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Homogeneous Tensor Algebra: Tensor
Homomorphisms

5.1 Introduction

The chapter starts by presenting the main theorem on tensor contraction,
which ensures that a contraction of a tensor product when applied to indices
of different valency leads to a tensor.

It continues by presenting the contracted tensor products as homomor-
phisms and applies them to different tensor products as particular cases. Some
tensor criteria motivated by the contraction are also discussed, including the
well-known quotient law criterion.

Next, a detailed study of the matrix representation of the permutation
tensors and some simple and double contracted homomorphisms is performed.

The chapter ends with a novel theory of eigentensors and generalized mul-
tilinear mappings.

5.2 Main theorem on tensor contraction

Though in Section 3.5 the contraction of tensor products has already been
mentioned, and in Theorem 3.1 any contraction of mixed tensors has been
examined from the homomorphism point of view, that is, of linear mappings
of a primary linear space (tensor space) into another secondary linear space,
one can have doubts about whether or not the resulting “range” space would
be a simple linear space, or would also be a tensor space.

Fortunately, this doubt is positively resolved, because the “homomorphic”
image of a tensor space is another tensor space.

Remark: the word “homomorphic” always has the sense of a mixed tensor
“contracted from two indices of different valency”.

Next, we prove this property with the required emphasis, and later it will
be enunciated as a theorem.
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Consider a mixed homogeneous tensor �t ∈
( 3
⊗
1
V n

)
⊗
( 2
⊗
1
V n∗

)
(K) of

order r = 5,
�t = t

α
◦
β
◦
γ
◦
◦
λ
◦
µ�eα ⊗ �eβ ⊗ �eγ ⊗ �e∗λ ⊗ �e∗µ (5.1)

and denote by S(α, γ, µ) the “system of scalars” resulting from the contraction
of indices 2 and 4 of different valency (β and λ):

s(α, γ, µ) = t
α
◦
θ
◦
γ
◦
◦
θ
◦
µ . (5.2)

In detail, we have

s(α, γ, µ) = t
α
◦
1
◦
γ
◦
◦
1
◦
µ + t

α
◦
2
◦
γ
◦
◦
2
◦
µ + · · ·+ t

α
◦
n
◦
γ
◦
◦
n
◦
µ . (5.3)

The system S(α, γ, µ) is called a system of scalars because one cannot antic-
ipate if it is a tensor. The power of the set S(α, γ, µ) is n3, because we have
three free indices.

Next, we perform a change-of-basis in the
( 3
⊗
1
V n

)
⊗
( 2
⊗
1
V n∗

)
(K) tensor

space. Since its vectors are homogeneous tensors, we have

t
i
◦
j
◦
k
◦
◦
�
◦
m = t

α
◦
β
◦
γ
◦
◦
λ
◦
µγ
i
◦
◦
αγ
j
◦
◦
βγ
k
◦
◦
γc
◦
�
λ
◦c
◦
m
µ
◦. (5.4)

The indices (j, L) are contracted. Preparing Expression (5.4) and calling
the set of scalars in the left-hand side s(i, k,m), we get

t
i
◦
j
◦
k
◦
◦
�
◦
m = t

α
◦
β
◦
γ
◦
◦
λ
◦
µγ
i
◦
◦
αγ
k
◦
◦
γ(γ
j
◦
◦
βc
◦
�
λ
◦)c
◦
m
µ
◦ (5.5)

s(i, k,m) = t
α
◦
β
◦
γ
◦
◦
λ
◦
µγ
i
◦
◦
αγ
k
◦
◦
γ(γ
x
◦
◦
βc
◦
x
λ
◦)c
◦
m
µ
◦. (5.6)

The expression (γx◦
◦
βc
◦
x
λ
◦) is the “product” of matrices C−1�Ct but executed

by “multiplying row by row” (not by column, due to the position of x); but
this is the same as C−1 · C = In. So, that

γ
x
◦
◦
βc
◦
x
λ
◦ = δ

◦
β
λ
◦, (5.7)

and replacing (5.7) into (5.6) we obtain

s(i, k,m) = (tα◦
β
◦
γ
◦
◦
λ
◦
µδ
◦
β
λ
◦)γ

i
◦
◦
αγ
k
◦
◦
γc
◦
m
µ
◦,

where the product in parentheses is the contraction of (β, λ)

s(i, k,m) = t
α
◦
θ
◦
γ
◦
◦
θ
◦
µγ
i
◦
◦
αγ
k
◦
◦
γc
◦
m
µ
◦ (5.8)

and, on account of (5.2), the previous expression can be written as
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s(i, k,m) = s(α, γ, µ)γ i◦
◦
αγ
k
◦
◦
γc
◦
m
µ
◦, (5.9)

which declares that the system of scalars S(α, γ, µ) satisfies the tensor criteria,
that is, it is a tensor. Whence

s(α, γ, µ) ≡ s
α
◦
γ
◦
◦
µ.

This proof can be repeated over other two indices with different valency.
We leave this for the reader to do.

If, by error, we were to choose two indices with the same valency, when
reaching Expression (5.6) products of the type (γx◦

◦
βγ
x
◦
◦
λ) or (c◦x

β
◦c
◦
x
λ
◦) would

appear that are not the Kronecker delta, making the proof invalid. We un-
derstand that this expression can be generalized to tensors of order superior
to r = 5, and proceed to state the “tensor contraction” general theorem.

Theorem 5.1 (Fundamental theorem of tensor contraction). The con-
traction with respect to indices of different valency in mixed tensors of order
r, is a sufficient condition for obtaining another homogeneous tensor of order
(r − 2). �


5.3 The contracted tensor product and tensor
homomorphisms

In Section 3.4 we have dealt with tensor product of tensors, and in Section 3.5
the contracted tensor product concept was defined. Since in that definition the
conditions of “tensor contraction” are satisfied, Theorem 3.1 guarantees that
the contracted tensor products can be considered as simple homomorphisms
(Formula (3.16)), that transform tensors from a tensor space into tensors of
another space by the action of a contracted tensor homomorphism.

This point of view will be exploited at the end of this chapter, more pre-
cisely, on tensors of simple order, and it will be executed using the matrix
expression

Tσ′ = Hnr−2,nr • Tσ; with σ = nr; σ′ = nr−2. (5.10)

Nevertheless, before ending, we want to point out the analytical representation
of the contracted tensor product, in the classic mode.

Given the tensors �t = t
α
◦
β
◦
◦
γ�eα ⊗ �eβ ⊗ �e∗γ and �v = v

◦
λ
◦
µ�e
∗λ ⊗ �e∗µ, we look

for the contracted tensor product tensor �p = C
(
α
λ

)
(�t ⊗ �v), with �p = p

β
◦
◦
γ
◦
µ�eβ ⊗

�e∗γ ⊗ �e∗µ.
This can be done in two different forms:

1. We obtain the tensor product tensor
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�w = �t⊗ �v = w
α
◦
β
◦
◦
γ
◦
λ
◦
µ�eα ⊗ �eβ ⊗ �e∗γ ⊗ �e∗λ ⊗ �e∗µ (5.11)

with the condition
w
α
◦
β
◦
◦
γ
◦
λ
◦
µ = t

α
◦
β
◦
◦
γ · v

◦
λ
◦
µ (5.12)

and then we contract

�p = C
(
α

λ

)
�w = w

θ
◦
β
◦
◦
γ
◦
θ
◦
µ�eβ ⊗ �e∗γ ⊗ �e∗µ,

where we also have
w
θ
◦
β
◦
◦
γ
◦
θ
◦
µ = w

α
◦
β
◦
◦
γ
◦
λ
◦
µ · δ

◦
α
λ
◦, (5.13)

where δ
◦
α
λ
◦ is the Kronecker tensor.

2. The second form is used by certain authors, who prefer a direct execu-
tion of the product and the contraction simultaneously, based on matrix
representations:

p
β
◦
◦
γ
◦
µ = (tα◦

β
◦
◦
γ) · δ

◦
α
λ
◦ · (v

◦
λ
◦
µ). (5.14)

Evidently, (5.14) is the result of replacing (5.12) into (5.13), because δ
◦
α
λ
◦ ≡

δ
λ
◦
◦
α is symmetric, and then, both methods lead to the same result.

Example 5.1 (Matrix associated with an operator). Consider two linear spaces
V n(K) and W p(K). In the first space we consider a linear operator T1 with as-
sociated matrix An in the basis {�ei} of the given space. Similarly, another lin-
ear operator T2, with associated matrix Bp, transforms the vectors of W p(K)
in the basis {�εj}. We look for the matrix associated with the operator T
defined to transform vectors in the tensor space V ⊗W (K), in such way that

T (�V ⊗ �W ) = T1(�V )⊗ T2( �W ).

Will An ⊗ Bp be the T operator matrix? That is, will “the tensor product
homomorphism” be the homomorphisms’ tensor product?

Solution: For a homomorphism to be correctly defined we need to know
the image vectors of all basic vectors that will constitute the columns of the
operator associated matrix.

The basis of our tensor space is β = {�ei ⊗ �ej}, with i = 1, 2, . . . , n and
j = 1, 2, . . . , p.

The sought after matrix T is a square matrix of n× p rows and columns,
because in the basis there exist n × p vectors the images of which are to be
studied.

Applying the formula proposed in the statement to an arbitrary basic
vector, we have
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T (�ei ⊗ �ej) = T1(�e1)⊗ T2(�ej)

=

[�e1 �e2 · · · �en ]


a1i
a2i
...

ani


⊗

[�e1 �e2 · · · �ep ]


b1j
b2j
...

bpj



t

= [�e1 �e2 · · · �en ]


a1i
a2i
...

ani

⊗ [ b1j b2j · · · bpj ]


�e1
�e2
...
�ep



=

[�e1 �e2 · · · �en ]


a1ib1j a1ib2j · · · a1ibpj
a2ib1j a2ib2j · · · a2ibpj
· · · · · · · · · · · ·

anib1j anib2j · · · anibpj


⊗


�e1
�e2
...
�ep


= a1ib1j�e1 ⊗ �e1 + a1ib2j�e1 ⊗ �e2 + · · ·+ ahibkj�eh ⊗ �ek

+ · · ·+ anibpj�en ⊗ �ep

with h = 1, 2, . . . , n; k = 1, 2, . . . , p.
Assigning now values to the indices (i, j), according to the axiomatic or-

dering criterion for the basis B = {�ei ⊗ �ej} and placing the image vectors in
consecutive columns, the matrix Tn×p is obtained, which is the solution to the
problem, and the columns of which correspond to

T (�e1 ⊗ �e1) T (�e1 ⊗ �e2) · · · T (�eh ⊗ �ek) · · · T (�en ⊗ �ep)

T =



a11b11 a11b12 · · · a1hb1k · · · a1nb1p
...

...
...

...
...

...
a21b11 a21b12 · · · a2hb1k · · · a2nb1p

...
...

...
...

...
...

ah1b11 ah1b12 · · · ahhb1k · · · ahnb1p
...

...
...

...
...

...
an1b11 an1b12 · · · anhb1k · · · annb1p

...
...

...
...

...
...


,

a square matrix of order n× p.
Assigning particular values to n and p (for example n = 2; p = 3) we

immediately detect the following block construction:

T =


a11B · · · a1hB · · · a1nB
· · · · · · · · · · · · · · ·

ah1B · · · ahhB · · · ahnB
· · · · · · · · · · · · · · ·

an1B · · · anhB · · · annB

 = A⊗B.
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The conclusion is that the proposed theorem in our statement: “the tensor
product homomorphism (T ) is the tensor product of the given homomor-
phisms (T1 ⊗ T2)” is correct. �


Example 5.2 (Change of basis). In the geometric affine ordinary space E2(IR)
we consider two bases: the initial basis of the unit classic vectors of a rectan-
gular system XOY (on the OX axis and on the OY axis), and the new basis
of the unit vectors on the OX axis and on the bisectrix of the XOY quadrant.

The new unit basic vectors ||�̂ei|| referred to the initial basic vectors ||�eα||,
are

�̂e1 = �e1; �̂e2 =
√
2
2

�e1 +
√
2
2

�e2.

Determine the new components as a function of the initial ones in the
following cases:

1. For a tensor of first order, i.e. the vector vα.
2. For a mixed tensor of second order, i.e. the matrix t

α
◦
◦
β.

3. For a mixed tensor of third order, tα◦
◦
β
γ
◦.

4. Solve the second question using the homomorphism (contracted product)
y
α
◦ = t

α
◦
◦
θx
θ
◦.

Solution:

The change-of-basis can be written in matrix form as

||�̂ei|| = ||�eα||C → [ �̂e1 �̂e2 ] = [�e1 �e2 ]

[
1

√
2
2

0
√
2
2

]
,

and then

C =

[
1

√
2
2

0
√
2
2

]
; C−1 =

[
1 −1
0
√
2

]
; Ct =

[
1 0√
2
2

√
2
2

]
.

1. The tensor analytical equation of the vector is v
i
◦ = v

α
◦γ
i
◦
◦
α, and in matrix

form

[v i◦] = [γ i◦
◦
α][v

α
◦ ]→

[
v̂1

v̂2

]
= C−1

[
v1

v2

]
(5.15)[

v̂1

v̂2

]
=
[
1 −1
0
√
2

] [
v1

v2

]
=
[
v1 − v2√

2v2

]
.

2. The tensor analytical equation of the vector is t
i
◦
◦
j = t

α
◦
◦
βγ
i
◦
◦
αc
◦
j
β
◦ (classic

matrix method), and in matrix form

[t i◦
◦
j ] = [γ i◦

◦
α][t
α
◦
◦
β][c

β
◦
◦
j ],
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that is,[
t̂
1
◦
◦
1 t̂

1
◦
◦
2

t̂
2
◦
◦
1 t̂

2
◦
◦
2

]
= C−1

[
t
1
◦
◦
1 t

1
◦
◦
2

t
2
◦
◦
1 t

2
◦
◦
2

]
(Ct)t =

[
1 −1
0
√
2

] [
t
1
◦
◦
1 t

1
◦
◦
2

t
2
◦
◦
1 t

2
◦
◦
2

][
1

√
2
2

0
√
2
2

]

=

[
(t1◦
◦
1 − t

2
◦
◦
1)

√
2
2 [(t1◦

◦
1 − t

2
◦
◦
1) + (t1◦

◦
2 − t

2
◦
◦
2)]√

2t2◦
◦
1 (t2◦

◦
1 + t

2
◦
◦
2)

]
.

3. The tensor analytical equation of the vector (direct method) is

t
i
◦
◦
j
k
◦ = t

α
◦
◦
β
γ
◦γ
i
◦
◦
αc
◦
j
β
◦γ
k
◦
◦
γ; σ = nr = 23 = 8.

and its “extended” matrix expression

T̂σ,1 = Z−1σ,σTσ,1 → T̂8,1 = (C−1 ⊗ Ct ⊗ C−1) • T8,1

Z−1σ = C−1 ⊗ Ct ⊗ C−1 =
[
1 −1
0
√
2

]
⊗
[

1 0√
2
2

√
2
2

]
⊗
[
1 −1
0
√
2

]
;

T̂8,1 =



t̂
1
◦
◦
1
1
◦

t̂
1
◦
◦
1
2
◦

t̂
1
◦
◦
2
1
◦

t̂
1
◦
◦
2
2
◦

t̂
2
◦
◦
1
1
◦

t̂
2
◦
◦
1
2
◦

t̂
2
◦
◦
2
1
◦

t̂
2
◦
◦
2
2
◦



= Z−1σ,σ • T8,1

=



1 −1 0 0 −1 1 0 0
0

√
2 0 0 0 −

√
2 0 0√

2
2 −

√
2
2

√
2
2 −

√
2
2 −

√
2
2

√
2
2 −

√
2
2

√
2
2

0 1 0 1 0 −1 0 −1
0 0 0 0

√
2 −

√
2 0 0

0 0 0 0 0 2 0 0
0 0 0 0 1 −1 1 −1
0 0 0 0 0

√
2 0

√
2


•



t
1
◦
◦
1
1
◦

t
1
◦
◦
1
2
◦

t
1
◦
◦
2
1
◦

t
1
◦
◦
2
2
◦

t
2
◦
◦
1
1
◦

t
2
◦
◦
1
2
◦

t
2
◦
◦
2
1
◦

t
2
◦
◦
2
2
◦



,

that is,
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t̂
1
◦
◦
1
1
◦ = t

1
◦
◦
1
1
◦ − t

1
◦
◦
1
2
◦ − t

2
◦
◦
1
1
◦ + t

2
◦
◦
1
2
◦

t̂
1
◦
◦
1
2
◦ =

√
2t1◦
◦
1
2
◦ −

√
2t2◦
◦
1
2
◦

t̂
1
◦
◦
2
1
◦ =

√
2
2

(t1◦
◦
1
1
◦ − t

1
◦
◦
1
2
◦ + t

1
◦
◦
2
1
◦ − t

1
◦
◦
2
2
◦ − t

2
◦
◦
1
1
◦ + t

2
◦
◦
1
2
◦ − t

2
◦
◦
2
1
◦ + t

2
◦
◦
2
2
◦)

t̂
1
◦
◦
2
2
◦ = t

1
◦
◦
1
2
◦ + t

1
◦
◦
2
2
◦ − t

2
◦
◦
1
2
◦ − t

2
◦
◦
2
2
◦

t̂
2
◦
◦
1
1
◦ =

√
2t2◦
◦
1
1
◦ −

√
2t2◦
◦
1
2
◦

t̂
2
◦
◦
1
2
◦ = 2t2◦

◦
1
2
◦

t̂
2
◦
◦
2
1
◦ = t

2
◦
◦
1
1
◦ − t

2
◦
◦
1
2
◦ + t

2
◦
◦
2
1
◦ − t

2
◦
◦
2
2
◦

t̂
2
◦
◦
1
2
◦ =

√
2t2◦
◦
1
2
◦ +

√
2t2◦
◦
2
2
◦.

4. The given tensor homomorphism can be interpreted in matrix form as
In the initial basis {�eα}:[

y1

y2

]
=

[
t
1
◦
◦
1 t

1
◦
◦
2

t
2
◦
◦
1 t

2
◦
◦
2

] [
x1

x2

]
, (5.16)

and in the new basis {�̂ei}:[
ŷ1

ŷ2

]
=

[
t̂
1
◦
◦
1 t̂

1
◦
◦
2

t̂
2
◦
◦
1 t̂

2
◦
◦
2

] [
x̂1

x̂2

]
. (5.17)

Applying the relation (5.15) to matrices X and Y , we have[
x̂1

x̂2

]
= C−1

[
x1

x2

]
, (5.18)

and [
ŷ1

ŷ2

]
= C−1

[
y1

y2

]
, (5.19)

and substituting (5.18) and (5.19) into (5.17), we get

C−1
[
y1

y2

]
=

[
t̂
1
◦
◦
1 t̂

1
◦
◦
2

t̂
2
◦
◦
1 t̂

2
◦
◦
2

]
C−1

[
x1

x2

]
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and substituting into the left-hand side of (5.16) the result is

C−1
[
t
1
◦
◦
1 t

1
◦
◦
2

t
2
◦
◦
1 t

2
◦
◦
2

] [
x1

x2

]
=

[
t̂
1
◦
◦
1 t̂

1
◦
◦
2

t̂
2
◦
◦
1 t̂

2
◦
◦
2

]
C−1

[
x1

x2

]
,

and for this to be valid for any matrix X, we must have

C−1
[
t
1
◦
◦
1 t

1
◦
◦
2

t
2
◦
◦
1 t

2
◦
◦
2

]
=

[
t̂
1
◦
◦
1 t̂

1
◦
◦
2

t̂
2
◦
◦
1 t̂

2
◦
◦
2

]
C−1

or [
t̂
1
◦
◦
1 t̂

1
◦
◦
2

t̂
2
◦
◦
1 t̂

2
◦
◦
2

]
= C−1

[
t
1
◦
◦
1 t

1
◦
◦
2

t
2
◦
◦
1 t

2
◦
◦
2

]
C

and operating we finally get[
t̂
1
◦
◦
1 t̂

1
◦
◦
2

t̂
2
◦
◦
1 t̂

2
◦
◦
2

]
=
[
1 −1
0
√
2

] [
t
1
◦
◦
1 t

1
◦
◦
2

t
2
◦
◦
1 t

2
◦
◦
2

][
1

√
2
2

0
√
2
2

]
[
t̂
1
◦
◦
1 t̂

1
◦
◦
2

t̂
2
◦
◦
1 t̂

2
◦
◦
2

]
=

[
(t1◦
◦
1 − t

2
◦
◦
1)

√
2
2 [(t1◦

◦
1 − t

2
◦
◦
1) + (t1◦

◦
2 − t

2
◦
◦
2)]√

2t2◦
◦
1 (t2◦

◦
1 + t

2
◦
◦
2)

]
.

�


5.4 Tensor product applications

In this section, some important tensor products applications are discussed.

5.4.1 Common simply contracted tensor products

First, we mention the contracted tensor product of first-order tensors.
Consider the tensors �x = x

α
◦�eα ∈ V n(K), �y = y

β
◦�e
∗β ∈ V n∗ (K); their

contracted tensor product is

p = C
(
α

β

)
(�x⊗ �y) = C

(
α

β

)
(xα◦y

◦
β�eα⊗�e∗β) = xθyθ = x1y1+x2y2+ · · ·+xnyn,

(5.20)
which is the classic dot product for geometric vectors or the classic inner
product for first-order matrices.

Second, we mention the contracted tensor product of second-order tensors,
known as the “interior product” or “classic product” of matrices.

Consider the tensors �a = a
α
◦
◦
β�eα ⊗ �e∗β and �b = b

γ
◦
◦
δ�eγ ⊗ �e∗δ. Let �c be their

contracted tensor product of indices 2 and 3:
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�c = C
(
γ

β

)
(�a⊗�b) = (aα◦

◦
θ · b

θ
◦
◦
δ)�eα ⊗ �e∗δ,

where
c
α
◦
◦
δ = a

α
◦
◦
θ · b

θ
◦
◦
δ, (5.21)

which is the analytical tensor expression of the classic matrix product, of both
matrices, as tensors.

Remark 5.1. In reality, the discovery of this idea occurred in the reverse order;
first, Kronecker established the interior and tensor products of matrices, and
then, under the name of Einstein’s contraction, this concept was extended to
tensors. �


5.4.2 Multiply contracted tensor products

It is obvious that when contracting a tensor product of tensors of certain
orders, the resulting tensor can be a mixed tensor, with indices not only of
different valency but coming from different factors; we can then continue
contracting more indices, following the same criteria as the first time.

If we do this, we will obtain another tensor and we could practice con-
tractions successively when the following two conditions are satisfied: (a) the
indices must be of different valency, and (b) of different factor-tensor.

Evidently, this concept can be extended to products of three or more ten-
sors, satisfying the associative law by operating the tensors two by two, and
satisfying the index conditions.

On the other hand, the result of the contractions can be a zero-order
tensor, that is, a scalar, which obviously is invariant under changes of basis.
This is the reason why zero-order tensors are called “invariants”.

5.4.3 Scalar and inner tensor products

Certain authors use the term “scalar product of tensors” for the totally con-
tracted product of two tensors A and B, which allow it, and denote it by
A •B = k. The result is a zero-order tensor (a scalar). In this way, but based
on a third fundamental tensor, we will later establish the tensor spaces with
a interior connection.

It is also convenient to mention that, as a consequence of the concept
of contracted tensor product, when selecting a tensor space of mixed tensors
which contravariant and covariant indices coincide (p = q), the tensor product
of two arbitrary tensors of this space can be contracted p times, leading to a
contracted tensor product, that is, another tensor of the same space.

In such cases, some authors talk about a “tensor space with an interior
product”. For example, for p = q = 2, we would have

(t)α◦
β
◦
◦
γ
◦
δ • (t

′)α◦
β
◦
◦
γ
◦
δ = (t′′)α◦

β
◦
◦
γ
◦
δ
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leading to the interior product of tensors concept, and the concept of associ-
ated linear algebras.

Next, some illustrative examples of contractions will be given.

Example 5.3 (Multiple contractions). Consider the tensors

�t = t
◦
α
◦
β
γ
◦�e
∗α ⊗ �e∗β ⊗ �eγ ; �x = xλ�eλ and �u = u

µ
◦
◦
ν�eµ ⊗ �e∗ν

and the tensor P = �t⊗ �x⊗ �u with components

p
◦
α
◦
β
γ
◦
λ
◦
µ
◦
◦
ν = t

◦
α
◦
β
γ
◦ · x

λ
◦ · u

µ
◦
◦
ν.

We want to perform the following multiple contractions:

1. Double:

�p1 = C
(

λ
α

∣∣∣∣µβ
)
(�t⊗ �x⊗ �u) (5.22)

�p2 = C
(

λ
α

∣∣∣∣ γν
)
(�t⊗ �x⊗ �u) (5.23)

�p3 = C
(

µ
α

∣∣∣∣ γν
)
(�t⊗ �x⊗ �u), (5.24)

which lead to

�p1 → p
γ
◦
◦
ν = t

◦
θ
◦
φ
γ
◦x
θ
◦a
φ
◦
◦
ν (5.25)

�p2 → p
◦
β
µ
◦ = t

◦
θ
◦
β
φ
◦x
θ
◦a
µ
◦
◦
φ (5.26)

�p3 → p
◦
β
λ
◦ = t

◦
θ
◦
β
φ
◦x
λ
◦a
θ
◦
◦
φ. (5.27)

2. Triple:

�p4 = C
(

λ
α

∣∣∣∣µβ
∣∣∣∣ γν

)
(�t⊗ �x⊗ �u) (5.28)

�p5 = C
(

µ
α

∣∣∣∣ λβ
∣∣∣∣ γν

)
(�t⊗ �x⊗ �u), (5.29)

which lead to the scalars

p4 = t
◦
θ
◦
φ
w
◦x
θ
◦a
φ
◦
◦
w (5.30)

p5 = t
◦
θ
◦
φ
w
◦x
φ
◦a
θ
◦
◦
w. (5.31)

�
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5.5 Criteria for tensor character based on contraction

In Section 4.5 the tensor criteria for homogeneous tensors were established
with respect to changes of basis in tensor spaces. However, next we will es-
tablish other tensor criteria based on tensor contraction.

We present them as theorems, and in the proof of the third we will examine
in detail its necessarity and sufficiency.

Theorem 5.2 (First elemental criterion for tensor character). The
necessary and sufficient condition for a system of scalars s(α1, α2, · · · , αr) of
order r (the αj are indices) to be a pure homogeneous tensor, of order r,
totally contravariant, is that the expression “totally r-contracted product”:

s(α1, α2, . . . , αr)xα1 · xα2 . . . xαr
; ∀�x = xαj

�e∗αj ∈ V n∗ (K),
j ∈ Ir = {1, 2, . . . , r}; αj ∈ In = {1, 2, . . . , n} (5.32)

be a escalar, that is, be invariant with respect to changes of basis in V n∗ (K).
�


Theorem 5.3 (Second elemental criterion for tensor character). The
necessary and sufficient condition for a system of scalars s(α1, α2, . . . , αr) of
order r to be a pure homogeneous tensor, of order r, totally covariant, is that
the expression “totally r-contracted product”:

s(α1, α2, . . . , αr)xα1 · xα2 . . . xαr ; ∀�x = xαj�eαj
∈ V n(K),

j ∈ Ir = {1, 2, . . . , r}; αj ∈ In = {1, 2, . . . , n} (5.33)

be a escalar, that is, be invariant with respect to changes of basis in V n(K).
�


Theorem 5.4 (General criterion for homogeneous tensor character).
The necessary and sufficient condition for a system of scalars s(α1, α2, · · · , αr)
of order r to be a mixed homogeneous tensor, of order r, p-contravariant and
q-covariant (p+ q = r), is that the expression “totally r-contracted product”:

s(α1, α2, · · · , αp, αp+1, . . . , αp+q)xα1 · xα2 . . . xαp
· xαp+1 · xαp+2 · · ·xαp+q ;

∀�x = xαj
�e∗αj ∈ V n∗ (K); j ∈ Ip = {1, 2, . . . , p}; αj ∈ In

∀�x = xαk�eαk
∈ V n(K) k ∈ Iq = {p+ 1, p+ 2, . . . , p+ q}; αk ∈ In

(5.34)
be a escalar, that is, be invariant with respect to changes of basis in V n(K)
and the corresponding changes of basis “in dual bases” in V n∗ (K). �


Proof.
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Necessarity:

Let �t = t
α
◦
β
◦
◦
γ�eα ⊗ �eβ ⊗ �e∗γ be a mixed tensor of third order (r = 3), p = 2

times contravariant and q = 1 covariant, with p+ q = 2 + 1 = 3 = r.
Consider the vectors �x = xλ�e

∗λ, �y = yµ�e
∗µ and �z = zν�eν , where �x, �y ∈

V n∗ (K) and �z ∈ V n(K).
If we execute the r-contracted tensor product:

p = C
(

α
λ

∣∣∣∣βµ
∣∣∣∣λν

)
(�t⊗ �x⊗ �y ⊗ �z) (5.35)

we get
p = t

θ
◦
φ
◦
◦
w · xθ · yφ · z

w = scalar (zero-order tensor), (5.36)

which proves that if �t is a tensor, the theorem holds.

Sufficiency:

Consider now a system of scalars such that

p = s(α, β, γ) · xα · yβ · zγ (5.37)

for any pair of vectors �x = xα�e
∗α, �y = yβ�e

∗β ∈ V n∗ (K) and for all �z = zγ�eγ ∈
V n(K) where p is a given scalar.

We perform a change-of-basis in the linear space V n(K), and in the dual
space V n∗ (K) in which we choose the dual reciprocal basis of the one selected
in V n(K).

Since p is a fixed scalar, the relation (5.37) is also satisfied in the new
basis, that is, the p remains invariant for any new vector:

p=s(i, j, k)·xi·yj ·zk; ∀�x=xi�e
∗i, �y = yj�e

∗j ∈ V n∗ (K) and ∀�z=zk�ek ∈ V n(K).
(5.38)

Using the change-of-basis relations (3.46) and (3.24):

�e∗i = γ
◦
α
i
◦ �e
∗α in V n∗ (K),

�ek = c
γ
◦
◦
k�eγ in V n(K)

we get the expressions that directly relate the vector components, in the initial
and new bases:

xα = γ
◦
α
i
◦xi; yβ = γ

◦
β
j
◦yj ,

for vectors of V n∗ (K), and
zγ = c

γ
◦
◦
kz
k,

for the vector of V n(K).
Transposing these equalities one gets
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xα = xiγ
i
◦
◦
α; yβ = yjγ

j
◦
◦
β; zγ = zkc

◦
k
γ
◦ (5.39)

and replacing (5.39) and (5.37) we obtain

p = s(α, β, γ)(xiγ
i
◦
◦
α)(yjγ

j
◦
◦
β)(z

kc
◦
k
γ
◦),

which is operated as

p = (xi · yj · zk)(s(α, β, γ)γ i◦
◦
αγ
j
◦
◦
βc
◦
k
γ
◦). (5.40)

Equating the constant p in (5.38) and (5.40), we get

p = (xi · yj · zk)s(i, j, k) = (xi · yj · zk)
(
s(α, β, γ)γ i◦

◦
αγ
j
◦
◦
βc
◦
k
γ
◦
)

and since the previous relation must hold for all xi, yj , zk, it must be

s(i, j, k) = s(α, β, γ)γ i◦
◦
αγ
j
◦
◦
βc
◦
k
γ
◦, (5.41)

which shows that the system of scalars s(α, β, γ) satisfies the general tensor
character criterion, Formula (4.34), so that the system of scalars must be
notated as

s(α, β, γ) = t
α
◦
β
◦
◦
γ or s(i, j, k) = t

i
◦
j
◦
◦
k,

which proves its tensor character. Obviously, the necessity and the sufficiency
have been proved only for r = 3, but we have preferred this simple case,
which clearly reveals the process followed, to the general case with the generic
r, which hides the demonstration process under the confused complexity of
subindices.

We close this part, dedicated to tensor product contraction, simple or
multiple, of homogeneous tensors, by pointing out that its treatment can be
considered in the wider frame of absolute tensors, that is, of heterogeneous
tensors established on diverse factor linear spaces, studied in Chapters 2 and
3, and in Chapter 4, where the absolute tensor character criteria for them
were established, Formulas (4.24), (4.25), (4.34) and (4.35).

However, the most frequent use of contraction occurs in the homogeneous
tensor algebra, which justifies the decision made in this chapter.

5.6 The contracted tensor product in the reverse sense:
The quotient law

Theorem 5.5 (Quotient law). Consider the system of scalars S(α1, . . . , αr)
of order r. A sufficient condition for such a system to be considered a homo-
geneous tensor is that its p-contracted tensor product by a generic (arbitrary)
homogeneous tensor �b of order r′, called a “test tensor”, lead to another tensor
of order (r + r′ − 2p). �
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Proof. We state the proof for a concrete case.
Let s(α, β, γ, δ) be the data system of scalars, of order r = 4, and let

�b = b
λ
◦
◦
µ
◦
ν�eλ⊗�e∗µ⊗�e∗ν be the “test” tensor, of order r′ = 3. As a consequence

of their doubly contracted (p = 2) product we arrive at the set of scalars hα◦
◦
δ
◦
µ,

which is a known tensor, of order r + r′ − 2p = 4 + 3− 2× 2 = 3.
Since �h is a tensor, due to the tensor criteria we have

h
i
◦
◦
d
◦
m = h

α
◦
◦
δ
◦
µγ
i
◦
◦
αc
◦
d
δ
◦c
◦
m
µ
◦. (5.42)

In addition we have

h
α
◦
◦
δ
◦
µ = C

(
λ
β

∣∣∣∣ γν
)(

s(α, β, γ, δ)⊗ b
λ
◦
◦
µ
◦
ν

)
, (5.43)

a relation stated in the initial basis of V n(K), and also

h
i
◦
◦
d
◦
m = C

(
L
j

∣∣∣∣ kn
)(

s(i, j, k, d)⊗ b
�
◦
◦
m
◦
n

)
, (5.44)

stated in the final basis of V n(K).
Executing the contraction indicated in (5.43) and (5.44) and using the

Kronecker deltas, we get the relations

h
α
◦
◦
δ
◦
µ = s(α, β, γ, δ)δβ◦

◦
λδ
◦
γ
ν
◦b
λ
◦
◦
µ
◦
ν (5.45)

h
i
◦
◦
d
◦
m = s(i, j, k, d)δj◦

◦
�δ
◦
k
n
◦b
�
◦
◦
m
◦
n (5.46)

and since�b is a tensor (the “test” tensor), we state its tensor character criterion
in the form (4.35), leading to

b
λ
◦
◦
µ
◦
ν = b

�
◦
◦
m
◦
nc
λ
◦
◦
�γ
◦
µ
m
◦ γ
◦
ν
n
◦ (5.47)

and replacing (5.47) into (5.45), we get

h
α
◦
◦
δ
◦
µ = s(α, β, γ, δ)δβ◦

◦
λδ
◦
γ
ν
◦b
�
◦
◦
m
◦
nc
λ
◦
◦
�γ
◦
µ
m
◦ γ
◦
ν
n
◦. (5.48)

Finally, substituting (5.46) and (5.48) into the left- and right-hand sides
of (5.42), respectively, we get

s(i, j, k, d)δj◦
◦
�δ
◦
k
n
◦b
�
◦
◦
m
◦
n =

[
s(α, β, γ, δ)δβ◦

◦
λδ
◦
γ
ν
◦b
�
◦
◦
m
◦
nc
λ
◦
◦
�γ
◦
µ
m
◦ γ
◦
ν
n
◦
]
γ
i
◦
◦
αc
◦
d
δ
◦c
◦
m
µ
◦,

and conveniently grouping the factors we obtain[
s(i, j, k, d)δj◦

◦
�δ
◦
k
n
◦
]
b
�
◦
◦
m
◦
n=
[
s(α, β, γ, δ)γ i◦

◦
α(δ
β
◦
◦
λc
λ
◦
◦
�)(γ

◦
µ
m
◦ c
◦
m
µ
◦)(δ

◦
γ
ν
◦γ
◦
ν
n
◦), c

◦
d
δ
◦
]
b
�
◦
◦
m
◦
n
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and executing the indicated contractions:[
s(i, j, k, d)δj◦

◦
�δ
◦
k
n
◦
]
b
�
◦
◦
m
◦
n =

[
s(α, β, γ, δ)γ i◦

◦
α(c
β
◦
◦
�) · 1 · (γ

◦
γ
n
◦)c
◦
d
δ
◦
]
b
�
◦
◦
m
◦
n.

Finally, passing everything to the left-hand side and taking common factors,
the result is[

s(i, j, k, d)δj◦
◦
�δ
◦
k
n
◦ − s(α, β, γ, δ)γ i◦

◦
αc
β
◦
◦
�γ
◦
γ
n
◦c
◦
d
δ
◦
]
b
�
◦
◦
m
◦
n = 0. (5.49)

Since the “test” tensor �b �= �Ω (it is not the null tensor), their components
b
�
◦
◦
m
◦
n �= 0, which forces the null factor to be the bracketed term in (5.49)

s(i, j, k, d)δj◦
◦
�δ
◦
k
n
◦ = s(α, β, γ, δ)γ i◦

◦
αc
β
◦
◦
�γ
◦
γ
n
◦c
◦
d
δ
◦. (5.50)

Next, we isolate the factor s(i, j, k, d) on the left-hand side of (5.50). To
this end, we multiply both members by the Kronecker delta δ

�
◦
◦
j , inverse of

δ
j
◦
◦
�:

s(i, j, k, d)(δ �◦
◦
jδ
j
◦
◦
�)δ
◦
k
n
◦ = s(α, β, γ, δ)γ i◦

◦
α(δ
�
◦
◦
jc
β
◦
◦
�)γ
◦
γ
n
◦c
◦
d
δ
◦

or
s(i, j, k, d)(1)δ◦k

n
◦ = s(α, β, γ, δ)γ i◦

◦
α(c
◦
�
β
◦δ
�
◦
◦
j)γ
◦
γ
n
◦c
◦
d
δ
◦

contracting the grouped product, and multiplying both members by δ
◦
n
k
◦, the

inverse of δ◦k
n
◦, we get

s(i, j, k, d)(δ◦n
k
◦δ
◦
k
n
◦) = s(α, β, γ, δ)γ i◦

◦
αc
◦
�
β
◦(δ
◦
n
k
◦γ
◦
γ
n
◦)c
◦
d
δ
◦

or
s(i, j, k, d)(1) = s(α, β, γ, δ)γ i◦

◦
αc
◦
�
β
◦(γ
n
◦
◦
γδ
◦
n
k
◦)c
◦
d
δ
◦,

and contracting the grouped product, we finally get

s(i, j, k, d) = s(α, β, γ, δ)γ i◦
◦
αc
◦
�
β
◦γ
k
◦
◦
γc
◦
d
δ
◦. (5.51)

This last expression indicates that the set of scalars s(α, β, γ, δ) is a tensor,
since it satisfies a concrete tensor criterion. In addition, it shows us its whole
nature. In reality it is

s(α, β, γ, δ) = s
α
◦
◦
β
γ
◦
◦
δ. (5.52)

The theorem that has been proved is called the “quotient law”, a disputed
title, that some impute to a simple conception of this relation among tensors,
such as

If X · T1 = T2 → X = T2
T1
→ X = T2 · T−11 , which is certainly simple, and

at least justifies its name.
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This theorem, which is frequently used in solving tensor analysis theoreti-
cal problems and also in practical exercises, to detect whether or not a system
of scalars is a tensor, has severe limitations that it is convenient to point out.

On one hand, one must be lucky when choosing the test tensor because, if
after an unfortunate selection, the contraction does not lead to a tensor, no
conclusion can be drawn, because of the sufficient character of the theorem.
So, another test tensor must be selected and so on.

On the other hand, frequently, after the contraction is performed with the
selected “test” tensor, we have great difficulties in proving that the result is
another tensor, arriving at a new problem that can be even more complex
than the initial one.

Consequently, the most frequent applications of the “quotient law” are
those in which the contracted product is an invariant, which it is well known
to be a zero-order tensor.

5.7 Matrix representation of permutation
homomorphisms

We say that a tensor is the “permutation tensor of a given tensor” if it has
the same associated scalars as the given tensor, but in different positions; one
possibility of building a permutation tensor of a given tensor is to create with
a different name a tensor with at least a changed index but with the same
scalars:

∀tα◦
◦
β
γ
◦
◦
δ ≡ u

α′

◦
◦
β′
γ′

◦
◦
δ′,

where (α′, β′, γ′, δ′) is one of the possible permutations of (α, β, γ, δ).
Consider the linear space Kσ, σ = nr, i.e., the linear space of matri-

ces Tσ,1 ∈ Kσ, “extensions” of the homogeneous tensors of a generic type
t
α1
◦
◦
α2

α3
◦ · · ·

◦
αr
, defined over the “factor” linear space V n(K). We will study the

permutation homomorphisms P : Kσ → Kσ, the associated square matrix of
which, Pnr , is a permutation of the unit matrix Inr and which transforms by
means of the following matrix equation:

Pnr • Tσ,1 = T ′σ,1. (5.53)

These transformations maintain the tensor dimension σ, together with its
scalars, though obviously they change them in position. We will study two
different types of homomorphisms P .

5.7.1 Permutation matrix tensor product types in Kn

Consider the tensor

T =
[
t
α
◦
β
◦
]
=

 a b c d
e f g h
m n p q
r s t u


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and the tensor

T ′ =
[
u
γ
◦
δ
◦
]
=

 d c b a
q p n m
h g f e
u t s r

 ,

which obviously is a permutation of T , where σ = 42 = 16.
We build the corresponding matrix extensions of T and T ′ (Tσ,1 = T16,1

and T ′σ,1 = T ′16,1), and we observe that the permutation matrix that relates
both is

T ′16,1 = P · T16,1,
where

T ′16,1 =



d
c
b
a
q
p
n
m
h
g
f
e
u
t
s
r


; T16,1 =



a
b
c
d
e
f
g
h
m
n
p
q
r
s
t
u



P ≡ P16,16 =



0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

|
|
|
|

Ω

|
|
|
|

Ω

|
|
|
|

Ω

−−−− + −−−− + −−−− + −−−−

Ω

|
|
|
|

Ω

|
|
|
|

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

|
|
|
|

Ω

−−−− + −−−− + −−−− + −−−−

Ω

|
|
|
|

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

|
|
|
|

Ω

|
|
|
|

Ω

−−−− + −−−− + −−−− + −−−−

Ω

|
|
|
|

Ω

|
|
|
|

Ω

|
|
|
|

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0



.

An analysis of P discovers that in this case

P =

 1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⊗
 0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 ,

i.e., the permutation matrix is the tensor product of two permutation matrices
that operate in the linear space K4, which reveals that some P have this type
of construction.
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5.7.2 Linear span of precedent types

In Example 4.5 of Chapter 4, we considered the five permutation tensors
U, V,W,R and S of a given tensor T = [tα◦

◦
β
γ
◦] of third order (r = 3, n =

3 and σ = nr = 27). We will examine what type of construction has the
permutation homomorphism matrix that applies P(1) : [t

α
◦
◦
β
γ
◦] → [uγ◦

α
◦
◦
β], that

is, U27,1 = P(1) • T27,1. The solution matrices in this case are (see Example
4.5)

T27,1 =



1
0
−1
2
3
0
−1
2
0

−−
2
−1
1
0
1
0
2
0
1

−−
0
0
1
5
1
2
1
0
0



; U27,1 =



1
2
−1
2
0
2
0
5
1

−−
0
3
2
−1
1
0
0
1
0

−−
−1
0
0
1
0
1
1
2
0



; where β = {Ei} ≡


 1
0
0

 0
1
0

 0
0
1

 .

We have that

P(1) ≡ P27 = E1⊗I3⊗I3⊗Et1+E2⊗I3⊗I3⊗Et2+E3⊗I3⊗I3⊗Et3, (5.54)

that is, a matrix written as a linear combination of tensor products.
With respect to the permutation tensor V :

P(2) : [t
α
◦
◦
β
γ
◦]→ [v◦β

γ
◦
α
◦ ],

that is,
V27,1 = P(2) • T27,1.

The solution matrices are in this case, the T27,1 matrix previously cited, and
matrices
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V27,1 =



1
2
0
0−1
0−1
1
1−−
2
0
5
3
1
1
0
0
2−−−1
2
1
2
0
0
0
1
0


P(2) ≡ P ′27 = Et1⊗I3⊗I3⊗E1+Et2⊗I3⊗I3⊗E2+Et3⊗I3⊗I3⊗E3. (5.55)

The permutation matrix P(2) is of the type P(1), that is, a linear combination
of tensor products, and P(2) is P t(1).

For the permutation tensor W :

P(3) : [t
α
◦
◦
β
γ
◦]→ [wα◦

γ
◦
◦
β],

that is
W27,1 = P(3) • T27,1

the solution is given by the matrices

W27,1 =



1
2
−1
0
3
2
−1
0
0

−−
2
0
2
−1
1
0
1
0
1

−−
0
5
1
0
1
0
1
2
0


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P(3) = I3 ⊗
[
E1 ⊗ I3 ⊗ Et1 + E2 ⊗ I3 ⊗Et2 + E3 ⊗ I3 ⊗ Et3

]
, (5.56)

also a linear combination of tensor products. P(3) is symmetric.

Next, we analyze the permutation tensor R:

P(4) : [t
α
◦
◦
β
γ
◦]→ [rγ◦

◦
β
α
◦ ],

that is,
R27,1 = P(4) • T27,1,

the solution of which is

R27 =



1
2
0
2
0
5
−1
2
1

−−
0
−1
0
3
1
1
2
0
0

−−
−1
1
1
0
0
2
0
1
0



; β ≡ basis of IR3 ≡ {E1, E2, E3} ≡


 1
0
0

 0
1
0

 0
0
1



P(4) =
∑

1≤i,j≤3
(Ei ⊗ Etj)⊗ I3 ⊗ (Eti ⊗ Ej), (5.57)

also a sum of tensor products. P(4) is symmetric.

We arrive at the last permutation S of Example 4.5, i.e.,

P(5) : [t
α
◦
◦
β
γ
◦]→ [s◦β

α
◦
γ
◦],

that is,
S27,1 = P(5) • T27,1,

with solution matrices
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S27,1 =



1
0−1
2−1
1
0
0
1−−
2
3
0
0
1
0
5
1
2−−−1
2
0
2
0
1
1
0
0


with

P(5) =
[
E1 ⊗ I3 ⊗ Et1 + E2 ⊗ I3 ⊗ Et2 + E3 ⊗ I3 ⊗ Et3

]
⊗ I3 = P t(5). (5.58)

We end the section dedicated to permutation homomorphisms by citing the
model of this type of matrices which will be called “transposer” since it oper-
ates over second-order homogeneous tensors, the square matrices aα◦

β
◦, b
α
◦
◦
β, c
◦
α
β
◦

or d
◦
α
◦
β, with r = 2;n = n;σ = n2, transposing them.

Whence
H(aα◦

β
◦) = a

β
◦
α
◦ ; H(bα◦

◦
β) = b

◦
β
α
◦ , . . . , etc.

is the matrix called a “transposition matrix” in Section 1.3.7, Formula (1.38).
Here we present a generalization, in its usual mode of permutation homomor-
phism:

T ′σ,1 = Pn2 • Tσ,1,
where Tσ,1 is the extension matrix that is to be transposed.

The permutation “transposer” is the block matrix:

Pn2 = P =



E11 | E21 | · · · | En1
−− + −− + −− + −−
E12 | E22 | · · · | En2
−− + −− + −− + −−
· · · | · · · | · · · | · · ·
−− + −− + −− + −−
E1n | E2n | · · · | Enn


, (5.59)

where B = {Eij} is the canonical basis of the tensor space Kn×n of square
matrices of order n (noting the block ordering inside Pn2)

The reader can test its effect using it in the exercises.
With respect to the permutation type “transposer”, responds to the ex-

pression
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Pn2 =
∑

Eii ⊗ Eii +
∑

i<j;i,j∈{1,2,···,n}
(Eij ⊗ Eji + Eji ⊗ Eij). (5.60)

Example 5.4 (Permutation homomorphisms). Consider the linear space τ27(IR)
as a tensor product of IR3 ⊗ IR∗3 ⊗ IR3. Let T ∈ τ be a tensor of components

t
α
◦
◦
β
γ
◦ =

[ 1 2 0 | 2 0 5 | −1 2 1
0 −1 0 | 3 1 1 | 2 0 0
−1 1 1 | 0 0 2 | 0 1 0

]
,

where α is the row, β is the column, and γ is the matrix.
Let �̂e1(−1, 0,−1), �̂e2(1, 1, 0), �̂e3(0, 0, 3) be a change of the canonical basis

of IR3 that produces the corresponding change-of-basis of tensor nature in τ .
Determine the new components of tensor T , using the permutation homo-

morphisms, to execute the change-of-basis on the tensor ordered according to
the axiom.

Solution: It is evident that the assigning of subindices in the statement does
not correspond to the axiomatic order for the canonical basis of IR3⊗IR∗3⊗IR3,
which requires (see the theory and Example 2.1, question 4) that the matrix
index (γ) must be the first and the column index (β) must be the last. So,
before executing the change-of-basis, we must find the fundamental tensor
(t′)γ◦

α
◦
◦
β, which, subject to adequate permutation, provides the given data.

Tensor (t′)γ◦
α
◦
◦
β is the one that must be subject to the change-of-basis, given

by the theory, and obviously the permutation must be undone in order to find
the sought after tensor t

i
◦
◦
j
k
◦.

Let T ′27,1, be the stretched version of (t′)γ◦
α
◦
◦
β, and T27,1, the stretched

version of tα◦
◦
β
γ
◦ (data).

The permutation relation between them is

P(2) · T ′27,1 = T27,1,

where P(2) (Formula (5.55)) is

P(2) = Et1 ⊗ I9 ⊗ E1 + Et2 ⊗ I9 ⊗ E2 + Et3 ⊗ I9 ⊗ E3

= [ 1 0 0 ]⊗ I9 ⊗

 1
0
0

+ [ 0 1 0 ]⊗ I9 ⊗

 0
1
0

+ [ 0 0 1 ]⊗ I9 ⊗

 1
0
0

 .

Then, P(2) becomes
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P(2) =



1 0 0
0 0 0
0 0 0
0 1 0
0 0 0
0 0 0
0 0 1
0 0 0
0 0 0

|
|
|
|
|
|
|
|

Ω

|
|
|
|
|
|
|
|

Ω

|
|
|
|
|
|
|
|

0 0 0
1 0 0
0 0 0
0 0 0
0 1 0
0 0 0
0 0 0
0 0 1
0 0 0

|
|
|
|
|
|
|
|

Ω

|
|
|
|
|
|
|
|
|

Ω

|
|
|
|
|
|
|
|

0 0 0
0 0 0
1 0 0
0 0 0
0 0 0
0 1 0
0 0 0
0 0 0
0 0 1

|
|
|
|
|
|
|
|

Ω

|
|
|
|
|
|
|
|

Ω

−− + −− + −− + −− + −− + −− + −− + −− + −−

Ω

|
|
|
|
|
|
|
|

1 0 0
0 0 0
0 0 0
0 1 0
0 0 0
0 0 0
0 0 1
0 0 0
0 0 0

|
|
|
|
|
|
|
|

Ω

|
|
|
|
|
|
|
|

Ω

|
|
|
|
|
|
|
|

0 0 0
1 0 0
0 0 0
0 0 0
0 1 0
0 0 0
0 0 0
0 0 1
0 0 0

|
|
|
|
|
|
|
|

Ω

|
|
|
|
|
|
|
|

Ω

|
|
|
|
|
|
|
|

0 0 0
0 0 0
1 0 0
0 0 0
0 0 0
0 1 0
0 0 0
0 0 0
0 0 1

|
|
|
|
|
|
|
|

Ω

−− + −− + −− + −− + −− + −− + −− + −− + −−

Ω

|
|
|
|
|
|
|
|

Ω

|
|
|
|
|
|
|
|

1 0 0
0 0 0
0 0 0
0 1 0
0 0 0
0 0 0
0 0 1
0 0 0
0 0 0

|
|
|
|
|
|
|
|

Ω

|
|
|
|
|
|
|
|

Ω

|
|
|
|
|
|
|
|
|

0 0 0
1 0 0
0 0 0
0 0 0
0 1 0
0 0 0
0 0 0
0 0 1
0 0 0

|
|
|
|
|
|
|
|

Ω

|
|
|
|
|
|
|
|

Ω

|
|
|
|
|
|
|
|
|

0 0 0
0 0 0
1 0 0
0 0 0
0 0 0
0 1 0
0 0 0
0 0 0
0 0 1



.

Since P(2) is orthogonal, P−1(2) ≡ P t(2),

P−1(2) =



100000000
000100000
000000100

|
|
|

Ω
|
|
|

Ω

−−−−−−+−−−−−−+−−−−−−
Ω

|
|
|
100000000
000100000
000000100

|
|
|

Ω

−−−−− +−−−−−−+−−−−−−
Ω

|
|
|

Ω
|
|
|
100000000
000100000
000000100

−−−−− +−−−−−−+−−−−−−
010000000
000010000
000000010

|
|
|

Ω
|
|
|

Ω

−−−−−−+−−−−−−+−−−−−−
Ω

|
|
|
010000000
000010000
000000010

|
|
|

Ω

−−−−− +−−−−−−+−−−−−−
Ω

|
|
|

Ω
|
|
|
010000000
000010000
000000010

−−−−− +−−−−−−+−−−−−−
001000000
000001000
000000001

|
|
|

Ω
|
|
|

Ω

−−−−−−+−−−−−−+−−−−−−
Ω

|
|
|
001000000
000001000
000000001

|
|
|

Ω

−−−−− +−−−−−−+−−−−−−
Ω

|
|
|

Ω
|
|
|
001000000
000001000
000000001

−−−−− +−−−−−−+−−−−−−



.
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Returning to the initial permutation relations, we get

T ′27,1 = P−1(2) · T27,1 = P−1(2)



1
2
0
0
−1
0
−1
1
1

−−
2
0
5
3
1
1
0
0
2

−−
−1
2
1
2
0
0
0
1
0



=



1
0
−1
2
3
0
−1
2
0

−−
2
−1
1
0
1
0
2
0
1

−−
0
0
1
5
1
2
1
0
0



.

Since T ′27,1 is the stretched version of the fundamental tensor (t′)γ◦
α
◦
◦
β, ac-

cording to the Formula (4.36) the corresponding is T̂ ′27,1, the stretched version

of (t′)k◦
i
◦
◦
j , with expression

T̂ ′27,1 = Z−1 · T ′27,1; with Z−1 = C−1 ⊗ C−1 ⊗ Ct.

In our case is

C =

[ −1 1 0
0 1 0
−1 0 3

]
; C−1 =

 −1 1 0
0 1 0

−1/3 1/3 1/3

 ; Ct =

[ −1 0 −1
1 1 0
0 0 3

]
.

Then, the matrix associated with the indicated change-of-basis is

Z−1=(C−1 ⊗ C−1)⊗ Ct =



1 −1 0 | −1 1 0 | 0 0 0
0 −1 0 | 0 1 0 | 0 0 0

1/3−1/3−1/3 | −1/3 1/3 1/3 | 0 0 0
−− −− −−+ −−−−−−+ −−−−−−
0 0 0 | −1 1 0 | 0 0 0
0 0 0 | 0 1 0 | 0 0 0
0 0 0 | −1/3 1/3 1/3 | 0 0 0

−− −− −−+ −−−−−−+ −−−−−−
1/3−1/3 0 | −1/3 1/3 0 | −1/3 1/3 0
0−1/3 0 | 0 1/3 0 | 0 1/3 0

1/9−1/9−1/9 | −1/9 1/9 1/9 | −1/9 1/9 1/9

⊗ Ct
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Z−1 =



−1 0−1 1 0 1 0 0 0
1 1 0−1−1 0 0 0 0
0 0 3 0 0−3 0 0 0
0 0 0 1 0 1 0 0 0
0 0 0−1−1 0 0 0 0
0 0 0 0 0−3 0 0 0

− 1
3 0− 1

3
1
3 0 1

3
1
3 0 1

3
1
3

1
3 0− 1

3− 1
3 0− 1

3− 1
3 0

0 0 1 0 0−1 0 0−1

|
|
|
|
|
|
|
|
|

1 0 1−1 0−1 0 0 0
−1−1 0 1 1 0 0 0 0
0 0−3 0 0 3 0 0 0
0 0 0−1 0−1 0 0 0
0 0 0 1 1 0 0 0 0
0 0 0 0 0 3 0 0 0
1
3 0 1

3− 1
3 0− 1

3− 1
3 0− 1

3− 1
3− 1

3 0 1
3

1
3 0 1

3
1
3 0

0 0−1 0 0 1 0 0 1

|
|
|
|
|
|
|
|
|

Ω

−−−−−−−−−−− + −−−−−−−−−− + −−−−−−−−−−

Ω

|
|
|
|
|
|
|
|
|

1 0 1−1 0−1 0 0 0
−1−1 0 1 1 0 0 0 0
0 0−3 0 0 3 0 0 0
0 0 0−1 0−1 0 0 0
0 0 0 1 1 0 0 0 0
0 0 0 0 0 3 0 0 0
1
3 0 1

3− 1
3 0− 1

3− 1
3 0− 1

3− 1
3− 1

3 0 1
3

1
3 0 1

3
1
3 0

0 0−1 0 0 1 0 0 1

|
|
|
|
|
|
|
|
|

Ω

−−−−−−−−−− + −−−−−−−−−− + −−−−−−−−−−
− 1

3 0− 1
3

1
3 0 1

3 0 0 0
1
3

1
3 0− 1

3− 1
3 0 0 0 0

0 0 1 0 0−1 0 0 0
0 0 0 1

3 0 1
3 0 0 0

0 0 0− 1
3− 1

3 0 0 0 0
0 0 0 0 0−1 0 0 0

− 1
9 0− 1

9
1
9 0 1

9
1
9 0 1

9
1
9

1
9 0− 1

9− 1
9 0− 1

9− 1
9 0

0 0 1
3 0 0− 1

3 0 0− 1
3

|
|
|
|
|
|
|
|
|

1
3 0 1

3− 1
3 0− 1

3 0 0 0
− 1

3− 1
3 0 1

3
1
3 0 0 0 0

0 0−1 0 0 1 0 0 0
0 0 0− 1

3 0− 1
3 0 0 0

0 0 0 1
3

1
3 0 0 0 0

0 0 0 0 0 1 0 0 0
1
9 0 1

9− 1
9 0− 1

9− 1
9 0− 1

9− 1
9− 1

9 0 1
9

1
9 0 1

9
1
9 0

0 0− 1
3 0 0 1

3 0 0 1
3

|
|
|
|
|
|
|
|
|

1
3 0 1

3− 1
3 0− 1

3 0 0 0
− 1

3− 1
3 0 1

3
1
3 0 0 0 0

0 0−1 0 0 1 0 0 0
0 0 0− 1

3 0− 1
3 0 0 0

0 0 0 1
3

1
3 0 0 0 0

0 0 0 0 0 1 0 0 0
1
9 0 1

9− 1
9 0− 1

9− 1
9 0− 1

9− 1
9− 1

9 0 1
9

1
9 0 1

9
1
9 0

0 0− 1
3 0 0 1

3 0 0 1
3



T̂ ′27,1 = Z−1



1
0
−1
2
3
0
−1
2
0

−−
2
−1
1
0
1
0
2
0
1

−−
0
0
1
5
1
2
1
0
0



=



5
−4
−6
2
−4
0
1/3
−1
−1
−−
3
0
−3
0
1
0
0
2/3
0
−−
−1/3
2/3
−1
−5/3
2/3
2

−2/3
4/9
0



.

Once the change-of-basis has been performed, we must return to the data
permutation:

P(2) · T̂ ′27,1 = T̂27,1

yielding
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T̂27 =



5
3

−1/3
−4
0
2/3
−6
−3
−1
−−
2
0

−5/3
−4
1
2/3
0
0
2
−−
1/3
0

−2/3
−1
2/3
4/9
−1
0
0


which after its condensation leads to

t i◦
◦
j
k
◦ =

[ 5 3 −1/3 | 2 0 −5/3 | 1/3 0 −2/3
−4 0 2/3 | −4 1 2/3 | −1 2/3 4/9
−6 −3 −1 | 0 0 2 | −1 0 0

]
,

where i is the row index, j is the column index, and k is the matrix index. �


5.7.3 The isomers of a tensor

We give the name “isomers” to certain tensors that come from permutations
of a given tensor; they are the isomeric tensors of such a tensor.

For pure tensors (totally contravariant or covariant) the permutation of
a partial number (or all) of its indices, strictly between them, leads to an
isomer.

In other words, not all permutation tensors coming from a pure tensor
are isomers of such a tensor, since some of them do not come from alter-
ing the indices. If the tensor is a mixed tensor, they are the tensors coming
from permuting partially or totally: (a) only the contravariant indices among
them, without altering the covariant indices, and (b) only the covariant indices
among them, without altering the contravariant indices.

In Example 4.5, which was examined in Section 5.7.2, the tensor R =
[rγ◦
◦
β
α
◦ ] is an isomer of tensor T = [tα◦

◦
β
γ
◦]. Similarly, the tensor U = [uγ◦

α
◦
◦
β] is

an isomer of tensor W = [wα◦
γ
◦
◦
β].
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Example 5.5 (Rotation tensor). Consider a given pure tensor (totally con-
travariant or covariant) of order r: tα◦

β
◦
γ
◦
δ
◦
···
···
ρ
◦. We define as the “rotation ten-

sor” of the given tensor any of its isomers that do not maintain indices in the
same positions as the initial one.

We will denote such a tensor (tα◦
β
◦
γ
◦
δ
◦
···
···
ρ
◦)
R(k) where k ∈ Z; k �= 0; |k| < r is

the “rotation index”.
By extension, we define as the rotation tensor of a given mixed tensor all

those isomers that do not maintain dummy indices of the same valency, in
the same positions.

These rotation tensors carry the notation (tα◦
◦
β
γ
◦
δ
◦
◦
ε
···
···
ρ
◦)
R(k,k′) with two

index-parameters k, k′, where k, k′ ∈ Z; k, k′ �= 0; |k| < p; |k′| < q with
p + q = r, where p and q are the contravariant and covariant orders of the
given tensor, respectively.

1. Determine the rotation tensor associated with a tensor of order (r = 2)
over the linear space V 2(IR), and do the same over the linear space V 3(IR).

2. Determine the rotation tensors associated with a tensor of order (r = 3)
over the linear space V 2(IR), and do the same over the linear space V 3(IR).

3. Determine the rotation tensors associated with a tensor of order (r = 4)
over the linear space V 2(IR).

Solution:

1. Case r = 2, n = 2. Let �t = t
◦
α
◦
β�e
∗α ⊗ �e∗β ⇒ (t◦α

◦
β)
R(1) = t

◦
β
◦
α�e
∗α ⊗ �e∗β .

Then, [t◦α
◦
β] =

[
a1 b1
c1 d1

]
⇒ [t◦α

◦
β]
R(1) =

[
a1 c1
b1 d1

]
, which is known as the

“transposed” matrix of the given matrix.

Case r = 2, n = 3. In this case we have

[t◦α
◦
β] =

 a1 b1 c1
d1 e1 f1
g1 h1 i1

⇒ [t◦α
◦
β]
R(1) =

 a1 d1 g1
b1 e1 h1
c1 f1 i1


which also is the transposed matrix of the given matrix.

2. Case r = 3, n = 2. Let �t = t
◦
α
◦
β
◦
γ�e
∗α⊗�e∗β⊗�e∗γ . Since there are two rotations

βγα and γαβ we have [t◦α
◦
β
◦
γ]
R(1) and [t◦α

◦
β
◦
γ]
R(2), or, if one prefers the

notation [t◦α
◦
β
◦
γ]
R(1) and [t◦α

◦
β
◦
γ]
R(−1), the “first rotation” and its opposite.
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Let [t◦α
◦
β
◦
γ] =


a1 b1
c1d1− −
a2 b2
c2d2

 be the data tensor, with α the row submatrix in-

dex, β the row index of each submatrix, and γ the column index of each
submatrix (axiomatic order).
The correspondences in both rotations are

First rotation Second rotation
Initial Transformed Transformed
t
◦
α
◦
β
◦
γ t

◦
β
◦
γ
◦
α t

◦
γ
◦
α
◦
β

t
◦
1
◦
1
◦
2 t

◦
1
◦
2
◦
1 t

◦
2
◦
1
◦
1

t
◦
1
◦
2
◦
1 t

◦
2
◦
1
◦
1 t

◦
1
◦
1
◦
2

t
◦
1
◦
2
◦
2 t

◦
2
◦
2
◦
1 t

◦
2
◦
1
◦
2

t
◦
2
◦
1
◦
1 t

◦
1
◦
1
◦
2 t

◦
1
◦
2
◦
1

t
◦
2
◦
1
◦
2 t

◦
1
◦
2
◦
2 t

◦
2
◦
2
◦
1

t
◦
2
◦
2
◦
1 t

◦
2
◦
1
◦
2 t

◦
1
◦
2
◦
2

and then

[t◦α
◦
β
◦
γ]
R(1) =


a1 a2
b1 b2
− −
c1 c2
d1 d2


and

[t◦α
◦
β
◦
γ]
R(2) =


a1 c1
a2 c2
− −
b1 d1
b2 d2

 ,

which are the “transposed” (beware of the word) tensors of tensors (r =
3, n = 2).
Case r = 3, n = 3. Let

[t◦α
◦
β
◦
γ] =



a1 b1 c1
d1 e1 f1
g1h1 i1− − −
a2 b2 c2
d2 e2 f2
g2h2 i2− − −
a3 b3 c3
d3 e3 f3
g3h3 i3


be the data tensor. In this case we have
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[t◦α
◦
β
◦
γ]
R(1) =



a1a2a3
b1 b2 b3
c1 c2 c3− − −
d1 d2 d3
e1 e2 e3
f1 f2 f3− − −
g1 g2 g3
h1h2h3
i1 i2 i3


and

[t◦α
◦
β
◦
γ]
R(2) =



a1d1 g1
a2d2 g2
a3d3 g3− − −
b1 e1h1
b2 e2h2
b3 e3h3− − −
c1 f1 i1
c2 f2 i2
c3 f3 i3


.

3. Case r = 4, n = 2. The data tensor is �t = t
◦
α
◦
β
◦
γ
◦
δ�e
∗α ⊗ �e∗β ⊗ �e∗γ ⊗ �e∗δ,

where

[t◦α
◦
β
◦
γ
◦
δ] =


a1 b1 | a2 b2
c1d1 | c2d2− −+− −
a3 b3 | a4 b4
c3d3 | c4d4

 .

In this case αβγδ has the three rotations: βγδα, γδαβ and δαβγ. Then,
for the rotation R(1), since t

◦
α
◦
β
◦
γ
◦
δ → t

◦
β
◦
γ
◦
δ
◦
α, we have

[t◦α
◦
β
◦
γ
◦
δ]
R(1) =


a1a3 | c1 c3
b1 b3 | d1d3− −+− −
a2a4 | c2 c4
b2 b4 | d2d4

 .

For the rotation R(2), since t
◦
α
◦
β
◦
γ
◦
δ → t

◦
γ
◦
δ
◦
α
◦
β, we have

[t◦α
◦
β
◦
γ
◦
δ]
R(2) =


a1a2 | b1 b2
a3a4 | b3 b4− −+− −
c1 c2 | d1d2
c3 c4 | d3d4

 .

and, finally, for the rotation R(3), since t
◦
α
◦
β
◦
γ
◦
δ → t

◦
δ
◦
α
◦
β
◦
γ, we obtain

[t◦α
◦
β
◦
γ
◦
δ]
R(3) =


a1 c1 | a3 c3
a2 c2 | a4 c4− −+− −
b1 d1 | b3 d3
b2 d2 | b4 d4

 .

�
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5.8 Matrices associated with simply contraction
homomorphisms

We give the name “simply contraction homomorphism” to a homomorphism
that operates according to the equation

T ′σ′ = H • Tσ,1 (5.61)

and that apply the mixed tensor (because the contraction is assumed to be of
indices of different valency), into another tensor of smaller dimension σ′ < σ,
by a tensor contraction of two indices.

We will construct the matrices H for the usual cases, that is, for tensors
of orders 2, 3, 4 and 5.

5.8.1 Mixed tensors of second order (r = 2): Matrices.

This is the case of T = [t◦α
β
◦] or T = [tα◦

◦
β], with r = 2;σ = n2;n =

dim V n(K);σ′ = n0 = 0.
Thus, the result of the contraction is a scalar, which is called the “matrix

trace”.
Assuming that {Eij} is the canonical basis of the matrices of order n, the

fundamental equation (5.61) is in this case

ρ = H1,n2(α, β) • Tσ,1 = ([ 1 1 · · · 1 ]1,n • [E11 | E22 | · · · | Enn ]) • Tσ,1
=
[
Et1 | Et2 | · · · | Etn

]
• Tσ,1; ρ ∈ K;T ′σ′ = ρ. (5.62)

The notation of H declares its number of rows and columns, together with
the indices to be contracted.
B = {Ei} is the canonical basis of the linear space V n(K):

B =



1
0
...
0



0
1
...
0

 · · ·


0
0
...
1


 .

5.8.2 Mixed tensors of third order (r = 3)

These are tensors of the type T = t
α
◦
◦
β
◦
γ; T = t

α
◦
◦
β
γ
◦ · · ·, etc. with dim V n(K) =

n; r = 3;σ = n3;σ′ = n.
There are three possible models:

Model 1. T = t
α
◦
β
◦
◦
γ or T = t

α
◦
◦
β
γ
◦

T ′σ′ =uα=Hn,n3(β, γ)•Tσ,1=(In ⊗ ([11 · · ·1]1,n • [E11 |E22 | · · · |Enn ]))•Tσ,1.
(5.63)
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Model 2. T = t
α
◦
◦
β
γ
◦ or T = t

◦
α
β
◦
γ
◦

T ′σ′ =vγ=Hn,n3(α, β)•Tσ,1=(([11 · · ·1]1,n • [E11 |E22 | · · · |Enn ])⊗ In)•Tσ,1.
(5.64)

Model 3. T = t
α
◦
β
◦
◦
γ or T = t

◦
α
β
◦
γ
◦

T ′σ′ = zβ = Hn,n3(α, γ) • Tσ,1
= [In ⊗ ([ 1 1 · · · 1 ]1,n • E11)|In ⊗ ([ 1 1 · · · 1 ]1,n
•E22)| . . . |In ⊗ ([ 1 1 · · · 1 ]1,n • Enn)] • Tσ,1. (5.65)

Formulas (5.63) to (5.65) can be written in a simpler form:

uα = Hn,n3(β, γ) • Tσ,1 =
(
In ⊗ [Et1 | Et2 | · · · | Etn ]

)
• Tσ,1 (5.66)

vγ = Hn,n3(α, β) • Tσ,1 =
(
[Et1 | Et2 | · · · | Etn ]⊗ In

)
• Tσ,1 (5.67)

zβ = Hn,n3(α, γ) • Tσ,1 =
[
In ⊗ Et1| In ⊗ Et2| · · · |In ⊗Etn

]
• Tσ,1.(5.68)

5.8.3 Mixed tensors of fourth order (r = 4)

These are tensors of the type

T = t
α
◦
◦
β
γ
◦
δ
◦; T = t

α
◦
β
◦
γ
◦
◦
δ, · · · etc. ;σ ≡ nr = n4;σ′ ≡ nr−2 = n4−2 = n2.

Possibilities for the contraction:
(
4
2

)
= 6 models.

Model 1. T = t
α
◦
◦
β
γ
◦
δ
◦; The fundamental equation (5.61) in this case is

T ′σ′ = Hn2,n4(α, β) • Tσ,1 =
(
[Et1 | Et2 | · · · | Etn ]⊗ In ⊗ In

)
• Tσ,1 (5.69)

Model 2. T = t
α
◦
β
◦
◦
γ
δ
◦

T ′σ′ = Hn2,n4(α, γ)•Tσ,1 =
(
[ In ⊗ Et1 | In ⊗ Et2 | · · · | In ⊗ Etn ]⊗ In

)
•Tσ,1.
(5.70)

Model 3. T = t
α
◦
β
◦
γ
◦
◦
δ

T ′σ′ =Hn2,n4(α, δ)•Tσ,1=[In ⊗ In ⊗ Et1 |In ⊗ In ⊗ Et2 | · · · |In ⊗ In ⊗ Etn ]•Tσ,1.
(5.71)

Model 4. T = t
α
◦
β
◦
◦
γ
δ
◦

T ′σ′ = Hn2,n4(β, γ)•Tσ,1 =
(
In ⊗ [Et1 | Et2 | · · · | Etn ]⊗ In)

)
•Tσ,1. (5.72)

Model 5. T = t
α
◦
β
◦
γ
◦
◦
δ

T ′σ′ = Hn2,n4(β, δ)•Tσ,1 =
(
In ⊗ [ In ⊗ Et1 | In ⊗ Et2 | · · · | In ⊗ Etn ]

)
•Tσ,1.
(5.73)

Model 6. T = t
α
◦
β
◦
γ
◦
◦
δ

T ′σ′ = Hn2,n4(γ, δ) • Tσ,1 =
(
In ⊗ In ⊗ [Et1 | Et2 | · · · | Etn ]

)
• Tσ,1. (5.74)

T ′σ′,1 must be given in “condensed” form (as a square matrix).
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5.8.4 Mixed tensors of fifth order (r = 5)

We present rules for the sequence of formation of matrices representing con-
tractions in tensors of order 5 (r = 5) associated with linear spaces IRn of
basis

{Ei} ≡




1
0
0
...
0



0
1
0
...
0

 · · ·


0
0
0
...
1


 .

We notate the morphism matrix using power indices and parentheses that
declare the indices to be contracted.

Contractions of two indices, resulting tensors of order r = 3.
Tensor dimensions of the “stretched” tensors Tσ,1 and Tσ′ : σ = n5; σ′ =

n3.
There exist

(
5
2

)
= 5×4

2 = 10 models. Operation: T ′σ′,1 = Hσ′,σ • Tσ,1

Model 1. t
α
◦
◦
β
γ
◦
δ
◦
ε
◦

Hσ′,σ ≡ Hn3,n5(α, β) ≡
[
Et1 | Et2 | · · · | Etn

]
⊗ In ⊗ In ⊗ In.

Model 2. t
α
◦
β
◦
◦
γ
δ
◦
ε
◦

Hσ′,σ ≡ Hn3,n5(α, γ) ≡ [In ⊗ Et1 |In ⊗ Et2 | · · · |In ⊗ Etn ]⊗ In ⊗ In.

Model 3. t
α
◦
β
◦
γ
◦
◦
δ
ε
◦

Hσ′,σ ≡ Hn3,n5(α, δ)
≡ [In ⊗ In ⊗Et1 |In ⊗ In ⊗ Et2 | · · · |In ⊗ In ⊗ Etn ]⊗ In.

Model 4. t
α
◦
β
◦
γ
◦
δ
◦
◦
ε

Hσ′,σ ≡ Hn3,n5(α, ε)
≡ [In ⊗ In ⊗ In ⊗ Et1 |In ⊗ In ⊗ In ⊗ Et2 | · · · |In ⊗ In ⊗ In ⊗ Etn ] .

Model 5. t
α
◦
β
◦
◦
γ
δ
◦
ε
◦

Hσ′,σ ≡ Hn3,n5(β, γ) ≡ In ⊗ [Et1 |Et2 | · · · |Etn ]⊗ In ⊗ In.

Model 6. t
α
◦
β
◦
γ
◦
◦
δ
ε
◦

Hσ′,σ ≡ Hn3,n5(β, δ) ≡ In ⊗ [In ⊗ Et1 |In ⊗ Et2 | · · · |In ⊗ Etn ]⊗ In.
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Model 7. t
α
◦
β
◦
γ
◦
δ
◦
◦
ε

Hσ′,σ ≡ Hn3,n5(β, ε)
≡ In ⊗ [In ⊗ In ⊗ Et1 |In ⊗ In ⊗ Et2 | · · · |In ⊗ In ⊗ Etn ] .

Model 8. t
α
◦
β
◦
γ
◦
◦
δ
ε
◦

Hσ′,σ ≡ Hn3,n5(γ, δ) ≡ In ⊗ In ⊗
[
Et1 |Et2 | · · · |Etn

]
⊗ In.

Model 9. t
α
◦
β
◦
γ
◦
δ
◦
◦
ε

Hσ′,σ ≡ Hn3,n5(γ, ε) ≡ In ⊗ In ⊗
[
In ⊗ Et1 | In ⊗ Et2 | · · · | In ⊗ Etn

]
.

Model 10. t
α
◦
β
◦
γ
◦
δ
◦
◦
ε

Hσ′,σ ≡ Hn3,n5(δ, ε) ≡ In ⊗ In ⊗ In ⊗
[
Et1 |Et2 | · · · |Etn

]
.

T ′σ′,1 must be given in “condensed” form (as a column-matrix of subma-
trices).

5.9 Matrices associated with doubly contracted
homomorphisms

5.9.1 Mixed tensors of fourth order (r = 4)

We look for the tensor resulting from a homogeneous mixed tensor that accepts
a double contraction, that is, has at least two contravariant indices and other
two covariant indices; σ = n4;σ′ = n0 = 1. The resulting tensor after the
double contraction always is a scalar.

The possibilities for the contraction are:
(
4
2

)
= 6 models. Let ρ ∈ K.

Model 1. H1,n4(α, β|γ, δ) means that we contract first indices (α, β) and then,
indices (γ, δ):

ρ = H1,n4(α, β|γ, δ) • Tσ,1 = ([Et1 |Et2 | · · · |Etn ]⊗ [Et1 |Et2 | · · · |Etn ]) • Tσ,1.
(5.75)

Model 2. H1,n4(α, γ|β, δ).

ρ = H1,n4(α, γ|β, δ) • Tσ,1
= [Et1 ⊗ Et1|Et1 ⊗ Et2|· · ·|Et1 ⊗ Etn|· · ·|Etn ⊗ Et1|Etn ⊗ Et2|· · ·|Etn ⊗ Etn] • Tσ,1.

(5.76)
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Model 3. H1,n4(α, δ|β, γ).

ρ = H1,n4(α, δ|β, γ) • Tσ,1
= [[Et1|Et2|· · ·|Etn]⊗ Et1|[Et1|Et2|· · ·|Etn]⊗ Et2|· · ·|[Et1|Et2|· · ·|Etn]⊗ Etn] • Tσ,1.

(5.77)

Model 4. H1,n4(β, γ|α, δ)

ρ = H1,n4(β, γ|α, δ) • Tσ,1 ≡ H1,n4(α, δ|β, γ) • Tσ,1. (5.78)

Model 5. H1,n4(β, δ|α, γ)

ρ = H1,n4(β, δ|α, γ) • Tσ,1 ≡ H1,n4(α, γ|β, δ) • Tσ,1. (5.79)

Model 6. H1,n4(γ, δ|α, β)

ρ = H1,n4(γ, δ|α, β) • Tσ,1 ≡ H1,n4(α, β|γ, δ) • Tσ,1. (5.80)

As a mapping of the simple contraction formulas (5.72) and those of ex-
tension and condensation (1.30) and (1.32), respectively, we propose that
reader establish the direct relation between the classic product of matrices
(A • B) where A = [aα◦

◦
β] and B = [bγ◦

◦
δ]) and its tensor product (A ⊗ B),

simplifying the resulting expression.
We remind the reader that the classic product of matrices (A • B) is a

contracted tensor product.

5.9.2 Mixed tensors of fifth order (r = 5)

The contraction of four indices leads to tensors of order (r = 1), that is,
vectors. The dimensions of the “extended” tensors Tσ,1 and Tσ′ are σ = n5

and σ′ = n.
There exist

(
5
2

)
×
(
3
2

)
= 5×4

2 × 3 = 30 models of double contraction.

Model 1. t
α
◦
◦
β
γ
◦
◦
δ
ε
◦

Hσ′,σ ≡ Hn,n5(α, β|γ, δ) = Hn,n3(γ, δ) •Hn3,n5(α, β)
=
([

Et1 |Et2 | · · · |Etn
]
⊗ In

)
•
([

Et1 |Et2 | · · · |Etn
]
⊗ In ⊗ In ⊗ In

)
.

Model 2. t
α
◦
◦
β
γ
◦
δ
◦
◦
ε

Hσ′,σ ≡ Hn,n5(α, β|γ, ε) = Hn,n3(γ, ε) •Hn3,n5(α, β)
=
([

In ⊗ Et1 | In ⊗ Et2 | · · · | In ⊗ Etn
])
•
([

Et1 |Et2 | · · · |Etn
]
⊗ In ⊗ In ⊗ In

)
.

Model 3. t
α
◦
◦
β
γ
◦
δ
◦
◦
ε

Hσ′,σ ≡ Hn,n5(α, β|δ, ε) = Hn,n3(δ, ε) •Hn3,n5(α, β)
=
(
In ⊗

[
Et1 |Et2 | · · · |Etn

])
•
([

Et1 |Et2 | · · · |Etn
]
⊗ In ⊗ In ⊗ In

)
.
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In a similar form the remaining models can be obtained.

Example 5.6 (Tensor contraction). Contract all indices of the tensor

�t = (2�e1 − 3�e2)⊗ (5�e1 + �e2)⊗ (4�e∗1 + �e∗2)⊗ (�e∗1 − 2�e∗2).

Solution: We solve the problem using four different methods.

First method:

We decide to execute the contractions of each pair of contravariant factors
with the corresponding covariant factors. There exist two possibilities:

1. We contract factor 1 with factor 3 and factor 2 with factor 4. The con-
nection Gram matrix is I2, because they are in dual bases:

ρ = [ 2 −3 ]I2
[
4
1

]
⊗ [ 5 1 ]I2

[
1
−2

]
= (8− 3)× (5− 2) = 5× 3 = 15.

2. We contract factor 1 with factor 4 and factor 2 with factor 3.

ρ = [ 2 −3 ]I2
[

1
−2

]
⊗ [ 5 1 ]I2

[
4
1

]
= (2+6)× (20+1) = 8×21 = 168.

Second method:

We decide to associate the contravariant indices between them, and also
the covariant indices between them; then, we execute the contraction, to ob-
tain the unique result:

�t =

(
[�e1 �e2 ]

[
2
−3

]
⊗
(
[�e1 �e2 ]

[
5
1

])t)

⊗
(
[�e∗1 �e∗2 ]

[
4
1

]
⊗
(
[�e∗1 �e∗2 ]

[
1
−2

])t)

=
(
[�e1 �e2 ]

[
2
−3

]
⊗ [ 5 1 ]

[
�e1
�e2

])
⊗
(
[�e∗1 �e∗2 ]

[
4
1

]
⊗ [ 1 −2 ]

[
�e∗1

�e∗2

])

=
(
[�e1 �e2 ]

[
10 2
−15 −3

] [
�e1
�e2

])
⊗
(
[�e∗1 �e∗2 ]

[
4 −8
1 −2

] [
�e∗1

�e∗2

])

=

[�e1 ⊗ �e1 �e1 ⊗ �e2 �e2 ⊗ �e1 �e2 ⊗ �e2 ]

 10
2

−15
−3




⊗

[�e∗1 ⊗ �e∗1 �e∗1 ⊗ �e∗2 �e∗2 ⊗ �e∗1 �e∗2 ⊗ �e∗2 ]

 4
−8
1
−2


 .



5.9 Matrices associated with doubly contracted homomorphisms 147

The Gram matrix G between both dual tensor spaces is G ≡ I4, because
they are in dual bases:

ρ = [ 10 2 −15 −3 ]I4

 4
−8
1
−2

 = 40− 16− 15 + 6 = 15.

Third method:

We decide to execute the contraction using its definition. To this end, we
need to know the tensor, with the axiomatic ordering of its components.

Executing the last tensor product indicated in the previous method, we
obtain

�t = [ �e1 ⊗ �e1 �e1 ⊗ �e2 �e2 ⊗ �e1 �e2 ⊗ �e2 ]

 10
2

−15
−3

⊗ [ 4 −8 1 2 ]

�e∗1 ⊗ �e∗1
�e∗1 ⊗ �e∗2
�e∗2 ⊗ �e∗1
�e∗2 ⊗ �e∗2



= [ �e1 ⊗ �e1 �e1 ⊗ �e2 �e2 ⊗ �e1 �e2 ⊗ �e2 ]

 40 −80 10 −20
8 −16 2 −4

−60 120 −15 30
−12 24 −3 6



�e∗1 ⊗ �e∗1

�e∗1 ⊗ �e∗2

�e∗2 ⊗ �e∗1

�e∗2 ⊗ �e∗2

 .

This matrix expression leads to the desired fourth-order tensor T = [tα◦
β
◦
◦
γ
◦
δ].

We develop it by rows, in order to get the axiomatic ordering:

�t = (�e1 ⊗ �e1)⊗ (40�e∗1 ⊗ �e∗1 − 80�e∗1 ⊗ �e∗2 + 10�e∗2 ⊗ �e∗1 − 20�e∗2 ⊗ �e∗2)
+(�e1 ⊗ �e2)⊗ (8�e∗1 ⊗ �e∗1 − 16�e∗1 ⊗ �e∗2 + 2�e∗2 ⊗ �e∗1 − 4�e∗2 ⊗ �e∗2)
+(�e2 ⊗ �e1)⊗ (−60�e∗1 ⊗ �e∗1 + 120�e∗1 ⊗ �e∗2 − 15�e∗2 ⊗ �e∗1 + 30�e∗2 ⊗ �e∗2)
+(�e2 ⊗ �e2)⊗ (−12�e∗1 ⊗ �e∗1 + 24�e∗1 ⊗ �e∗2 − 3�e∗2 ⊗ �e∗1 + 6�e∗2 ⊗ �e∗2).

Since the first two factors refer to row and column of each submatrix (first
and second tensor indices), we finally get the tensor matrix expression, with
the correct ordering

[tα◦
β
◦
◦
γ
◦
δ] =


40 −80 | 8 −16
10 −20 | 2 −4
−− −−+−− −−
−60 120 | −12 24
−15 30 | −3 6

 ,

where α is the row of submatrices, β the column of submatrices, γ the row of
each submatrix, and δ the column of each submatrix.

Next, we start with the contractions. There exist two possibilities:

1. We first contract α with γ, and then β with δ:

[uβ◦
◦
δ] = C

(
α

γ

)
[tα◦
β
◦
◦
γ
◦
δ] = [tθ◦

β
◦
◦
θ
◦
δ] = t

1
◦
β
◦
◦
1
◦
δ + t

2
◦
β
◦
◦
2
◦
δ
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ρ = C
(
β

δ

)
[uβ◦
◦
δ] = [t1◦

θ
◦
◦
1
◦
θ] + [t2◦

θ
◦
◦
2
◦
θ] = (t1◦

1
◦
◦
1
◦
1 + t

1
◦
2
◦
◦
1
◦
2) + (t2◦

1
◦
◦
2
◦
1 + t

2
◦
2
◦
◦
2
◦
2)

ρ = 40− 16− 15 + 6 = 46− 31 = 15.

2. We first contract α with δ, and then β with γ:

[vβ◦
◦
γ] = C

(
α

δ

)
[tα◦
β
◦
◦
γ
◦
δ] = [tθ◦

β
◦
◦
γ
◦
θ] = t

1
◦
β
◦
◦
γ
◦
1 + t

2
◦
β
◦
◦
γ
◦
2

ρ′ = C
(
β

γ

)
[vβ◦
◦
γ] = [vθ◦

◦
θ] = [t1◦

θ
◦
◦
θ
◦
1]+[t2◦

θ
◦
◦
θ
◦
2] = (t1◦

1
◦
◦
1
◦
1+t

1
◦
2
◦
◦
2
◦
1)+(t2◦

1
◦
◦
1
◦
2+t

2
◦
2
◦
◦
2
◦
2)

ρ′ = 40 + 2 + 120 + 6 = 168.

Fourth method:

We use the direct homomorphism on the components Tσ(σ = 2×2×2×2 =
16), that is, the tensor components in a “column matrix”.

There are two models to be considered:

1. The homomorphism model (2) of double contraction, Formula (5.76):

ρ = H1,16(α, γ|β, δ) • T16,1 = [Et1 ⊗ Et1|Et1 ⊗ Et2|Et2 ⊗ Et1|Et2 ⊗ Et2|] • T16,1
= [[ 1 0 ]⊗ [ 1 0 ]|[ 1 0 ]⊗ [ 0 1 ]|[ 0 1 ]⊗ [ 1 0 ]|[ 0 1 ]⊗ [ 0 1 ]] • T16,1

= [ 1 0 0 0 0 1 0 0 | 0 0 1 0 0 0 0 1 ] •



40
−80
10
−20

8
−16

2
−4
−60
120
−15
30
−12
24
−3
6


= 40− 16− 15 + 6 = 15.

2. The homomorphism model (3), Formula (5.77):

ρ′ = H1,16(α, δ|β, γ) • T16,1 =
[
[Et1|Et2]⊗ Et1|[Et1|Et2]⊗ Et2

]
• T16,1

= [[ 1 0 0 1 ]⊗ [ 1 0 ]|[ 1 0 0 1 ]⊗ [ 0 1 ]] • T16,1
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= [ 1 0 0 0 0 0 1 0 | 0 1 0 0 0 0 0 1 ] •



40
−80
10
−20

8
−16

2
−4
−60
120
−15
30
−12
24
−3
6


= 40 + 2 + 120 + 6 = 168.

�


Example 5.7 (Contractions). Consider the tensor �t = �v1⊗�v2⊗ �f3⊗ �f4 defined
over IR2, where the factor vectors are

�v1 = �e1 + �e2; �v2 = 2�e1 − �e2; �f3 = 2�e∗1 + �e∗2; �f4 = 3�e∗1;

1. Obtain the totally developed analytical expression of the tensor expressed
in its corresponding tensor basis.

2. Execute all possible simple contractions, indicating which of the obtained
systems of scalars have tensor character.

3. Express the resulting tensors in the previous question, as a function of the
vectors �v1, �v2, �f

3, �f4.

Solution:

1. We develop the tensor product

�t = (�v1 ⊗ �v2)⊗ (�f3 ⊗ �f4)
= (2�e1 ⊗ �e1 − �e1 ⊗ �e2 + 2�e2 ⊗ �e1 − �e2 ⊗ �e2)⊗ (6�e∗1 ⊗ �e∗1 + 3�e∗2 ⊗ �e∗1)
= 12�e1 ⊗ �e1 ⊗ �e∗1 ⊗ �e∗1 + 6�e1 ⊗ �e1 ⊗ �e∗2 ⊗ �e∗1 − 6�e1 ⊗ �e2 ⊗ �e∗1 ⊗ �e∗1

−3�e1 ⊗ �e2 ⊗ �e∗2 ⊗ �e∗1 + 12�e2 ⊗ �e1 ⊗ �e∗1 ⊗ �e∗1 + 6�e2 ⊗ �e1 ⊗ �e∗2 ⊗ �e∗1

−6�e2 ⊗ �e2 ⊗ �e∗1 ⊗ �e∗1 − 3�e2 ⊗ �e2 ⊗ �e∗2 ⊗ �e∗1

and in matrix form

[tα◦
β
◦
◦
γ
◦
δ] =


12 0 | −6 0
6 0 | −3 0
−−−−+−−−−
12 0 | −6 0
6 0 | −3 0

 ,
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where α is the matrix row indicator, β is the matrix column indicator, γ
the row indicator of each submatrix, and δ the column indicator of each
submatrix, that is, according to the basis axiomatic ordering.

2. Contraction is an operation that can be applied to any system of scalars of
r indices and nr components, with n, r ≥ 2. The result is another system
of scalars of order (r−2) and nr−2 components, so that the cited operation
is defined for such sets independently of whether they are or not tensors.
According to this, we separate those contractions over tensor indices of the
same valency that do not guarantee a resulting tensor from contractions
executed over indices of different valency, in which case it is guaranteed
that the contracted system is a tensor.
The contractions of tensor �t, with no tensor character, are (be aware of
the special notation used for these type of non-tensor contractions)

C(α, β)− C(γ, δ)−, that is

[a◦γ
◦
δ] = C(α, β)[t

α
◦
β
◦
◦
γ
◦
δ] = [t1◦

1
◦
◦
γ
◦
δ + t

2
◦
2
◦
◦
γ
◦
δ] :

a
◦
1
◦
1 = t

1
◦
1
◦
◦
1
◦
1 + t

2
◦
2
◦
◦
1
◦
1 = 12− 6 = 6

a
◦
1
◦
2 = t

1
◦
1
◦
◦
1
◦
2 + t

2
◦
2
◦
◦
1
◦
2 = 0 + 0 = 0

a
◦
2
◦
1 = t

1
◦
1
◦
◦
2
◦
1 + t

2
◦
2
◦
◦
2
◦
1 = 6− 3 = 3

a
◦
2
◦
2 = t

1
◦
1
◦
◦
2
◦
2 + t

2
◦
2
◦
◦
2
◦
2 = 0 + 0 = 0


⇒ [a◦γ

◦
δ] =

[
6 0
3 0

]

[b◦α
◦
β] = C(γ, δ)[t

α
◦
β
◦
◦
γ
◦
δ] = [tα◦

β
◦
◦
1
◦
1 + t

α
◦
β
◦
◦
2
◦
2] :

b
◦
1
◦
1 = t

1
◦
1
◦
◦
1
◦
1 + t

1
◦
1
◦
◦
2
◦
2 = 12 + 0 = 12

b
◦
1
◦
2 = t

1
◦
2
◦
◦
2
◦
1 + t

1
◦
2
◦
◦
2
◦
2 = −6 + 0 = −6

b
◦
2
◦
1 = t

2
◦
1
◦
◦
1
◦
1 + t

2
◦
1
◦
◦
2
◦
2 = 12 + 0 = 12

b
◦
2
◦
2 = t

2
◦
2
◦
◦
1
◦
1 + t

2
◦
2
◦
◦
2
◦
2 = −6 + 0 = −6


⇒ [b◦α

◦
β] =

[
12 −6
12 −6

]
.

The contractions with a tensor nature of tensor �t are

−C
(
α

γ

)
− C

(
α

δ

)
− C

(
β

γ

)
− C

(
β

δ

)
− .

We execute them using two different procedures:
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1. Direct procedure, according to the contraction definition:

[cβ◦
◦
δ] = C

(
α

γ

)
[tα◦
β
◦
◦
γ
◦
δ] = [t1◦

β
◦
◦
1
◦
δ] + [t2◦

β
◦
◦
2
◦
δ]

c
1
◦
◦
1 = t

1
◦
1
◦
◦
1
◦
1 + t

2
◦
1
◦
◦
2
◦
1 = 12 + 6 = 18

c
1
◦
◦
2 = t

1
◦
1
◦
◦
1
◦
2 + t

2
◦
1
◦
◦
2
◦
2 = 0 + 0 = 0

c
2
◦
◦
1 = t

1
◦
2
◦
◦
1
◦
1 + t

2
◦
2
◦
◦
2
◦
1 = −6− 3 = −9

c
2
◦
◦
2 = t

1
◦
2
◦
◦
1
◦
2 + t

2
◦
2
◦
◦
2
◦
2 = 0 + 0 = 0


⇒ [cβ◦

◦
δ] =

[
18 0
−9 0

]
;

[dβ◦
◦
γ] = C

(
α

δ

)
[tα◦
β
◦
◦
γ
◦
δ] = [t1◦

β
◦
◦
γ
◦
1] + [t2◦

β
◦
◦
γ
◦
2]

d
1
◦
◦
1 = t

1
◦
1
◦
◦
1
◦
1 + t

2
◦
1
◦
◦
1
◦
2 = 12 + 0 = 12

d
1
◦
◦
2 = t

1
◦
1
◦
◦
2
◦
1 + t

2
◦
1
◦
◦
2
◦
2 = 6 + 0 = 6

d
2
◦
◦
1 = t

1
◦
2
◦
◦
1
◦
1 + t

2
◦
2
◦
◦
1
◦
2 = −6 + 0 = −6

d
2
◦
◦
2 = t

1
◦
2
◦
◦
2
◦
1 + t

2
◦
2
◦
◦
2
◦
2 = −3 + 0 = −3


⇒ [dβ◦

◦
γ] =

[
12 6
−6 −3

]
;

[fα◦
◦
δ] = C

(
β

γ

)
[tα◦
β
◦
◦
γ
◦
δ] = [tα◦

1
◦
◦
1
◦
δ] + [tα◦

2
◦
◦
2
◦
δ]

f
1
◦
◦
1 = t

1
◦
1
◦
◦
1
◦
1 + t

1
◦
2
◦
◦
2
◦
1 = 12− 3 = 9

f
1
◦
◦
2 = t

1
◦
1
◦
◦
1
◦
2 + t

1
◦
2
◦
◦
2
◦
2 = 0 + 0 = 0

f
2
◦
◦
1 = t

2
◦
1
◦
◦
1
◦
1 + t

2
◦
2
◦
◦
2
◦
1 = 12− 3 = 9

f
2
◦
◦
2 = t

2
◦
1
◦
◦
1
◦
2 + t

2
◦
2
◦
◦
2
◦
2 = 0 + 0 = 0


⇒ [fα◦

◦
δ] =

[
9 0
9 0

]
;

[gα◦
◦
γ] = C

(
β

δ

)
[tα◦
β
◦
◦
γ
◦
δ] = [tα◦

1
◦
◦
γ
◦
1] + [tα◦

2
◦
◦
γ
◦
2]
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g
1
◦
◦
1 = t

1
◦
1
◦
◦
1
◦
1 + t

1
◦
2
◦
◦
1
◦
2 = 12 + 0 = 12

g
1
◦
◦
2 = t

1
◦
1
◦
◦
21
◦
1 + t

1
◦
2
◦
◦
2
◦
2 = 6 + 0 = 6

g
2
◦
◦
1 = t

2
◦
1
◦
◦
1
◦
1 + t

2
◦
2
◦
◦
1
◦
2 = 12 + 0 = 12

g
2
◦
◦
2 = t

2
◦
1
◦
◦
2
◦
1 + t

2
◦
2
◦
◦
2
◦
2 = 6 + 0 = 6


⇒ [gα◦

◦
γ] =

[
12 6
12 6

]
.

2. Procedure based on the use of the simple contraction homomorphisms
and of order r = 4. C

(
α
γ

)
→ Model (2), Formula (5.70):

T ′4 = H4,16(α, γ) • T16,1 =
(
[I2 ⊗ Et1|I2 ⊗ Et2]⊗ I2

)
• T16,1

=
[[[

1 0
0 1

]
⊗ [ 1 0 ]

]∣∣∣∣ [[ 1 0
0 1

]
⊗ [ 0 1 ]

]
⊗
[
1 0
0 1

]]
• T16,1

=
([ 1 0 0 0 0 1 0 0

0 0 1 0 0 0 0 1
]
⊗
[
1 0
0 1

])
• T16,1

=

 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1

 •



12
0
6
0−6
0−3
0
12
0
6
0−6
0−3
0



=


12 + 6
0 + 0
−6− 3
0 + 0

 =


18
0
−9
0

 ,

and after condensation the result is

[cβ◦
◦
δ] =

[
18 0
−9 0

]
.

C
(
α
δ

)
→ Model (3), Formula (5.71):

T ′′4 = H4,16(α, δ) • T16,1 = [I2 ⊗ I2 ⊗ Et1|I2 ⊗ I2 ⊗ Et2] • T16,1

=



1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⊗ [ 1 0 ]

∣∣∣∣∣∣∣


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⊗ [ 0 1 ]


 • T16,1
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=

 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1

 •



12
0
6
0−6
0−3
0
12
0
6
0−6
0−3
0



=


12 + 0
8 + 0
−6 + 0
−3 + 0

 =


12
6
−6
−3

 ,

and after condensation we get

[dβ◦
◦
γ] =

[
12 6
−6 −3

]
.

C
(
β
γ

)
→ Model (4), Formula (5.72):

T ′′′4 = H4,16(β, γ) • T16,1 = [I2 ⊗
[
Et1|Et2

]
⊗ I2] • T16,1

=
[[

1 0
0 1

]
⊗ [ 1 0 0 1 ]⊗

[
1 0
0 1

]]
• T16,1

=
([

1 0 0 1 0 0 0 0
0 0 0 0 1 0 0 1

]
⊗
[
1 0
0 1

])
• T16,1

=

 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1

 •



12
0
6
0−6
0−3
0
12
0
6
0−6
0−3
0



=


12− 3
0 + 0
12− 3
0 + 0

 =


9
0
9
0

 ,

and after condensation we get

[fα◦
◦
δ] =

[
9 0
9 0

]
.

C
(
β
γ

)
→ Model (5), Formula (5.73):
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T IV4 = H4,16(β, δ) • T16,1 =
(
I2 ⊗ [I2 ⊗ Et1|I2 ⊗ Et2]

)
• T16,1

=
([

1 0
0 1

]
⊗
[[

1 0
0 1

]
⊗ [ 1 0 ]

∣∣∣∣ [ 1 0
0 1

]
⊗ [ 0 1 ]

])
• T16,1

=
[[

1 0
0 1

]
⊗
[
1 0 0 0 0 1 0 0
0 0 1 0 0 0 0 1

]]
• T16,1

=

 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1

 •



12
0
6
0
−6
0
−3
0
12
0
6
0
−6
0
−3
0



=

 12 + 0
6 + 0
12 + 0
6 + 0

 =


12
6
12
6

 ,

and condensing yields

[gα◦
◦
γ] =

[
12 6
12 6

]
.

3. We will express each of the tensors previously obtained in a developed
analytical form, and later we will try to factorize each of them, as a
function of the factors �v1, �v2, �f

3, �f4. Then

�c = c
β
◦
◦
δ�eβ ⊗ �e∗δ = 18�e1 ⊗ �e∗1 − 9�e2 ⊗ �e∗1 = (2�e1 − �e2)⊗ (9�e∗1)

and according to the statement data:

�c = �v2 ⊗ 3�f4 = 3(�v2 ⊗ �f4)
�d = d

β
◦
◦
γ�eβ ⊗ �e∗γ = 12�e1 ⊗ �e∗1 + 6�e1 ⊗ �e∗2 − 6�e2 ⊗ �e∗1 − 3�e2 ⊗ �e∗2

= (12�e1 − 6�e2)⊗ �e∗1 + (6�e1 − 3�e2)⊗ �e∗2

= 2(2�e1 − �e2)⊗ 3�e∗1 + (2�e1 − �e2)⊗ 3�e∗2

= (2�e1 − �e2)⊗ 3(2�e∗1 + �e∗2)
= 3(2�e1 − �e2)⊗ (2�e∗11 + �e∗2)

= 3(�v2 ⊗ �f3)
�f = f

α
◦
◦
δ�eα ⊗ �e∗δ
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= 9�e1 ⊗ �e∗1 + 9�e2 ⊗ �e∗1

= 3(�e1 + �e2)⊗ 3�e∗1 = 3(�v1 ⊗ �f4)

�g = g
α
◦
◦
γ�eα ⊗ �e∗γ = 12�e1 ⊗ �e∗1 + 6�e1 ⊗ �e∗2 + 12�e2 ⊗ �e∗1 + 6�e2 ⊗ �e∗2

= 12(�e1 + �e2)⊗ �e∗1 + 6(�e1 + �e2)⊗ �e∗2

= 6(�e1 + �e2)⊗ (2�e∗1 + �e∗2) = 6(�v1 ⊗ �f3).

�


Example 5.8 (Contracted tensor product). Consider the two tensors �a and �b
given by their components with respect to the canonical basis of the linear
space IR3:

[aα◦
β
◦] =

[
1 3 0
0 0 −1
2 −2 1

]
; [bγ◦

◦
δ
ε
◦] =



1 −1 1
2 3 0
0 4 5
− − −
1 0 1
0 2 1
3 1 −1
− − −
0 3 −2
5 1 0
3 −1 2


.

1. Obtain all possible contracted tensor products with both tensors.
2. Determine the type of homomorphism that directly relates two of the

contracted products with the other two.

Solution:

1. A tensor product tensor is

t
α
◦
β
◦
γ
◦
◦
δ
ε
◦ = a

α
◦
β
◦ ⊗ b

γ
◦
◦
δ
ε
◦.

There are two possible tensor contractions: C
(
α
δ

)
−C

(
β
δ

)
, because contrac-

tions C
(
γ
δ

)
and C

(
ε
δ

)
correspond to indices of the same factor.

[uβ◦
γ
◦
ε
◦] = C

(
α

δ

)
[tα◦
β
◦
γ
◦
◦
δ
ε
◦] = [tθ◦

β
◦
γ
◦
◦
θ
ε
◦] = [aθ◦

β
◦ · b

γ
◦
◦
θ
ε
◦].

If [aθ◦
β
◦]
t = [aβ◦

θ
◦], for γ = 1, we get

[uβ◦
1
◦
ε
◦] = [aβ◦

θ
◦] · [b

1
◦
◦
θ
ε
◦] =

[
1 0 2
3 0 −2
0 −1 1

][
1 −1 1
2 3 0
0 4 5

]
=

[
1 7 11
3 −11 −7
−2 1 5

]
,

for γ = 2:

[uβ◦
2
◦
ε
◦] = [aβ◦

θ
◦] · [b

2
◦
◦
θ
ε
◦] =

[
1 0 2
3 0 −2
0 −1 1

][
1 0 1
0 2 1
3 1 −1

]
=

[
7 2 −1
−3 −2 5
3 −1 −2

]
,
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and for γ = 3:

[uβ◦
3
◦
ε
◦] = [aβ◦

θ
◦] · [b

3
◦
◦
θ
ε
◦] =

[
1 0 2
3 0 −2
0 −1 1

][
0 3 −2
5 1 0
3 −1 2

]
=

[
6 1 2
−6 11 −10
−2 −2 2

]
.

So that letting β = 1, and assigning to ε the values 1, 2, 3 in the above
three matrices we arrive at

[u1◦
γ
◦
ε
◦] =

[
1 7 11
7 2 −1
6 1 2

]
.

Similarly, for β = 2 and ε taking values 1, 2, 3, we get

[u2◦
γ
◦
ε
◦] =

[
3 −11 −7
−3 −2 5
−6 11 −10

]
.

Finally, for β = 3 and values 1, 2, 3 we obtain

[u3◦
γ
◦
ε
◦] =

[
−2 1 5
3 −1 −2
−2 −2 2

]
.

Then, the first contracted product is

[uβ◦
γ
◦
ε
◦] =



1 7 11
7 2 −1
6 1 2
− − −
3−11 −7
−3 −2 5
−6 11−10
− − −
−2 1 5
3 −1 −2
−2 −2 2


,

and the second is

[vα◦
γ
◦
ε
◦] = C

(
β

δ

)
[tα◦
β
◦
γ
◦
◦
δ
ε
◦] = [tα◦

θ
◦
γ
◦
◦
θ
ε
◦] = [aα◦

θ
◦ · b

γ
◦
◦
θ
ε
◦].

For γ = 1, we get

[vα◦
1
◦
ε
◦] = [aα◦

θ
◦ · b

1
◦
◦
θ
ε
◦] =

[
1 3 0
0 0 −1
2 −2 1

]
•
[
1 −1 1
2 3 0
0 4 5

]
=

[
7 8 1
0 −4 −5
−2 −4 7

]
,

for γ = 2:

[vα◦
2
◦
ε
◦] = [aα◦

θ
◦ · b

2
◦
◦
θ
ε
◦] =

[
1 3 0
0 0 −1
2 −2 1

]
•
[
1 0 1
0 2 1
3 1 −1

]
=

[
1 6 4
−3 −1 1
5 −3 −1

]
,
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and for γ = 3:

[vα◦
3
◦
ε
◦] = [aα◦

θ
◦ · b

3
◦
◦
θ
ε
◦] =

[
1 3 0
0 0 −1
2 −2 1

]
•
[
0 3 −2
5 1 0
3 −1 2

]
=

[
15 6 −2
−3 1 −2
−7 3 −2

]
.

Doing exactly the same as in the previous case, β = 1, 2, 3, and ε succes-
sively equal to 1, 2, 3 in each jump of β, we obtain the second contracted
product

[vα◦
γ
◦
ε
◦] =



7 8 1
1 6 4
15 6 −2
− − −
0 −4 −5
−3 −1 1
−3 1 −2
− − −
−2 −4 7
5 −3 −1
−7 3 −2


.

Another tensor product is p
γ
◦
◦
δ
ε
◦
α
◦
β
◦ = b

γ
◦
◦
δ
ε
◦ ⊗ a

α
◦
β
◦.

There are two possible tensor contractions (of contracted product): C
(
α
δ

)
−

C
(
β
δ

)
. Thus, we have

[wγ◦
ε
◦
β
◦] = C

(
α

δ

)
[pγ◦
◦
δ
ε
◦
α
◦
β
◦] = [pγ◦

◦
θ
ε
◦
θ
◦
β
◦] = [bγ◦

◦
θ
ε
◦ · a

θ
◦
β
◦].

For γ = 1, taking into account that [b1◦
ε
◦
◦
θ] = [b1◦

◦
θ
ε
◦]
t, the result is

[w1
◦
ε
◦
β
◦] = [b1◦

◦
θ
ε
◦ · a

θ
◦
β
◦] = [b1◦

ε
◦
◦
θ] · [a

θ
◦
β
◦] =

[
1 2 0
−1 3 4
1 0 5

]
•
[
1 3 0
0 0 −1
2 −2 1

]

=

[
1 3 −2
7 −11 1
11 −7 5

]
.

For γ = 2, we get

[w2
◦
ε
◦
β
◦] = [b2◦

◦
θ
ε
◦ · a

θ
◦
β
◦] = [b2◦

ε
◦
◦
θ] · [a

θ
◦
β
◦] =

[
1 0 3
0 2 1
1 1 −1

]
•
[
1 3 0
0 0 −1
2 −2 1

]

=

[
7 −3 3
2 −2 −1
−1 5 −2

]
,

and for γ = 3, is

[w3
◦
ε
◦
β
◦] = [b3◦

◦
θ
ε
◦ · a

θ
◦
β
◦] = [b3◦

ε
◦
◦
θ] · [a

θ
◦
β
◦] =

[
0 5 3
3 1 −1
−2 0 2

]
•
[
1 3 0
0 0 −1
2 −2 1

]

=

[
6 −6 −2
1 11 −2
2 −10 2

]
.
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So that the present contraction becomes

[wγ◦
ε
◦
β
◦] =



1 3 −2
7 −11 1
11 −7 5
− − −
7 −3 3
2 −2 −1
−1 5 −2
− − −
6 −6 −2
1 11 −2
2 −10 2


.

Finally, the following contraction remains to be calculated:

[sγ◦
ε
◦
α
◦ ] = C

(
β

δ

)
[pγ◦
◦
δ
ε
◦
α
◦
β
◦] = [pγ◦

◦
θ
ε
◦
α
◦
θ
◦] = [bγ◦

◦
θ
ε
◦ · a

α
◦
θ
◦].

This time we will transpose the matrices associated with both factors, in
order to be able to execute them in matrix form.
For γ = 1, we obtain

[s1◦
ε
◦
α
◦ ] = [b1◦

◦
θ
ε
◦ · a

α
◦
θ
◦] = [b1◦

ε
◦
◦
θ] · [a

θ
◦
α
◦ ] =

[
1 2 0
−1 3 4
1 0 5

]
•
[
1 0 2
3 0 −2
0 −1 1

]

=

[
7 0 −2
8 −4 −4
1 −5 7

]
.

For γ = 2:

[s2◦
ε
◦
α
◦ ] = [b2◦

◦
θ
ε
◦ · a

α
◦
θ
◦] = [b2◦

ε
◦
◦
θ] · [a

θ
◦
α
◦ ] =

[
1 0 3
0 2 1
1 1 −1

]
•
[
1 0 2
3 0 −2
0 −1 1

]

=

[
1 −3 5
6 −1 −3
4 1 −1

]
,

and for γ = 3:

[s3◦
ε
◦
α
◦ ] = [b3◦

◦
θ
ε
◦ · a

α
◦
θ
◦] = [b3◦

ε
◦
◦
θ] · [a

θ
◦
α
◦ ] =

[
0 5 3
3 1 −1
−2 0 2

]
•
[
1 0 2
3 0 −2
0 −1 1

]

=

[
15 −3 −7
6 1 3
−2 −2 −2

]
,

which yields the contracted tensor
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[sγ◦
ε
◦
α
◦ ] =



7 0 −2
8 −4 −4
1 −5 7
− − −
1 −3 5
6 −1 −3
4 1 −1
− − −
15 −3 −7
6 1 3
−2 −2 −2


.

2. A careful examination of the tensor [wγ◦
ε
◦
β
◦] reveals that it is a certain

permutation of [uβ◦
γ
◦
ε
◦] and, since all dummy indices change position, it is

a rotation. Compared with the Example 5.5 of rotation tensors, we finally
establish that [wγ◦

ε
◦
β
◦] = [uβ◦

γ
◦
ε
◦]
R(1).

Similarly, we establish that [sγ◦
ε
◦
α
◦ ] = [vα◦

γ
◦
ε
◦]
R(1), an interesting relation,

which enables us to avoid half of the operations in the previous question.

�


5.10 Eigentensors

Given an arbitrary tensor, T , we examine what possible tensors exist of a given
order, r, that in a contracted tensor product with the given tensor, become a
tensor that is λ times (λ ∈ K) the initial tensor, that is, the following tensor
equation is satisfied, with T and r = 3:

C
(

α
θ

∣∣∣∣φβ
)
(T α◦

◦
β
◦
γ
δ
◦ ⊗X

◦
θ
φ
◦
◦
w) = λX

◦
θ
φ
◦
◦
w. (5.81)

First case:

Data tensor: A = [aα◦
◦
β], of second order, over n = dimV 2(K) = 2.

Test tensor r = 1: vector X = [xθ] ≡
[
x1

x2

]
According to (5.81), we must have

C
(

θ
β

)
[A⊗X] = [aα◦

◦
β · δ

β
◦
◦
θ · x

θ
◦] =

[
a
α
◦
◦
θ · x

θ
◦
]
= A •X = λX (5.82)

and the relation (5.82) leads to the classic relation

[A− λI] •X = Ω, (5.83)

which is solved in algebras with the eigenvalues and eigenvectors associated
with matrix A, for the eigenvalues λ1 and λ2 of the characteristic polynomial.
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We do not insist on this, since we assume that it is well known by the
reader. Let A1 and A2 be the matrices of eigenvectors associated with the
eigenvalues λ1 and λ2 (assuming they coexist in K); we assume from now on
that they are known.

The solutions in this first case are

X1 = A1 arbitrary eigenvector of the matrix A, associated with λ1.

X2 = A2 arbitrary eigenvector of the matrix A, associated with λ2.
(5.84)

Second case:

Data tensor: A = [aα◦
◦
β], of second order, over n = dim V 2(K) = 2.

Test tensor r = 2: matrix X = [xγ◦
◦
δ] ≡

[
x y
z t

]
.

According to (5.81), the first term must be
Let P = [pα◦

◦
β
γ
◦
◦
δ] = A⊗X; There are several possible contractions:

First possible contraction

[qα◦
◦
δ] = C

(
γ
β

)
P ≡ C

(
γ
β

)[
p
α
◦
◦
β
γ
◦
◦
δ

]
(5.85)

Equation (5.85) is stated by “extension”:

qσ′ = Hn2,n4(β, γ)Pσ,1 (5.86)

with the help of the homomorphism (5.72).
The details are

A =

[
a
1
◦
◦
1 a

1
◦
◦
2

a
2
◦
◦
1 a

2
◦
◦
2

]
; X =

[
x y
z t

]
; P = A⊗X

P =


a
1
◦
◦
1x a

1
◦
◦
1y

a
1
◦
◦
1z a

1
◦
◦
1t

|
|

a
1
◦
◦
2x a

1
◦
◦
2y

a
1
◦
◦
2z a

1
◦
◦
2t

−−−−−−− + −−−−−−−
a
2
◦
◦
1x a

2
◦
◦
1y

a
2
◦
◦
1z a

2
◦
◦
1t

|
|

a
2
◦
◦
2x a

2
◦
◦
2y

a
2
◦
◦
2z a

2
◦
◦
2t

 ,

which in our case is n = 2;σ = n4 = 24 = 16;σ′ = n2 = 22 = 4, and then,
(5.72) leads to

H4,16(β, γ) = I2 ⊗ [Et1|Et2]⊗ I2 ≡
[
1 0
0 1

]
⊗ [ 1 0 0 1 ]⊗

[
1 0
0 1

]
=
[
1 0
0 1

]
⊗
[
1 0
0 1

0 0
0 0

0 0
0 0

1 0
0 1

]
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=


1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1


and (5.86) gives

q4 = H4,16(β, γ) • P16 =


a
1
◦
◦
1x+ a

1
◦
◦
2z

a
1
◦
◦
1y + a

1
◦
◦
2t

a
2
◦
◦
1x+ a

2
◦
◦
2z

a
2
◦
◦
1y + a

2
◦
◦
2t


and once condensed, we identify with the right-hand of (5.81):[

a
1
◦
◦
1x+ a

1
◦
◦
2z a

1
◦
◦
1y + a

1
◦
◦
2t

a
2
◦
◦
1x+ a

2
◦
◦
2z a

2
◦
◦
1y + a

2
◦
◦
2t

]
= λ

[
x y
z t

]
and passing all terms to the left-hand side leads to the matrix system:

[A− λI] •
[
x
z

]
=
[
0
0

]
[A− λI] •

[
y
t

]
=
[
0
0

] ,
the solutions of which are the eigenvalues and eigenvectors of the classic, which
has been solved in the first case.

Thus, the solution matrices, built by blocks are the following:

X1 = [A1|µA1] automatrix associated with λ1

X2 = [A2|νA2] automatrix associated with λ2

; ∀µ, ν ∈ K. (5.87)

Second possible contraction

[q◦β
γ
◦] = C

(
α

δ

)
[pα◦
◦
β
γ
◦
◦
δ], (5.88)

which once stretched leads to the new qσ′ :

qσ′ = H4,16(α, δ) · Pσ. (5.89)

With the help of the homomorphism (5.71) we obtain

H4,16(α, δ) = [I4 ⊗ Et1|I4 ⊗ Et2]

=



1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⊗ [ 1 0 ]

|
|
|
|


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⊗ [ 0 1 ]


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=


1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1


and (5.89) gives

q4 = H4,16(α, δ)P16 =


a
1
◦
◦
1x+ a

2
◦
◦
1y

a
1
◦
◦
1z + a

2
◦
◦
1t

a
1
◦
◦
2x+ a

2
◦
◦
2y

a
1
◦
◦
2z + a

2
◦
◦
2t

 ,

which once condensed and according to (5.88) leads to [q◦β
γ
◦]:

[q◦β
γ
◦] =

[
a
1
◦
◦
1x+ a

2
◦
◦
1y a

1
◦
◦
1z + a

2
◦
◦
1t

a
1
◦
◦
2x+ a

2
◦
◦
2y a

1
◦
◦
2z + a

2
◦
◦
2t

]
.

According to (5.81) matrix [q◦β
γ
◦] must be equal to λX ≡ λ[xγ◦

◦
δ], which requires

transposing one of them, then

[q◦β
γ
◦]
t = λX;

[
a
1
◦
◦
1x+ a

2
◦
◦
1y a

1
◦
◦
2x+ a

2
◦
◦
2y

a
1
◦
◦
1z + a

2
◦
◦
1t a

1
◦
◦
2z + a

2
◦
◦
2t

]
= λ

[
x y
z t

]
and passing all terms to the left-hand side, and adequately sorting the equa-
tions, yields the matrix system

[At − λI] •
[
x
y

]
=
[
0
0

]
[At − λI] •

[
z
t

]
=
[
0
0

] ,

the solutions of which are the same eigenvalues λ1 and λ2 as in possibility (a),
but the eigenvectors A′1 and A′2 are those corresponding to matrix At. So,[

x
y

]
= A′1 → [x y ] = A′t1 eigenvector of λ1

[
z
t

]
= µA′1 → [ z t ] = µA′t1 eigenvector of λ1

and similarly A′2 and νA′2 for λ = λ2.
Finally, we give the following matrices, built by blocks as left solutions:
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X1 =

 A′t1
−−−−
µA′t1

 automatrix associated with λ1

X2 =

 A′t2
−−−−
νA′t2

 automatrix associated with λ2


∀µ, ν ∈ K, (5.90)

which satisfy
X1 •A = λ1X1 and X2 •A = λ2X2.

Third case:

Finally, we will study the autotensor of order r = 3.
Data tensor: A = [aα◦

◦
β], of second order, over n.

Test tensor r = 3: (tensor of order 3). Among several possible choices, we
select the tensor X = [xγ◦

◦
δ
ε
◦].

Let P = [pα◦
◦
β
γ
◦
◦
δ
ε
◦] = A⊗X.

X is a contra–cova–contravariant tensor. The possible contraction tensor
products are:

M = C
(

α
δ

)
P = C

(
α
δ

)
[pα◦
◦
β
γ
◦
◦
δ
ε
◦] = [m◦β

γ
◦
ε
◦], cova-contra-contravariant

N = C
(

ε
β

)
P = C

(
ε
β

)
[pα◦
◦
β
γ
◦
◦
δ
ε
◦] = [nα◦

γ
◦
◦
δ], contra-contra-covavariant

Q = C
(

γ
β

)
P = C

(
γ
β

)
[pα◦
◦
β
γ
◦
◦
δ
ε
◦] = [qα◦

◦
δ
ε
◦], contra-cova-contravariant

So, the only valid option is the third one. Since the dimensions of the tensors
to be contracted and contracted are, respectively, for n = 2 : σ = 23×22 = 32
and σ′ = σ/22 = 32/4 = 8, the following tensor equations must be satisfied

Q = C
(

γ
β

)
P = C

(
γ
β

)
[A⊗X] = λX. (5.91)

We start from

X = [xγ◦
◦
δ
ε
◦] =


a b
c d
− −
e f
g h

 ; A = [aα◦
◦
β] =

[
a
1
◦
◦
1 a

1
◦
◦
2

a
2
◦
◦
1 a

2
◦
◦
2

]

Having performed the contraction, the fundamental relation (5.91) can be
stated as



164 5 Homogeneous Tensor Algebra: Tensor Homomorphisms

Q = [qα◦
◦
δ
ε
◦] =



q
1
◦
◦
1
1
◦ q

1
◦
◦
1
2
◦

q
1
◦
◦
2
1
◦ q

1
◦
◦
2
2
◦

−− −−
q
2
◦
◦
1
1
◦ q

2
◦
◦
1
2
◦

q
2
◦
◦
2
1
◦ q

2
◦
◦
2
2
◦


=



a
1
◦
◦
1a+ a

1
◦
◦
2e a

1
◦
◦
1b+ a

1
◦
◦
2f

a
1
◦
◦
1c+ a

1
◦
◦
2g a

1
◦
◦
1d+ a

1
◦
◦
2h

−−−−− −−−−−
a
2
◦
◦
1a+ a

2
◦
◦
2e a

2
◦
◦
1b+ a

2
◦
◦
2f

a
2
◦
◦
1c+ a

2
◦
◦
2g a

2
◦
◦
1d+ a

2
◦
◦
2h


= λ


a b
c d
−−
e f
g h



(5.92)

passing all terms to the left-hand side, and grouping adequately the equations,
we obtain the systems

[A− λI] •
[
a
e

]
=
[
0
0

]
; [A− λI] •

[
b
f

]
=
[
0
0

]

[A− λI] •
[
c
g

]
=
[
0
0

]
; [A− λI] •

[
d
h

]
=
[
0
0

] .
that can be summarized as

[A− λI] •
[

a b c d
e f g h

]
= Ω2,4.

Their interpretation is evident: the matrix solution appears as a permu-
tation of X, and the columns of such a matrix, must be eigenvectors of the
eigenvalue λ1 for X1, or, for the solution X2, eigenvectors of the eigenvalue
λ2.

Built by blocks they are

X1 =


[
1 µ
ν ρ

]
⊗ [ 1 0 ]A1

−−−−−−−−−−−[
1 µ
ν ρ

]
⊗ [ 0 1 ]A1


4×2

X2 =


[
1 µ′

ν′ ρ′

]
⊗ [ 1 0 ]A2

−−−−−−−−−−−[
1 µ
ν ρ

]
⊗ [ 0 1 ]A2


4×2

;∀µ, ν, . . . ρ, µ′, ν′, . . . ρ′ ∈ K.

(5.93)

The reader has now enough tools and experience to solve again the problem
using the direct homomorphism model 5 in Section 5.8.4, on Pσ. that is, the
tensor components of A ⊗ X in a column matrix. Then, it can be checked
that the resulting matrix Qσ′ = Hσ′,σ • Pσ is the stretched expression of the
matrix Q in (5.92). Then, the solution, that must be (5.93), can be obtained.
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5.11 Generalized multilinear mappings

We analyze here the mapping of a linear space absolute direct product r
×
1
V ni
i

 (K) into an arbitrary linear space Wm(K).

As is well known, we call this an “absolute total” linear space or “total
product” linear space, which is denoted by

V n1
1 × V n2

2 × V nr
r (K) or

 r
×
1
V ni
i

 (K) (5.94)

to a linear space, the vectors of which are r-tuples of vectors chosen one per
each factor linear space and in order:

(�v1, �v2, · · · , �vr) ∈

 r
×
1
V ni
i

 (K); �vi ∈ V ni
i (K) (5.95)

and its dimension n = n1 + n2 + · · ·+ nr.
Next, we establish two formal axioms that must be satisfied by the gener-

alized multilineal mappings:

1. F is a mapping that associates with each r-tuple of vectors in

 r
×
1
V ni
i

 (K),

a vector �w ∈Wm(K):

F :

 r
×
1
V ni
i

 (K)→Wm(K) (5.96)

for all r-tuple it is

F (�v1, �v2, . . . , �vr) = �w ∈Wm(K). (5.97)

2. This mapping is multilinear:

F (�v1, �v2, . . . , �v′h + �v′′h, . . . , �vr) = F (�v1, �v2, . . . , �v′h, . . . , �vr)
+F (�v1, �v2, . . . , �v′′h, . . . , �vr) (5.98)

F (�v1, �v2, . . . , λ�vh, . . . , �vr) = λF (�v1, �v2, · · · , �vh, . . . , �vr); 1 ≤ h ≤ r.
(5.99)
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Based on these axioms, we will establish how data are presented and what
the operative formulas are for practical use. First, we select bases for the
intervening linear spaces, and thus, to the vectors of components:

�v1 = �eβ1x
β1
◦
◦
1 with �v1 ∈ V n1

1 (K) and 1 ≤ β1 ≤ n1

�v2 = �eβ2x
β2
◦
◦
2 with �v2 ∈ V n2

2 (K) and 1 ≤ β2 ≤ n2

· · · · · · · · · · · · · · ·
�vi = �eβi

x
βi

◦
◦
i with �vi ∈ V ni

i (K) and 1 ≤ βi ≤ ni

· · · · · · · · · · · · · · ·
�vr = �eβr

x
βr

◦
◦
r with �vr ∈ V nr

r (K) and 1 ≤ βr ≤ nr,

(5.100)

where ∀xβi

◦
◦
i is data.

When introducing these data in (5.97), on account of (5.98) and (5.99),
we obtain

�w = F (�v1, �v2, . . . , �vr) = x
β1
◦
◦
1 · x

β2
◦
◦
2 · · · · · x

βr

◦
◦
rF (�eβ1 , �eβ2 , . . . , �eβr

). (5.101)

This expression with contracted dummy indices has a total of σ = n1 · n2 ·
· · · · nr summands, which correspond with the possibilities of the r-tuples
(�eβ1 , �eβ2 , . . . , �eβr

).
Assume now that the σ basic mappings:

F (�eβ1 , �eβ2 , . . . , �eβr
) = �w(β1, β2, . . . , βr); �w(β1, β2, . . . , βr) ∈Wm(K)

(5.102)
are given (again data).

We also assume that vectors �w(β1, β2, · · · , βr) are data of the following
form.

If the basis of the linear space Wm(K) is {�εk}m1 , expressing the vector
�w(β1, β2, . . . , βr) as a vector covariant tensor :

�w(β1, β2, . . . , βr) = w
1
◦
◦
β1

◦
β2

···
···
◦
βr
�ε1 + w

2
◦
◦
β1

◦
β2

···
···
◦
βr
�ε2 + · · ·

+w
k
◦
◦
β1

◦
β2

···
···
◦
βr
�εk + · · ·+ w

m
◦
◦
β1

◦
β2

···
···
◦
βr
�εm, (5.103)

where the vector coefficients are mounted with the corresponding covariant
tensors, the m covariant tensors are the data that characterize the mapping
F (�eβ1 , �eβ2 , . . . , �eβr

) = �w(β1, β2, . . . , βr). (In reality �w(β1, β2, . . . , βr) is a vec-
tor covariant tensor built with vectors of Wm(K), instead of scalars of K;
the reader can see this by executing the sum indicated in (5.103) by separate
summands, and then grouping them into a single entity.

Assuming that F is delivered as indicated, in (5.103), and entering it in
(5.101) we obtain the image of the stated multilinear mapping, by means of
the final calculation formula:

�w = x
β1
◦
◦
1 ·x

β2
◦
◦
2 · · · · ·x

βr

◦
◦
r

(
w
1
◦
◦
β1

◦
β2

···
···
◦
βr
�ε1+w

2
◦
◦
β1

◦
β2

···
···
◦
βr
�ε2+ · · ·+w

m
◦
◦
β1

◦
β2

···
···
◦
βr
�εm

)
,

(5.104)
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which is built with m contracted products of the contravariant components of
the data vectors by the covariant components of the multilinear mapping F .

One perfectly detects that in Formula (5.104) the notation used has a free
index in the interior of the coefficients (the index h of w

h
◦
◦
β1

◦
β2

···
···
◦
βr
) but it is

useful for the calculation; it is the “vector” index of the basis {�εh} of Wm(K).
If in Formula (5.104) we take as fixed, for example, the vectors (�v2)0, (�v3)0,

. . . , (�vr)0, leaving as dummy the �v1, since they are constant during all the
multilinear mappings F all (xβh

◦
◦
h)0; 2 ≤ h ≤ r the multilinear mapping de-

generates into a homomorphism H1 that applies H1 : V n1
1 (K) → Wm(K);

similarly, if we fix as constant other vectors �vh with the exception of a given
vector. This is the way most authors define multilinear mappings, which in
the authors present opinion is correct, but not useful from a practical point
of view, because none of them arrives at a concrete expression, like the one in
(5.104).

5.11.1 Theorems of similitude with tensor mappings

Theorem 5.6 (Similitude). There exists a univocal correspondence between
the σ r-tuples (�eβ1 , �eβ2 , . . . , �eβr

); 1 ≤ βi ≤ ni; i ∈ Ir that appear in Formula
(5.101) and the σ basic tensor products, of the basis B′ = {�eβ1⊗�eβ2⊗. . .⊗�eβr

}

of the tensor space V n1
1 ⊗ V n2

2 ⊗ · · · ⊗ V nr
r (K) ≡

( r
⊗
1
V ni
i

)
(K)

(�eβ1 , �eβ2 , · · · , �eβr
)
→
←�eβ1 ⊗ �eβ2 ⊗ · · · ⊗ �eβr

. (5.105)

�

It should be surprising for any reader the evidence of the above theorem’s

final expression. Next, we give a second theorem that is based on the one
above.
Theorem 5.7 (Similitude). There exists a unique multilinear mapping:

F ′ :
( r
⊗
1
V ni
i

)
(K)→Wm(K),

such that

F ′(�v1 ⊗ �v2 ⊗ · · · ⊗ �vr) = F (�v1, �v2, . . . , �vr) = �w; �w ∈Wm(K); ∀�vi ∈ V ni
i (K).
(5.106)

�

So that the problem of solving images by means of the multilinear mapping

F :

 r
×
1
V ni
i

 (K) → Wm(K) can be solved indistinctly, with the tensor
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multilinear morphism F ′ :
( r
⊗
1
V ni
i

)
(K)→Wm(K), by simply changing the

notation with the help of Formula (5.105).
Finally, we consider two tensor spaces: the tensor space

A ≡ [V n1
1 ⊗ V n2

2 ⊗ · · · ⊗ V nr
r (K)]⊗ [V n1

1 ⊗ V n2
2 ⊗ · · · ⊗ V nr

r (K)]∗

and the tensor space B, the set of all (tensor) multilinear endomorphisms that
operate inside the tensor space V n1

1 ⊗ V n2
2 ⊗ · · · ⊗ V nr

r (K):

B =ML [V n1
1 ⊗ V n2

2 ⊗ · · · ⊗ V nr
r (K), V n1

1 ⊗ V n2
2 ⊗ · · · ⊗ V nr

r (K)] .

Theorem 5.8 (Similitude). There exists a unique isomorphism Φ

Φ :
( r
⊗
1
V ni
i (K)

)
⊗
( r
⊗
1
V ni
i (K)

)∗ →
←ML

[( r
⊗
1
V ni
i

)
(K),

( r
⊗
1
V ni
i

)
(K)

]
(5.107)

such that with each tensor (�v1 ⊗ �v2 ⊗ · · · ⊗ �vr)⊗ (�u1 ⊗ �u2 ⊗ · · · ⊗ �ur)∗ ∈ A it
associates a tensor multilinear endomorphism

T(4v1⊗4v2⊗···⊗4vr)⊗(4u1⊗4u2⊗···⊗4ur)∗ ∈ B,

that transforms the multivectors �w = �w1 ⊗ �w2⊗ · · · ⊗ �wr ∈
( r
⊗
1
V ni
i (K)

)
into

the following form:

T (�w) = [(�w1 ⊗ �w2 ⊗ · · · ⊗ �wr) • (�u1 ⊗ �u2 ⊗ · · · ⊗ �ur)∗] (�v1 ⊗ �v2 ⊗ · · · ⊗ �vr).
(5.108)

�


Theorems 5.7 and 5.8 will be proved by means of concrete models in the
proposed examples, so that the interested reader will be able to obtain the
general proofs.

5.11.2 Tensor mapping types

If we reconstruct Formula (5.101) adapted for generalized tensor mapping or
as a mapping of the correspondence (5.105):

�w = F (�t) = F (tβ1◦
β2
◦
···
···
βr

◦ �eβ1⊗�eβ2⊗· · ·⊗�eβr
) = t

β1
◦
β2
◦
···
···
βr

◦ F (�eβ1⊗�eβ2⊗· · ·⊗�eβr
)

(5.109)
and we do the same with (5.102) and (5.103):

F (�eβ1 ⊗ �eβ2 ⊗ · · · ⊗ �eβr
) = �w(β1, β2, · · · , βr), (5.110)

the development of the tensor mapping is performed using the same expression
(5.104) but with these changes.
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It is obvious that in (5.104) the tensor coefficients w
h
◦
◦
β1

◦
β2

···
···
◦
βr

with 1 ≤
h ≤ m, can be in some cases symmetric, or anti-symmetric for the covariant
subindices leading to the existence of tensor mappings F -symmetric and
F -anti-symmetric.

The tensor F -anti-symmetric mappings will be studied in later chapters.
It must be clarified, however, that the tensor mapping type F is completely

independent of the tensor type over which it is applied, in other words, for
example it is not necessary to transform symmetric tensors with symmetric
mappings.

5.11.3 Direct n-dimensional tensor endomorphisms

We study here the particular case of tensor mappings. Consider the tensor

space
r
⊗
1
V ni (K) ≡ V n1 ⊗ V n2 ⊗ · · · ⊗ V nr (K) tensor product of r n-dimensional

linear spaces of dimension σ = nr, over the same field K. We assume that in
each of the linear spaces V ni (K) acts an endomorphism of associated square
matrix Hi of order n, which transforms the vectors �vi ∈ V ni (K) in Hi(�vi) =
�wi ∈ V ni (K).

We look for the heterogeneous tensor endomorphism Hσ, which applies the

prototype multivector �v1⊗�v2⊗· · ·⊗�vr ∈
r
⊗
1
V ni (K) on the image multivector

�w1 ⊗ �w2 ⊗ · · · ⊗ �wr ∈
r
⊗
1
V ni (K), that is,

Hσ(�v) = �w ⇔ Hσ(�v1 ⊗ �v2 ⊗ · · · ⊗ �vr) = �w1 ⊗ �w2 ⊗ · · · ⊗ �wr. (5.111)

We solve the problem in a direct form until we find Hσ. Later, the result
will be related with the formulas in Section 5.11.

If we notate in tensor form the individual endomorphisms, if �vi = x(i)
αi

◦ �eαi

and �wi = y(i)
βj

◦ �eβj
with αi, βj ∈ In; i, j ∈ Ir, the result is

y(i)
βj

◦ = h(i)
βj

◦
◦
αj

x(i)
αj

◦ . (5.112)

Replacing in �w = �w1 ⊗ �w2 ⊗ · · · ⊗ �wr the expression of each vector, we
arrive at

�w = (y(1)
β1
◦ �eβ1)⊗ (y(2)

β2
◦ �eβ2)⊗ · · · ⊗ (y(r)

βr

◦ �eβr
)

=
(
y(1)

β1
◦ y(2)

β2
◦ · · · y(r)

βr

◦
)
�eβ1 ⊗ �eβ2 ⊗ · · · ⊗ �eβr

(5.113)

and replacing (5.112) we get

�w =
[(

h(1)
β1
◦
◦
α1

x(1)
α1
◦
)(

h(2)
β2
◦
◦
α2

x(2)
α2
◦
)
· · ·

(
h(r)

βr

◦
◦
αr

x(r)
αr

◦
)]

�eβ1 ⊗ �eβ2 ⊗ · · · ⊗ �eβr
, (5.114)
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which after operating and grouping yields

�w = Hσ(�v) = Hσ(�v1 ⊗ �v2 ⊗ · · · ⊗ �vr)

=
(
x(1)

α1
◦ x(2)

α2
◦ · · ·x(r)

αr

◦
)(

h(1)
β1
◦
◦
α1

h(2)
β2
◦
◦
α2
· · ·h(r)βr

◦
◦
αr

)
�eβ1 ⊗ �eβ2 ⊗ · · · ⊗ �eβr

. (5.115)

If we write

h
β1
◦
◦
α1

β2
◦
◦
α2

···
···
βr

◦
◦
αr

= h(1)
β1
◦
◦
α1

h(2)
β2
◦
◦
α2
· · ·h(r)βr

◦
◦
αr

, (5.116)

Expression (5.115) becomes

�w = Hσ(�v1 ⊗ �v2 ⊗ · · · ⊗ �vr)

=
(
x(1)

α1
◦ x(2)

α2
◦ · · ·x(r)

αr

◦
)(

h
β1
◦
◦
α1

β2
◦
◦
α2

···
···
βr

◦
◦
αr

)
�eβ1 ⊗ �eβ2 ⊗ · · · ⊗ �eβr

. (5.117)

Since x(j)
αj

◦ are the vector data �vj and h(j)
βj

◦
◦
αj

are the endomorphism data
inside each V nj (K), Formula (5.117) solves the problem stated in this section.

In matrix form, expression (5.116) is solved in the matrix

Hσ = H1 ⊗H2 ⊗ · · · ⊗Hr. (5.118)

If the column matrix Vσ,1 is an extension of the components of �v1 ⊗ �v2 ⊗
· · · ⊗ �vr, and the column matrix Wσ,1 is an extension of the components of
�w1 ⊗ �w2 ⊗ · · · ⊗ �wr, then, expression (5.117) leads to the endomorphism (in
matrix form)

Wσ,1 = Hσ • Vσ,1. (5.119)

If we consider
m ≡ nr;�εk ≡ �eβ1 ⊗ �eβ2 ⊗ · · · ⊗ �eβr

,

with 1 ≤ k ≤ m and finally h
β1
◦
◦
α1

β2
◦
◦
α2

···
...
βr

◦
◦
αr
≡ w

k
◦
◦
β1

◦
β2

···
···
◦
βr
, the tensor equation

(5.117) represents a variant of Formula (5.104).
One can easily conclude that Formulas (5.104) and (5.119) can be applied

to tensors in
r
⊗
1
V ni (K) not coming from tensor products, as it was indicated

in Formula (5.109) and will be in the following formulas.

Example 5.9 (Proof of Theorem 5.7). In this example we prove the tensor
similitude Theorem 5.7 for the homogeneous case with the help of tensor and
matrix tools.

Consider the homogeneous linear space “total product” (initial space): r
×
1
(V n)(K)

 ≡ V n × V n × V n · · · × V n(K)
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of dimension (r · n). Let the r-tuple (�v1, �v2, · · · , �vr) be one of its vectors,
where ∀�vi ∈ V n(K), and consider the final linear space Wm(K). The vectors
�vi = x

αi

◦
◦
i�eαi

are given by its components (xαi

◦
◦
i).

Consider a multilinear mapping F that applies the initial space on the
final space by means of the following report, the coefficients f of which are
data tensors:

F :

 r
×
1
(V n)(K)

→Wm(K)

F (�v1, �v2, . . . , �vr) = f
β
◦
◦
α1

◦
α2

···
···
◦
αr

x
α1
◦
◦
1x
α2
◦
◦
2 · · ·x

αr

◦
◦
r�εβ , (5.120)

where {�εβ} is the basis of the linear space Wm(K), with αi ∈ In; 1 ≤ β ≤ m.
Developing the sum associated with index β in (5.120) to obtain its matrix

expression, we get

F (�v1, �v2, . . . , �vr) = f
1
◦
◦
α1

◦
α2

···
···
◦
αr

x
α1
◦
◦
1x
α2
◦
◦
2 · · ·x

αr

◦
◦
r�ε1

+f
2
◦
◦
α1

◦
α2

···
···
◦
αr

x
α1
◦
◦
1x
α2
◦
◦
2 · · ·x

αr

◦
◦
r�ε2 + · · ·+ f

m
◦
◦
α1

◦
α2

···
···
◦
αr

x
α1
◦
◦
1x
α2
◦
◦
2 · · ·x

αr

◦
◦
r�εm

= [�ε1�ε2 · · ·�εm] •


f
1
◦
◦
1
◦
1
···
···
◦
1 f

1
◦
◦
1
◦
1
···
···
◦
2 · · · f

1
◦
◦
α1

◦
α2

···
···
◦
αr

· · · f
1
◦
◦
n
◦
n
···
···
◦
n

f
2
◦
◦
1
◦
1
···
···
◦
1 f

2
◦
◦
1
◦
1
···
···
◦
2 · · · f

2
◦
◦
α1

◦
α2

···
···
◦
αr

· · · f
2
◦
◦
n
◦
n
···
···
◦
n

· · · · · · · · · · · · · · · · · ·
f
m
◦
◦
1
◦
1
···
···
◦
1 f

m
◦
◦
1
◦
1
···
···
◦
2 · · · f

m
◦
◦
α1

◦
α2

···
···
◦
αr

· · · f
m
◦
◦
n
◦
n
···
···
◦
n



•


x
1
◦
◦
1x

1
◦
◦
2 · · ·x

1
◦
◦
r

x
1
◦
◦
1x

1
◦
◦
2 · · ·x

2
◦
◦
r

· · · · · · · · · · · · · · · · · ·
x
n
◦
◦
1x
n
◦
◦
2 · · ·x

n
◦
◦
r

 , (5.121)

the symbolic matrix expression of which, with declaration of the sizes of the
matrices appearing (with σ = nr) is

F (�v1, �v2, · · · , �vr) = [�ε1�ε2 · · ·�εm]Hm,σ
[
x
α1
◦
◦
1x
α2
◦
◦
2 · · ·x

αr

◦
◦
r

]
σ,1

, (5.122)

which is the matrix expression of the multilinear mapping F .
Next, we will discover a multilinear tensor morphism F ′. Remembering

that
�v1 ⊗ �v2 ⊗ · · · ⊗ �vr = x

α1
◦
◦
1x
α2
◦
◦
2 · · ·x

αr

◦
◦
r�eα1 ⊗ �eα2 ⊗ · · · ⊗ �eαr

,

and applying Theorems 5.6 and 5.7 we choose the following equality:

F ′(�eα1 ⊗ �eα2 ⊗ · · · ⊗ �eαr
) ≡ F (�eα1 , �eα2 , · · · , �eαr

)

and then



172 5 Homogeneous Tensor Algebra: Tensor Homomorphisms

F ′(�v1 ⊗ �v2 ⊗ · · · ⊗ �vr) = F ′(xα1
◦
◦
1x
α2
◦
◦
2 · · ·x

αr

◦
◦
r�eα1 ⊗ �eα2 ⊗ · · · ⊗ �eαr

)

= F ′(�eα1 ⊗ �eα2 ⊗ · · · ⊗ �eαr
)(xα1

◦
◦
1x
α2
◦
◦
2 · · ·x

αr

◦ )

= F (�eα1 , �eα2 , · · · , �eαr
)(xα1

◦
◦
1x
α2
◦
◦
2 · · ·x

αr

◦ ). (5.123)

If now we apply (5.122) to the vectors (�eα1 , �eα2 , . . . , �eαr
) in matrix form we

get

F (�eα1 , �eα2 , . . . , �eαr
) = [�ε1,�ε2, . . . ,�εm]Hm,σ • [Eα1 ⊗ Eα2 ⊗ · · · ⊗Eαr

]σ,1 ,
(5.124)

where {Eαi
} is the matrix canonical basis of V n(K).

The matrix

H ′m,σ = Hm,σ

• [E1 ⊗ E1 ⊗ · · · ⊗E1|· · ·|Eα1 ⊗ Eα2 ⊗· · ·⊗Eαr
|. . .|En ⊗ En ⊗· · ·⊗En]σ,σ

(5.125)

represents the operator F ′, and then the final expression for Formula (5.123)
is

F ′(�v1 ⊗ �v2 ⊗ · · · ⊗ �vr) = [�ε1,�ε2, . . . ,�εn]H ′m,σ
[
x
α1
◦
◦
1x
α2
◦
◦
2 · · ·x

αr

◦
]
σ,1

. (5.126)

Developing Equation (5.125) one gets

H ′m,σ = Hm,σ • In ≡ Hm,σ,

which proves our theorem.
�


Example 5.10 (Confirmation of Theorem 5.7). We wish to prove the simili-
tude Theorem 5.7 by means of the following model. Consider two linear spaces
Um(K) and V n(K) referred to their bases {�eα1}m1 and {�eα2}n1 , respectively,
and the two vectors

�u(x1, x2, . . . , xm) ∈ Um(K) and �v(y1, y2, . . . , yn) ∈ V n(K).

Consider also another linear space Wm×n(K) referred to a basis {�εk}m×n1 ,
and a bilinear mapping:

F : Um × V n(K)→Wm×n(K),

which transforms the vector duples of the “direct product” space Um×V n(K),
into vectors of Wm×n(K) by means of

�w ≡ F (�u,�v) = [x1x2 · · ·xm]


�w11 �w12 · · · �w1n

�w21 �w22 · · · �w2n

· · · · · · · · · · · ·
�wm1 �wm2 · · · �wmn




y1

y2

...
yn

 , (5.127)
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where each of the vectors �wαβ in this matrix comes from Wm×n(K) and can
be written as

�wαβ = w
1
◦
◦
α
◦
β�ε1 + w

2
◦
◦
α
◦
β�ε2 + · · ·+ w

m×n
◦
◦
α
◦
β�εm×n; 1 ≤ α ≤ m; 1 ≤ β ≤ n.

(5.128)

1. Give a matrix expression of the image vector �w.
2. Prove the existence of the mapping F ′(�u⊗ �v) in Theorem 5.7.
3. Answer questions 1 and 2 for the particular case

m = 2; n = 3; �u(2,−1); �v(3, 2, 1);

�w11 = 2�ε2 − 3�ε3; �w12 = �0; �w13 = 5�ε1 + 2�ε2 − �ε4 + �ε6;
�w21 = �ε1 + �ε6; �w22 = �ε2 − �ε5; �w23 = �ε1 + �ε2 − �ε3 − �ε4 + �ε6.

Solution:

1. Expression (5.127) can be written in tensor form as

�w = F (�u,�v) = x
α
◦y
β
◦ �wαβ , (5.129)

and developing the sums associated with the dummy indices α and β, and
writing them as a matrix product and, as required, representing the vector
matrices as row matrices, we finally get

�w=F (�u,�v)=[�w11 �w12 · · · �w1n �w21 �w22 · · · �w2n · · · �wm1 �wm2 · · · �wmn]



x
1
◦y

1
◦

x
1
◦y

2
◦

...
x
1
◦y
n
◦

x
2
◦y

1
◦

x
2
◦y

2
◦

...
x
2
◦y
n
◦

...
x
m
◦ y

1
◦

x
m
◦ y

2
◦

...
x
m
◦ y
n
◦



,

which is the answer to the first question.
2. Substituting vectors �wαβ in Formula (5.128) into the last expression and

grouping in matrix form yields
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�w = F (�u,�v)

= [�ε1�ε2 · · ·�εm×n]


w
1
◦
◦
1
◦
1 w

1
◦
◦
1
◦
2 · · · w

1
◦
◦
α
◦
β · · · w

1
◦
◦
m
◦
n

w
2
◦
◦
1
◦
1 w

2
◦
◦
1
◦
2 · · · w

2
◦
◦
α
◦
β · · · w

2
◦
◦
m
◦
n

· · · · · · · · · · · · · · · · · ·
w
m×n
◦
◦
1
◦
1w
m×n
◦
◦
1
◦
2· · ·w

m×n
◦
◦
α
◦
β· · ·w

m×n
◦
◦
m
◦
n





x
1
◦y

1
◦

x
1
◦y

2
◦

...
x
1
◦y
n
◦

x
2
◦y

1
◦

x
2
◦y

2
◦

...
x
2
◦y
n
◦

...
x
m
◦ y

1
◦

x
m
◦ y

2
◦

...
x
m
◦ y
n
◦



.

(5.130)

Note that Expression (5.130) is the matrix expression of a multilinear
mapping F ′(�u ⊗ �v) by means of the central data matrix, which “stacks”
tensor F ′.
Consequently F (�u,�v) = F ′(�u⊗ �v) = �w, which is Theorem 5.7, answering
the second question.

3. Next, we illustrate this numerically.

m · n = 2× 3 = 6; �u = [�e1 �e2 ]
[

2
−1

]
; �v = [�e ′1 �e ′2 �e ′3 ]

 3
2
1

 ,

where �u ∈ U2(IR) and �v ∈ V 3(IR).

Let �z = �u⊗ �v =
(
[�e1 �e2 ]

[
2
−1

])
⊗

[�e ′1 �e ′2 �e ′3 ]

 3
2
1

; by exten-

sion we get

�z = ([�e1 �e2 ]⊗ [�e ′1 �e ′2 �e ′3 ]) •

[ 2
−1

]t
⊗

 3
2
1

tt
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= [ �e1 ⊗ �e ′1 �e1 ⊗ �e ′2 �e1 ⊗ �e ′3 �e2 ⊗ �e ′1 �e2 ⊗ �e ′2 �e2 ⊗ �e ′3 ] •


6
4
2
−3
−2
−1

 .

The vector �z = �u⊗ �v ∈ U2 ⊗ V 3(IR) will be useful later.
Using Formula (5.127), we obtain

�w = F (�u,�v) = [ 2 −1 ]
[
2�ε2 − 3�ε3 �0 5�ε1 + 2�ε2 − �ε4 + �ε6
�ε1 + �ε6 �ε2 − �ε5 �ε1 + �ε2 − �ε3 − �ε4 + �ε6

] 3
2
1


= [ 2 −1 ]

[
0 0 5
1 0 1

] 3
2
1

�ε1 + [ 2 −1 ]
[
2 0 2
0 1 1

] 3
2
1

�ε2

+[ 2 −1 ]
[
−3 0 0
0 0 −1

] 3
2
1

�ε3 + [ 2 −1 ]
[
0 0 −1
0 0 −1

] 3
2
1

�ε4

+[ 2 −1 ]
[
0 0 0
0 −1 0

] 3
2
1

�ε5 + [ 2 −1 ]
[
0 0 1
1 0 1

] 3
2
1

�ε6

= 6�ε1 + 13�ε2 − 17�ε3 − �ε4 + 2�ε5 − 2�ε6;

�w = [�ε1 �ε2 · · · �ε6 ]


6
13
−17
−1
2
−2

 ,

which answers the first question. Next, we build the central matrix of the
multilinear mapping F ′, the structure of which has been given in Formula
(5.130), Thus, we arrange the data vector components �wαβ as columns,
and then, we apply the mentioned formula

�w = F ′(�z) = F ′(�u⊗ �v)

= [�ε1 �ε2 · · · �ε6 ]


0 0 5 1 0 1
2 0 2 0 1 1
−3 0 0 0 0 −1
0 0 −1 0 0 −1
0 0 0 0 −1 0
0 0 1 1 0 1

 •


6
4
2
−3
−2
−1


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= [ �e1 ⊗ �e′1 �e1 ⊗ �e′2 �e1 ⊗ �e′3 �e2 ⊗ �e′1 �e2 ⊗ �e′2 �e2 ⊗ �e′3 ]


6
13
−17
−1
2
−2

 , (5.131)

which gives the answer to the second question.
As one can see the result is the same as the one obtained in the first
question, which is in agreement with the tensor similitude Theorem 5.7.

�


Example 5.11 (Proof of Theorem 5.8). Consider the linear spaces V n(K) and
its dual V n∗ (K) referred to the reciprocal bases {�eβ} and {�e∗α}.

Consider also the linear space of all linear operators T that transform
vectors inside V n(K), that is,

T : V n(K)→ V n(K); T ∈ L[V n(K), V n(K)],

where L refers to linear operators and V n(K), V n(K) to the endomorphism
initial and final linear spaces, respectively.

Let {�eαβ} be the canonical basis of L[V n(K), V n(K)],

�εαβ =


0 0 · · · 0 · · · 0
· · · · · · · · · · · · · · · · · ·
0 0 · · · 1 · · · 0
· · · · · · · · · · · · · · · · · ·
0 0 · · · 0 · · · 0


n×n

,

with a one in the position associated with row α and column β and zero
otherwise; there exist n2 basic vectors.

Consider two data vectors

�u = ||�e∗α||


u
◦
1

u
◦
2

...
u
◦
n

 , �u∗ ∈ V n∗ (K) and �v = ||�eβ ||


v
1
◦

v
2
◦
...
v
n
◦

 , �v ∈ V n(K).

If we build in matrix form the vector �v⊗ �u∗ ∈ V n ⊗ V n∗ (K) and make the
matrix of order n× n of the product equal to Φ(�v ⊗ �u∗), we apply the tensor
space V n ⊗ V n∗ (K) in the space L[V n(K), V n(K)]. Show that the endomor-
phism transforms the vectors as stated in the tensor similitude Theorem 5.8.

Solution: We calculate the vector �v ⊗ �u∗:
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�v ⊗ �u∗ =

[�e1�e2 · · ·�en]


v
1
◦

v
2
◦
...
v
n
◦



⊗
[�e∗1�e∗2 · · ·�e∗n]


u
◦
1

u
◦
2

...
u
◦
n




t

= [�e1�e2 · · ·�en]




v
1
◦

v
2
◦
...
v
n
◦

 •
[
u
◦
1 u

◦
2 · · · u

◦
n

]

⊗


�e∗1

�e∗2
...

�e∗n



= [�e1�e2 · · ·�en]




v
1
◦u
◦
1 v

1
◦u
◦
2 · · · v

1
◦u
◦
n

v
2
◦u
◦
1 v

2
◦u
◦
2 · · · v

2
◦u
◦
n

. . . . . . . . . . . .
v
n
◦u
◦
1 v

n
◦u
◦
2 · · · v

n
◦u
◦
n



⊗


�e∗1

�e∗2

· · ·
�e∗n

 ,

where the ⊗ operator appears as a subindex to refer to a quadratic form of
tensor products.

Following the stated conditions, we have

Φ(�v ⊗ �u∗) =


v
1
◦u
◦
1 v

1
◦u
◦
2 · · · v

1
◦u
◦
n

v
2
◦u
◦
1 v

2
◦u
◦
2 · · · v

2
◦u
◦
n

. . . . . . . . . . . .
v
n
◦u
◦
1 v

n
◦u
◦
2 · · · v

n
◦u
◦
n

 , (5.132)

which gives the endomorphism matrix. Next, following Theorem 5.8 we ex-
amine how the vectors �w ∈ V n(K) (since in this example there exists only
one space as primary and dual factors) are transformed.

We call the matrix in (5.132) T4v⊗4u∗ , and transforming a vector �w ∈ V n(K)
with the operator T we get

T4v⊗4u∗(�w) =


v
1
◦u
◦
1 v

1
◦u
◦
2 · · · v

1
◦u
◦
n

v
2
◦u
◦
1 v

2
◦u
◦
2 · · · v

2
◦u
◦
n

. . . . . . . . . . . .
v
n
◦u
◦
1 v

n
◦u
◦
2 · · · v

n
◦u
◦
n




w
1
◦

w
2
◦
...

w
n
◦



=


(u◦1w

1
◦ + u

◦
2w

2
◦ + · · ·+ u

◦
nw
n
◦)v

1
◦

(u◦1w
1
◦ + u

◦
2w

2
◦ + · · ·+ u

◦
nw
n
◦)v

2
◦

· · ·
(u◦1w

1
◦ + u

◦
2w

2
◦ + · · ·+ u

◦
nw
n
◦)v
n
◦





178 5 Homogeneous Tensor Algebra: Tensor Homomorphisms

= (u◦1w
1
◦ + u

◦
2w

2
◦ + · · ·+ u

◦
nw
n
◦)


v
1
◦

v
2
◦
...
v
n
◦



= (�w • �u∗)


v
1
◦

v
2
◦
...
v
n
◦

 . (5.133)

The tensor conclusion of (5.133) is that

T4v⊗4u∗(�w) = (�w • �u∗)�v. (5.134)

From (5.132) to (5.133) we conclude that the equality

Φ(�v ⊗ �u∗) = T4v⊗4u∗

has the property (5.134) and then, Theorem 5.8 has been proved with the
present model.

The isomorphism character is detected if we apply (5.132) to the vectors

�ei and �e∗j of matrices



0
0
...
1
...
0


, with the 1 in row i, and



0
0
...
1
...
0


, with the 1 in the

row j, respectively:

Φ(�ei ⊗ �e∗j) =


0 0 · · · 0 · · · 0
0 0 · · · 0 · · · 0
· · · · · · · · · · · · · · · · · ·
0 0 · · · 1 · · · 0
· · · · · · · · · · · · · · · · · ·
0 0 · · · 0 · · · 0

 ≡ �εij .

Thus, it is shown that this multilinear endomorphism associates the basis of
V n ⊗ V n∗ (K) with the basis of L[V n(K), V n(K)], and then, in this particular
case it is an isomorphism.

�


Example 5.12 (Total and tensor products). Consider the total product homo-
geneous linear space
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×
1
V n0
k

 (IR) ≡ V n0
1 × V n0

2 × V n0
3 (IR)

of dimension n = 3n0 = 9, and let the tuple (�v1, �v2, �v3) be one of its vectors,
where �vk ∈ V 3

k (IR). The bases for each factor linear space will be denoted by
{�ei(k)}; 1 ≤ i, k ≤ 3, and thus, we have

�vk = ||�e(k)||Xk; Xk =

x1(k)
x2(k)
x3(k)

 , ∀xi(k) ∈ IR .

The basis of the total product linear space

 3
×
1
V 3
k

 (IR) will be notated

B = {�e1(1) �e2(1) �e3(1) , �e1(2) �e2(2) �e3(2) , �e1(3) �e2(3) �e3(3)}

and therefore, the matrix representation of the 3-tuple (�v1, �v2, �v3) results

(�v1, �v2, �v3) = ||B||X,

where X is the block column matrix

X =

X1

X2

X3

 .

Three morphisms “f(k)” apply each space factor V 3
k (IR) into a linear space

Wm(IR) of dimension m = 4 and basis {ε�}41.
The matrix representation of a vector �w ∈ W 4(IR) is �w = ||�ε�||Y . As-

suming that the associated matrix representation, relative to such bases, of
morphisms f(k) are the data matrix H4,3(k), the morphism matrix represen-
tations become

Yk = H4,3(k) •Xk; 1 ≤ k ≤ 3.

Finally, let us build an homomorphism f that applies the initial total
product linear space into the final space Wm(IR):

f :

 3
×
1
V 3
k

 (IR)→Wm(IR); f(�v1, �v2, �v3) = �w

which matrix representation is:

Y = Hm,n •X;

where Hm,n = [H(1) H(2) H(3)] is built with H4,3(k) matrices as blocks.
Assuming now that the data matrices are:
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H(1) =

 5 3 4
1 5 3
2 4 3
4 2 3

 ; H(2) =

 8 −7 4
4 5 −2
−4 2 0
2 3 6

 ; H(3) =

 9 0 6
−6 −3 9
7 2 −4
10 −1 11

 ;

1. Give the representation of morphism f specifying the components of each
matrix.

2. If
(�v1, �v2, �v3) = (2�e1 + 3�e2 − �e3, 5�e2 − 2�e3, �e1 − �e2 + 3�e3) (5.135)

find the image vector �w = f(�v1, �v2, �v3).

3. In

 3
×
1
V 3
k

 (IR), consider the multivector relation

(2�e1, 2�e2 − 5�e3, 2�e3) = (�e1, 2�e2, �e3) + (�e1,−5�e3, �e3).

Using this relation, examine if f is a multilinear transformation for the
addition of the total product linear space.

4. Find a basis of the null space relative to morphism f , verifying that the
dimension of the resulting basis is coherent with the dimension of the
range space.

5. Based on the knowledge we already have on f , build a multilinear mapping

F :

 3
×
1
V 3
k

 (IR)→W 4(IR).

To get it, one must answer the following questions:
(a) Determine matrix Mn,σ where σ = nr0 = 33 = 27; the matrix

columns X of Mn,σ are the matrix representations of the σ 3-tuples(
�eβ1(1), �eβ2(2), �eβ3(3)

)
,∀βi, 1 ≤ βi ≤ 3, in the B basis.

(b) Set condition

F (�eβ1 , �eβ2 , �eβ3) = f(�eβ1(1), �eβ2(2), �eβ3(3)),∀βi, 1 ≤ βi ≤ 3,

through the matrix relation:

H(F )m,σ = Hm,n •Mn,σ.

Give the matrix Hm,σ associated with the multilinear application F .
(c) Determine matrix Xσ,1 as the representation of multivector (�v1, �v2, �v3)

given in (5.135), but now with the appropriate components as shown
in formula (5.122).

6. Determine the image vector �w′ = F (�v1, �v2, �v3), in accordance with matrix
equation Y ′m,1 = Hm,σ •Xσ,1.

7. Determine if �w′ = 3�w.
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Solution:

1. The matrix representation of morphism f is:


y1

y2

y3

y4

 =

 5 3 4 8 −7 4 9 0 6
1 5 3 4 5 −2 −6 −3 9
2 4 3 −4 2 0 7 2 −4
4 2 3 2 3 6 10 −1 11





x1(1)
x2(1)
x3(1)
x1(2)
x2(2)
x3(2)
x1(3)
x2(3)
x3(3)


2. Since


y1

y2

y3

y4

 =

 5 3 4 8 −7 4 9 0 6
1 5 3 4 5 −2 −6 −3 9
2 4 3 −4 2 0 7 2 −4
4 2 3 2 3 6 10 −1 11




2
3
−1
0
5
−2
1
−1
3


=


−1
67
16
58



we have
�w = f(�v1, �v2, �v3) = −�ε1 + 67�ε2 + 16�ε3 + 58�ε4.

3. Since f is a morphism, we have

f(2�e1, 2�e2 − 5�e3, 2�e3) = f
(
(�e1, 2�e2, �e3) + (�e1,−5�e3, �e3)

)
= f(�e1, 2�e2, �e3) + f(�e1,−5�e3, �e3)

If f were a multilinear mapping, it should be

f(2�e1, 2�e2 − 5�e3, 2�e3) = f(2�e1, 2�e2, 2�e3) + f(2�e1,−5�e3, 2�e3)

so, f is not a multilinear mapping.
4. A basis of the null space is

BN =



−1 0 −176 −766 −768
−1 0 −82 196 442
2 0 0 0 0
0 0 405 207 −1
0 0 302 46 −118
0 0 0 0 424
0 −2 0 212 0
0 13 848 0 0
0 3 0 0 0


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As matrix H(2) has rank 4, this is the rank of matrix H4,9. Thus, we have

dim(null space)+dim(range space) = 5+4 = 9 = dim(total product space).

5. (a) The matrix representations of (�e1(1), �e1(2), �e1(3)), (�e1(1), �e1(2), �e2(3))
in the B basis are: 

1
0
0
1
0
0
1
0
0


,



1
0
0
1
0
0
0
1
0


so that following this we get matrix Mn,σ:

M9,27 =



1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1
1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0
0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1


(b) The relation H(F )m,σ = Hm,n •Mn,σ, that in this case is

H(F )4,27 = H4,9 •M9,27

becomes

[
22 13 19 7 −2 4 18 9 15 2011 17 5 −4 2 16 7132112 18 6 −3 3 17 8 14−1 2 14 0 3 15−7−4 8 3 6 18 4 7 19−3012 1 4 16 2 5 17−5−2 10
5 0 −611 6 0 9 4 −2 7 2 −413 8 2 11 6 0 6 1 −512 7 1 10 5 −1
16 5 17 17 6 18 20 9 21 14 3 15 15 4 16 18 71915 4 16 16 5 17 19 8 20

]

(c) Applying formula (2.21) one gets



5.12 Exercises 183

X27,1 = X1 ⊗X2 ⊗X3 =

 2
3
−1

⊗
 0

5
−2

⊗
 1
−1
3

 =



0
0
0
10
−10
30
−4
4

−12
0
0
0
15
−15
45
−6
6

−18
0
0
0
−5
5

−15
2
−2
6


6. The matrix representation of F is:

Y ′4,1 = H4,27 •X27,1 =


−57
762
153
663


and then

�w ′ = −57�ε1 + 762�ε2 + 153�ε3 + 663�ε4.

7. It is clear that

�w′ = 3(−19�ε1 + 254�ε2 + 51�ε3 + 221�ε4)
�= 3(−�ε1 + 67�ε2 + 16�ε3 + 58�ε4.)
= 3�w

�


5.12 Exercises

5.1. In the tensor space
4
⊗
1
R2
∗, we consider the totally covariant homogeneous

tensor T , given by its matrix representation:
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[t◦α
◦
β
◦
γ
◦
δ] =


a1 b1 | a2 b2
c1 d1 | c2 d2
− − + − −
a3 b3 | a4 b4
c3 d3 | c4 d4

 .

Obtain the “permutation” matrices P1, P2 and P3 associated with the three
rotation isomers (1),(2),(3) mentioned in Example 5.5, point 3, that transform
the tensor Tσ,1 into its “extended” isomers.

5.2. Consider the homogeneous tensors P,Q and D (the last is the Kronecker
delta), all of them associated with the linear space V n(IR). Determine if the
tensors A,B,C, contracted products of the data tensors, are their isomers:

A : δ
◦
α
β
◦p
◦
β
◦
γ
λ
◦; B : δ

◦
α
β
◦q
◦
γ
◦
β
◦
λδ
λ
◦
◦
µ; C : δ

◦
α
β
◦δ
◦
α
β
◦δ
◦
β
λ
◦δ
◦
γ
λ
◦.

5.3. Two tensors T of order r1 = 2 and U of order r2 = 3 are defined over
a certain linear space V 3(IR) referred to a certain basis {�eα}. Their matrix
representations are

[tα◦
β
◦] =

[ 2 3 0
−2 −1 1
1 0 −1

]
(α row , β column)

[uγ◦
◦
λ
µ
◦] =

[ 0 0 1 | 2 1 0 | 0 1 3
1 3 5 | 1 0 −1 | 1 −1 4
0 2 0 | −1 1 4 | 6 1 0

]
,

where γ is the row block, λ is the column of each block and µ is the block
column. (beware of the matrix block disposition of this tensor).

1. Determine, as contractions of the tensors Q1 = T ⊗ U and Q2 = U ⊗ T
(of order r = 5), the contracted products that follow:

A : t
θ
◦
β
◦u
γ
◦
◦
θ
µ
◦; B : t

α
◦
θ
◦u
γ
◦
◦
θ
µ
◦; F : u

γ
◦
◦
θ
µ
◦t
θ
◦
β
◦; G : u

γ
◦
◦
θ
µ
◦t
α
◦
θ
◦.

Note: the matrix representations of tensors A,B, F,G must have the same
ordering criterion as the one given in the statement for tensors of order
r = 3.

2. Since the tensor U does not satisfy the correct axiomatic ordering in its
matrix representation, give the matrix P of the permutation that trans-
forms Uσ,1 in the isomer U ′σ,1 the condensation of which leads to tensor
U ′ with the correct ordering.

3. Examine if P is an orthogonal matrix.
4. Give A′, B′, F ′, G′, the correct contracted products, with the usual matrix

representation.
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5. Give the matrices HA′ ,HB′ ,HF ′ ,HG′ corresponding to the contraction
homomorphisms executed in the previous question, over the “extended”
tensors.

6. If we recover the isomers from tensors A′, B′, F ′, G′ by means of matrix
P−1 (inverse permutation), do we get the results of question 1?. Check
this result.

7. We perform a change-of-basis, in the linear space V 3(IR) of matrix

C =

 1 0 0
1 2 0
1 2 3

 .

Give the new tensors T̂ and Û that would present this statement.
8. Solve for T̂ and Û , questions 1 to 6.

5.4. Consider the tensor T ∈ V 3 ⊗ V 3
∗ (IR), with matrix representation

[tα◦
◦
β] =

[ 7 4 −1
4 7 −1
−4 −4 4

]
.

Give two right-autotensors A and B, contracted (T ⊗ A) = λA and con-
tracted (T ⊗B) = µB, where A is of order (r = 2) symmetric and B of order
(r = 3).

5.5. Consider the linear space V 3(IR) referred to the basis {�eα}. We take a

particular vector (�V1, �V2, �V3) ∈
3
×
1
V 3(IR) belonging to the total product linear

space, the matrix of which associated with the basis {�eα} is [X1 X2 X3 ] =[ 1 4 2
−1 1 5
2 3 1

]
.

A multilinear transformation F :
3
×
1
V 3(IR) → W 4(IR) that applies the

total product linear space in W 4(IR), is given by (5.104):

F [( �V1, �V2, �V3)] = �W ∈W 4(K),

which results from the total contraction of the four covariant tensors of order
(r = 3) that appear as vector components of

F
h
◦
◦
α
◦
β
◦
γ�εh = (α−1)�ε1+(α−β+2)�ε2+(β−γ−3)�ε3+(γ+4)�ε4; 1 ≤ α, β, γ ≤ 3,

with the vector �V1 ⊗ �V2 ⊗ �V3 ∈
3
⊗
1
V 3(IR).

Give the image vector �W of the multilinear mapping.
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5.6. In the linear space V 3(IR) referred to a certain basis {�eα}, we consider
three linear operators with associated matrices:

H1 =

[ 1 1 0
1 −2 0
0 1 −1

]
; H2 =

[ 2 −2 3
1 1 1
1 3 −1

]
; H3 =

[ 1 1 1
1 2 2
1 2 −2

]
.

1. Obtain the eigenvalues of H1,H2,H3 in increasing order. They will be
notated as (λ1, λ2, λ3), (µ1, µ2, µ3) and (ν1, ν2, ν3), for H1, H2 and H2,
respectively.

2. Obtain the eigenvectors (X1,X2,X3)Hi
associated with each operator,

giving their components in columns.
3. If �Wi = Hi(�Vi), 1 ≤ i ≤ 3 are the images of the vectors:

�V1 = ||�eα||
[ 4
5
2

]
; �V2 = ||�eα||

[ 3
−1
2

]
; �V3 = ||�eα||

[ 1
−1
1

]
,

determine the multivector �V1 ⊗ �V2 ⊗ �V3 ∈
3
⊗
1
V 3(IR) and the multivector

�W1 ⊗ �W2 ⊗ �W3 ∈
3
⊗
1
V 3(IR).

4. Obtain the matrix Hσ associated with the direct endomorphism that
transforms Hσ(�V1 ⊗ �V2 ⊗ �V3) = �W1 ⊗ �W2 ⊗ �W3.

5. Determine the eigenvalues of Hσ.
6. Determine the eigenvectors of Hσ (remember Section 1.3.4).
7. Solve questions 4, 5 and 6 using the computer and assuming that the

solutions of 1, 2 and 3 are known.




