouse picture.

The observation in NSE experiments as illustrated in Figs. 1.17 and 1.18 is
in agreement with what has been observed in the storage modulus of long-
chain polymer melts. As already briefly discussed in Section 1.3.2, in the range
of intermediate frequencies G′(ω) shows a plateau, which is an indication for
elastic behavior. Indeed we will see that the slowing down of relaxation in NSE
experiments, on the one hand, and the existence of a plateau in the storage
modulus, on the other, have the same origin. They are both indications of
what is dominating the dynamics of long-chain polymer systems: topological
constraints in terms of entanglements. These prevent the chain from relaxing
completely via the Rouse modes by building a kind of temporary network
which leads to the observed network-like response in rheology.

In the next section the most successful model to describe these topological
constraints is discussed: the tube concept.
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1.6
Topological Constraints: the Tube Concept

As we have seen above, in the melt, long-chain polymers interpenetrate each
other and restrict their motions. This restriction originates from topological
constraints that arise due to the formation of entanglements by the long
chains.

In his famous reptation model, P.-G. de Gennes described the effect of
these entanglements by a virtual tube along the coarse-grained chain profile,
localizing the chain and confining the chain motion (de Gennes 1981; Doi and
Edwards 1986) (see Fig. 1.19). The tube follows a random walk and represents
the topological confinements. The tube in this concept is not meant as a
“chemical” tube, which would have a diameter in the range of the chain–chain
distance, i.e. a few tenths of a nanometer. We will see that the diameter d of
the virtual tube is much larger.

Fig. 1.19 Schematic illustration of the tube concept. The lateral confine-
ment of a polymer chain is represented by a tube with diameter d formed
by adjacent chains.

Let us now take a “test chain” confined in such a virtual tube. What kind of
motion can this chain execute? First of all, we would expect that our chain does
not know that it is confined at very short times. If the mean square displace-
ment of the segments is smaller than half the tube diameter d, no contact of
the segments with the virtual walls of the tube will have happened. Therefore,
normal Rouse dynamics should be expected in the short-time regime. After
this contact has taken place, after a time that we call the “entanglement time”
τe, the Rouse dynamics can only take place in one dimension along the tube
profile, a kind of curvilinear version of the Rouse motion that is called “local
reptation” in de Gennes’ model.

What happens with the center-of-mass diffusion of the entire chain? Of
course, provided the tube exists, diffusion also can take place only along the
tube, in one dimension. Since the tube itself is defined as a kind of envelope of
the chain, the diffusing molecule follows, and has to follow, its own contour.
It is a snake-like motion, which is in the end the reason for calling this the
“reptation” model. We will see that this third process is very slow – too slow
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to be observed in NSE, even if we use the IN15, which provides the highest
resolution in time available in the world.

The introduction of the tube concept for long-chain polymer systems is
inevitably connected with the introduction of a new parameter besides the
segment length: a second length scale that describes the geometry of the tube.
The tube is thought to represent entanglements. These should be character-
ized by yet another parameter: the distance between these entanglements.
If we assume Ne segments between two entanglements, the distance de be-
tween them is given by the end-to-end distance spanned by these Ne segments
(provided they can be represented by a Gaussian chain): de =

√
Nel2, where

l is the segment length. The end-to-end distance of the entire chain is given
by

√
Nl2 =

√
Ll, where L = Nl is the contour length. Let us accomplish

a coarse-graining such that the new “segment length” is the entanglement
distance de. The end-to-end distance must remain the same as before:

R2
ee = Ll = L′de (1.68)

We define a virtual “thickness” of the new contour length L′ (the so-called
primitive path), which should be again the end-to-end distance of the seg-
ments between two entanglements, de. It is an intuitive step to define this
thickness as the tube diameter:

d ≡ de =
√

Nel2 (1.69)

Given that the tube is a virtual object representing the topological constraints,
it is not an obvious one. However, we will show that the introduction of one
additional length scale is sufficient to obtain a consistent description of the
dynamics in long-chain polymer melts.

The dynamics of a chain in a tube described above may be summarized as
in Fig. 1.20, which shows schematically the segmental mean square displace-
ments versus time in a double logarithmic representation. For times t < τe

we expect Rouse behavior, which gives, as already derived above, a power law
〈r2(t)〉 ∝ t1/2 reflecting the sub-Fickian motion due to correlations of dis-
placements along the chain away from the probe monomer [see Eq. (1.63)].
In the previous section an incoherent experiment on H-PEP was presented
that corroborates this Rouse prediction at short times.

For times t > τe the Rouse dynamics is constricted to the tube, which
represents basically a random walk. The mean square displacement can be
calculated by first switching to the coordinates sn(t) along the primitive path
of the tube. Then as in Eqs. (1.62) and (1.63) the mean square displacement
along the tube profile for t < τR can be calculated:

〈
[sn(t) − sn(0)]2

〉
=
(

4kBT l2t

3ξπ

)1/2

=
(

4Wl4t

9π

)1/2

(1.70)
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Fig. 1.20 Schematic representation of the segmental mean square
displacements versus time in a double logarithmic plot. The white
rectangle indicates the time range accessible by NSE spectroscopy.

The factor 1/3 compared to Eq. (1.63) accounts for the fact that the motion is
restricted to one dimension. Since the tube is a random walk with step length
d, the mean square displacement in three-dimensional real space is given by
Φn = Zd2 = Ld, where Z is the number of steps and L = |sn(t) − sn(0)| is
the contour length of the primitive path:

Φn = d〈|sn(t) − sn(0)|〉 (1.71)

= d
(〈

[sn(t) − sn(0)]2
〉)1/2

(1.72)

and with Eq. (1.70) we get3)

Φn =
(

4kBT l2d4t

3πξ

)1/4

=
(

4Wl4d4t

9π

)1/4

(1.73)

If we force the sub-Fickian motion to take place along a random walk, which
alone gives rise to a behavior 〈r2(t)〉 ∝ t1/2, it is not surprising that the two
t1/2 laws finally yield a power law 〈r2(t)〉 ∝ t1/4 in the regime of local repta-
tion.

3) Note that the approximate prefactor of Eq. (6.110) in Doi and Edwards (1986) differs from the
exact result given here (Eq. 1.73) by a factor [4/(3π)]1/4.
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For times longer than τR the dynamics is dominated by center-of-mass
diffusion, which gives 〈r2(t)〉 ∝ t. Of course, we have to apply the arguments
as for the Rouse motion in the tube, since the center-of-mass diffusion is again
forced to take place along the random-walk profile of the tube. This leads to
〈r2(t)〉 ∝ t1/2 for τR < t < τd, where τd is the disentanglement time. Note
that this power law is the same as for the Rouse regime (t < τe), but for a
different reason.

Finally, for times t > τd, the chain has escaped completely from the
tube and three-dimensional Fickian diffusion can take place, i.e. we expect
〈r2(t)〉 ∝ t.

What is the Entanglement Time τe?
Since there is quite a bit of confusion in the literature, the definition of τe

deserves its own small subsection. Note that we will imply here and in the
following the validity of Eq. (1.69). There are two classical ways of defining
this time scale, in addition to the one we shall use in this chapter.

• The first assumes τe to be the Rouse time τR of a chain with an end-to-end
distance Ree =

√
Ne l, where Ne is the number of segments between two

entanglements. This τe refers via τR to the slowest Rouse mode of a chain
with an end-to-end distance Ree fitting into the tube:

τ ′
e =

τRNe
2

N2 =
Ne

2l2ξ

3π2kBT
=

d4

π2Wl4
(1.74)

• The second way is also quite evident: τe is the time when the mean square
displacement of a segment equals the tube diameter squared. This defini-
tion results by equating Φ with d2 and adopting τe in Eq. (1.63):

τ ′′
e =

πd4ξ

12kBT l2
=

πd4

4Wl4
(1.75)

This is the definition in Doi and Edwards (1986), after applying the correc-
tion mentioned with respect to Eq. (1.63).

• The third definition is the one we will use in this chapter. Combining
the time dependence of the mean square displacement as defined within
the Rouse model (Eq. 1.63) and that of the reptation model for the local
reptation regime (Eq. 1.73), τe follows by calculating the intersection point
of these two straight lines (if plotted as shown schematically in Fig. 1.20).
Equating (1.63) and (1.73) finally yields:

τe =
πd4

36Wl4
(1.76)



1.6 Topological Constraints: the Tube Concept 59

This point in time marks the transition from free Rouse behavior to re-
stricted motion, and is therefore the best choice for a definition of τe. We
will use this definition in the following. However, it deviates by just ≈15%
from the first definition. Note that inserting τe in Eq. (1.63) for the Rouse
regime or into Eq. (1.73) for the local reptation regime yields a mean square
displacement Φn = d2/3 at τe.

1.6.1
Validating the Tube Concept on a Molecular Scale

NSE measurements of the self-correlation function have been performed at
the NSE spectrometer at the DIDO research reactor FRJ2 in Jülich (Monken-
busch et al. 1997) on a fully protonated PE sample of 0.3–0.4 mm thickness
and a molecular weight Mw = 190 kg mol−1 (Wischnewski et al. 2003).
Fig. 1.21 shows the data for T = 509 K at Q = 1 and 1.5 nm−1.

The total measuring time for each single (Q, t) pair (including background)
was 5 h, requiring a very high temporal stability of the instrument. The
neutron wavelength of λ = 0.8 nm allowed for a Fourier time range 0.1 ns
≤ t ≤ 22 ns in the normal instrument setup, and 0.01 ns ≤ 0.13 ns in a special
short-time configuration with small precession coils in the sample region. All
data shown stem from an integrated detector area of 615 cm2. The solid lines

Fig. 1.21 NSE data obtained from the
incoherent scattering from a fully proto-
nated PE melt with Mw = 190 kg mol−1

at T = 509 K for Q = 1.0 and 1.5 nm−1

(Wischnewski et al. 2003). At the range
boundaries (shaded gray bar) of the two
spectrometer configurations (short or

normal, see text), the data quality is worse
than the bulk of the data points, as seen by
the sizes of the error bars. The solid and
dashed lines represent the predictions
of Eqs. (1.64) and (1.78), respectively
(see text after Eq. 1.78 for more details).
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in Fig. 1.21 represent the Rouse prediction . For short times they agree nicely
with the experimental data.

For the very long PE chains used here, virtually all of the scattering inten-
sity stems from “inner” segments. These should exhibit the same segmental
diffusion behavior, and if the assumption of a Gaussian shape of the diffusive
displacement probability distribution holds for all times, the mean square
segment displacement can be extracted directly from S(Q, t) as defined in
Eq. (1.18):

〈r2(t)〉 = −6 ln[Sinc(Q, t)]/Q2 (1.77)

Fig. 1.22 displays the H-PE data in this representation.
The mean square displacement in the Rouse regime has been derived

in Eq. (1.63). Inserting the previously determined value for the Rouse rate
W (509 K)l4 = 7 ± 0.7 nm4 ns−1 (Richter et al. 1993) from the analysis of
the single-chain structure factor of low-molecular-weight PE melts, Eq. (1.63)
is quantitatively corroborated as already seen for the H-PEP data in the last
section. Also a transition to a regime ∝ t1/4 is clearly visible. The crossover
time can be extracted from Fig. 1.22 by fitting the data with Eq. (1.63) for
the Rouse regime and Eq. (1.73) for the local reptation regime. The only free
parameter is then the crossover time, yielding τe  1 ns corresponding to a
tube diameter of 3 nm (Eq. 1.76).

Fig. 1.22 Same data as shown in
Fig. 1.21 in a representation of
−6 ln[Sinc(Q, t)]/Q2 versus time, i.e.
the mean square displacement 〈r2(t)〉
as long as the Gaussian approximation
holds (Wischnewski et al. 2003). The

solid lines describe the asymptotic power
laws 〈r2(t)〉 ∝ t1/2 and t1/4, respec-
tively; the dotted line results by inserting
d = 4.8 nm in Eq. (1.73); and the dashed
lines represent the prediction of Eq. (1.78)
(see text for more details).
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On the other hand, this value may be calculated by using Eq. (1.76), where
the elementary step length of the Gaussian contorted virtual tube is identified
with the tube diameter, which can be extracted from NSE experiments on the
pair correlation function. These measurements will be discussed in detail
below, but the resulting tube diameter may be anticipated at this point: d =
4.8 nm. Equation (1.76) then yields τe  7 ns. The dotted line in Fig. 1.22
results by inserting d = 4.8 nm in Eq. (1.73) for the local reptation regime.
The intersection with the ∝ t1/2 line defines τe = τe = 7 ns as calculated
above.

The apparent strong discrepancy between the crossover time of τe = 1 ns
with a tube diameter of 3 nm extracted from the incoherent data and the
values τe  7 ns and d = 4.8 nm from the coherent data will be discussed
below.

First, we apply the same evaluation procedure as described above to the
H-PEP data, revealing the mean square displacements of H-PEP. They have
already been discussed for short times in the last section. Fig. 1.23 displays
the results for the entire time range.

Again, a deviation from 〈r2(t)〉 ∝ t1/2 is clearly visible for t � 10 ns, while
the data are in agreement with Eq. (1.63) for t � 10 ns as already shown in
the last section. Using W (492 K)l4 = 3.26 nm4 ns−1 (Richter et al. 1993),
the data were fitted with Eqs. (1.63) and (1.73), yielding a crossover time of
τe = 8.4 ns and a tube diameter of about 4.3 nm.

Fig. 1.23 Data of H-PEP in the representation of −6 ln[Sinc(Q, t)]/Q2

versus time for T = 492 K (Wischnewski et al. 2003). As before, the solid
lines describe the asymptotic power laws; the dotted line results from
Eq. (1.73); and the dashed line is from Eq. (1.78) (see text for details).
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To compare this result with the tube diameter obtained from the single-
chain dynamic structure factor of PEP, again we will anticipate the results of
the evaluation discussed in detail below: dPEP = 6 nm, i.e. [τe] = 40 ns (see
dotted line in Fig. 1.23), again in contradiction to d = 4.3 nm and τe = 8.4 ns,
obtained from an interpretation of the self-correlation data in terms of the
Gaussian approximation.

In the derivation of Eq. (1.73), the Gaussian width after a diffusion time t of
the single segment distribution along the one-dimensional tube contour, the
path coordinate s is taken to be the time-dependent displacement. Projecting
this on the Gaussian contorted tube again corresponds to a Gaussian sub-
linear diffusion in real space (Eq. 1.73). However, the real process has to be
modeled by projecting the segment probability distribution due to curvilinear
Rouse motion on the linear coordinate s onto the random-walk-like contour
path of the contorted tube, leading to a non-Gaussian probability distribu-
tion of the segments at times t > τe. The necessity to perform the proper
averaging was first shown by Fatkullin and Kimmich (1995) in the context
of the interpretation of field-gradient NMR diffusometry data (Fischer et al.
1999), which yield results that are analogous to the incoherent neutron scatter-
ing functions. However, they are in another time and space regime covering
mainly the regime τR < t < τd. Their result

Sinc(Q, t>τe) = exp
[
Q4d2

72
〈r2(t)〉

3

]
erfc

[
Q2d

6
√

2

√
〈r2(t)〉

3

]
(1.78)

invalidates the Gaussian approximation (Eq. 1.64) for times above τe. We note
that Eq. (1.78) is strictly valid only for t � τe when 〈r2(t)〉 � d2. The effect
on the scattering function is that, if (wrongly) interpreted in terms of the
Gaussian approximation, the crossover to local reptation appears to occur at
significantly lower values of τe.

Figs. 1.21 to 1.23 show a comparison of the scattering function Sinc(Q, t)
as predicted by Eqs. (1.64) (Rouse regime) and (1.78) (dashed lines, local
reptation regime) with the NSE data. The parameters Wl4 and d were fixed
to the values taken from the single-chain structure factor measurements. For
PE and Q = 1 nm−1, the free Rouse regime (t < τe) as well as the local
reptation regime are perfectly reproduced. For Q = 1.5 nm−1 in the case of
PE (lower dashed line in Figs. 1.21 and 1.22) and for Q = 1nm−1 for PEP, the
prediction of Eq. (1.78) lies slightly outside the error band of the data points.

The spatial resolution increases with increasing Q-values. Agreement with
theory may only be expected for Q-values less than 2π/d. For the tube diameter
of 4.8 nm in PE, the “limiting” wavevector would be 1.3 nm−1, which may
explain why deviations become visible at Q = 1.5 nm−1. The same holds
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for PEP, where, with d = 6 nm, the typical wavevector would be about Q =
1 nm−1.

Up to now we have considered the segmental mean square displacement in
a long-chain polymer melt. Now we will investigate the single-chain dynamic
structure factor. As already demonstrated in Section 1.5, the Rouse model
does not describe the dynamics of long chains in the melt. After an initial
decay of S(Q, t) by a free three-dimensional Rouse motion, the relaxation
slows down. We have seen above that this slowing down starts when the
mean square displacement of the chain segments becomes comparable to the
diameter squared of the virtual tube described in the reptation model. The
tube concept provides a model for the pair correlation scattering function of
a single chain in the melt. It is given by (de Gennes 1981; Doi and Edwards
1986):

S(Q, t)
S(Q)

= [1 − F (Q)]Slocrep(Q, t) + F (Q)Sesc(Q, t) (1.79)

Here, F (Q) is the (cross-sectional) form factor of the tube:

F (Q) = exp[−(Qd/6)2] (1.80)

The two processes that determine the relaxation of a chain in a tube are
local reptation and the creeping of the entire chain out of the tube where the
chain follows its own profile:

Slocrep(Q, t) = exp(t/τ0) erfc
(√

t/τ0
)

(1.81)

Sesc(Q, t) =
∞∑

p=1

2ANµ

α2
p(µ2 + α2

p + µ)
sin2(αp) exp

(
−4tα2

p

π2τd

)
(1.82)

where µ = Q2Nl2/12 and αp are the solutions of the equation αp tan(αp) =
µ; A is a normalization constant, so that Sesc(Q, 0) = 1. The two time scales
in Eqs. (1.81) and (1.82) are given as follows: the first, τ0 = 36/(Wl4Q4), is
for Rouse-type segment diffusion along the tube; the second is the so-called
disentanglement time τd = 3N3l2/(π2Wd2) for reptation-type escape of the
chain from the tube (creep).

In the high-Q limit, i.e. RgQ � 1, αp ≈ (p− 1
2 )π and Sesc(Q, t) in Eq. (1.82)

can be approximated by

Sesc(Q, t) =
8
π2

∑
p,odd

1
p2 exp

(
−p2t

τd

)
=: µrep(t) (1.83)

Note that Sesc(Q, 0) is again normalized to unity. In this equation, µrep(t) is
called the “tube survival probability” and is directly related to the relaxation
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Fig. 1.24 Plot of S(Q, t)/S(Q) from a Mw = 200 kg mol−1 PEP melt at
T = 492 K for the scattering wavevectors Q = 0.3, 0.5, 0.68, 0.77, 0.96,
and 1.15 nm−1, from above (Wischnewski et al. 2003). The solid lines
represent a fit with Eq. (1.79).

function, G(t)/Ge = µrep(t), where Ge is the plateau modulus. By Fourier
transformation of G(t) and replacing the sum in Eq. (1.83) by an integral, it
can be shown that, for times t < τd or ω > ωd = 1/τd (Doi and Edwards
1986; Milner and McLeish 1998; McLeish 2002),

G′′
rep(ω) ∝ ω−1/2 (1.84)

Now we will describe NSE results from high-molecular-weight PE and PEP
samples by the single-chain dynamic structure factor of Eqs. (1.79) to (1.82).
Inspecting the formulas we recognize that all the parameters needed can
easily be calculated or are already known from the evaluation of NSE data of
the respective short-chain systems: the segment length l of PE [l = 0.41 nm
(Boothroyd et al. 1991)] and PEP [l =

√
l20C∞n = 0.74 nm with n = 3.86

the effective bond number per monomer (Richter et al. 1992; Richter et al.
1993)], the Rouse variables [Wl4 = 7 nm4 ns−1 for PE at T = 509 K, and
Wl4 = 3.26 nm4 ns−1 for PEP at T = 492 K (Richter et al. 1993)] and the
number of segments [N = 13 013 for the Mw = 190 kg mol−1 PE sample,
and N = 2857 for the Mw = 200 kg mol−1 PEP sample]. There is only
one parameter left that is not known: the diameter of the virtual tube d,
representing the topological constraints due to entanglements in long-chain
polymer systems. In Eq. (1.69) d was defined as the end-to-end distance of a
chain with Ne segments, where Ne is the number of segments between two
entanglements.
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Fig. 1.25 Plot of S(Q, t)/S(Q) from a Mw = 190 kg mol−1 PE melt at
T = 509 K for the scattering wavevectors Q = 0.3, 0.5, 0.77, 0.96, and
1.15 nm−1, from above. The data were taken with a wavelength of the
incoming neutrons of λ = 0.8 nm (filled symbols) and λ = 1.5 nm (open
symbols). Solid lines represent a fit with Eq. (1.79).

Fig. 1.24 shows the NSE data for PEP withMw = 200kg mol−1 atT = 492K
(about 10% H-PEP in D-PEP). The data were taken at the IN15 spectrometer
(ILL, Grenoble) and corrected for background and resolution. They show a
dramatic slowing down of the relaxation after an initial decay. The curves end
up in a plateau for all Q-values at high Fourier times, reflecting the topological
constraints. The solid lines in Fig. 1.24 represent a fit with Eq. (1.79). As
explained above, the only free parameter to fit all Q-values simultaneously is
the tube diameter d. The description of the data is excellent over the whole
range of Fourier times and Q-values. The resulting diameter is d = 6 nm.

Fig. 1.25 shows the results of a comparable measurement for H-PE in D-PE
with a molecular weight Mw = 190 kg mol−1 at T = 509 K. Again, the data
show the characteristic plateaus at long times for all Q-values, and again the
description by the reptation model is excellent having in mind that only one
parameter can be varied. The tube diameter for this PE sample is d = 4.8 nm.
What do we learn from these two experiments?

• The reptation model (Eqs. 1.79 to 1.82) yields an excellent description of
the PE and PEP data at high molecular weights over the entire range of
Fourier times and scattering vectors. For the fit, only one parameter is free,
the tube diameter d, for which we obtain reasonable values (d = 6 nm for
PEP and d = 4.8 nm for PE).

• Calculating the disentanglement time τd = 3N3l2/(π2Wd2), we obtain
τd = 0.02 s (with W = 242 ns−1) for PE and τd = 0.01 s (with W =
10.9 ns−1) for PEP. Since the disentanglement time depends on the chain
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length to the third power (τd ∝ N3) in the accessible NSE time range (some
hundreds of nanoseconds), the tube escape term (with a time constant in
the range of 10 ms) is virtually constant for the high-molecular-weight
samples. In conclusion, the local reptation process dominates the polymer
dynamics in the NSE time range for long-chain polymer systems.

• Assuming that Sesc is still time-independent in the time window of NSE
and that Slocrep has essentially decayed to zero in the plateau region, we find
from Eq. (1.79) that S(Q, t) ≈ F (Q). Therefore reading the plateau values
permits the direct extraction of the tube diameter via exp(−Q2d2/36).

• The initial decay is dominated by Rouse dynamics. We have seen from the
incoherent experiments that the segments undergo free Rouse relaxations
as long as the mean square displacement is smaller than the tube diameter
squared. The Rouse model is not included in Eqs. (1.79) to (1.82)! However,
if the fit is restricted to times t > τe, the results remain the same. The
agreement at times t < τe is somewhat accidental.

What about the slow creep process? As mentioned above, this kind of mo-
tion is too slow for NSE, but easily detectable by rheology. Fig. 1.26 shows the
loss modulus G′′(ω) versus frequency in a double logarithmic plot. Follow-
ing Eq. (1.84) for the creep process G′′

rep(ω) ∝ ω−1/2 is expected and clearly
observed at frequencies higher than the inverse disentanglement time τd.

Fig. 1.26 Loss modulus G′′(ω) of polyethylene with Mw = 800 kg mol−1

(reference temperature T = 509 K) measured at the rheometer in
Jülich. The solid line illustrates the expectation for the creep process at
frequencies higher than the peak frequency ωd (Eq. 1.84).
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Is Everything Fine?
We have shown above that the dynamics in polymer melts is determined by
a balance of viscous and entropic forces. A thermally activated fluctuation
may be envisaged as a slightly stretched chain. The entropy tries to bend the
chain back but has to battle against friction. This dynamics is described in
the Rouse model, representing the environment of a test chain by a heat bath
that causes thermal activation.

Another approach to the chain dynamics is the mean square displacement
Φn of a chain segment. Due to the fact that one test segment n is linked to
other segments, Φn can be described by a sub-Fickian diffusion; the respec-
tive time dependence is predicted in the framework of the Rouse model to
be proportional to t1/2. Both the predicted relaxational structure factor of a
labeled test chain as well as the segment mean square displacement have
been corroborated by NSE experiments: the former by analyzing the single-
chain dynamic structure factor obtained by measuring a few labeled chains
in a deuterated matrix for different Q-values, and the latter by an incoherent
NSE experiment on fully protonated polymers addressing the self-correlation
function. As long as the Q-value is not too high, i.e. we do not observe local
details of a segment, and as long as the chains are short, so that they do not
entangle (or the time is short enough that they do not know that they are
entangled), the Rouse model gives an excellent description of the short-time
dynamics in polymer melts.

When the chains become longer, topological chain–chain interactions come
into play. We have shown above that the concept of a virtual tube representing
the entanglements is very successful in describing the dynamics of long-chain
systems. This holds again for the single-chain dynamic structure factor, show-
ing characteristic plateaus at long times where further relaxation is hindered
due to topological constraints. Here the reptation model gives a perfect de-
scription of the structure factors over the entire range of times and Q-values
and allows us to extract the diameter of the virtual tube as the only free param-
eter of the model. This also holds for the segmental mean square displace-
ment, where the tube concept predicts a transition from a power law ∝ t1/2

to ∝ t1/4 at a time constant τe. This has indeed been observed for polymers in
incoherent NSE experiments addressing the self-correlation function. After
a proper evaluation and taking into account non-Gaussian effects in the local
reptation regime, the extracted tube diameter is in quantitative agreement
with the results from the single-chain dynamic structure factor.

Finally, though not observable in NSE, it has been shown that the slow creep
process is traceable in high-molecular-weight polymer melts by analyzing the
loss modulus G′′(ω).

This would be the last page of this chapter about polymer dynamics if there
were not some observations that are difficult to understand just adopting
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Rouse and reptation theory. A few of the many known examples may be listed
here:

• The viscosity η in the reptation regime is expected to be proportional to
the longest relaxation time. In the reptation concept, this time is the dis-
entanglement time τd ∝ M3. Therefore, η ∝ M3 is anticipated. It has
been known for a long time that the η ∝ M3 dependence is reached only
at very high molecular weights, but there exists an intermediate range of
molecular weights, where, though the polymer melt is in the well-entangled
regime, a power law η ∝ M3+α with α ≈ 0.4 is found. Furthermore, it is
known from rheological data that the same holds for the disentanglement
time τd, which in polyisoprene has recently been found to be τd ∝ M3.32

with a transition to an M3 dependence at very high molecular weights
(Abdel-Goad et al. 2004).

• As derived in Section 1.5, we can write ΦD(τd) = 6Dτd ∝ Nl2 and so,
with τd ∝ N3 for the diffusion coefficient, D ∝ 1/N2. Therefore, for long-
chain polymers we expect D ∝ M−2 following the reptation model. In
polybutadiene, Lodge (1999) found D ∝ M−2.3

• Finally, and in contrast to what has been presented in Fig. 1.26 for high-
molecular-weight polyethylene, in polyisoprene (PI), for example, it has
been found that the loss modulus exhibits a −0.25 power-law dependence
at frequencies ω > ωd (Abdel-Goad et al. 2004), indicating the existence
of additional relaxation processes (McLeish 2002; Likhtman and McLeish
2002). This is illustrated in Fig. 1.27. Note that the total molecular weight of
this polyisoprene sample (Mw = 1000 kg mol−1) is higher than that of the
PE sample presented in Fig. 1.26. However, the number of entanglements
Z = N/Ne is higher for PE (ZPE ≈ 400) than for PI (ZPI ≈ 170).

It was proposed some time ago that, in addition to the relaxation processes
described in the Rouse and reptation theories, there should exist additional
degrees of freedom. The main reason for this is the fact that the polymer
chains have a finite length. Starting with a chain that is confined in a tube
for time t = t0, one may wonder if at a time t = t1 chain segments close to
the “open ends” of the tube are as confined as the center part of the chain.
Furthermore, it is obvious that not only the test chain itself relaxes but also
all chains in the environment that are building the tube: the tube itself is not
a fixed object in time!

The former effect – contour length fluctuations (CLF) – will be explored
and discussed in the next section; the latter one – constraint release (CR) –
will be taken up after that.
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Fig. 1.27 Loss modulus G′′(ω) of polyisoprene with Mw =
1000 kg mol−1 at a reference temperature T = 300 K measured at
the rheometer in Jülich (Abdel-Goad et al. 2004). Figure taken from
Wischnewski et al. (2004).

1.7
Limiting Mechanisms for Reptation I: CLF

The finite length of a chain plays an important role due to the existence
of chain ends. Their influence is more pronounced in polymer melts of in-
termediate chain length than in very long-chain systems where the relative
weight of the end segments is negligible compared to the total number of
segments. We have seen that for PE with Mw = 190 kg mol−1 the reptation
model gives an excellent description of the single-chain dynamic structure
factor. We have also seen that the resulting tube diameter is in agreement
with the value extracted from measurements of the segment mean square
displacement. Obviously we are in the long-chain limit for the PE system
with Mw = 190 kg mol−1. To investigate systematically the chain-length de-
pendence of the chain dynamics, we have measured a series of PE samples
with Mw = 36, 24.7, 17.2, 15.2, and 12.4 kg mol−1 (Wischnewski et al. 2002).

The experiments were performed at the IN15 spectrometer at the ILL,
Grenoble, at T = 509 K. The experimental results were corrected for back-
ground and resolution. Fig. 1.28 displays the spectra obtained for different
molecular weights. The Q-values correspond to: Q = 0.03 Å−1 (squares),
0.05 Å−1 (circles), 0.077 Å−1 (triangles up), 0.096 Å−1 (diamonds), 0.115 Å−1

(triangles down), and 0.15 Å−1 (crosses). Filled symbols refer to a wavelength
of the incoming neutrons λ = 0.8 nm, and open symbols to λ = 1.5 nm.
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Fig. 1.28 NSE spectra from PE melts of various Mw (see text)
(Wischnewski et al. 2002).



1.7 Limiting Mechanisms for Reptation I: CLF 71

For the highest molecular weight Mw = 190 kg mol−1 and also for Mw =
36 kg mol−1 the spectra are characterized by an initial fast decay reflecting
the unconstrained dynamics at early times followed by local reptation and
finally very pronounced plateaus of S(Q, t) at later times signifying the tube
constraints. The plateau values for the two samples are practically identical.

Inspecting the results for smaller Mw, we realize that: (1) the dynamic
structure factor decays to lower values (at Q = 1.15 nm−1 the value is ≈0.5
for Mw = 190 kg mol−1, ≈0.4 for Mw = 24.7 kg mol−1, and nearly 0.2 for
Mw = 12.4 kg mol−1); and (2) the long-time plateaus start to slope more and
more the smaller Mw becomes, with Mw = 12.4 kg mol−1 nearly losing the
two-relaxation-step character of S(Q, t). Obviously the chain is disentangling
from the tube and constraints are successively removed.

Without any theory we can conclude that the spectra change depending on
the molecular weight in the sense that the decay of S(Q, t) is stronger and
the plateaus are not that pronounced for lower molecular weights. Thereby
we have to keep in mind that even the lowest-molecular-weight chain with
Mw = 12.4 kg mol−1 and N = 849 still exhibits N/Ne ≈ 6 entanglements
(following Eq. 1.69, Ne = d2/l2 = 4.82 nm2/0.17 nm2 = 136).

Now we will analyze the data quantitatively using the reptation model
(Eqs. 1.79 to 1.82). This is demonstrated in Fig. 1.29, where the solid lines
show the result for the lowest (Mw = 12.4 kg mol−1) and the highest (Mw =
190 kg mol−1) molecular weight. The tube diameter is again the only free
parameter. For Mw = 12.4 kg mol−1, the tube diameter is significantly larger
than for the long-chain melt (see Fig. 1.29, d(Mw=12.4 kg mol−1) = 6.0 nm,
d(Mw=190 kg mol−1) = 4.8 nm), reflecting a reduction of the topological
constraints. The dotted lines in the lower part of Fig. 1.29 result from the
assumption of a constant d = 4.8 nm inserted in the reptation model; it is
obvious that this significantly underestimates the amount of relaxation in the
low-molecular-weight sample. The data for all molecular weights were evalu-
ated by fitting them with the reptation model. All the parameters were kept
constant except for the tube diameter. Table 1.1 shows the resulting d.

Tab. 1.1 Tube diameters for different molecular-weight PE melts as
obtained by a fit with the reptation model.

Mw (kg mol−1) d (nm)

190 4.8
36 4.6
24.7 5.4
17.2 5.3
15.2 5.4
12.4 6.0
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Fig. 1.29 PE data for Mw = 190 and 12.4 kg mol−1 (Wischnewski
et al. 2002). Solid lines represent a fit with the reptation model yielding
d(Mw=190 kg mol−1) = 4.8 nm and d(Mw=12.4 kg mol−1) = 6.0 nm.
For the dotted lines, the tube diameter was fixed to 4.8 nm.

The significant increase of the tube diameter with decreasing molecular-
weight samples is puzzling. There is no doubt that the reptation picture re-
quires a constant tube diameter as long as the chains are in the well-entangled
regime, which is the case for our samples. It is evident, in particular consid-
ering the worse fit quality at low molecular weights, that the relaxation is
determined not only by reptation but also by an additional process that leads
to an apparently increasing tube diameter with decreasing molecular weight.
As long as we stick to the assumption of a fixed tube, it is also evident that,
since for the inner segments there is no difference for a long or short chain,
this has to be related to the different relative weight of the chain ends with
respect to the total length of the chain.

It is known from broad crossover phenomena, like the molecular-weight
dependence of the melt viscosity, that limiting mechanisms exist which affect
the confinement and thereby limit the reptation process (Doi and Edwards
1986). Contour length fluctuations (CLF) were proposed as one candidate for
such processes. The idea is quite simple. The chain ends undergo the same
Rouse-like fluctuations as the inner segments. For an end segment, this leads
to the effect that at a given time it may be immersed a bit into the tube. When
the segment comes out again, it may have a different direction, not aligned to
the original tube curvature. In other words, when one chain end is immersed
in the tube, the part of the tube that is not occupied is lost, so the effective
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Fig. 1.30 Schematic illustration of contour length fluctuations. Rouse-like
motions of end segments lead to the effect that, at a given time, the chain
ends are immersed into the tube (central picture). The part of the tube
that is not occupied is lost. When they come out again, they may have a
different direction, not aligned to the original tube curvature.

tube becomes shorter. The fluctuating chain ends lead to a time-dependent
effective tube length, i.e. to decreasing constraints with increasing time. This is
illustrated in Fig. 1.30.

If we recall the creep process, it is evident that the two relaxation processes
are somewhat competitive. Both describe the escape of the chain from the
tube confinement: one by diffusion along the tube profile, and the other
by destruction of the tube starting from both ends. For times shorter than
the Rouse time, which following Eqs. (1.48) and (1.58) is given by τR =
N2/(π2W ), it was recently shown that the effect of reptation on escape from
the tube is negligible in comparison to tube length fluctuations (Likhtman and
McLeish 2002). This time range corresponds to the times that are accessed
in our experiment. Even for the shortest chain Mw = 12.4 kg mol−1 we
get τR ≈ 300 ns, which is more than the maximum time reached by the
high-resolution IN15 NSE spectrometer. This means that for all the NSE
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experiments we have to consider CLF rather than the creeping process. In
this regime the fraction of monomers released from the tube due to contour
length fluctuations has a very simple form:

Ψ(t) =
1.5
Z

(
t

τe

)1/4

(1.85)

where Z = N/Ne is again the number of entanglements per chain.
It is straightforward to show that the scaling with t and Z in Eq. (1.85)

emerges exactly from the properties of a linear Rouse chain in a tube. In fact,
all the approaches to contour length fluctuations so far (Doi and Edwards
1986; des Cloizeaux 1990) predict for t < τR a simple expression for Ψ(t) like
Eq. (1.85) but with different prefactors (≈1.2 by Doi and Edwards, and 0.67 by
des Cloizeaux). The discrepancy is explained by the different mathematical
approximations used. A series of carefully designed one-dimensional stochas-
tic simulations solved the first passage problem for the single Rouse chain in
a tube, by taking the limit of the time step tending to zero and the number
of monomers going to infinity. These simulations confirmed Eq. (1.85) and
gave a result for the prefactor of 1.5 ± 0.02 (Likhtman and McLeish 2002).
Without discussing the details, we point to the fact that taking into account the
contour length fluctuations for the calculation of the mechanical relaxation
functions reproduces the −0.25 power-law dependence in the loss modulus as
presented in Fig. 1.27 for chains with not too high numbers of entanglements
Z (Likhtman and McLeish 2002).

To incorporate this result in the structure factor calculations, the approx-
imate approach of Clarke and McLeish (1993) was used. We assume that
after time t all monomers between 0 and s(t) and between 1 − s(t) and 1
have escaped from the tube, where s(t) = Ψ(t)/2. Note that here s(t) is a
non-dimensional variable between 0 and 0.5, while s(t)L is a section of the
contour length following the profile of the primitive path.

This statement contains two approximations: first it assumes that the frac-
tion of the chain that escapes from the tube is the same from each end of the
chain, and second it ignores distributions of s(t), replacing it by the single
average value. If we make these two assumptions, the rest of the calculation
is straightforward. We first use the fact that R(s, t) is a Gaussian variable and
therefore

〈
exp[iQ(R(s, t) − R(s′, 0))]

〉
= exp

[
− 1

2

∑
α=x,y,z

Q2
α

〈
[Rα(s, t) − Rα(s′, 0)]2

〉]
(1.86)
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and then we note that

〈
[Rα(s, t) − Rα(s′, 0)]2

〉

=
dL

3




|s − s′| for s(t) < s < 1 − s(t) or s(t) < s′ < 1 − s(t)

|2s(t) − s − s′| for s < s(t) and s′ < s(t)

|2 − s − s′ − 2s(t)| for s > 1 − s(t) and s′ > 1 − s(t)

(1.87)

whereL = Zd is the contour length. Replacing the summation in the dynamic
structure factor (Eq. 1.11) in Section 1.3.1 by integration, we get

Sesc(Q, t) =
∫ 1

0
ds

∫ 1

0
ds′ exp(−2µ|s − s′|)

+ 2
∫ s(t)

0
ds

∫ s(t)

0
ds′ {exp[−2µ(2s(t) − s − s′)]

− exp(−2µ|s − s′|)} (1.88)

where again µ = Q2Nl2/12. The integrals can be easily evaluated and we
obtain

Sesc(Q, t)

=
N

2µ2 [2µ + e−2µ + 2 − 4µs(t) − 4 e−2µs(t) + e−4µs(t)] (1.89)

The lines in Fig. 1.28 were obtained by fitting the data with Eqs. (1.79)
to (1.81) and adding instead of the creep term (Eq. 1.82) the above-derived
expression for CLF (Eq. 1.89). A group of three common Q-values for all
molecular weights is displayed by solid lines to facilitate an easy comparison
of the molecular-weight dependence of the curves. Additional Q-values only
available for some Mw values are represented by dotted lines.

If we compare the experimental spectra with the model prediction, we
generally find good agreement. The gradually increasing decay of S(Q, t) with
decreasing Mw is described very well with respect to both the magnitude of
the effect and the shape of S(Q, t). We further note that, in particular for
smaller Mw, the weighted error between fit and data is significantly smaller
compared to the fit with the pure reptation model.

Fig. 1.31 compares the tube diameters as obtained from the fit with the
reptation model (Table 1.1) and obtained by replacing the creep term by the



76 1 Polymer Dynamics in Melts

Fig. 1.31 Tube diameters for PE samples with different molecular weights:
from pure reptation fit (circles); and when the creep term is replaced by
the expression for contour length fluctuations (squares).

concept of contour length fluctuations. At the highest molecular weight, con-
tour length fluctuations are insignificant and both lines of fit yield the same d.
At Mw = 36 kg mol−1, a slight difference appears, which increases strongly
with decreasing length. At Mw = 12.4 kg mol−1, the difference in the fitted
tube diameters between the two approaches rises to nearly 50%, emphasizing
the strong effect of the contour length fluctuation in loosening the grip of the
entanglements on a given chain.

However, the main point is that, in contrast to the significant increase of d

with decreasing Mw if pure reptation is assumed, if CLF is included the tube
diameter stays constant. It is important to note that CLF has been included
without introducing any new parameter. The data are described over the entire
range of time, Q-values, and molecular weights with one single parameter,
the tube diameter d.

Thus, the comparison between the experimental chain-length-dependent
dynamic structure factor and theoretical predictions clearly shows that, in the
time regime t ≤ τR, contour length fluctuations are the leading mechanism
that limits the chain confinement inherent to the reptation picture. Even for
chain lengths corresponding to only ≈6 entanglements, the tube diameter
appears to be a well-defined quantity, assuming the same value as for asymp-
totically long chains. The confinement is lifted from the chain ends inwards,
while the chain center remains confined in the original tube.

To conclude this section we underline the consequences of CLF for the
macroscopic properties of polymer melts.
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1. Since the structure factor Sesc(Q, t) is directly related to the tube survival
probability function µrep(t) (Eq. 1.83) and therefore to the relaxation func-
tion, it is evident that the modifications of Sesc(Q, t) as described in this
section are reflected in a different ω dependence of G′′(ω). It has been
shown that CLF introduces an ω−1/4 regime into the spectrum of the loss
modulus. In fact, this power law has already been illustrated in Fig. 1.27
for polyisoprene.

2. The power law for chain diffusion, which has been found to deviate from
the prediction of the reptation model, as well as the observed exponent of
3 + α with α ≈ 0.4 for the molecular-weight dependence of the viscosity
are attributed to the CLF (Doi and Edwards 1986; McLeish 2002).

It is the virtue of the NSE experiments that they provided the first experimental
proof of the CLF mechanism quantitatively and on a microscopic scale in
space and time.

1.8
Limiting Mechanisms for Reptation II: CR

Up to now we have made a crude approximation by assuming that the topolog-
ical confinement represented by a virtual tube is constant in time. The basic
message of the tube concept is that the confinement that a test chain (e.g. a
labeled one) experiences can be represented by a tube built by the adjacent
chains. The choice of the test chain is arbitrary, and we assume that the dy-
namics of all chains in the system is the same (at least as long as we consider
one-component systems with a narrow distribution of molecular weights).
Having this in mind, it is evident that the tube itself is in motion and the re-
spective constraints possess a finite lifetime. For the effect of contour length
fluctuations, which leads to a time-dependent effective tube length, it was
sufficient to account for the dynamics of the test chain, because CLF is an
escape mechanism of one single chain. There is no need to move away from
the single-chain picture and, as we have seen above, there is not even a need to
introduce any new parameter. In contrast to CLF, the fact that constraints for
the test chain are time-dependent is still true if we freeze the test chain: after
some time, reptation or CLF of all the other chains would lead to an effectively
free test chain. Here, we have left the single-chain picture and arrived at the
more complicated many-chain problem.

In the past decades quite a number of concepts have been developed to
account for this additional relaxation process, called “constraint release” (CR).
One idea was introduced by Graessley and Struglinski (1986). The lifetime of
each constraint building a tube is of the order of the disentanglement time τd.
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If a constraint is released, the tube can move locally. This leads to a Rouse-like
motion of the tube itself. In the calculation of the stress relaxation function
G(t), this Rouse relaxation of the tube can be accounted for by an additional
relaxation function of the Rouse type with time constant τd. It turns out, on
calculating the reptation part and this additional factor, that the relaxed stress
is of the same order of magnitude (in the limit of very long chains). This led
to the idea to account for CR by introducing the reptation part squared in the
relaxation function. The concept was denoted as “double reptation”. In the
double reptation concept only one relaxation time was used to describe the
constraint release (CR) effect, an oversimplification that has to be adjusted by
replacing τd by a distribution of relaxation times representing the lifetimes
of constraints. It is evident that it makes a difference if the constraint for a
test chain is built by the end or the middle part of an adjacent chain.

A self-consistent theory that takes into account the distribution of relax-
ation times or mobilities for different chain segments has been introduced
by Rubinstein and Colby (1988). Likhtman and McLeish (2002) used this for-
malism to simulate the contribution of constraint release, R(t), to the stress
relaxation function. One additional factor (cν ) to adjust the strength of CR
was introduced. Their calculation shows that for times t < τR the relaxation
by CR is similar to the relaxation by CLF [1 − Ψ(t) with Ψ(t) as defined in
Eq. (1.85)]. In fact, one obtains R(t) by replacing the prefactor in Eq. (1.85)
and including cν :

R(t) = 1 − 1.8
Z

(
cνt

τe

)1/4

(1.90)

For times longer than the Rouse time, R(t>τR) is described by the lateral
relaxation of the tube, which again is considered as a Rouse chain, but with
a significantly longer characteristic relaxation time than τR. Altogether, the
relaxation is determined by five processes. For short times, Rouse modes
inside the tube dominate; and for longer times, local reptation (longitudinal
modes with a wavelength longer than the tube diameter d) starts to play a
role. The escape of the chain from the tube is dominated either by CLF at
times t < τR or by reptation for t > τR. In the same time regime CR also
contributes significantly to the relaxation spectrum. Likhtman and McLeish
(2002) achieved a consistent description of experimental rheological data by
applying the relaxation function in Eq. (1.90) for the CR mechanism.

Fig. 1.32 shows the calculated effect of all relaxation processes on the loss
modulus G′′(ω). The dotted line shows the prediction for pure reptation and
Rouse modes. Here, a power law of −1/2 in the reptation regime (see Eq. 1.84)
and a power of+1/2 in the high-frequency Rouse regime are predicted. Taking
into account the relaxation by CLF results in the dashed line. Note the change
to a ∝ ω−1/4 behavior at frequencies above the pure reptation regime, i.e. for
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Fig. 1.32 Calculated contributions to
G′′(ω)/Ge for a polymer with Z = 800
entanglements (Likhtman and McLeish
2002). Ge is the plateau modulus.
Lines: pure reptation and Rouse modes
(dotted line); adding relaxation by CLF

(dashed line); adding relaxation due to CR
effect (thin solid line); calculation with all
contributions (thick solid line) (see text
for further explanation).
Figure courtesy of A. E. Likhtman and
T. C. B. McLeish.

ω > 1/τR. Adding the relaxation due to the CR effect yields the thin solid
line. Finally, the thick solid line illustrates the result of a calculation with all
contributions to the relaxation function, including the longitudinal modes.

It may be anticipated at this point that a description of CR on a microscopic
scale, i.e. the contribution of CR to the dynamic structure factor as measured
by means of NSE, is not available. It is doubtful if this “many-chain” problem
can be accounted for in the framework of the quite simple “single-chain” and
tube concept. However, is there any chance of observing the CR relaxation on
a microscopic scale? Yes, that can be done! We study by NSE a labeled chain
in matrices with different chain lengths. The test chain is always the same,
but the adjacent chains, which build the constraints of the test chain, have
different lengths, i.e. different capabilities to build the tube. One could also
say the time scale for the tube will vary with the matrix chain length.

What do we expect? A long chain in a matrix of the same molecular weight
will show the well-known plateaus at high Fourier times, as the dynamics is
dominated by the local reptation process in the time window of NSE. With
decreasing molecular weight of the matrix chains, we expect a faster relaxation
of the test chain because the shorter chains build topological constraints with
shorter lifetimes. Finally, for very short matrix chains we expect pure Rouse
behavior for the long test chain since the adjacent chains cannot build any
tube.



80 1 Polymer Dynamics in Melts

Fig. 1.33 Plot of S(Q, t)/S(Q) measured
by NSE (IN15, Grenoble) in a Rouse
scaling plot for a protonated test chain
with Mw = 36 kg mol−1 in a deuterated
matrix of 36, 6, and 2 kg mol−1 each for

two Q-values: 0.77 nm−1 (filled symbols),
and 1.15 nm−1 (open symbols). The solid
line represents a fit with the Rouse model
for the sample with a 2 kg mol−1 matrix
(Zamponi 2004).

Fig. 1.33 shows the result of such an experiment. It depicts the NSE data of
three samples. The test chain is a protonated PE chain withMw = 36kg mol−1.
The matrix is varied between Mw = 36 and 2 kg mol−1. The dynamic struc-
ture factor is represented in a Rouse scaling as introduced in Section 1.5.1.
In this representation, Rouse curves fall on one master curve for different
Q-values. For clarity, only two different Q-values are shown for each sam-
ple: Q = 0.77 nm−1 (filled symbols) and 1.15 nm−1 (open symbols). For
the 2 kg mol−1 matrix the dynamic structure factors merge onto one master
curve for the two different Q-values. This holds also for other Q-values that
are not shown. The dynamic structure factor is very close to the Rouse ex-
pectation, though the friction coefficient (the solid line represents a fit with
the Rouse model) is higher than expected for a monodisperse 2 kg mol−1

sample by a factor of about 2. Note that in this experiment a long chain with
a molecular weight of 36 kg mol−1 behaves in a Rouse-like way because the
short matrix chains are not able to build a tube! The two samples with longer
matrix chains show the typical splitting for the two presented Q-values. Fur-
thermore, it is obvious that the relaxation is significantly faster for the sample
with the 6 kg mol−1 matrix compared to the monodisperse system of proto-
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nated 36 kg mol−1 chains in a deuterated 36 kg mol−1 matrix due to the onset
of the CR effect.

The NSE data show clearly the effect of CR. However, we abstain from the
introduction of theoretical concepts that could describe the data by means
of an oversimplified phenomenological “ad hoc” assumption. It is possible,
for instance, to get a satisfactory description of the NSE data by multiplying
a tube – Rouse – structure factor with the known reptation structure factor.
This adds at the same time a free parameter to the theory, the Rouse time
of the tube. However, the significance of such a model is not very strong.
Additional degrees of freedom may always be accounted for by some kind of
Rouse function, if an additional parameter to be varied is provided. We may
at this point stay with the experimental observation of CR, and with the fact
that a quantitative description is lacking.

It is probably not a coincidence that, with the description of these obvious
limits of the quite simple tube model and its modifications to account for
higher-order relaxation processes, we have also reached the end of this chapter
about polymer dynamics. A short summary and outlook is given in the next
and last section.

1.9
Summary and Outlook

In the previous sections we have tried to develop a consistent picture of the
mesoscopic chain dynamics in polymer melts. The systems were always lim-
ited to linear homopolymers, the simplest architecture and the simplest chem-
ical composition in this class of soft matter systems.

We started with the dynamics at very short times and demonstrated that in
this time regime the segments do not know if they are part of a long entangled
system or of a short chain system. This leads to the fact that the dynamics
of these two extreme cases cannot be discriminated at very short times. The
Rouse model gives a satisfactory description of the segmental motion in this
time regime. It is based on the assumption that fluctuations of the observed
test chain are activated by a heat bath and that the relaxation of these fluc-
tuations is balanced by viscous forces due to friction and entropic forces.
In addition to the internal modes, the chain can undergo a diffusion which
is sub-Fickian due to the correlation of different segments within a chain.
If the static parameters of the chain are known (segment length, molecular
weight), the Rouse model needs only one parameter, namely the effective
segmental friction coefficient, to describe the single-chain dynamic structure
factor over a wide range of Q-values and Fourier times. It also predicts the
time dependence of the segmental mean square displacement, which also
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has been observed experimentally. If the Q-values become too large, so that
the system’s specific local properties come into play, the Rouse model starts
to fail.

We have shown that this dynamic behavior continues to longer times if
there are no constraints present in the system, i.e. the chains are short and do
not entangle. If they are longer, the Rouse model starts to fail at longer times –
longer than τe – when the mean square displacement of the segments reaches
a special value. In the famous tube concept, this length scale is identified with
the diameter of a virtual tube representing the topological constraints in the
system. It has been illustrated that in the limit of very long polymer chains
the tube model gives a perfect description of experimental data over the entire
range of Q-values and Fourier times accessible by coherent NSE. The only pa-
rameter that has to be added to the Rouse parameters is the additional length
scale in terms of the tube diameter. It has also been demonstrated by measur-
ing the self-correlation function that the time dependence of the segmental
mean square displacement changes due to the topological confinement. The
observed behavior is in perfect agreement with the prediction of the reptation
model if non-Gaussian behavior is taken into account.

In the intermediate regime of molecular weights, the chains are long
enough to build entanglements but not so long that the tube concept gives
a satisfactory description of the experimental data. At times longer than τe

the single-chain dynamic structure factor does not show a fully developed
plateau, but a slope that becomes more pronounced with decreasing molec-
ular weight. This points to additional relaxation processes, which may be
called secondary in the sense that they are additional to the main relaxation
processes accounted for in the tube concept. The observation that they be-
come more pronounced with decreasing chain length points to the fact that
they have their origin in the finite length of the chains. Fluctuating chain ends
can escape from the confinement by destroying the tube from both ends, a
mechanism that is much more important than the creep process for inter-
mediate chain length in the time regime of NSE. This CLF process explains
the experimental observation that the plateaus at high Fourier times start to
slope if the molecular weight decreases. The CLF process can be calculated
and integrated into the reptation dynamic structure factor, giving an excel-
lent description of experimental data over a wide range of Fourier times and
Q-values (like before) and additionally for a wide range of molecular weights.
Since the underlying process that causes finally CLF is still local reptation,
there is no need to introduce new parameters. The tube diameter is still the
only variable and it stays constant as expected within the reptation concept
for all measured molecular weights if CLF is taken into account.

Finally, the fact that the tube is build by chains that have the same dynamics
as the chain that is arrested in the tube leads to a finite lifetime of the tube
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itself, and thereby to an additional “escape” mechanism, not by the test chain
itself, but by a release of the confinement with increasing time. This CR ef-
fect can be accounted for in the calculation of the stress relaxation function
as measured by rheology. However, though clearly observed in NSE experi-
ments, a quantitative description of NSE data by a modified S(Q, t) is still
not available.

As mentioned in the introduction, the goal of polymer science is finally to
clarify the relation between macroscopic properties and the architecture and
composition of a polymer system. To reach this goal, all relaxation processes
that are relevant for the macroscopic behavior have to be accessed, and the
interaction between them has to be revealed. This could enable the produc-
tion of “made-to-measure” polymer systems, i.e. with specific macroscopic
properties by selectively manipulating the architecture and composition of
the system.

It is evident that the experiments shown here are no more than a first step.
A well-disposed reader may agree that the results presented give a more or
less consistent picture of the dynamical behavior in polymer melts, though
the quantitative provision for CR is not well developed. It is evident that the
observed facts may serve as a basis for the understanding of more compli-
cated architectures. The retraction mechanism of an arm that is part of a
star polymer or of an H-shaped polymer may not be too different from the
CLF mechanism. (Just regard the linear chain as a two-arm star). After the
four arms of an H-polymer have retracted completely into the tube of the
backbone, the creep of the polymer may be described with the same struc-
ture factor as the creep process of a linear chain, but with an unequal larger
friction coefficient due to the relaxed arms, which serve as a kind of barb.

However, the dynamics of complicated architectures is more manifold com-
pared to linear chains, the number of processes may be larger, and the inter-
action between them more complicated. Going one step further by mixing
different architectures or mixing systems with different chemical structures
results in a mixture of all these relaxation processes. The superposition and
interaction of these relaxations follow rules that are up to now widely un-
known. How does friction arise in a chemically heterogeneous environment?
How can topological confinement of a chain be described if the tube is built
by a blend that consists of two components with significantly different tube
diameters?

Nevertheless, irrespective of how complicated a system may be, the oppor-
tunity remains to label small fragments of one component of such a system
and thereby to manipulate the visibility of different processes for neutrons.
In combination with the continuously growing opportunities in neutron scat-
tering, chemistry, computing, and complementary experimental techniques
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like NMR, dielectric spectroscopy or rheology, this may lead to significant
progress in this field of research within the coming years.
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