5

Homogeneous Tensor Algebra: Tensor
Homomorphisms

5.1 Introduction

The chapter starts by presenting the main theorem on tensor contraction,
which ensures that a contraction of a tensor product when applied to indices
of different valency leads to a tensor.

It continues by presenting the contracted tensor products as homomor-
phisms and applies them to different tensor products as particular cases. Some
tensor criteria motivated by the contraction are also discussed, including the
well-known quotient law criterion.

Next, a detailed study of the matrix representation of the permutation
tensors and some simple and double contracted homomorphisms is performed.

The chapter ends with a novel theory of eigentensors and generalized mul-
tilinear mappings.

5.2 Main theorem on tensor contraction

Though in Section 3.5 the contraction of tensor products has already been
mentioned, and in Theorem 3.1 any contraction of mixed tensors has been
examined from the homomorphism point of view, that is, of linear mappings
of a primary linear space (tensor space) into another secondary linear space,
one can have doubts about whether or not the resulting “range” space would
be a simple linear space, or would also be a tensor space.

Fortunately, this doubt is positively resolved, because the “homomorphic”
image of a tensor space is another tensor space.

Remark: the word “homomorphic” always has the sense of a mixed tensor
“contracted from two indices of different valency”.

Next, we prove this property with the required emphasis, and later it will
be enunciated as a theorem.
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. 3 2
Consider a mixed homogeneous tensor t € <(§1©V"> ® <<?V*") (K) of

order r = 5,

=120 e @ © e, @ @ (5.1)

and denote by S(a, 7, 1) the “system of scalars” resulting from the contraction
of indices 2 and 4 of different valency (8 and A):

0
s(a ) = 120750 (5.2)
In detail, we have
s(ayy ) = 0,05, +toodsn t oS00 (5:3)

The system S(«, v, i) is called a system of scalars because one cannot antic-
ipate if it is a tensor. The power of the set S(a,~, ) is n?, because we have
three free indices.

3 2
Next, we perform a change-of-basis in the (Q?V") ® (Q?Vf) (K) tensor
space. Since its vectors are homogeneous tensors, we have

ijkoo _ ,affyoo_io_jo ko oA op
toooém - tooo/\ufyoa/yoﬁpyo'ycéocmo’ (54)

The indices (j,¢) are contracted. Preparing Expression (5.4) and calling
the set of scalars in the left-hand side s(i, k, m), we get

ijkoo Byoo i10o ko jo oAy o

tégoém - tioZAp’y;a’yoy(Pyiﬁcéo)cmg (55)
. oo_1t10_ko o oAy o

s(z,k,m) = tzf?;)\u’yialyo'y(’yz‘ﬁczo)le:' (56)

The expression (Wz;c:i‘) is the “product” of matrices C~! ® C* but executed
by “multiplying row by row” (not by column, due to the position of z); but

this is the same as C~1 - C = I,. So, that

Vel =050, (5.7)
and replacing (5.7) into (5.6) we obtain
s(ik,m) = (150037050 Voa Y osCores
where the product in parentheses is the contraction of (5, \)
s(i,k,m) = tzzzgiyizﬁ]szc;‘; (5.8)

and, on account of (5.2), the previous expression can be written as
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. i k
s(iy kym) = (0,7, 1)V Voo Cones (5.9)

which declares that the system of scalars S(«, v, i) satisfies the tensor criteria,
that is, it is a tensor. Whence

ay o

S(O‘a’%ﬂ) = 80 ou'

This proof can be repeated over other two indices with different valency.
We leave this for the reader to do.

If, by error, we were to choose two indices with the same valency, when
reaching Expression (5.6) products of the type ('yfngi) or (c;fczi‘) would
appear that are not the Kronecker delta, making the proof invalid. We un-
derstand that this expression can be generalized to tensors of order superior

to r = 5, and proceed to state the “tensor contraction” general theorem.

Theorem 5.1 (Fundamental theorem of tensor contraction). The con-
traction with respect to indices of different valency in mized tensors of order
r, is a sufficient condition for obtaining another homogeneous tensor of order
(r—2). O

5.3 The contracted tensor product and tensor
homomorphisms

In Section 3.4 we have dealt with tensor product of tensors, and in Section 3.5
the contracted tensor product concept was defined. Since in that definition the
conditions of “tensor contraction” are satisfied, Theorem 3.1 guarantees that
the contracted tensor products can be considered as simple homomorphisms
(Formula (3.16)), that transform tensors from a tensor space into tensors of
another space by the action of a contracted tensor homomorphism.

This point of view will be exploited at the end of this chapter, more pre-
cisely, on tensors of simple order, and it will be executed using the matrix
expression

Ty =Hpyr—2,r 0Ty witho=n"; o =n""2 (5.10)

Nevertheless, before ending, we want to point out the analytical representation
of the contracted tensor product, in the classic mode.

Given the tensors ¢ = ti‘ff’ye} ® €z ® €7 and U = viit?“ ® e**, we look
for the contracted tensor product tensor = C($)(f ® ¥), with = pfiié’ﬂ ®

e @ erH.
This can be done in two different forms:

1. We obtain the tensor product tensor
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B =t@T=wllE e @dt @t (5.11)
with the condition 5 5
« 000 « o [o)e)
woo'y)\,u:too'y'v)\u (512)

and then we contract

« 000 o ke
ﬁ:C(A>w:waW”eﬁ®e TR e,

where we also have
0Booo «affooo 50)\
oovOpu ~ TooyAp ao’

(5.13)

X
where & ;o is the Kronecker tensor.

2. The second form is used by certain authors, who prefer a direct execu-
tion of the product and the contraction simultaneously, based on matrix
representations:

oo afo oA oo
pooe = (t207) 620 (vyn). (5.14)

Evidently, (5.14) is the result of replacing (5.12) into (5.13), because §° =

62‘2 is symmetric, and then, both methods lead to the same result.
Ezample 5.1 (Matriz associated with an operator). Consider two linear spaces
V™(K) and WP (K). In the first space we consider a linear operator T with as-
sociated matrix A, in the basis {€;} of the given space. Similarly, another lin-
ear operator T5, with associated matrix By, transforms the vectors of W?(K)
in the basis {€;}. We look for the matrix associated with the operator T'
defined to transform vectors in the tensor space V@ W (K), in such way that

T(VeoW)=T(V)o Ty(W).

Will A,, ® B, be the T operator matrix? That is, will “the tensor product
homomorphism” be the homomorphisms’ tensor product?

Solution: For a homomorphism to be correctly defined we need to know
the image vectors of all basic vectors that will constitute the columns of the
operator associated matrix.

The basis of our tensor space is § = {€; ® €;}, with i = 1,2,...,n and
i=1,2,....p.

The sought after matrix 7T is a square matrix of n X p rows and columns,
because in the basis there exist n x p vectors the images of which are to be
studied.

Applying the formula proposed in the statement to an arbitrary basic
vector, we have
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T(€; ® €;) = T1(€1) ® Tu(€;)

ai; le
S oo | G20 L | 02
=|[é1 é €n | ® | [e1 € el | .
Ani bpj
ai; €1
L . a2 €2
=ler & - @] | ®[by by e byl
Ani €p
aribi; awbe; oo aniby; €1
2
— — — agibi;  agiby; - agibp; 2
= [61 €y - en} ”..7 ,,,J N PJ ® )
anibij  apiba; - anibp; e,

= a1;01;€1 ® €1 + a13b25€1 ® €2 + - - - + apibij€n @ €y

4+ ambpje] X gp

with h=1,2,...,n; k=1,2,...,p.

Assigning now values to the indices (4, j), according to the axiomatic or-
dering criterion for the basis B = {€; ® €;} and placing the image vectors in
consecutive columns, the matrix 7}, «,, is obtained, which is the solution to the
problem, and the columns of which correspond to

Ter®e) TE1®eé) - TEp®ey) - T(E,®é)
[ aibin a11b12 e a1pbi e ainbip
a21b11 a21b12 te azpbi T a2nb1p
T : : : 7
ap1bin an1b12 e annbix e annbip
an1bi1 ap1b12 te annbik te annblp

a square matrix of order n X p.
Assigning particular values to n and p (for example n = 2;p = 3) we
immediately detect the following block construction:

auB -+ ay,B - a,B
T=\|apnB -+ aypB -+ ap,B| =A®B.

anlB PN anhB PN annB
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The conclusion is that the proposed theorem in our statement: “the tensor
product homomorphism (7)) is the tensor product of the given homomor-
phisms (T} ® Ty)” is correct. O

Example 5.2 (Change of basis). In the geometric affine ordinary space E%(IR)
we consider two bases: the initial basis of the unit classic vectors of a rectan-
gular system XOY (on the OX axis and on the OY axis), and the new basis
of the unit vectors on the O X axis and on the bisectrix of the XOY" quadrant.

The new unit basic vectors ||€;|| referred to the initial basic vectors ||€,]],

are
E L 3 V2, \/_
€] = €1; €9 = —61 + — 2

Determine the new components as a function of the initial ones in the
following cases:

i
(e

—-
D

1. For a tensor of first order, i.e. the vector v®.
For a mixed tensor of second order, i.e. the matrix ti;

For a mixed tensor of third order, tz‘;z

Ll

Solve the second question using the homomorphism (contracted product)

— @0 0
yo 00T

Solution:

The change-of-basis can be written in matrix form as

— =

lleill = [léallC —[e1 &l =[e &

1
1
—
=
et

and then

1
0

C:

L1 -1 L0
ol A el )
0 V2 S

2

ol

1. The tensor analytical equation of the vector is vz = v‘;‘fyf);, and in matrix

form

0

=0 ] = [t ]

0570003 . (classic

ol =biols) = [ ] =0 [ ] (5.15)

2. The tensor analytical equation of the vector is tij =

matrix method), and in matrix form

[t22] = lvaclltagliels],
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that is,
;lo 7lo lo 1o lo lo
[tol toQ] _C_l tol t02 (Ct)t_ |:1 —1:| [tol to2‘| [1 §‘|
20 20| 20 20 - 20 20 V2
tol to2 tol to2 0 \/5 tol t02 0 2
lo 20 1o 20 lo 20
(tol - tol) g[(tol - tol) + (t02 - toQ)]
V2t (te1 +to3) |
3. The tensor analytical equation of the vector (direct method) is
iok _ ,ao0y_i0 of3 ko, _ T _ 93 _
tojo_toﬁo o jopyo'\/’ o=n" =2"=8.
and its “extended” matrix expression
Ty = Z;};Ta,l — T&l =(C'eCeC ™) eTy,
_ _ _ 1 -1 1 0 1 -1
1_ 1 t 1_ .
Z; =0"7"CaC _[O \/5}(8[4 @]@)[O \/5]’
M rlol7]
olo
7102
tolo
rlol
toQo
7/2102
Tg’l = ASQ{I) = Z;l OTgl
t (o) ’ ’
olo
7202
tolo
1201
toQo
7202
_t020_
r,1ol7
tolo
lo2
r1 -1 0 0 -1 1 0 07 |toro
0 V2 0 0 0 -2 0_ 0 Lol
V2o _vV2 N2 _v2 V2 V2 V2 N2 020
2 2 2 2 2 2 2 2 102
_|o 1 0o 1 0o -1 0 =1 |
|10 0 0 0 V2 -2 0 0 2ol |
0O 0 0 0 0 2 0 0 5o
o o o o0 1 -1 1 =1| |
Lo 0 0 0 0 V2 0 V2l |y
202
_t020_

that is,
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R L R
32 = VBN VB

1= e )
T L

2t = VoL VB

22 = 242

ol = s

202 \/_t202—|—\/§t202.

olo o020

4. The given tensor homomorphism can be interpreted in matrix form as
In the initial basis {€,}:

yt thy tos] Tat
2 = 20 20 21 (516)
y tol t02 *
and in the new basis {&;}:
2lo  7plo
n1 t t a1
Yy ol 02 T
[Ag] | e {2} . (5.17)
y tol t02 *

Applying the relation (5.15) to matrices X and Y, we have

[i;] =Cc! B;} , (5.18)

. 1
Y -11Y
Il =C , 5.19
[y ] [92} (519)
and substituting (5.18) and (5.19) into (5.17), we get

+lo rlo
071 [yl] o [tol t02‘| 071 |:Z‘1:|
21 7 | 120 ;20 2
) t t z

ol o2

and
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and substituting into the left-hand side of (5.16) the result is

lo lo ;1o 7lo
tol to2 371 _ tol t02 C_l (El
t2o t2o .’II2 7?20 tA2o 1‘2 ?

ol 02 ol 02

C—l

and for this to be valid for any matrix X, we must have

lo lo ;1o rlo
C,_l tol toZ o tol to2 C,_1
t20 20| 7 | 220 ;20

ol to2 tol t02
ot 1 1 1 1
rlo rlo o [e]
tol t02 _ 0_1 tol to2 C
220 220 | T 20 20
tol toQ tol t02
and operating we finally get
;lo 1o lo lo
[%1 to?] o [1 -1 ltol toQ] 1 §‘|
220 20| 20 20 V2
tol t02 \/5 tol t02 0 2

ol t02

~1 ~1 1 2 1 2 1 2
lto‘i toél _ [(toi—toD g[(to‘i—toi’)+(to§—to§ﬂ]
22 22 - 2 2 2 !
ot V2ty (t7 +103)

5.4 Tensor product applications

In this section, some important tensor products applications are discussed.

5.4.1 Common simply contracted tensor products

First, we mention the contracted tensor product of first-order tensors.
Consider the tensors 7 = 276, € V"(K), § = yfé"‘ﬁ € V(K); their
contracted tensor product is

p= C(Z) (T®F) = C<g>(w2‘y25a®é*ﬂ) =aye = 2y + 2Py + -+ 2"y,
(5.20)
which is the classic dot product for geometric vectors or the classic inner
product for first-order matrices.
Second, we mention the contracted tensor product of second-order tensors,
known as the “interior product” or “classic product” of matrices.
Consider the tensors @ = af 3¢, ® €7 and b=1b)%¢, @& Let &be their

contracted tensor product of indices 2 and 3:
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e c@) (@®5) = (a3 - ') @ &,
where
¢25=aly bl (5.21)

which is the analytical tensor expression of the classic matrix product, of both
matrices, as tensors.

Remark 5.1. In reality, the discovery of this idea occurred in the reverse order;
first, Kronecker established the interior and tensor products of matrices, and
then, under the name of Einstein’s contraction, this concept was extended to
tensors. O

5.4.2 Multiply contracted tensor products

It is obvious that when contracting a tensor product of tensors of certain
orders, the resulting tensor can be a mixed tensor, with indices not only of
different valency but coming from different factors; we can then continue
contracting more indices, following the same criteria as the first time.

If we do this, we will obtain another tensor and we could practice con-
tractions successively when the following two conditions are satisfied: (a) the
indices must be of different valency, and (b) of different factor-tensor.

Evidently, this concept can be extended to products of three or more ten-
sors, satisfying the associative law by operating the tensors two by two, and
satisfying the index conditions.

On the other hand, the result of the contractions can be a zero-order
tensor, that is, a scalar, which obviously is invariant under changes of basis.
This is the reason why zero-order tensors are called “invariants”.

5.4.3 Scalar and inner tensor products

Certain authors use the term “scalar product of tensors” for the totally con-
tracted product of two tensors A and B, which allow it, and denote it by
A e B = k. The result is a zero-order tensor (a scalar). In this way, but based
on a third fundamental tensor, we will later establish the tensor spaces with
a interior connection.

It is also convenient to mention that, as a consequence of the concept
of contracted tensor product, when selecting a tensor space of mixed tensors
which contravariant and covariant indices coincide (p = ¢), the tensor product
of two arbitrary tensors of this space can be contracted p times, leading to a
contracted tensor product, that is, another tensor of the same space.

In such cases, some authors talk about a “tensor space with an interior
product”. For example, for p = ¢ = 2, we would have

B B
(05055 (2055 = (2555
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leading to the interior product of tensors concept, and the concept of associ-
ated linear algebras.
Next, some illustrative examples of contractions will be given.

Ezample 5.3 (Multiple contractions). Consider the tensors

7 41007« >« 3 - - _ A= - O —k
t=1,5,6 Q€7 Qe; T=x N and U= €, Q¢

and the tensor P =t ® ¥ ® @ with components

oo’y)\,u‘oitoo'y' )\. o
affooor — “affo o ov’

We want to perform the following multiple contractions:

1. Double:

qlzc@ g)(f®f®ﬁ) (5.22)
30(2 Z)(F@f@ﬁ) (5.23)
3:0(& Z)(F@f@ﬁ), (5.24)

which lead to

_. o oo o o
P — Pl = t%ZmOafV (5.25)
— o oo 6 o
Pa — pﬁﬁ = teﬁfxoa‘;¢ (5.26)
— oA oo A Bo
D3 = Py = teﬁfxoaw. (5.27)
2. Triple:
S MUY o = o
4C(a 3 V)(t@x@u) (5.28)
L LAY po o
5_C<a 3 V)(t@x@u), (5.29)
which lead to the scalars
Py = t;;fxi)af; (5.30)
ps = t;;fxfag;. (5.31)
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5.5 Criteria for tensor character based on contraction

In Section 4.5 the tensor criteria for homogeneous tensors were established
with respect to changes of basis in tensor spaces. However, next we will es-
tablish other tensor criteria based on tensor contraction.

We present them as theorems, and in the proof of the third we will examine
in detail its necessarity and sufficiency.

Theorem 5.2 (First elemental criterion for tensor character). The
necessary and sufficient condition for a system of scalars s(ay, g, -+, ay) of
order r (the o are indices) to be a pure homogeneous tensor, of order r,
totally contravariant, is that the expression “totally r-contracted product”:

s(ar,@,...,00)T0) - Tay .. Ta,; VI =24, € V'(K),
jeL ={1,2,....r} a; €L, ={1,2,....n} (5.32)

be a escalar, that is, be invariant with respect to changes of basis in V*(K).
O

Theorem 5.3 (Second elemental criterion for tensor character). The
necessary and sufficient condition for a system of scalars s(aq,as,...,a.) of
order r to be a pure homogeneous tensor, of order r, totally covariant, is that
the expression “totally r-contracted product”:

e

s(ar,ag, ..., ap)x™ - 2% x% VI =2%e,, € V'(K),
jel,={1,2,...;r}; ajel,={L2,...,n} (5.33)

be a escalar, that is, be invariant with respect to changes of basis in V*(K).
O

Theorem 5.4 (General criterion for homogeneous tensor character).
The necessary and sufficient condition for a system of scalars s(aq, g, -+, )
of order r to be a mired homogeneous tensor, of order r, p-contravariant and
q-covariant (p+ q = r), is that the expression “totally r-contracted product”:

s(al’a27...7ap7ap+17..'7ap+q)xal 'xo@ .”xap .J;O‘P+1 .xaP+2 ...:EO‘PJrQ;
VI =14, c VIK);, jel,={1,2,...,p} a; €1,
VE=a%%é,, ¢ V'(K) kel,={p+1p+2,...,p+4q}; ax €I,

(5.34)
be a escalar, that is, be invariant with respect to changes of basis in V"*(K)
and the corresponding changes of basis “in dual bases” in V*(K). O

Proof.
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Necessarity:

I
o

Let { = ti‘f,‘;é’a ® €3 ® €7 be a mixed tensor of third order (r = 3), p
times contravariant and ¢ = 1 covariant, withp+¢=2+1=3=r.
Consider the vectors & = z)&,§ = yu€ 't and 7 = 2"€,, where T,y €
VI'(K) and Z € V™ (K).
If we execute the r-contracted tensor product:

B alB AN . o L
pC(A i V)(t@:c@y@z) (5.35)
we get
p=1t"%° 24y, -2 = scalar (zero-order tensor), (5.36)

which proves that if ¢ is a tensor, the theorem holds.
Sufficiency:

Consider now a system of scalars such that
p=s(a,B,7) To-ys- 27 (5.37)

for any pair of vectors ¥ = x,6**, 7 = yge*? € V(K) and for all 7= 27¢, €
V™ (K) where p is a given scalar.

We perform a change-of-basis in the linear space V™ (K), and in the dual
space V*(K) in which we choose the dual reciprocal basis of the one selected
in V*(K).

Since p is a fixed scalar, the relation (5.37) is also satisfied in the new
basis, that is, the p remains invariant for any new vector:

p=s(i,j,k)m;y;2"; VE=x8" § = y;e9 € VI(K) and VZ=2"¢, € V'(K).
(5.38)
Using the change-of-basis relations (3.46) and (3.24):

ki 01 ok - n
€' =, €% in V'(K),

& = 128, in V*(K)

we get the expressions that directly relate the vector components, in the initial
and new bases:

To = Voolis Y5 =V galis
for vectors of V*(K), and

o
Y Zk,

i
z 7Cok

for the vector of V"(K).
Transposing these equalities one gets
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To = xi’yi;; yg = yj’yf;;; 2Y = zkczz (5.39)
and replacing (5.39) and (5.37) we obtain

p=s(a, B,9) (@7 0) (Wil 5) (27 ep D),

which is operated as

p=(zi-y; - 2)(s(a, B0 07l 5 d)- (5.40)
Equating the constant p in (5.38) and (5.40), we get

p=(wi-y;-2")s(i, . k) = (@i -y; - 2") (S(a,ﬁ,w)”riZVZZCZZ)

and since the previous relation must hold for all x;,y;, 2F it must be

s(i, 4, k) = s(a, B,7)v0 ol 5en L, (5.41)

which shows that the system of scalars s(a, 3,7) satisfies the general tensor

character criterion, Formula (4.34), so that the system of scalars must be

notated as N
s(a, B,7) = tiff{ or s(i,j,k) =t77

ook’

which proves its tensor character. Obviously, the necessity and the sufficiency
have been proved only for r = 3, but we have preferred this simple case,
which clearly reveals the process followed, to the general case with the generic
r, which hides the demonstration process under the confused complexity of
subindices.

We close this part, dedicated to tensor product contraction, simple or
multiple, of homogeneous tensors, by pointing out that its treatment can be
considered in the wider frame of absolute tensors, that is, of heterogeneous
tensors established on diverse factor linear spaces, studied in Chapters 2 and
3, and in Chapter 4, where the absolute tensor character criteria for them
were established, Formulas (4.24), (4.25), (4.34) and (4.35).

However, the most frequent use of contraction occurs in the homogeneous
tensor algebra, which justifies the decision made in this chapter.

5.6 The contracted tensor product in the reverse sense:
The quotient law

Theorem 5.5 (Quotient law). Consider the system of scalars S(aq, ..., o)
of order r. A sufficient condition for such a system to be considered a homo-
geneous tensor is that its p-contracted tensor product by a generic (arbitrary)
homogeneous tensor b of order r', called a “test tensor”, lead to another tensor
of order (r +1r' — 2p). O



5.6 The contracted tensor product in the reverse sense: The quotient law 125

Proof. We state the proof for a concrete case.

Let s(a,3,7,d) be the data system of scalars, of order r = 4, and let
b= bi:Zé',\ ® €** @ &*¥ be the “test” tensor, of order 7' = 3. As a consequence
[eXexe]

of their doubly contracted (p = 2) product we arrive at the set of scalars h_ 5

which is a known tensor, of order r +7' —2p=4+4+3 -2 x 2= 3.
Since h is a tensor, due to the tensor criteria we have

hioo :haoo’yiocoécou (542)

odm odu loa”do"mo*

In addition we have
«00 A AOO
hoéN:C(ﬁ ’Z) (S(a’ﬁ”y’6)®bouy)’ (543)

a relation stated in the initial basis of V™ (K), and also

300 {1k .. foo
hice —¢ (j ’n > CEARET (5.44)
stated in the final basis of V"(K).

Executing the contraction indicated in (5.43) and (5.44) and using the
Kronecker deltas, we get the relations

hese = s(a, B,7,8)0550° 0300 (5.45)
hiee — (i, j, k,d)5I o5 bt e ° (5.46)

and since b is a tensor (the “test” tensor), we state its tensor character criterion
in the form (4.35), leading to

b)\oo _ b[ o oc/\o,yom on (547)

ouv omn ol Mo/yuo

and replacing (5.47) into (5.45), we get

haoo o S(a7ﬂ7775)5ﬂ050yb£ o oCAofyom/_yon

odu oA"yo omn ol 'po lvo®

(5.48)

Finally, substituting (5.46) and (5.48) into the left- and right-hand sides
of (5.42), respectively, we get

.. jogonyfoo Bogovyfoo Ao _om_on i0 08 o
S(Za],kad)éogékobomn = {s(a,ﬂ,’y,5)60)\(570b0mn60£’y# 07U0:| YoaCdoCmor

and conveniently grouping the factors we obtain

.o jocon oo io0 o Ao om o ov_on 0d|;£o00
|:S(Z7j’k7d)5i ko:|bﬁmn:[s(a’ﬂ”%5)’yoa(5§)\6;\€)(’yuocmg)(a'yo’yyo)’cdo}bomn
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and executing the indicated contractions:
.. jogon| 3£ o0 o0 io/, (o ony 06| €oo
{S(Z,L k, d)aoééko] bomn = [s(a, /6’7775)7004(006) -1 (’y'yo)cdo] bomn'

Finally, passing everything to the left-hand side and taking common factors,
the result is

[s(6.5. k. d)635557 — s(a By )i Sl e bloo =0, (5.49)

omn

Since the “test” tensor b # [0 (it is not the null tensor), their components
bﬁ;; # 0, which forces the null factor to be the bracketed term in (5.49)

s(i, g, k, d)o2 5077 = (o, B,7,6)7. och gy neqe. (5.50)

Next, we isolate the factor s(i,j, k,d) on the left-hand side of (5.50). To
this end, we multiply both members by the Kronecker delta 62;, inverse of
(5?}2:

.. Locjoycon io,cfo Boy_on od
S(Z’]’ k7 d)<5oj606)6ko = S(a’577?6)7004(50]'006)7706(10
or ‘
s(i, g, k. d) (1877 = s(a, 8,7,8)750(e; 08075 e

oa\"fo 0j/ Ivyo~do

contracting the grouped product, and multiplying both members by 5212, the

. on
inverse of §, |, we get

.o ok con i0 o o ony 04
s(i g, by d) (05504 2) = s(a, B,7,0)7 2 2o 0 (007 M)eqs

or
.o i0 o nocoky o4
S(Z,], kv d)(l) = 8(0175773 6)70acff(7o»y6no)cdoa

and contracting the grouped product, we finally get
.o io o3 ko od
s(i, 5,k d) = s(, 3,7,0)764C1 07 05 Cao- (5.51)

This last expression indicates that the set of scalars s(«, 3,7, d) is a tensor,
since it satisfies a concrete tensor criterion. In addition, it shows us its whole
nature. In reality it is

s(a, 8,7,0) = 55 515 (5.52)

The theorem that has been proved is called the “quotient law”, a disputed
title, that some impute to a simple conception of this relation among tensors,
such as

X Th=T—X= % - X=T5- Tfl, which is certainly simple, and
at least justifies its name.
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This theorem, which is frequently used in solving tensor analysis theoreti-
cal problems and also in practical exercises, to detect whether or not a system
of scalars is a tensor, has severe limitations that it is convenient to point out.

On one hand, one must be lucky when choosing the test tensor because, if
after an unfortunate selection, the contraction does not lead to a tensor, no
conclusion can be drawn, because of the sufficient character of the theorem.
So, another test tensor must be selected and so on.

On the other hand, frequently, after the contraction is performed with the
selected “test” tensor, we have great difficulties in proving that the result is
another tensor, arriving at a new problem that can be even more complex
than the initial one.

Consequently, the most frequent applications of the “quotient law” are
those in which the contracted product is an invariant, which it is well known
to be a zero-order tensor.

5.7 Matrix representation of permutation
homomorphisms

We say that a tensor is the “permutation tensor of a given tensor” if it has
the same associated scalars as the given tensor, but in different positions; one
possibility of building a permutation tensor of a given tensor is to create with
a different name a tensor with at least a changed index but with the same
scalars: o,
aoyo _ «a o' o
vtoﬁoé =u, B od"
where (o, 5',7',¢) is one of the possible permutations of («, 3,7, ).
Consider the linear space K?,0 = n", i.e., the linear space of matri-
ces T,1 € K7, “extensions” of the homogeneous tensors of a generic type

! :2 BRERE: (;)T, defined over the “factor” linear space V" (K). We will study the
permutation homomorphisms P : K7 — K7, the associated square matrix of
which, P,r, is a permutation of the unit matrix I,,» and which transforms by
means of the following matrix equation:

PyroeT, 1 =T.,. (5.53)

o,
These transformations maintain the tensor dimension o, together with its
scalars, though obviously they change them in position. We will study two
different types of homomorphisms P.

5.7.1 Permutation matrix tensor product types in K"

Consider the tensor

T = [tﬂ -

[eye]

» S o

+~TV Q@ o
LR >

<300



128 5 Homogeneous Tensor Algebra: Tensor Homomorphisms

and the tensor

oo

d
T = [uw] = Z
u

+~Q@ 3 o
w3 o

<o 3o

which obviously is a permutation of T', where o = 42 = 16.

We build the corresponding matrix extensions of T and 7" (T,,1 = T161
and T, ; = T{s ), and we observe that the permutation matrix that relates
both is

7q&1=ip-73&h

where

/o
T16,1 =

Sns2ore>IIVeTox,
3
(=2}
=
|
L+ IAIIITAwoQLOTD

—~ooo
oroco
coro
coor
Q
QD
QD

S)

QD
| mooo |
| o—oO |
| coro |
| coor |

QD

P = P16 =

oo
ooo—

i.e., the permutation matrix is the tensor product of two permutation matrices
that operate in the linear space K*, which reveals that some P have this type
of construction.
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5.7.2 Linear span of precedent types

In Example 4.5 of Chapter 4, we considered the five permutation tensors

U,V,W,R and S of a given tensor T = [t‘z;:ﬂ of third order (r = 3,n =

3and 0 = n" = 27). We will examine what type of construction has the

permutation homomorphism matrix that applies Py @ [t557] — [u]? 7], that

is, Uz7,1 = P(1) ® T27,1. The solution matrices in this case are (see Example
4.5)

- 1A e

0 2

—1 -1

2 2

3 0

0 2

-1 0

2 5

0 1

2 0

-1 3
! i 17 To7 To
Torq = (1) i Usrn = (1) ; where 8 = {E;} = 01 (1110
9 0 0 0 1

0 1

1 0

0 -1

0 0

1 0

5 1

1 0

2 1

1 1

0 2

L 0] L O]

We have that
P(l) =Py, = F; ®I3®I3®E{+E2 ®I3®13®E£+E3®I3®13®E§, (554)

that is, a matrix written as a linear combination of tensor products.
With respect to the permutation tensor V:

P(Q) . [ta

o'ya]
s

’Y] - [vﬁoo

that is,
Var1 = Py e T 1.

The solution matrices are in this case, the T>7 1 matrix previously cited, and
matrices
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|
HOHOONF

?HOOOMHMH‘NOOHHWMON|HH

Po) =Py =E{ @300 E1+ B30 130 By + E5® 130 I3 ® Es. (5.55)

The permutation matrix F() is of the type P(1), that is, a linear combination
of tensor products, and Po) is P(tl).
For the permutation tensor W:

Py [t 5e] = w3l

that is
War1 = PzyeTar

the solution is given by the matrices

' | |
~NoN |l coRNWO RN R
]

ovror~rorRruo |l moror
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Poy=Le[B1@LoE +B®L® B+ B30I @ B, (5.56)

also a linear combination of tensor products. F(3) is symmetric.
Next, we analyze the permutation tensor R:
Puy : [t550] = [rlge),

that is,
Ro71 = Py eTor 1,
the solution of which is

T
2

' |
—o |l RroRcco

—
o

;0 = basis of R3 = {E\,Ey, B3} = 0

| cormRRwo
o
—

O—HONOOHFFH

Pyy= Y (Ei®E)eLo(E e E) (5.57)

1<i,j<3

also a sum of tensor products. Py is symmetric.
We arrive at the last permutation S of Example 4.5, i.e.,

Pyt [te 5] = [s502);

that is,
Sa71 = Ps) @ Tor 1,

with solution matrices
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|
O

| v—oo—ocown | moor

Sar1 =

s

|
CORFONON—

with
Pey=[E1@LOE +Ey@ 30 By + B3 @ I3 © B3| @ Iy = Plyy. (5.58)

We end the section dedicated to permutation homomorphisms by citing the

model of this type of matrices which will be called “transposer” since it oper-
ates over second-order homogeneous tensors, the square matrices agf , b’z;, ch
or d;;, with r = 2;n = n; o = n?, transposing them.
Whence
H(a*?) =d" H@®*)=b2%,..., ete.

oo oo’ of Bo’

is the matrix called a “transposition matrix” in Section 1.3.7, Formula (1.38).
Here we present a generalization, in its usual mode of permutation homomor-
phism:

;,1 =Ppel,,,

where T, ;1 is the extension matrix that is to be transposed.
The permutation “transposer” is the block matrix:

By | Ba | - | B
— = 4+ =+
Eia | Ex | - | Ep
Pp=P=|— + —— + — + ——|, (5.59)
\ | \
— =+ 4
L E1n ‘ Es, ‘ ce ‘ Enon |

where B = {E;;} is the canonical basis of the tensor space K™*™ of square
matrices of order n (noting the block ordering inside P,,z)

The reader can test its effect using it in the exercises.

With respect to the permutation type “transposer”, responds to the ex-
pression
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P, = Z Ei @ By + Z (Eij Q@E;+E;® E”) (5.60)

i<g;4,5€{1,2,--,n}

Ezample 5.4 (Permutation homomorphisms). Consider the linear space 727 (IR.)
as a tensor product of R®* ® R** ® R®. Let T € 7 be a tensor of components

1 20]205] -121
997 =| 0-10[311[ 200,
-1 11]002| 010

where aAis the row, 3 Ais the coluAmn7 and v is the matrix.
Let €1(—1,0,—1),€2(1,1,0),€3(0,0,3) be a change of the canonical basis
of R? that produces the corresponding change-of-basis of tensor nature in 7.
Determine the new components of tensor 7', using the permutation homo-
morphisms, to execute the change-of-basis on the tensor ordered according to
the axiom.

Solution: It is evident that the assigning of subindices in the statement does
not correspond to the aziomatic order for the canonical basis of R*®R **@R ,
which requires (see the theory and Example 2.1, question 4) that the matrix
index (y) must be the first and the column index (3) must be the last. So,
before executing the change-of-basis, we must find the fundamental tensor

(' )Z(g;, which, subject to adequate permutation, provides the given data.

Tensor (t')]7 7 is the one that must be subject to the change-of-basis, given
by the theory, and obviously the permutation must be undone in order to find
the sought after tensor té;lz

Let T34, be the stretched version of (#)17 73, and Tor1, the stretched

version of 337 (data).
The permutation relation between them is

Py - Tz q = Tor 1,
where Py (Formula (5.55)) is

Poy=E{®@Iy® E1+E5 @1y @ By + B3 ® Iy ® Es

1 0 1
=[100]@lh® 0| +[010]®@I® |1|+[001]®ly®
0 0 0

Then, Py becomes
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Returning to the initial permutation rela

-1 -1
P - P(2)

(2) " Torn =

;o
Torq =

Since Ty, ; is the stretched version of the fundamental tensor (¢')

tions, we get

11 r 1
2 0
0 -1
0 2
-1 3
0 0
-1 -1
1 2
1 0
2 2
0 -1
5 1
3 0
1 = 1
1 0
0 2
0 0
2 1
-1 0
2 0
1 1
2 5
0 1
0 2
0 1
1 0
0 L O

135

yao

oo AC

cording to the Formula (4.36) the corresponding is @’7’1, the stretched version

kio
ooy’

of (')

with expression

Ty =271 Thp s with Z7P=C7 @ 0t @ O

In our case is

-110 -1 1
C=| 010|; Cct=| o0 1
-103 —-1/3 1/3

0
0
1/3

Then, the matrix associated with the indicated change-of-basis is

1 -1 0

0o -1 0

1/3-1/3-1/3

0 0 0

Z'=(Cc'eCcHeC'=| 0o 0o o
0 0 0

1/3-1/3 0

0-1/3 0
1/9-1/9—1/9

-1 1 0
0 1 0
—~1/31/31/3
-1 1 0
0 1 0
—-1/31/31/3
—-1/31/3 0
01/3 0
—1/91791/9

0 0 0
0 0 0
0 0 0
0 0 0 .
00 0|l ®C
0 0 0
-1/31/3 0
01/3 0
—1/91/91/9
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Once the change-of-basis has been performed, we must return to the data

permutation:

11:T%J

all
2

- T

Fa)

yielding
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-5 7

3/
—-1/3

—4

/
2/3
—6
-3
-1

2
0/
~5/3
—4

Tor = 1

which after its condensation leads to
, 5 3-1/3] 20 -5/3]1/3 0 —-2/3
tb=|—4 0 2/3| 41 2/3| -12/3 4/9],
-6 -3 —-1] 00 2| -1 0 0

where 7 is the row index, j is the column index, and k is the matrix index. O

5.7.3 The isomers of a tensor

We give the name “isomers” to certain tensors that come from permutations
of a given tensor; they are the isomeric tensors of such a tensor.

For pure tensors (totally contravariant or covariant) the permutation of
a partial number (or all) of its indices, strictly between them, leads to an
isomer.

In other words, not all permutation tensors coming from a pure tensor
are isomers of such a tensor, since some of them do not come from alter-
ing the indices. If the tensor is a mixed tensor, they are the tensors coming
from permuting partially or totally: (a) only the contravariant indices among
them, without altering the covariant indices, and (b) only the covariant indices
among them, without altering the contravariant indices.

In Example 4.5, which was examined in Section 5.7.2, the tensor R =

[rl5o] is an isomer of tensor T" = [t7 ;7] Similarly, the tensor U = [u[ ] is

. o
an isomer of tensor W = [w( ] 7].
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Ezample 5.5 (Rotation tensor). Consider a given pure tensor (totally con-

travariant or covariant) of order r: t” 76"@ . We define as the “rotation ten-

O000O0:--

sor” of the given tensor any of its isomers that do not maintain indices in the
same positions as the initial one.
We will denote such a tensor (t270 " PYR(K) where k € Z; k # 0; |k| < r is

0000:---0
the “rotation index”.
By extension, we define as the rotation tensor of a given mixed tensor all
those isomers that do not maintain dummy indices of the same valency, in
the same positions.

These rotation tensors carry the notation (tf:;;’i::::g)mk’k/) with two
index-parameters k, k', where k, k' € Z;k, k' # 0;]k| < p;|k'| < ¢ with
p+ q = r, where p and ¢ are the contravariant and covariant orders of the

given tensor, respectively.

1. Determine the rotation tensor associated with a tensor of order (r = 2)
over the linear space V2(IR), and do the same over the linear space V3(R).

2. Determine the rotation tensors associated with a tensor of order (r = 3)
over the linear space VZ(IR), and do the same over the linear space V3(IR).

3. Determine the rotation tensors associated with a tensor of order (r = 4)
over the linear space VZ(R).

Solution:

_ _ _)_ [elye} O o Rl _ [ele] v
1. Case r =2,n = 2. Lett—taﬁém®é’*5:> (tas) ( )—tﬁaé'*"®é’*5.

«

aB 1 dy ap b1 dy
“transposed” matrix of the given matrix.

Then, [t°%] = | bl] = [t27]FED = [al “l ], which is known as the

Case r = 2,n = 3. In this case we have

ar b o« ar di ¢
[taﬂ] =|d a fl = [taﬁ]R(l) =|b e /?1
g1 hi 0 e fioi

which also is the transposed matrix of the given matrix.

e}

B

Bya and yaB we have [t;;f;]R(l) and [t;;i]R(Z), or, if one prefers the
gi]R(*l), the “first rotation” and its opposite.

2. Caser =3,n=2 Lett= to :é’*“@?"ﬁ(&?w. Since there are two rotations

notation [t;;f{]R(l) and [t

o
(03
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airb
[elele) Cl dl . . .
Let [t 5] = |~ . be the data tensor, with « the row submatrix in-
az ba
Cody

dex, 3 the row index of each submatrix, and v the column index of each
submatrix (axiomatic order).
The correspondences in both rotations are

First rotation|Second rotation
Initial| Transformed | Transformed
[oXele} [eNeXNe] [eeXe]
afBy Bya Yo
tOOO [eXeXe) [e)eXe)
112 121 211
[eXeXe] [e)eXe) [e)eXe)
ti21 to11 ti12
[eXeXe] [e)e}e) [e)eXe)
2P 2331 ta12
000 [eXeXe) [e)eXe)
to11 ti12 ti121
[eXele] [eXeXe) [e)eXe)
ta12 t122 921
[eXeXe] [e)eXe) [e)eXe)
tyo1 239 t19o
and then
a1 a
by by
[tOOO]R(l) — o
afBy
C1 C2
dy dy
and
ay C1
az C2
[tOOO]R(Q) _ _
afy - ’
by dy
by ds

which are the “transposed” (beware of the word) tensors of tensors (r =

3,n=2).
Case r =3,n = 3. Let

'al b1 Cl_
dier f1
grhii

[tooo] 22 bo ;2
= 2€2 J2
o g2 haia
ag bz c3
dses f3
| 93 h3 i3 ]

be the data tensor. In this case we have
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[a1ag
b1 by
C1 C2

dydy
€1 €2

fife

ooo
t

]R(l) _
aBy

[

L21 22

and ~
aydy
asdy
agds
biey
ba €2
bses

[elNele]

]R(2) _
aBy

[t

c1 f1
szz

Lc3 f3

3. Case r = 4,n = 2. The data tensor is ¢ = t

where

a1b1 a

0000 C_]‘d_l

afByé

|

t =
[ ] a3b3 a

c3ds

g1 9293
hihahs
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as’
b3
C3
ds3
€3

I3

13 |

g1]
g2
gs

hi
ha
h3
11
19
i3 ]

0000 ¢y

aprelt @ET @ ET @ e,

2b2

cody

4b4

cady

In this case a8vd has the three rotations: Byda, ydaB and daB7y. Then,

0000 0000

afBydé —t

for the rotation R(1), since ¢

ayag

b1 b3

0000

]R(U _
afBvyo

[t
a2 Q4

ba by

0000

aﬁ754%t

For the rotation R(2), since ¢
a1 az
azaq

0000

]R(2) _
afByé

[t
C1 C2

Byda’

[eXeXeNe]
ydap

we have

C1C3

dids

C2Cy
dody

, we have

b1 bo
b3 by

dids

C3 Cy4
and, finally, for the rotation R(3), since ¢

ap Cy
ag Co
by dy
ba do

0000

VKB):
afBvyd

[t

cooo
afByd

|

dsdy

0000

sy We obtain

t
ascs
(4 Cy

bs ds
bady
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5.8 Matrices associated with simply contraction
homomorphisms

We give the name “simply contraction homomorphism” to a homomorphism
that operates according to the equation

4 H.Td,l (561)

ol —

and that apply the mixed tensor (because the contraction is assumed to be of
indices of different valency), into another tensor of smaller dimension ¢’ < o,
by a tensor contraction of two indices.

We will construct the matrices H for the usual cases, that is, for tensors
of orders 2, 3, 4 and 5.

5.8.1 Mixed tensors of second order (r = 2): Matrices.

This is the case of T = [t27] or T = to5], with 7 = 250 = n*n =
dim V*(K);o' =n° = 0.

Thus, the result of the contraction is a scalar, which is called the “matrix
trace”.

Assuming that {E;;} is the canonical basis of the matrices of order n, the
fundamental equation (5.61) is in this case

p=Hyp(,) 0Ty = ([11 - 1hine[En|Exnl| | Eum])eTsn
(BB | ] e Touipe KiTh = p. (5.62)
The notation of H declares its number of rows and columns, together with

the indices to be contracted.
B = {E;} is the canonical basis of the linear space V" (K):

1 0 0
0 1 0
B = : . :
0 0 1

5.8.2 Mixed tensors of third order (r = 3)

These are tensors of the type T' = t?;f’y; T = ti‘;g -, ete. with dim V*(K) =
3

n;r =3;0 =n°;0 =n.
There are three possible models:
Model 1. T =t*5° or T = %7
oony of3o
v=u*=H, ,3(8,7)8T,1=(I, @ ([11---1]; , @ [E11 | Eaa || Enp]))e Ty 1.
(5.63)
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Model 2. T = t‘;;z or T = t°57

[eele}

T(;’ :U’Y:Hn,ns (o‘7ﬂ).Ta,l :(([1 1. 1]1,77, L4 [Ell ‘E22 | o |Enn]) ® In).Ta,L

(5.64)
Model 3. T =127° or T =277
T(;’ = zﬁ = Hn,n3 (aa,)/) 4 T0'71
). I, @(11---1]1,0E,,) eTy1. (5.65)
Formulas (5.63) to (5.65) can be written in a simpler form:
u® = Hy s (B,7) @ Ton = (In ® [Ef | ES | -+ | E}]) ¢ Ty (5.66)
vV =H,pe(a,B) e T,y = ([EL|ES |- | EL]®1,) Ty (5.67)

P =H,s(a,7) 8Ty =1, B I, ® BY| -+ |1, ® E. | @ T,1.(5.68)

5.8.3 Mixed tensors of fourth order (r = 4)
These are tensors of the type

s
T:ti:;zo; T:tgfzg,---etc.;azn =nYo' =n""? =n*"? =n%

Possibilities for the contraction: (3) = 6 models.

Model 1. T = t*°?°; The fundamental equation (5.61) in this case is

ofoo?
T!, = Hpz pi(a, B) o Tpy = ([BY | ES |-+ | B @1, @ 1,) @ Tpy (5.69)

Model 2. T = t25°"
Th = Hpz pa(a,y)0T,1 = (@B [ [,QEY | -+ | [, @ BL | ® I,) T, 1.
(5.70)

Model 3. T =t77¢
v =Hp2 pa(a, )87, 1=, 01, @ Et|I, @ I, ® ES|---| I, ® I,, ® E. ]eT, .
(5.71)

Model 4. T =t20°°
Ty = Hyz pa(B,7)0To1 = (In @ [EY | BS |- | L] @ L)) o Ty . (5.72)

Model 5. T = tP7¢
;’ = an,n4(/81 5). ol = (In & [In ®E{ | I, ®E§ | t ‘ I, ®Eft]). o,1-
(5.73)

Model 6. T =t77¢
T(;/ = Hn27n4("y, 6) .Ta,l = (In ® [n & [E{ | Eé | s | E,fl]) .Tg,l. (574)

T, ; must be given in “condensed” form (as a square matrix).
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5.8.4 Mixed tensors of fifth order (r = 5)

We present rules for the sequence of formation of matrices representing con-
tractions in tensors of order 5 (r = 5) associated with linear spaces R"™ of
basis

1 0 0
0 1 0
(Ea={ 10| |o 0
o] Lo 1

We notate the morphism matrix using power indices and parentheses that
declare the indices to be contracted.

Contractions of two indices, resulting tensors of order r = 3.

Tensor dimensions of the “stretched” tensors T, ; and T,/: 0 =n
n3

There exist (g) = % = 10 models. Operation: T(;,,1 =Hy s 0T,

5; o =

Model 1. t%°7°¢

ofooo
HU’,(TE n3,7L5(OL,6)E[E{|E§‘|E;]®In®ln®ln

Model 2. t*P°0¢

oco~yoo
Hy o = Hps s (o,y) = [I, @ EY |1, @ B4 |- |1, @ EL] ® I, ® I,.

Model 3. t*P7°¢

ooofdo

Hcr’,o’ = Hdp3 ps (aad)
1,9, @EI, R, QELY| | I[,®I,® B! ] ®I,.

Model 4. t*P70°

O000O0E€
Ha’,a = ps ps (Oé, 6)

=,0,0L,F|,,01,®FE|---|[,&I,21, @ E].

Model 5. aBode

oco~xoo
Ha'/,UE n37n5(ﬁ77)EIn®[E{|E$‘|E;]®In®ln

Model 6. t*P7°¢

ooodo

HO",O’ = n3,n5(6a6) EIn® [In®E]€‘In®E§||In®EfL] ®I’ﬂ
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Model 7. t*P7°°

0000E€

Ha’,o‘ = n3,n5<ﬁ76)
=LoLL B, L, @FES---|I,®1,® EL].

Model 8. t&P7°¢

ooodo
HU’7UE n3,n5(776)51’ﬂ®1n®[Ei|E5|‘Efl](g)ln

Model 9. t*P7°%°

Hy o = Hps ps(v,6) =1, 01, @ [[, B} | I, By |-+ | I, ® EL | .

Model 10. t*P7°%°

Hy o =Hps p5(6,6) =1, 01, @ I, @ [E} |ES |-+ | EL] .

T!, , must be given in “condensed” form (as a column-matrix of subma-
trices).

5.9 Matrices associated with doubly contracted
homomorphisms

5.9.1 Mixed tensors of fourth order (r = 4)

We look for the tensor resulting from a homogeneous mixed tensor that accepts
a double contraction, that is, has at least two contravariant indices and other
two covariant indices; 0 = n*;¢6’ = n® = 1. The resulting tensor after the
double contraction always is a scalar.

The possibilities for the contraction are: (3) = 6 models. Let p € K.

Model 1. Hy ,a(c, 8], 0) means that we contract first indices (v, ) and then,
indices (7, 9):

p = Hy (s By, 0) o Ty = (LY B4 |- | EL] @ [BL | ES]- | EL]) @ T
(5.75)
Model 2. Hy na(a,7|5,9).

pP= Hl,n4(a57|ﬁ76) .Ta,l
= [F} ® E{|E{ ® Ej|---|Ef @ E}|---|E}, ® E{|E}, ® ES|---|El, @ E}] ¢ T 1.
(5.76)
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Model 3. Hy ,a(a,6|3,7).
p = Hyni(,015,7) e To,
= [[BHES|- - |B ) © EY|[EL| B |Ey) @ ES|--|[BY| B3| | ER] @ Er] @ To s
(5.77)
Model 4. Hy pa(B, 7|, 0)
p=Hi n1(B,7]c,0) @ Tp1 = Hy pa(e,6]8,7) @ T (5.78)
Model 5. Hy ,4(3,0|,7)
p=Hyna(8,6|la,y) @ T,1 = Hy pa(a,v]3,0) @ Tt 1. (5.79)
Model 6. Hy pa(7, 0|, B)
p=Hypa(v, 0|, f) @ Ty 1 = Hy (e, f]y,0) @ T, 1. (5.80)

As a mapping of the simple contraction formulas (5.72) and those of ex-
tension and condensation (1.30) and (1.32), respectively, we propose that
reader establish the direct relation between the classic product of matrices
(A e B) where A = [a7 ;] and B = [b]7]) and its tensor product (A ® B),
simplifying the resulting expression.

We remind the reader that the classic product of matrices (A e B) is a
contracted tensor product.

5.9.2 Mixed tensors of fifth order (r = 5)

The contraction of four indices leads to tensors of order (r = 1), that is,
vectors. The dimensions of the “extended” tensors 1y ; and T, are o = nb®
and o/ = n.

There exist (g) X (g) = 5TX4 x 3 = 30 models of double contraction.

aoyoe
Model 1. toﬁoao

Ha/,a = n,n5(a7ﬁ|’775) = Hn,n?’(’%a) .Hn3,n5(aaﬁ)
(BB 1B ) o (BB | B @ L T ).

Model 2. t*°7°%°

ofooe

Ha’,a = n,n5(aa/6|’776) = Hn,n3(’77 6) .Hn3,n5(avﬁ)
=([ln®E! I, 9FES|--- |1, oE!]) e ([EL |ES |-+ |EL] @1, @1, ®1,) .

Model 3. taovoe

ofooe

Ha/,a' = Hpps (0175|5a 6) = Hn,n3 (57 6) L d Hn3,n5 (avﬂ)
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In a similar form the remaining models can be obtained.
Ezample 5.6 (Tensor contraction). Contract all indices of the tensor
t'= (261 — 38) ® (5€) + &) ® (4&™! + &%) ® (&' — 2¢"?).
Solution: We solve the problem using four different methods.
First method:
We decide to execute the contractions of each pair of contravariant factors

with the corresponding covariant factors. There exist two possibilities:

1. We contract factor 1 with factor 3 and factor 2 with factor 4. The con-
nection Gram matrix is I, because they are in dual bases:

p=[2 —3]I mea[s 1}12[_12} —(8-3)x(5-2)=5x3=15.

2. We contract factor 1 with factor 4 and factor 2 with factor 3.

p=1[2 -3l [_H@M 111 {ﬂ — (246) % (204+1) = 8x 21 = 168,

Second method:
We decide to associate the contravariant indices between them, and also

the covariant indices between them; then, we execute the contraction, to ob-
tain the unique result:

o <[€1 éﬂ[_%}@([é} a][ﬂ)j

I
/N
oL
D
L —

|
==
[ S aw]
|
W N
| I
L—
QL D
NV o=
—_
N—
®
/N
*
=
4
[\v]

2
-3
4
® [éakl@é’*l é**1®ésk2 6*2@(?*1 é’*z®é’*2] _§
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The Gram matrix G between both dual tensor spaces is G = I, because
they are in dual bases:

=40—-16—-15+6 = 15.

4
-8
=[10 2 -15 =3]L |
2

Third method:

We decide to execute the contraction using its definition. To this end, we
need to know the tensor, with the axiomatic ordering of its components.

Executing the last tensor product indicated in the previous method, we
obtain

T 10 é*i@é*
— * 2
t:[€1®€1 €1 ® €y €3 ® e 52@52] _1g ®[4*812} 6223
L =3 &2 @ @2

40 —80 10 —207 [€
e §-16 2 —4||&
=lavaavaava a®el| 6 120 -15 30| |
[-12 24 -3 6] |

This matrix expression leads to the desired fourth-order tensor T =
We develop it by rows, in order to get the axiomatic ordering:

t= (61 ®é)® 408" @& —80e*! @ &% +10e*? ® " — 206" ® €°2)

+(E @) @ 8e gert — 16*1®é*2+2é*2®é*1 — 48" @ &*?)
+(Ey ® &) @ (=60 @ & + 1208*! @ &2 — 15e™% @ & + 302 ® &*?)
+(E ® &) @ (—128" @ & + 24&* @ &*? — 3¢ @ & + 68 @ &2).

Since the first two factors refer to row and column of each submatrix (first
and second tensor indices), we finally get the tensor matrix expression, with
the correct ordering

40 =80 | 8 —16
10 =20 2 -4

[ afooy o s

0o 160120 | —12 24
1530 | =3 6

where « is the row of submatrices, 3 the column of submatrices, v the row of
each submatrix, and § the column of each submatrix.
Next, we start with the contractions. There exist two possibilities:

1. We first contract o with -, and then g with 9:

Bo « Booy _ ,0B007 _ ,1Bo0 2300
[ 06] C<’Y> [tzéo'yé] - [tooaﬁ] - tool& +t002§
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6 o 1000 2600 1lo0 1200 21o0 2200
p= C<5 [ufé] = [toolf)] + [tOOQO] = (tooll + t0012) + (too21 +t0022)

p=40—-16—-15+6 =46 — 31 = 15.
2. We first contract « with J, and then § with ~:

Boy « affooy _ ,0B007 _ ,10B00 2300
[Uo'y] - C<§) [too'yé] - [tOO’yG] - too'yl +t0072

oy

ﬁ o 6o 1600 2000 1loo0 1200 2100 2200
p/ N C( [Uﬁ ] = [voe] = [t0091]+[t0092] = (tool1+t0021>+(t0012+t0022)
p =40+2+ 120+ 6 = 168.
Fourth method:

We use the direct homomorphism on the components T, (o = 2x2Xx2x2 =
16), that is, the tensor components in a “column matrix”.
There are two models to be considered:

1. The homomorphism model (2) of double contraction, Formula (5.76):

p = Hi6(,7|8,6) e Tis1 = [Ef ® ET|E] @ E5|E; © Ef|Ey ® Ej|] @ Tig
=[[10]®[10]][10]®[01]][01]®[10][[01]®[0 1]]eTis,

o407
—80

10
—20

8
—16

421
=[10000100]00100001]e —60
120
—15
30
—12
24
-3

6

=40-16 —-15+6 = 15.
2. The homomorphism model (3), Formula (5.77):

p' = Hi6(a, 0|8, 7) @ The, = [[E}|ES] @ EY|[EY|ES] @ E] @ Tig s
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407
—-80
10
—20
8
—16
2

—4
=[10000010[01000001]e | T,
120
-15
30
~12
24
-3
6

=40+4+2+ 12046 = 168.
O

Ezample 5.7 (Contractions). Consider the tensor { = 71 @ 7, ® f3 ® f* defined
over R?, where the factor vectors are

— — — — — — 3 1 2 A 1
Uy = €1 + €y Up=2e] — &y f7=2e" +e7 f7=3e";

1. Obtain the totally developed analytical expression of the tensor expressed
in its corresponding tensor basis.

2. Execute all possible simple contractions, indicating which of the obtained
systems of scalars have tensor character.

3. Express the resulting tensors in the previous question, as a function of the
vectors ﬁl,ﬁg,fg,f4.

Solution:

1. We develop the tensor product

(@) e (P o

(261 ®E| — &) ®E + 285 W E] — 6y ® &) ® (66" @& + 382 @ et
126,06 et +6e e 0etee! —66,0e e et
3R +12H a0 e 466 0e ® e et
—bErRE eI et —36 8 e et

t

and in matrix form

affoo
Hoow&

|=|-———~

v

co
47
wo | ooc‘n
co

,_.
528
oo

|
co
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where « is the matrix row indicator, § is the matrix column indicator,
the row indicator of each submatrix, and § the column indicator of each
submatrix, that is, according to the basis axiomatic ordering.

2. Contraction is an operation that can be applied to any system of scalars of
r indices and n” components, with n,r > 2. The result is another system
of scalars of order (r—2) and n"~2 components, so that the cited operation
is defined for such sets independently of whether they are or not tensors.
According to this, we separate those contractions over tensor indices of the
same valency that do not guarantee a resulting tensor from contractions
executed over indices of different valency, in which case it is guaranteed

that the contracted system is a tensor.

The contractions of tensor t, with no tensor character, are (be aware of

5 Homogeneous Tensor Algebra: Tensor Homomorphisms

the special notation used for these type of non-tensor contractions)

Cla, B) —C(v,d)—, that is

11
[a25) = Cla, B)E2E25) = [t2025
oo lloo0 2200
CL11 = tooll +tooll =12-6=6
oo 1loo 2200
A1y Tloo1a Tt =0+0=0
=
oo lloo0 2200
Ay1 T logpy Tloooy =6-3=3
oo 1lo0 2200
Upp T loooy THoo0p=0+0=0
B B
bogl = Clv,0)[to55] = [ta03T +
oo 1loo0 1loo0
bll ~loo11 +too22 =12 +0 =12
oo 1200 1200
bis =tooo1 T looan = —6+0=—6
=
oo 2100 2100
by = too11 T loo2e = 12+0=12
oo 2200 2200
byy =too11 T looan = —6+0=—6

afBoo
t0022

[b

2200] .

OO]

ap

The contractions with a tensor nature of tensor ¢ are

)-

)<l

(%

4]

)<l

g
~

)<

We execute them using two different procedures:

B
5

oo~y d + too'yE

]:

|

12
12

—6
—6

|
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1. Direct procedure, according to the contraction definition:

lo

lo

20

20

02

dlo

ol

02

d20

ol

20
do2

lo
ol

f

lo
02

f
2

20
foQ

olzt

=1

=1

=1

8 @ B 18 2p8
e = ()t = 182551+ 1253
=l g — 126 — 18
Co = Loo1s TTagsy =0+0=0
= [29] =
1200 2200
ooll +t0021 =—6-3=-9
B =040 =0
Bo « Boo 1800 28300
[doq] = C(5> [tio'yﬁ] = [too'yl] + [tOO’yQ]
e 20— 1
lloo0 2100
oo21+t0022 =6+0=6
= - |
vor1 Floois =—6+0=—6
1200 2200
o021l +t0022 =-3+0=-3
oy _ 6 Booy loo 200
EER (e R e P ot
1lo0 1200
= tooll +t0021 =12-3=9
1lo0 1200
:t0012+too22:0+0:0
«o
21 22 - [fO(S] N
0o 0o
=loo11 tlooer =12-3=9
21lo0 2200
:t0012+too22:o+020
ao =C ﬂ taﬁoo _ taloo ta?oo
[goy]* (5 [ oo'y6]7[ 0071]+[ 00'y2]

151
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lo 1loo 1200

ol tooll +t0012 =12+0=12

lo lloo0 1200
9oz T looa11 T logaa =6 +0=6

o) {12 6]
20,2100 2200 e 126

ol tooll +tool2 =12+0=12

20 21loo0 2200
902 = too21 +t0022 = 6+O =6

2. Procedure based on the use of the simple contraction homomorphisms
and of order r = 4. C(2) — Model (2), Formula (5.70):

v
[I> @ EY|I; @ B3] @ 1) ® Thg 1

Hcl) ﬂ@[o 1]]@[3 QH.TM,I

!

|
=
s
B
2
[ )
e
o

I

100001007 [1 0
=<[001 0001}@’[0 1]>'T16’1
o
0
6
0
10000000001000007 |70
_|o100000000010000] |7
=100001000000000°10 12
000001000000000 1 6
0
-3
_0_
1246 18
lot+o | o
T l-6-3] " |-9|"
0+0 0

and after condensation the result is
Bo 18 O
[chs]l = [9 0] .

C($) — Model (3), Formula (5.71):

Ty = Hyi6(a,0) @ Tigy = [ @ I, @ EY [, ® [, ® Eb) @ Tygy
0 1000

®[1 0] ®[0 1]|| T

= o O

01 0 0
0 010
0 0 01
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o
0
6
0
1000000001000000 0
_|0010000000010000], |75
~10000100000000100 12
0000001000000001 6
0
-3
L 0]
12+0 12
| 8+0 | |6
| -64+0] " |—6]|"
340 -3

and after condensation we get

-1 5

C(g) — Model (4), Formula (5.72):

T)" = Hi6(5,7) @ Tigr = (12 ® [E1|E5] ® I5) @ Ti 1

1001000 0]_[Lo0

_([0 000100 1}@)[0 1D'TI‘”

o

0

6

0

10000010000000007 |

~10100000100000000|_ |3

=10000000010000010|°][12

0000000001000001 6

K

-3

_O_
12-37 9
o+ | _Jo
“li2-3| 7 |9|
0+0 0

and after condensation we get

=15 o)

C(g) — Model (5), Formula (5.73):

153
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Tzfv = Hy16(8,0) @ Tie,1 = (12 @[ Bl Eé]) * Thea

S (R R I

107 (10000100
_Ho 1}@’{00100001”'%’1

_12_
0
6
4
1000010000000000 0
_{0010000100000000 |73
~10000000010000100 12
0000000000100001 6
B
-3
L 0
1240 12
_| 6+0]|_ |6
1240 T (12"
640 6

and condensing yields

[g°°] = 12 6
Jord =112 6
3. We will express each of the tensors previously obtained in a developed

analytical form, and later we will try to factorize each of them, as a
function of the factors v, Us, fs, f*. Then

F=c 00 =188, @& — 98, @ &1 = (28, — &) ® (98*))

and according to the statement data:

C=0,®3f =3t ® fY)

d= dfj%@é’*” =126, R & 468, ® &2 — 66, @ &L — 38, ® &2
= (128] — 6&y) @ &' + (6¢] — 36,) ® &*?
= 2(2¢) — &) ® 3e*! + (26) — é2) ® 3&**
= (26 — &) ® 3(2¢*" + &)
=3(2¢] — &) ® (211 + &)
=3(th @ f°)

f=rostace?
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=96, @&t + 96 et
=361 + &) ® 3¢ = 3(5 ® f4)
J=9078, 07 =128 @& + 66 @ &% +128 @& + 66, © &
= 12061 + &) @ +6(6, + &) ®e*?
= 6(&) + &) @ (28" + &@2) = 6(th @ ).
O

Ezample 5.8 (Contracted tensor product). Consider the two tensors @ and b
given by their components with respect to the canonical basis of the linear
space R3:

r1 -1 17

2 3 0

0 4 5

1 3 0 1 0 1
laSol=10 0-1|; pr5cl=10 2 1
2-2 1 3 1-1

0 3 -2

5 1 0

L3 -1 2]

1. Obtain all possible contracted tensor products with both tensors.
2. Determine the type of homomorphism that directly relates two of the
contracted products with the other two.

Solution:

1. A tensor product tensor is

taﬂ'yoe _ aaﬂ Q bﬂ/oe

ooodo odo’

There are two possible tensor contractions: C ((05‘) —-C (f), because contrac-
tions C (g) and C (g) correspond to indices of the same factor.

ooo ) ooodo ooofo ofo

L ORE O [ G R R )

If [a?%]F = [a79), for v = 1, we get

oo

1 0 2][1-11 1 711
W2l =% plog =13 0-2{|2 30|=| 3-11-7/,
0-1 1|(0 45 -2 1 5
for v = 2:
1 0 2][10 1 7 2 -1
W2 =2 pg =3 0-2[|02 1|=|-3-2 5],
0-1 1][31-1 3.1 -2
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and for v = 3:
1 0 2 0 3 -2 6 1 )
W =10 w2 =13 0-2||5 T 0|=]|-611-10].
0-1 1 3 -1 2 _92 _9 9

So that letting 0 = 1, and assigning to € the values 1,2,3 in the above
three matrices we arrive at

) 17 11
W= |12 1],
61 2
Similarly, for = 2 and € taking values 1,2, 3, we get
) 3 -11 -7
Wil =|-3 -2 3.

—6 11 —-10

Finally, for 8 = 3 and values 1,2, 3 we obtain

5 [—2 1 5]
[UOZZ} = 3 —1 -2
_72 -2 2_
Then, the first contracted product is
r 1 7 117
7T 2 -1
6 1 2
3—11 -7
W =1-3 -2 5|,
—6 11-10
-2 1 5
3 —1 =2
-2 =2 2

and the second is

[eleXe]

w2l = () 192350 = 220581 = 2?0253

For v =1, we get

X P 1 3 0 1-11 7 8 1
W l=lale - bopl=10 0-1|e|2 30]|= 0—-4-5],
(2-2 1] |0 45] -2 -4 7]
for vy =2:
a2el [ ab 206 1 3 0 10 1 B 1 4
ool =lag, b, ]=10 0-1le]02 1|=|-3-1 1},
12-2 1] |31-1] | 5 -3 -1]
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and for v = 3:
3 0 3 1 3 0 0 3 -2 156 —2
[U?OZ]:[aZ‘O-bO;Z]: 0 0-1|e|5 1 O0|=|-31-2].
2 -2 1 3—-1 2 73 =2

Doing exactly the same as in the previous case, f = 1,2, 3, and € succes-
sively equal to 1,2,3 in each jump of §, we obtain the second contracted
product

r 7 8 17

1 6 4

15 6 -2

0—-4 -5

= |3 1 1
-3 1-2

-2 -4 7

5 —3 —1

-7 3 -2

yoeaf __ b'yoe ®ao¢6
oo"

ofooo ~ “odo

Another tensor product is p
There are two possible tensor contractions (of contracted product): C(5) —
C(’g). Thus, we have

€ a oex oef o€ 6
[wZof] = C(5> [pZ(ioof] = @Zeoof] = [bZGO ’ aof]‘
For « = 1, taking into account that [b. ] = [b1°]*, the result is
[eXeXe] ofo oo cof oo
1 3 -2
7T—-11 1].
1 -7 5

For v = 2, we get

120 1 3 0
[wleﬁ] _ [bloe_atgﬁ] _ [bleO] . [af)ﬁ] = [1 3 4] ° [0 0 ]_]
105 2 -2 1

10 3 1 3 0
2ep 20¢€ 03 2€eo0 03
w =, -a "l=1b la’”l=102 1|e|0 0-—1
[ ooo] [000 oo] [006] [oo] [1 11] [2 9 1]
7-3 3
| 2-2-1],
-1 5 =2
and for v = 3, is
05 3 1 3 0
3ef 3oe€ 03 3eo 65
w =1[b -a "l=1b = 31 -1]e|0 0-1
[ ooo] [090 oo] [000] [oo] [_20 2] [2 _9 1]

6 —6 —2
=1 11 =2|.
2-10 2
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So that the present contraction becomes

r 1 3 —27
7—1% 1
11 — 5
7 -3 3
wlsll=1] 2 —2-1
-1 5 =2
6 —6 —2
1 11 -2
L 2 —-10 2

Finally, the following contraction remains to be calculated:
Yea -C ﬁ yoeafy _ . yoealy b’yoe af
[Sooo]_ 6 [poéooo]_[poeooo]_[ o@o.a’oo]'
This time we will transpose the matrices associated with both factors, in

order to be able to execute them in matrix form.
For v = 1, we obtain

120 1 0 2
lea loe af leo (XY
S =1[b_, -a_|=1b Ja’¥=1—-134|e |3 0 -2
[ooo} [090 oo] [000] [oo] [ 105] [O 1 1]
7 0 -2
= |8 -4 -4
1-5 7
For v =2:
10 3 1 0 2
2ea 20¢€ af 2¢0 (XY
s =[b -a = (b -la =102 1|e|3 0 -2
[ooo] [090 oo] [009] [oo] [11_1‘| [O -1 1]
1 -3 5
—|6-1-3],
4 1-1
and for v = 3:
05 3 1 0 2
3ea 30€ af 3eo (e
S =[b -a = (b -|a = 31 —-1|e|3 0-2
[ooo] [000 oo] [009] [oo} [_20 2] [0 -1 1]
15 -3 =7
| 6 1 3/,
-2 -2 -2

which yields the contracted tensor
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r 7 0 —27

8 —4 —4

1-5 7

1-3 5

535 =| 6T -3
4 1 -1

15 -3 -7

6 1 3

| —2 —2 =2 ]

vepB

2. A careful examination of the tensor [w] "] reveals that it is a certain

permutation of [uf 7¢] and, since all dummy indices change position, it is
a rotation. Compared with the Example 5.5 of rotation tensors, we finally
establish that [w? 7] = [ 7RO,

[eXeXe] [oNeXe]
aye

Pyea] = [ [eleXe]

000 JBM) | an interesting relation,

Similarly, we establish that [s
which enables us to avoid half of the operations in the previous question.

O

5.10 Eigentensors

Given an arbitrary tensor, T', we examine what possible tensors exist of a given
order, r, that in a contracted tensor product with the given tensor, become a
tensor that is A times (A € K) the initial tensor, that is, the following tensor
equation is satisfied, with T" and r = 3:

c(5]5) e —axgis. (5:51)
First case:
Data tensor: A = [aj;], of second order, over n = dimV?(K) = 2.
Test tensor r = 1: vector X = [29] = [i;]
According to (5.81), we must have
C (g) [A® X] = [a%- 675 2% = [ag; : xﬂ —AeX =)X (582
and the relation (5.82) leads to the classic relation
[A=—X]eX =1, (5.83)

which is solved in algebras with the eigenvalues and eigenvectors associated
with matrix A, for the eigenvalues A1 and A of the characteristic polynomial.
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We do not insist on this, since we assume that it is well known by the
reader. Let A; and Ay be the matrices of eigenvectors associated with the
eigenvalues A\; and Ay (assuming they coexist in K); we assume from now on

that they are known.
The solutions in this first case are

X, = A; arbitrary eigenvector of the matrix A, associated with \;.

(5.84)

X9 = Ay arbitrary eigenvector of the matrix A, associated with As.

Second case:

Data tensor: A = [ai‘;], of second order, over n = dim V*(K) = 2.

0d z t
According to (5.81), the first term must be

Test tensor r = 2: matrix X = [z]0] = {x y]

Let P = [p?°7°] = A® X; There are several possible contractions:

ofBod

First possible contraction

ao Y _ Yy aoyo
[d5s] =C (ﬁ) P=C (ﬁ) {poﬁzé}
Equation (5.85) is stated by “extension”:
4o’ = Hn2,n4 (Bv 7)P071

with the help of the homomorphism (5.72).
The details are

alo alo
ol 02 x
A= L X = Yl, P=A®Xx
20 20 z t|’
aol a02
lo lo lo lo
a01$ Goly ‘ aon a02y
lo 1Ot ‘ lo 1ot
aolz aol &022 aoZ
P=|-———- + - —— ,
20 20 20 20
aol'Qj aoly ‘ 0’023j aoZy
20 2Ot ‘ 20 2ot
aolz aol aoQZ a02
which in our case is n = 2;0 = n* = 2% = 16;0' = n? = 22 =
(5.72) leads to
0
1 ®[1 0 0 1]®

1

Hyq6(8,7) = L @ [EY|ES @ I, = {0
0
0

1 0] _[10
- L) 1}@>[0 1

(5.85)

(5.86)

4, and then,
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10000O0O1O0O0OOOOO0OO0OTU 0O
/001000 O0O0O1O0O0O0O0OOOOOQO
|00 0 O0O0O0O0OO0OT1O0UO0OTO0O0OTO0OT1Oo0

00000 O0OO0OO0OO0O1O0O0O0OO0OTO0OT1

and (5.86) gives
aiix—kai;z
ally+alot

qa = Ha16(8,7) ® Pis = ;Ol ;f

a1 T+ a ,2
a’ly+a’st
and once condensed, we identify with the right-hand of (5.81):

lo lo lo lo, 7

a1 T+ a2 ag y+agot _/\{x y]
20 20 20 20 - ~ t

a01x+a02z cLoly_|_a<32t _

and passing all terms to the left-hand side leads to the matrix system:

[A— e 0

[A—Xe

S~ w8

10
0 b
10

the solutions of which are the eigenvalues and eigenvectors of the classic, which
has been solved in the first case.
Thus, the solution matrices, built by blocks are the following:

X1 = [A1|pAq] automatrix associated with Aq
i VYu,ve K. (5.87)
X, = [A3]vAs] automatrix associated with g

Second possible contraction

o (0% [eXeRae]
a5 =c (5 ) w5l (5.58)
which once stretched leads to the new g,:
Qo' = H4,16(a, 5) . Po’- (589)
With the help of the homomorphism (5.71) we obtain

Hyq6(a,0) = [I4 ® EY|1, ® ES)

I
coor
co o
o~ oo
— o oo
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SO O
o O o o
o o = O
oo oo
o= OO
o O o o
_= o O O
o O oo
o O O o
o o o
oo oo
o O = O
o O oo
o OO
oo oo
_ o o O

and (5.89) gives

1

o 2
aolira

o
oly
1 2
E.
qa = Ha6(e,6)Pro = | | 20
a’oZ‘r + aoZy

lo 20
ao2z + a’o2t

which once condensed and according to (5.88) leads to [q;Z]

lo 20 lo 20

[qoy] o aol'r + aoly a’olz + aolt
Bol ™ lo 20 lo 20
ao2x+a02y a022+a’o2t

According to (5.81) matrix [¢;]] must be equal to AX = A[z 5], which requires
transposing one of them, then
oY1t a<13(1)x+a3(1)y ai;x_'_ai;y r Yy
[qﬂo] :AX’ 1o 20 lo 20 :>\ z t
(1012+a01t a022+a’02t

and passing all terms to the left-hand side, and adequately sorting the equa-
tions, yields the matrix system

[At — Mo

[At — AI] e

S e 8
o O OO

the solutions of which are the same eigenvalues A; and Aq as in possibility (a),
but the eigenvectors A} and A} are those corresponding to matrix A¢. So,

{?ﬂ = Al — [z y] = A} eigenvector of \;

{’:] = A} — [z t] = pAl eigenvector of )\

and similarly A, and vA} for A = Aa.
Finally, we give the following matrices, built by blocks as left solutions:
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Al

X, = | — — —— | automatrix associated with \q
pAY

Yu,v e K, (5.90)

Al

Xo = | — — —— | automatrix associated with Ao
I/A/t
2

which satisfy
X1 e A= )\1X1 and X2 e A= )\2X2.

Third case:

Finally, we will study the autotensor of order r = 3.
Data tensor: A = [a‘z;], of second order, over n.

Test tensor r = 3: (tensor of order 3). Among several possible choices, we

Yyoe
060]'

select the tensor X = [z
Let P =[ps5l5l =A@ X.

X is a contra—cova—contravariant tensor. The possible contraction tensor
products are:

M=C (?) pP=cC (?) [P3 5esel = [mglc], cova-contra-contravariant

N=¢C (;) pP=cC (;) [pS 5essl = [n5 1), contra-contra-covavariant

Q=C <g) P=cC (g,) [P3 Gessl = [a05,)s contra-cova-contravariant
So, the only valid option is the third one. Since the dimensions of the tensors

to be contracted and contracted are, respectively, for n = 2: 0 = 23 x 22 = 32
and o' = 0/2? = 32/4 = 8, the following tensor equations must be satisfied

Q_C<g>P_C<g)[A®X]_)\X. (5.91)
We start from
a b
’YOE ¢ d « 0 acl)(]). aCl);
X = [‘roéo] = PR A= [aoﬂ] = 20 20
e f Ay Qoo
g h

Having performed the contraction, the fundamental relation (5.91) can be
stated as
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lol 102 [ 1o lo lo lo p 7]
olo olo a01a+a02€ aolb+a02f
lol 102 1o 1o 1o 1o ab
o020 020 aolc+ao2g aold+a02h cd
Q:[ 0406}: _ _ - | = = - - - - :)\ —_
Goso 201 202 2 2 2 2 ef
o o o o o o
olo olo aola+a026 aolb+ao2f g h
201 202 20 20 20 20
L 1020 o020 | L a016+ a02g a01d+a02h |
(5.92)

passing all terms to the left-hand side, and grouping adequately the equations,
we obtain the systems

[A—\]e m

aoane[o]= 3] wowne[]- o]

that can be summarized as

I

| —— |

o o

—_
b
|
>
~
[ ]

| — |

~ o

_
Il

| — |

o o

—_

a b c d
[A—)\I]o[e F g h

Their interpretation is evident: the matrix solution appears as a permu-
tation of X, and the columns of such a matrix, must be eigenvectors of the
eigenvalue \; for Xi, or, for the solution X5, eigenvectors of the eigenvalue
Aa.

Built by blocks they are

ST -
1 #on o
D -
1
[ “]@[0 1]4,
L vop daxa
- , .
1/ ILL/ ®[1 O]AQ
Voop
Xo=|—-—--Z"—————— Vv, ooV, p € K.
1 ,u]
®[0 1]A,
L [V P [ ] d4x2

(5.93)

The reader has now enough tools and experience to solve again the problem
using the direct homomorphism model 5 in Section 5.8.4, on P,. that is, the
tensor components of A ® X in a column matrix. Then, it can be checked
that the resulting matrix Q,» = H,’ , ® P, is the stretched expression of the
matrix @ in (5.92). Then, the solution, that must be (5.93), can be obtained.
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5.11 Generalized multilinear mappings

We analyze here the mapping of a linear space absolute direct product
r
x V" | (K) into an arbitrary linear space W™ (K).
1
As is well known, we call this an “absolute total” linear space or “total
product” linear space, which is denoted by

.
VM X VR x VI (E) or | x V| () (5.94)
1

to a linear space, the vectors of which are r-tuples of vectors chosen one per
each factor linear space and in order:

r
(171, 172, cee ;177“) c X V;nl (K), 171 S V;nL (K) (595)
1

and its dimension n = nqy +ng + -+ + n,.
Next, we establish two formal axioms that must be satisfied by the gener-
alized multilineal mappings:

1. Fis amapping that associates with each r-tuple of vectors in :< v (K),
a vector W € W™ (K): :
r
F:| xV" | (K)— W™K) (5.96)
1
for all r-tuple it is
F(0y,va,...,0,) =u € W™ (K). (5.97)
2. This mapping is multilinear:
F(Uy, Uy U, + T, 0p) = F(T1, Uay o, Uy ey Uy)

FF (T, Ty, T, (5.98)
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Based on these axioms, we will establish how data are presented and what
the operative formulas are for practical use. First, we select bases for the
intervening linear spaces, and thus, to the vectors of components:

¥ = "leilcl’ with o5 € V{"(K) and 1<(3; <my

Up = 5521‘602; with ¥y € V2n2 (K) and 1< 85 <ng

L se . (5.100)
U; = €g,x”)}. with o; € V"(K) and 1<, <mny

i o g

7, = &3 2”° with 7, € V' (K) and 1< 8, <n,,

T or

where meij is data.

When introducing these data in (5.97), on account of (5.98) and (5.99),
we obtain

Bro yPao

W= F (T, Oy Oy) = a0 2P0 aPr R (Ey 8,0, 85). (5.101)

This expression with contracted dummy indices has a total of ¢ = ny - no -
- - n,. summands, which correspond with the possibilities of the r-tuples
(gﬁl’éﬂz’ R gﬂr)'
Assume now that the o basic mappings:

F(€ﬁ175525' ’éﬁy) = w(ﬁlaﬁ?v"')ﬁT); u_j(ﬂhﬁQa"wﬁT) S Wm(K)

(5.102)
are given (again data).
We also assume that vectors @(f1, Ba,- -, 5-) are data of the following
form.
If the basis of the linear space W™ (K) is {€}}", expressing the vector
(P, B2, - .-, 0r) as a vector covariant tensor:

W(B1, Bas - Br) = wog o E WIS S E
dwl g S S E e wl S S, (5.108)
where the vector coefficients are mounted with the corresponding covariant
tensors, the m covariant tensors are the data that characterize the mapping
F(€s,,€8,,...,€8,) = W(B1,P2,...,0r). (In reality @W(61,Bo,...,0H) is a vec-
tor covariant tensor built with vectors of W™ (K), instead of scalars of K;
the reader can see this by executing the sum indicated in (5.103) by separate
summands, and then grouping them into a single entity.
Assuming that F is delivered as indicated, in (5.103), and entering it in
(5.101) we obtain the image of the stated multilinear mapping, by means of
the final calculation formula:

— o o o lo o--o0 mo O +«+ 0 —
w:xﬁl _lﬂz Br ( )’

— 20 0+ 0 =
01 o2 or(Wop g8, 1 T Wog g, €2F " TWo g 5..5€m
(5.104)
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which is built with m contracted products of the contravariant components of
the data vectors by the covariant components of the multilinear mapping F'.
One perfectly detects that in Formula (5.104) the notation used has a free

index in the interior of the coefficients (the index h of wgﬁol ;2; ) but it is

useful for the calculation; it is the “vector” index of the basis {€,} of W™ (K).
If in Formula (5.104) we take as fixed, for example, the vectors (¥2)o, (¥3)o0,

.., (U)o, leaving as dummy the o7, since they are constant during all the
multilinear mappings F' all (xi "7)0;2 < h < r the multilinear mapping de-
generates into a homomorphism H; that applies Hy : V"' (K) — W™(K);
similarly, if we fix as constant other vectors v, with the exception of a given
vector. This is the way most authors define multilinear mappings, which in
the authors present opinion is correct, but not useful from a practical point
of view, because none of them arrives at a concrete expression, like the one in
(5.104).

5.11.1 Theorems of similitude with tensor mappings

Theorem 5.6 (Similitude). There exists a univocal correspondence between
the o r-tuples (€s,,€p,,...,€5.); 1 < B; < n;;i € I that appear in Formula
(5.101) and the o basic tensor products, of the basis B' = {€p, ®€3,®...Q€p, }

,
of the tensor space V"' @ Vi @ - @ V' (K) = ((?VZ”> (K)

— — — — — —
(eﬁlveﬁw"'aeﬁr)(_eﬁl®eﬁ2®"'®eﬁr' (5'105)

O

It should be surprising for any reader the evidence of the above theorem’s
final expression. Next, we give a second theorem that is based on the one
above.

Theorem 5.7 (Similitude). There exists a unique multilinear mapping:

P (V) () - W),

such that
Fl(ﬁl ®172®®77r) = F(ﬁl,UQ,...,ﬁr) :1177 w e Wm(K), Yu; € V‘an(K)
(5.106)
O

So that the problem of solving images by means of the multilinear mapping
T

F: | xV™" ]| (K) - W™(K) can be solved indistinctly, with the tensor
1
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r
multilinear morphism F” : (Q%V]“) (K) — W™(K), by simply changing the

notation with the help of Formula (5.105).
Finally, we consider two tensor spaces: the tensor space

A=V eV - V" (K)o V"o Vy? .-V, (K)]"

and the tensor space B, the set of all (tensor) multilinear endomorphisms that
operate inside the tensor space V"' @ V;? @ --- @ V" (K):

B=MLIV" @V;? @@ VI(K),V" @V - V(K.

Theorem 5.8 (Similitude). There exists a unique isomorphism @

o: GV (%vi"i(fo)* Jac (v ) o, () )l
(5.107)

such that with each tensor (U1 @ V2 @ -+ Q@ Up) @ (U1 QU2 ® - @ U,)* € A it
associates a tensor multilinear endomorphism

T3, 0020 -07,)8 (11 95:0-®,)* € B,

r
that transforms the multivectors W = W Q@ Wa ® + - - Q W, € <Q1§VZ"L (K)) into
the following form:
T(0) = (0 @Wr @ -+ QW) o (U1 QUi ®@ -+ RU) | (11 QT2 ® -+ @ T).

(5.108)
O

Theorems 5.7 and 5.8 will be proved by means of concrete models in the
proposed examples, so that the interested reader will be able to obtain the
general proofs.

5.11.2 Tensor mapping types

If we reconstruct Formula (5.101) adapted for generalized tensor mapping or
as a mapping of the correspondence (5.105):

@ = F(f) = F(t7 2 s, 08,0 - 08,) = 07 T F(d, 08,0 --©8,)
(5.109)
and we do the same with (5.102) and (5.103):

F(gﬁl ® 552 ®-® gﬁT) = w(ﬁlaﬁQ? e uﬂ’r‘)7 (5110)

the development of the tensor mapping is performed using the same expression
(5.104) but with these changes.
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It is obvious that in (5.104) the tensor coefficients wZ;;l ;2;7 with 1 <

h < m, can be in some cases symmetric, or anti-symmetric for the covariant
subindices leading to the existence of tensor mappings F -symmetric and
F-anti-symmetric.

The tensor F-anti-symmetric mappings will be studied in later chapters.

It must be clarified, however, that the tensor mapping type F' is completely
independent of the tensor type over which it is applied, in other words, for
example it is not necessary to transform symmetric tensors with symmetric
mappings.

5.11.3 Direct n-dimensional tensor endomorphisms

We study here the particular case of tensor mappings. Consider the tensor
T
space §1§>Vl"(K) =V eVe - @V"(K) tensor product of r n-dimensional

linear spaces of dimension o = n", over the same field K. We assume that in
each of the linear spaces V;"(K) acts an endomorphism of associated square
matrix H; of order n, which transforms the vectors 0; € V*(K) in H;(¥;) =

We look for the heterogeneous tensor endomorphism H,, which applies the

T
prototype multivector 71 Q Vo ® - - - @ U, € Q?Vi"(K ) on the image multivector
r
W QW2 ® -+ ® Wy € (?VZTL(K), that is,

Hy () = & Hy(0) @ @+ @ T,) =) @ @ -+ @y (5.111)

We solve the problem in a direct form until we find H,. Later, the result
will be related with the formulas in Section 5.11.
If we notate in tensor form the individual endomorphisms, if 0; = :r(i)o:' €,

and w; = y(i)ijgﬂj with a;, 8 € I,; i,j € I, the result is
vio? =% o wn - (5.112)

Replacing in @ = W; ® W ® -+ ® W, the expression of each vector, we
arrive at

B = ()2 8s,) ® () 28,) ® -+ @ (yr) 7 E5,)
= (yu)ily(z)% " y(ﬂﬁo") €, ® €p, ® -+ D €p, (5.113)
and replacing (5.112) we get
__ B1 o « B2 o « Br © [e78
W= Khu) NE) ol) <h<2> o 0, %(2) 02) (hm NE IO )}
€3, ®Ep, V- Qeg,, (5.114)
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which after operating and grouping yields

W= H,(¥) = Ho (V) ® U2 ® -+ ® i)

o a oY o B o B2 o Br o
- (x(l) olx(2) o2 e f(r) o ) (h(l) olalh(z) o2a2 e h(r) o ar)
&5, ® &3, ® - ® &3, (5.115)
If we write
W o s e = h S She S g h s (5.116)

Expression (5.115) becomes
W=Hy(th QU@+ ®U,)
= (2o 2w ) (W0 e e )
€3, ®E, V- R Eg,. (5.117)

Since x(j)ozj are the vector data ¢; and h(j)ﬂoj;j are the endomorphism data

inside each V*(K), Formula (5.117) solves the problem stated in this section.
In matrix form, expression (5.116) is solved in the matrix

H =H®H Q- - ®H,. (5.118)

If the column matrix V,; is an extension of the components of 7 ® ¥a ®
-++ ® Uy, and the column matrix W, ; is an extension of the components of
W ® We ® -+ ® Wy, then, expression (5.117) leads to the endomorphism (in
matrix form)

Wy =HyoV,,. (5.119)
If we consider

mE’I’LT;ngébl@é’gQ@'”@égr,

with 1 < k& < m and finally h% - % o %;T = wf:;l Py :::;T, the tensor equation

(5.117) represents a variant of Formula (5.104).
One can easily conclude that Formulas (5.104) and (5.119) can be applied

r
to tensors in (?VZ"(K ) not coming from tensor products, as it was indicated
in Formula (5.109) and will be in the following formulas.

Ezample 5.9 (Proof of Theorem 5.7). In this example we prove the tensor
similitude Theorem 5.7 for the homogeneous case with the help of tensor and
matrix tools.

Consider the homogeneous linear space “total product” (initial space):

r
X(VWK) | =V x V" x V" .. x V*(K)
1
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of dimension (r - n). Let the r-tuple (U1, va,---,0,) be one of its vectors,
where V7; € V"(K), and consider the final linear space W™ (K'). The vectors
U; = 1% €,, are given by its components (z7'?).

Consider a multilinear mapping F' that applies the initial space on the
final space by means of the following report, the coefficients f of which are

data tensors:

.
F:| x(VY)(K)| —W™K)
1
F(01, 8,y 0) = [ oy @ 30505 2 e, (5.120)

where {€3} is the basis of the linear space W™ (K), with a; € I,;1 < 8 < m.
Developing the sum associated with index 5 in (5.120) to obtain its matrix
expression, we get

. -\ __ gplo o0 ajo_azo Q0=
F(0y,0a,...,0,) = foalazmarx o 1T ST €
20 0+ 0 O _ 30 Qp 0= mo O -0 @O (0 Qr 0=
+foa1a2---a7,xolx02” Zl’or€2+‘ .+foa1a2»--arxolxo2. T pEm
loo---0 loo:---0 lo o--o0 loo---0
follml foll---2 foalazwar fonn---n
200:--0 200:--0 20 o0 -0 200---0
= 6162"'6m]. foll--~1 foll---2 foalazmozr fonn---n
moo:--0 moo---0 m o o - 0 moo---0
follwl f011~~~2 fOOclOCQ‘“Oér fonn~~~n
lo 1o lo
.’1,‘0156'02"'1'OT
lo 1o 20
[ ] .'1701-’1702"' or B (5121)
no _ mno no
1'01 02’ .xor

the symbolic matrix expression of which, with declaration of the sizes of the
matrices appearing (with o = n") is

F(Gy, T2, -, 5) = [618 - Em| Humoo [xi;‘;x%f; : x“] S (a22)
g,

or

which is the matrix expression of the multilinear mapping F'.

Next, we will discover a multilinear tensor morphism F’. Remembering
that

o - Q10 Qg0 a0
U1®U2®”.®UT‘:I‘OleZ'.'xoTré‘(ll®€@2®'..®€QT’

and applying Theorems 5.6 and 5.7 we choose the following equality:
F/(é'al ®€a2 & ®€ar) = F(€a175a2a"'7€ar)

and then
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@10 a0 QpO

Fl{h@t,®- - @0,) = F'(2% (2% 2% €0, @€y @ ®€y,)

onr

= F'(Coy ® Coy @+ ®En, ) (a7 (2725 2%)

= F(Cuy gy 5 B, ) (@2 5220 %), (5.123)

01¥ 02" o
If now we apply (5.122) to the vectors (€ny,€ays-- -, €n, ) IN matrix form we
get
F(€ays€azs---1€a,) = [€1,6, .., En]Hpm o [Bay @ Bo, @+ ® Eo, ], 1,
(5.124)
where {E,,} is the matrix canonical basis of V" (K).
The matrix
H7/n,0 = Hm,a
[ E1RE Q@ - QFE] |Eyy ®Eay ® @ Ey |...|En @ Ep®---® En}m
(5.125)

represents the operator F’, and then the final expression for Formula (5.123)
is
Flh @U® - Q@) = [€1,6,..., & H,, , a3 (2775 a7 L (5.126)
Developing Equation (5.125) one gets
H,’nya =Hy,,01,=Hp,,

which proves our theorem.
O

Ezample 5.10 (Confirmation of Theorem 5.7). We wish to prove the simili-
tude Theorem 5.7 by means of the following model. Consider two linear spaces
U™(K) and V"(K) referred to their bases {€,, }T* and {€,, }T, respectively,
and the two vectors

d(zh,2?, . 2™) e U™(K) and G(yt, %, ..., y") € V(K).
mXn

Consider also another linear space W™*"(K) referred to a basis {€}]
and a bilinear mapping:

)

F:U™ x VY(K) — W™ (K),

which transforms the vector duples of the “direct product” space U™ x V™ (K),
into vectors of W™*™(K) by means of

w11 w12 - Win Yy

1p2.. g™ 11721 117.22 R T y , (5.127)
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where each of the vectors wyg in this matrix comes from W™*"(K) and can
be written as

loo

— 200
Wag = W, 5€1 +woaﬁ62 +---tw

mXn
o

agbmxn; 1<a<m; 1<8<n.
(5.128)

1. Give a matrix expression of the image vector w.
2. Prove the existence of the mapping F’(# ® ¥) in Theorem 5.7.
3. Answer questions 1 and 2 for the particular case

m=2; n=23; u(2,-1); ¥(3,2,1);

11711 = 242 — 3€3; 11712 = 0; 11713 = 5(?1 +2€2 — €4 + €6;
Wa1 = €1 + €p; Wa2 = €2 — €5; Wa3z = €1 + €2 — €3 — €4 + €5.

Solution:

1. Expression (5.127) can be written in tensor form as
@ = F(i,7) = 2%y @ap, (5.129)

and developing the sums associated with the dummy indices o and (3, and
writing them as a matrix product and, as required, representing the vector
matrices as row matrices, we finally get

M 11
xoyo
12
xoyo

w:F(ﬁ, '17) = [1171171_;12 e wlnw2111722 e an e wmlwmQ e U_)’mn}

m 1
xOyO

IOyO

m n
€ o yO
which is the answer to the first question.
2. Substituting vectors Wy in Formula (5.128) into the last expression and

grouping in matrix form yields
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W = F(ii,7)

loo loo loo loo 2 92
o011 Wo1a Woaps Womn zy
200 200 200 200
= [6162“-6an] oll ol2 woaﬁ omn
mXnoo mXnoo M Xn oo mXxXn o o moyo

w11 o 1277W aB’ "’ o mn

K37
(5.130)

Note that Expression (5.130) is the matrix expression of a multilinear
mapping F’ (@ ® ¥) by means of the central data matriz, which “stacks”
tensor F’.

Consequently F(u,?) = F'(4 ® ¥) = W, which is Theorem 5.7, answering
the second question.

. Next, we illustrate this numerically.

Let 2 =4®7 = ([51 52}[

sion we get,
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6
4
=[e1®e] aReE, e1ReL &RE) REL &ReL]e 7%
-2
-1
The vector Z=17® 7 € U? ® V3(R) will be useful later.
Using Formula (5.127), we obtain
2% -3% 0 BE+2%-—atéa | |0
F—Fad) =2 —1]|%2~3%s 0 osatié&-—até 9
w (@,0) = }[ €1+ € € —€ € +6 —€3—€1+¢6g 1
3] 3
0 0 5 . 2 0 2 ~
=[2 —1][1 0 1] 2| & +[2 —1]{0 . 1] 2| &
1 1
3 3
-3 0 O - 0 0 -1 ~
+[2 —1]{0 o _1l12]&+(2 —1}[0 0 _1} 2| &
1 1
3 3
0 0 O o 0 0 1 o
A | H i R [ HE

= 66 + 1365 — 1765 — €4 + 2€5 — 2¢€;

6

-2

which answers the first question. Next, we build the central matrix of the
multilinear mapping F’, the structure of which has been given in Formula
(5.130), Thus, we arrange the data vector components W,z as columns,
and then, we apply the mentioned formula

@ =F'(3) = F(@®7)

00 5 1 0 1 6
20 2 0 1 1 4

.. . l=30 0 0o 0o -1 2
Tl e “llo 0 -10 0 -1]%|-3
0 0 0 0 -1 0 —9

00 1 1 0 1 1
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6
13
o o " —-17
:[61®é‘/1 61@%61@%62@% 62®é¥2 2®é¥3] 1 ,(5131)
2
-2

which gives the answer to the second question.
As one can see the result is the same as the one obtained in the first
question, which is in agreement with the tensor similitude Theorem 5.7.

a

Ezample 5.11 (Proof of Theorem 5.8). Consider the linear spaces V"(K) and
its dual V*(K) referred to the reciprocal bases {€3} and {e**}.

Consider also the linear space of all linear operators T’ that transform
vectors inside V™ (K), that is,

T:V*K)— V"(K); TeLV"K),V*(K)),

where L refers to linear operators and V"(K),V™(K) to the endomorphism
initial and final linear spaces, respectively.
Let {€,3} be the canonical basis of L[V"(K),V"™(K)],

o 0 --- 0 --- 0
Ep=10 0 - 1 - 0 ,
o 0 - 0 --- 0

nXxn

with a one in the position associated with row « and column 8 and zero
otherwise; there exist n? basic vectors.
Consider two data vectors

o 1
ul Uo
o ’U2
=g | *|, @ eVr(K)and 7= &5 | °|,7e VMEK).
.O :n
un vo

If we build in matrix form the vector ¥®@ @* € V" ® V,*(K) and make the
matrix of order n x n of the product equal to (7 ® @*), we apply the tensor
space V" ® V*(K) in the space L[V™(K),V™(K)]. Show that the endomor-
phism transforms the vectors as stated in the tensor similitude Theorem 5.8.

Solution: We calculate the vector v ® i*:
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. N
vo ul
2 o
— s S = v k] %2 —xn, ’U,2
TRU" = | [€1€2--- &, ® | [ e é
.'n, .O
_vo i un_
_vl -
o - éskl -
2 52
- 2] Yo N R o €
=le1éy-- e, . Uy U u :
n L e ]
_UO p ®
r 1 o 1 o 1 o el
voul UOU2 Uoun e ]
.. . 2 o 2 o 2 o 2
— |e1€2 °€n] voul vou2 Uoun 5
.n. o n o 'n,. ‘o exn
v u v u v u -
L 071 o2 n ®

where the ® operator appears as a subindex to refer to a quadratic form of

tensor products.

Following the stated conditions, we have

1 o 1 o
Uoul UOUQ
2 o 2 o
— voul vou2
n o n_ o
voul vou2

u

u

O N O =
30 3o

: (5.132)

n .o
voun

which gives the endomorphism matrix. Next, following Theorem 5.8 we ex-
amine how the vectors @ € V™(K) (since in this example there exists only
one space as primary and dual factors) are transformed.

We call the matrix in (5.132) Tygax, and transforming a vector w € V" (K)

with the operator T we get

Tyga- (W)
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1
UO
2
o 1 o 2 o n U,
= (ulwo + u2wo +oee unwo)
Ve
1
IUO
2
7_}0
= (Weu") (5.133)
vy
The tensor conclusion of (5.133) is that
Tygq- (W) = (0 o 4*)7. (5.134)

From (5.132) to (5.133) we conclude that the equality
P(v @ u") = Tygar

has the property (5.134) and then, Theorem 5.8 has been proved with the
present model.
The isomorphism character is detected if we apply (5.132) to the vectors

0
0 0
€; and € of matrices 1 , with the 1 in row 4, and 1 , with the 1 in the
L0 L0
row j, respectively:
o o0 --- 0 0
o o0 --- 0 0
b weY) = 0 0 o 1 ... 0| =6
o 0 --- 0 --- 0

Thus, it is shown that this multilinear endomorphism associates the basis of
V"™ @ V"(K) with the basis of L[V"(K),V"(K)], and then, in this particular
case it is an isomorphism.

O

Ezample 5.12 (Total and tensor products). Consider the total product homo-
geneous linear space
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3
<V | (R) = V0 x V0 x V()
1

of dimension n = 3ny = 9, and let the tuple (U1, 72, ¥3) be one of its vectors,
where 7, € V2(IR). The bases for each factor linear space will be denoted by
{€:i(k)};1 < i,k <3, and thus, we have

1(]{?
O = ||e(k)|| Xp;  Xp = | 2%(k) |, Va'(k) € R.
3(k

8 8 8

~— — —

3
The basis of the total product linear space ( x V2 | (R) will be notated
1

B={e1(1) &(1) é5(1),61(2) &(2) e(2),€1(3) €2(3) €3(3)}
and therefore, the matrix representation of the 3-tuple (07, 02, ¥3) results
(U1, U2, U3) = || B||X,
where X is the block column matrix
X

X =1|Xs
X3

Three morphisms “f(k)” apply each space factor V;2(IR) into a linear space
W™(R) of dimension m = 4 and basis {g/}].

The matrix representation of a vector @ € W4(R) is @ = ||&||Y. As-
suming that the associated matrix representation, relative to such bases, of
morphisms f(k) are the data matrix Hy 3(k), the morphism matrix represen-
tations become

Yk:H473(k‘)0Xk; 1§k‘§3

Finally, let us build an homomorphism f that applies the initial total
product linear space into the final space W™ (RR):

3
fol x Vk?’ (R) > W™ (R); f(¥h,0s,03) =W
1

which matrix representation is:
Y =H,,eX;

where Hy, , = [H(1) H(2) H(3)] is built with Hy 3(k) matrices as blocks.
Assuming now that the data matrices are:
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15 s 175 65 0
: _ o — _|—6- .
Hy = |23 me=| ) 372 mHe = |83 Y|
4923 2 3 6 10 -1 11
1. Give the representation of morphism f specifying the components of each
matrix.
2. If
(171,’[72,’(73) = (2(31 + 3€y — €3,5€y — 2¢3,€1 — €5 + 363) (5135)
find the image vector @ = f (07, ¥y, U3).
3
3.In | x V2| (R), consider the multivector relation
1

(2¢€1,2¢e5 — 5€3,2€3) = (€1,285,e3) + (€1, —Hes, €3).

Using this relation, examine if f is a multilinear transformation for the
addition of the total product linear space.

4. Find a basis of the null space relative to morphism f, verifying that the
dimension of the resulting basis is coherent with the dimension of the
range space.

5. Based on the knowledge we already have on f, build a multilinear mapping

3
F: | xV3] (R) - WR).
1

To get it, one must answer the following questions:

(a) Determine matrix M, , where 0 = nj, = 3* = 27; the matrix
columns X of M, , are the matrix representations of the o 3-tuples
(551(1),5[32 (2), €a, (3)),‘v’ﬁi, 1 < 3; <3, in the B basis.

(b) Set condition

F(gﬁl ) 5,32’ gﬁa) = f(€ﬁ1 (1)’ gﬂz (2)’ gﬂa (3)),Vﬁi, 1<8 <3,
through the matrix relation:

H(F)m,a =1lmn ® Mn,a-
Give the matrix H,, , associated with the multilinear application F.
(c) Determine matrix X, 1 as the representation of multivector (¥, Uz, ¥'3)
given in (5.135), but now with the appropriate components as shown
in formula (5.122).
6. Determine the image vector W’ = F (¥, U, U3), in accordance with matrix
equation Y, | = Hp, o X 1.
7. Determine if @' = 3.
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Solution:

1. The matrix representation of morphism f is:

1
—

8 8 8 8 RMH 8 8 8
AN N N AN AN AN TN TN

N o= W =W N
W W WM DN DN = ==
N O N — —

w

2. Since

-1
67
16
58

we have
W= f(V1, T, V3) = —&1 + 675 + 1685 + 58E}.

3. Since f is a morphism, we have
f(2€71,28, — 5e5,2¢e3) = f((é’l, 2€5,83) + (€1, —5és, 63))
= f(€1,2€5,€3) + f(€1, —5¢€3,63)
If f were a multilinear mapping, it should be
f(261,285 — 5&5,2¢5) = f(2€1,285,285) + f(2¢€1, —5Hes, 2€3)

so, f is not a multilinear mapping.
4. A basis of the null space is

r—1 0 =176 —766 —7687

-1 0 =82 196 442

2 0 0 0 0

0 0 405 207 -1
By=1]0 0 302 46  —118
0 0 0 0 424

0 -2 0 212 0

0 13 848 0 0
L 0 3 0 0 0

181
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As matrix H(2) has rank 4, this is the rank of matrix Hy 9. Thus, we have
dim(null space)+dim(range space) = 5+4 = 9 = dim(total product space).

(2),€1(3)), (€1(1), €1(2), €2(3))

oL

5. (a) The matrix representations of (€1(1),
in the B basis are:

O OO, OO
— OO O~ O O

L0

so that following this we get matrix M, ,:

T
o
L

[111111111000000000000000000]
000000000111111111000000000
oooooooo0000000000111111111
111000000111000000111000000
Mooy =1000111000000111000000111000
000000111000000111000000111
100100100100100100100100100
010010010010010010010010010
0100100100100100100100100100°1

(b) The relation H(F'),, o = Hy,n ® M, -, that in this case is

H(F)4,27 = Hyg ® My 7

becomes
221319 7 —24 18 9 15201117 5 —4 2 16713211218 6 —3 3 17 8 14
212140 315-7-48 36184 7 19-30121 416 2 5 17-5-210
5 0-6116 0 9 4 —27 2-4138 21160 6 1 -5127 1 10 5 —1
16 5 1717 6 1820 9 21143 1515 4 1618719154 1616 5 1719 8 20

(¢) Applying formula (2.21) one gets
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2 0 1
Xor1=X190XoXs=|3 |®@| 5 |®]|-1
-1 -2 3
6. The matrix representation of F is:
—57
o | 762
Yig = Hapr o Xorn = | |0
663

and then
= —b7&1 4 7625 + 15383 + 663£;.

7. It is clear that

19671 + 254&5 + 51&5 + 221€))

3(—
3( g1 + 6785 + 1683 + 5854)
w

I
w

5.12 Exercises

4

183

5.1. In the tensor space leRf, we consider the totally covariant homogeneous

tensor T', given by its matrix representation:
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ar b | az by
cr dy | cy da
= |- - + - -
az by | a1 bs
c3 d3 | ¢y dy

Obtain the “permutation” matrices P;, P, and Pj associated with the three
rotation isomers (1),(2),(3) mentioned in Example 5.5, point 3, that transform
the tensor T} ; into its “extended” isomers.

5.2. Counsider the homogeneous tensors P, Q) and D (the last is the Kronecker
delta), all of them associated with the linear space V"(IR). Determine if the
tensors A, B, C, contracted products of the data tensors, are their isomers:
. of3 oo, . o3 ocoogcho, . offcofBcoAcoA
A: 6aopmo, B: 6aoq7ﬁ/\(50u, C: 6a05a0650670.
5.3. Two tensors T of order r; = 2 and U of order ro = 3 are defined over

a certain linear space V3(IR) referred to a certain basis {€,}. Their matrix
representations are

2 3 0
[ti‘f]:l—2 -1 11 (a row , 3 column)
1 0 -1
001] 21 00 13
[uZ;’:]:[135| 10—1|1—14],
020 -11 4|6 10

where v is the row block, A is the column of each block and p is the block
column. (beware of the matrix block disposition of this tensor).

1. Determine, as contractions of the tensors Q1 =T ® U and Q2 = U @ T

(of order r = 5), the contracted products that follow:

AR B Fe T G e,
Note: the matrix representations of tensors A, B, F, G must have the same
ordering criterion as the one given in the statement for tensors of order
r=3.

2. Since the tensor U does not satisfy the correct axiomatic ordering in its
matrix representation, give the matrix P of the permutation that trans-
forms U,,; in the isomer U[',,l the condensation of which leads to tensor
U’ with the correct ordering.

3. Examine if P is an orthogonal matrix.

4. Give A, B', F’,G’, the correct contracted products, with the usual matrix
representation.
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5. Give the matrices Ha/, Hg/, Hp/, Hg corresponding to the contraction
homomorphisms executed in the previous question, over the “extended”
tensors.

6. If we recover the isomers from tensors A’, B', F/, G’ by means of matrix
P~1 (inverse permutation), do we get the results of question 1?. Check
this result.

7. We perform a change-of-basis, in the linear space V3(IR) of matrix

C:

— =
NN O
w o o

Give the new tensors T and U that would present this statement.
8. Solve for T and U, questions 1 to 6.

5.4. Consider the tensor T € V3 @ V2(IR), with matrix representation

7 4 -1
o) =1 4 7 -1].
O VR R

Give two right-autotensors A and B, contracted (T'® A) = AA and con-
tracted (T’ ® B) = uB, where A is of order (r = 2) symmetric and B of order
(r=23).

5.5. Consider the linear space V3(IR) referred to the basis {€,}. We take a
Y 4 o 3
particular vector (V1, V3, V3) € >1< V3(R) belonging to the total product linear

space, the matrix of which associated with the basis {€,}is [ X7 X2 X3]=
[ EEE ] |
231
A multilinear transformation F : %V?’(IR) — W%(R) that applies the
total product linear space in W*(IR), is given by (5.104):
F[(Vi,Ve, V)] = W € WH(K),

which results from the total contraction of the four covariant tensors of order
(r = 3) that appear as vector components of

F’;2;§€h = (a—1)a+(a—pB+2)&+(B—7y—3)&+(v+4)ey; 1< a,B,7 <3,

- . - 3
with the vector V1 @ Vo @ V3 € Q?V?’(IR).

Give the image vector W of the multilinear mapping.
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5.6. In the linear space V3(IR) referred to a certain basis {€,}, we consider
three linear operators with associated matrices:

1 1 0 2 -2 3 11 1
H=|1-2 0|; Hob=|1 1 1|; Hy=|12 2/.
0 1 -1 1 3 -1 12 -2

1. Obtain the eigenvalues of H;, Hy, Hs in increasing order. They will be
notated as (A1, A2, A3), (w1, po, p3) and (v1,ve,v3), for Hy, Hy and Hs,
respectively.

2. Obtain the eigenvectors (X7, X2, X3)m, associated with each operator,
giving their components in columns.

3. If WZ = Hz(‘_/;), 1 < < 3 are the images of the vectors:

B 1
s Vs=lleall | —1 1,
1

- - - 3
determine the multivector V; ® Vo ® V3 € <§1§V3 (R) and the multivector

4

B 3
Vi=lleall | 5
2

P Vo=l | -1
2

" " " 3,
Wi @Wy®Ws e ?Vj(]l:{)

4. Obtain the matrix H, associated with the direct endomorphism that
transforms HU(Vl QVr® V'g) =W, @ Wo @ Ws.

5. Determine the eigenvalues of H,.

. Determine the eigenvectors of H, (remember Section 1.3.4).

7. Solve questions 4, 5 and 6 using the computer and assuming that the
solutions of 1, 2 and 3 are known.

(=}





