
Introduction to Part One

Linear series have long stood at the center of algebraic geometry. Systems
of divisors were employed classically to study and define invariants of pro-
jective varieties, and it was recognized that varieties share many properties
with their hyperplane sections. The classical picture was greatly clarified by
the revolutionary new ideas that entered the field starting in the 1950s. To
begin with, Serre’s great paper [530], along with the work of Kodaira (e.g.
[353]), brought into focus the importance of amplitude for line bundles. By
the mid 1960s a very beautiful theory was in place, showing that one could
recognize positivity geometrically, cohomologically, or numerically. During the
same years, Zariski and others began to investigate the more complicated be-
havior of linear series defined by line bundles that may not be ample. This
led to particularly profound insights in the case of surfaces [623]. In yet an-
other direction, the classical theorems of Lefschetz comparing the topology of
a variety with that of a hyperplane section were understood from new points
of view, and developed in surprising ways in [258] and [30].

The present Part One is devoted to this body of work and its develop-
ments. Our aim is to give a systematic presentation, from a contemporary
viewpoint, of the circle of ideas surrounding linear series and ample divisors
on a projective variety.

We start in Chapter 1 with the basic theory of positivity for line bundles.
In keeping with the current outlook, Q- and R-divisors and the notion of
nefness play a central role, and the concrete geometry of nef and ample cones
is given some emphasis. The chapter concludes with a section on Castelnuovo–
Mumford regularity, a topic that we consider to merit inclusion in the canon
of positivity.

Chapter 2 deals with linear series, our focus being the asymptotic geometry
of linear systems determined by divisors that may not be ample. We study
in particular the behavior of big divisors, whose role in birational geometry
is similar to that of ample divisors in the biregular theory. The chapter also
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contains several concrete examples of the sort of interesting and challenging
behavior that such linear series can display.

In Chapter 3 we turn to the theorems of Lefschetz and Bertini and their
subsequent developments by Barth, Fulton–Hansen, and others. Here the sur-
prising geometric properties of projective subvarieties of small codimension
come into relief. The Lefschetz hyperplane theorem is applied in Chapter 4
to prove the classical vanishing theorems of Kodaira and Nakano. Chapter
4 also contains the vanishing theorem for big and nef divisors discovered by
Kawamata and Viehweg, as well as one of the generic vanishing theorems from
[242].

Finally, Chapter 5 takes up the theory of local positivity. This is a topic
that has emerged only recently, starting with ideas of Demailly for quantifying
how much of the positivity of a line bundle can be localized at a given point
of a variety. Although some of the results are not yet definitive, the picture is
surprisingly rich and structured.

Writing about linear series seems to lead unavoidably to conflict between
the additive notation of divisors and the multiplicative language of line bun-
dles. Our policy is to avoid explicitly mixing the two. However, on many
occasions we adopt the compromise of speaking about divisors while using
notation suggestive of bundles. We discuss this convention — as well as some
of the secondary issues it raises — at the end of Section 1.1.A.



1

Ample and Nef Line Bundles

This chapter contains the basic theory of positivity for line bundles and divi-
sors on a projective algebraic variety.

After some preliminaries in Section 1.1 on divisors and linear series, we
present in Section 1.2 the classical theory of ample line bundles. The basic
conclusion is that positivity can be recognized geometrically, cohomologically,
or numerically. Section 1.3 develops the formalism of Q- and R-divisors, which
is applied in Section 1.4 to study limits of ample bundles. These so-called nef
divisors are central to the modern view of the subject, and Section 1.4 contains
the core of the general theory. Most of the remaining material is more concrete
in flavor. Section 1.5 is devoted to examples of ample cones and to further
information about their structure, while Section 1.6 focuses on inequalities of
Hodge type. After a brief review of the definitions and basic facts surrounding
amplitude for a mapping, we conclude in Section 1.8 with an introduction to
Castelnuovo–Mumford regularity.

We recall that according to our conventions we deal unless otherwise stated
with complex algebraic varieties and schemes, and with closed points on them.
However, as we go along we will point out that much of this material remains
valid for varieties defined over algebraically closed fields of arbitrary charac-
teristic.

1.1 Preliminaries: Divisors, Line Bundles, and Linear
Series

In this section we collect some facts and notation that will be used frequently
in the sequel. We start in Section 1.1.A by recalling some constructions in-
volving divisors and line bundles, and turn in the second subsection to linear
series. Section 1.1.C deals with intersection numbers and numerical equiva-
lence, and we conclude in 1.1.D by discussing asymptotic formulations of the
Riemann–Roch theorem. As a practical matter we assume that much of this
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material is familiar to the reader.1 However, we felt it would be useful to
include a brief summary in order to fix ideas.

1.1.A Divisors and Line Bundles

We start with a quick review of the definitions and facts concerning Cartier
divisors, following [280, p. 140ff], [445, Chapters 9 and 10], and [344]. We take
up first the very familiar case of reduced and irreducible varieties, and then
pass to more general schemes.

Consider then an irreducible complex variety X, and denote by MX =
C(X) the (constant) sheaf of rational functions onX. It contains the structure
sheaf OX as a subsheaf, and so there is an inclusion O∗X ⊆ M∗

X of sheaves of
multiplicative abelian groups.

Definition 1.1.1. (Cartier divisors). A Cartier divisor on X is a global
section of the quotient sheaf M∗

X/O∗X . We denote by Div(X) the group of all
such, so that

Div(X) = Γ
(
X,M∗

X/O∗X
)
. ut

Concretely, then, a divisor D ∈ Div(X) is represented by data
{
(Ui, fi)

}
con-

sisting of an open covering {Ui} of X together with elements fi ∈ Γ
(
Ui,M

∗
X

)
,

having the property that on Uij = Ui ∩ Uj one can write

fi = gijfj for some gij ∈ Γ
(
Uij ,O∗X

)
. (1.1)

The function fi is called a local equation for D at any point x ∈ Ui. Two such
collections determine the same Cartier divisor if there is a common refinement
{Vk} of the open coverings on which they are defined so that they are given
by data

{
(Vk, fk)

}
and

{
(Vk, f ′k)

}
with

fk = hkf
′
k on Vk for some hk ∈ Γ

(
Vk,O∗X

)
.

The group operation on Div(X) is always written additively: if D,D′ ∈
Div(X) are represented respectively by data

{
(Ui, fi)

}
and

{
(Ui, f ′i)

}
, then

D+D′ is given by
{
(Ui, fif ′i)

}
. The support of a divisor D =

{
(Ui, fi)

}
is the

set of points x ∈ X at which a local equation of D at x is not a unit in OxX.
D is effective if fi ∈ Γ

(
Ui,OX

)
is regular on Ui: this is written D < 0. The

notation D < D′ indicates that D −D′ is effective.
Suppose now that X is a possibly non-reduced algebraic scheme. Then the

same definition works except that one has to be more careful about what one
means by MX , which now becomes the sheaf of total quotient rings of OX .2 As
1 For the novice, we give some suggestions and pointers to the literature.
2 Grothendieck speaks of the sheaf of “meromorphic functions” on X (cf. [257,

20.1]). However since we are working with complex varieties this seems potentially
confusing, and we prefer to follow the terminology of [280].
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explained in [445, Chapter 9] there is a unique sheaf MX on X characterized
by the property that if U = Spec(A) is an affine open subset of X, then

Γ
(
U,MX

)
= Γ

(
U,OX

)
tot

= Atot

is the total ring of fractions of A, i.e. the localization of A at the set of non
zero-divisors.3 Similarly, on the stalk level there is an isomorphism MX,x =(
OX,x

)
tot

. As before one has an inclusion O∗X ⊆ M∗
X of multiplicative groups

of units, and Definition 1.1.1 — as well as the discussion following it — remains
valid without change.

Convention 1.1.2. (Divisors). In Parts One and Two of this work we
adopt the convention that when we speak of a “divisor” we always mean a
Cartier divisor. (In Part Three it will be preferable to think instead of Weil
divisors.) ut

One should view Cartier divisors as “cohomological” objects, but one can
also define “homological” analogues:

Definition 1.1.3. (Cycles and Weil divisors). Let X be a variety or
scheme of pure dimension n. A k-cycle on X is a Z-linear combination of
irreducible subvarieties of dimension k. The group of all such is written Zk(X).
A Weil divisor on X is an (n − 1)-cycle, i.e. a formal sum of codimension
one subvarieties with integer coefficients. We often use WDiv(X) in place of
Zn−1(X) to denote the group of Weil divisors. ut

Remark 1.1.4. (Cycle map for Cartier divisors). There is a cycle map

Div(X) −→ WDiv(X) , D 7→ [D] =
∑

ordV (D) · [V ]

where ordV (D) is the order of D along a codimension-one subvariety. In
general this homomorphism is neither injective nor surjective, although it
is one-to-one when X is a normal variety and an isomorphism when X is
non-singular. (See [208, Chapter 2.1] for details and further information.) ut

A global section f ∈ Γ
(
X,M∗

X

)
determines in the evident manner a divisor

D = div(f) ∈ Div(X).

As usual, a divisor of this form is called principal and the subgroup of all such
is Princ(X) ⊆ Div(X). Two divisors D1, D2 are linearly equivalent, written
D1 ≡lin D2, if D1 −D2 is principal.

Let D be a divisor on X. Given a morphism f : Y −→ X, one would like
to define a divisor f∗D on Y by pulling back the local equations for D. The
following condition is sufficient to guarantee that this is meaningful:
3 See [344] for a discussion of how one should define MX on arbitrary open subsets.
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Let V ⊆ Y be any associated subvariety of Y , i.e. the subvariety de-
fined by an associated prime of OY in the sense of primary decompo-
sition. Then f(V ) should not be contained in the support of D.

If Y is reduced, the requirement is just that no component of Y map into the
support of D.

A similar condition allows one to define the divisor of a section of a line
bundle L on X. Specifically, let s ∈ Γ

(
X,L

)
be a global section of L. Assume

that s does not vanish on any associated subvariety of X — for example,
if X is reduced, this just means that s shouldn’t vanish identically on any
component of X. Then a local equation of s determines in the natural way a
divisor div(s) ∈ Div(X). We leave it to the reader to formulate the analogous
condition under which a “rational section” s ∈ Γ

(
X,L⊗OX

MX

)
gives rise

to a divisor.
A Cartier divisor D ∈ Div(X) determines a line bundle OX(D) on X,

leading to a canonical homomorphism

Div(X) −→ Pic(X) , D 7→ OX(D) (1.2)

of abelian groups, where Pic(X) denotes as usual the Picard group of isomor-
phism classes of line bundles on X. Concretely, if D is given by data

{
(Ui, fi)

}
as above, then one can build OX(D) by using the gij in (1.1) as transition
functions. More abstractly, one can view (the isomorphism class of) OX(D)
as the image of D under the connecting homomorphism

Div(X) = Γ
(
X,M∗

X/O∗X
)
−→ H1

(
X,O∗X

)
= Pic(X)

determined by the exact sequence 0 −→ O∗X −→ M∗
X −→ M∗

X/O∗X −→ 0 of
sheaves on X. Evidently,

OX(D1) ∼= OX(D2) ⇐⇒ D1 ≡lin D2.

If D is effective then OX(D) carries a global section s = sD ∈ Γ
(
X,OX(D)

)
with div(s) = D. In general OX(D) has a rational section with the analogous
property.

The question of whether every line bundle comes from a divisor is more
delicate. On the positive side, there are two sufficient conditions:

Example 1.1.5. (Line bundles from divisors). There are a couple of
natural hypotheses to guarantee that every line bundle arises from a divisor.

(i). If X is reduced and irreducible, or merely reduced, then the homomor-
phism in (1.2) is surjective.

(ii). If X is projective then the same statement holds even if it is non-reduced.

(If X is reduced and irreducible then any line bundle L has a rational section
s, and one can take D = div(s). For the second statement — which is due to



1.1 Preliminaries: Divisors, Line Bundles, and Linear Series 11

Nakai [466] — one can use the theorem of Cartan–Serre–Grothendieck (The-
orem 1.2.6) to reduce to the case in which L is globally generated (Definition
1.1.10). But then one can find a section s ∈ Γ

(
X,L

)
that does not vanish on

any of the associated subvarieties of X, in which case D = div(s) gives the
required divisor.) ut

On the other hand, there is also

Example 1.1.6. (Kleiman’s example). Following [346] and [528] we con-
struct a non-projective non-reduced scheme X on which the mapping (1.2)
is not surjective.4 Start by taking Y to be Hironaka’s example of a smooth
non-projective threefold containing two disjoint smooth rational curves A and
B with A+B ≡num 0 as described in [280, Appendix B, Example 3.4.1]. Now
fix points a ∈ A, b ∈ B and introduce nilpotents at a and b to produce a
non-reduced scheme X containing Y . Note that X has depth zero at a and
b, so these points must be disjoint from the support of every Cartier divisor
on X. Observe also that Pic(X) −→ Pic(Y ) is an isomorphism thanks to the
fact that ker

(
O∗X −→ O∗Y

)
is supported on a finite set, and so has vanishing

H1 and H2.
We claim that there exists a line bundle L on X with the property that∫

A

c1(L) > 0. (*)

In fact, it follows from Hironaka’s construction that one can find a line bundle
on Y satisfying the analogous inequality, and by what have said above this
bundle extends to X. Suppose now that L = OX(D) for some divisor D on
X. Decompose the corresponding Weil divisor as a sum [D] =

∑
mi[Di] of

prime divisors with mi 6= 0. None of the Di can pass through a or b, so each
Di is Cartier and

D =
∑

miDi

as Cartier divisors on X. Now
(
Di ·A

)
≥ 0 and

(
Di ·B

)
≥ 0 since each of the

Di — avoiding as they do the points a and b — meet A and B properly. On
the other hand, it follows from (*) that there is at least one index i such that(
miDi ·A

)
> 0: in particular mi > 0 and

(
Di ·A

)
> 0. But

(
Di ·B

)
= −

(
Di ·A

)
since B ≡num −A and therefore

(
Di · B

)
< 0, a contradiction. (As Schröer

observes, the analogous but slightly simpler example appearing in [276, I.1.3]
is erroneous.) ut

Later on, the canonical bundle of a smooth variety will play a particularly
important role:

Notation 1.1.7. (Canonical bundle and divisor). Let X be a non-
singular complete variety of dimension n. We denote by ωX = ΩnX the
canonical line bundle on X, and by KX any canonical divisor on X. Thus
OX(KX) = ωX . ut
4 We will use here the basic facts of intersection theory recalled later in this section.
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Finally, a word about terminology. There is inevitably a certain amount
of tension between the additive language of divisors and the multiplicative
formalism of line bundles. Our convention is always to work additively with
divisors and multiplicatively with line bundles. However, on many occasions
it is natural or customary to stay in additive mode when nonetheless one has
line bundles in mind. In these circumstances we will speak of divisors but use
notation suggestive of bundles, as for instance in the following statement of
the Kodaira vanishing theorem:

Let L be an ample divisor on a smooth projective variety X of dimen-
sion n. Then Hi

(
X,OX(KX + L)

)
= 0 for every i > 0.

(The mathematics here appears in Chapter 4.) While for the most part this
convention seems to work well, it occasionally leads us to make extraneous
projectivity or integrality hypotheses in order to be able to invoke Exam-
ple 1.1.5. Specifically, we will repeatedly work with the Néron–Severi group
N1(X) of X and the corresponding real vector space N1(X)R = N1(X)⊗R.
Here additive notation seems essential, so we are led to view N1(X) as the
group of divisors modulo numerical equivalence (Definition 1.1.15). On the
other hand, functorial properties are most easily established by passing to
Pic(X). For this to work smoothly one wants to know that every line bundle
comes from a divisor, and this is typically guaranteed by simply assuming
that X is either a variety or a projective scheme. We try to flag this artifice
when it occurs.

1.1.B Linear Series

We next review some basic facts and definitions concerning linear series. For
further information the reader can consult [276, Chapter I.2], [280, Chapter
II, Sections 6, 7], and [248, Chapter 1.4].

Let X be a variety (or scheme), L a line bundle on X, and V ⊆ H0
(
X,L

)
a non-zero subspace of finite dimension. We denote by |V | = Psub(V ) the
projective space of one-dimensional subspaces of V . When X is a complete
variety, |V | is identified with the linear series of divisors of sections of V in the
sense of [280, Chapter II, §7], and in general we refer to |V | as a linear series.5

Taking V = H0
(
X,L

)
— assuming that this space is finite-dimensional, as

will be the case for instance if X is complete — yields the complete linear
series |L|. Given a divisor D, we also write |D | for the complete linear series
associated to OX(D).

Evaluation of sections in V gives rise to a morphism
5 Observe that on a non-integral scheme it may happen that not every element of
|V | determines a divisor, since there may exist s ∈ V for which div(s) is not
defined. In this case calling |V | a linear series is slightly unconventional. However
we trust that no confusion will result.
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evalV : V ⊗C OX −→ L

of vector bundles on X.

Definition 1.1.8. (Base locus and base ideal). The base ideal of |V |,
written

b
(
|V |

)
= b

(
X, |V |

)
⊆ OX ,

is the image of the map V ⊗CL
∗ −→ OX determined by evalV . The base locus

Bs
(
|V |
)
⊆ X

of |V | is the closed subset of X cut out by the base ideal b
(
|V |

)
. When we

wish to emphasize the scheme structure on Bs
(
|V |
)

determined by b
(
|V |

)
we will refer to Bs

(
|V |
)

as the base scheme of |V |. When V = H0
(
X,L

)
or

V = H0
(
X,OX(D)

)
are finite-dimensional, we write respectively b

(
|L|
)

and
b
(
|D |

)
for the base ideals of the indicated complete linear series. ut

Very concretely, then, Bs
(
|V |
)

is the set of points at which all the sections in
V vanish, and b

(
|V |

)
is the ideal sheaf spanned by these sections.

Example 1.1.9. (Inclusions). Assuming for the moment that X is pro-
jective (or complete), fix a Cartier divisor D on X. Then for any integers
m, ` ≥ 1, one has an inclusion

b
(
|`D |

)
· b
(
|mD |

)
⊆ b

(
|(`+m)D |

)
.

(Use the natural homomorphism

H0
(
X,OX(`D)

)
⊗H0

(
X,OX(mD)

)
−→ H0

(
X,OX((`+m)D)

)
determined by multiplication of sections.) ut

The easiest linear series to deal with are those for which the base locus is
empty.

Definition 1.1.10. (Free linear series). One says that |V | is free, or
basepoint-free, if its base locus is empty, i.e. if b

(
|V |
)

= OX . A divisor D or
line bundle L is free if the corresponding complete linear series is so. In the
case of line bundles one says synonymously that L is generated by its global
sections or globally generated. ut

In other words, |V | is free if and only if for each point x ∈ X one can find a
section s = sx ∈ V such that s(x) 6= 0.

Assume now (in order to avoid trivialities) that dimV ≥ 2, and set B =
Bs(|V |). Then |V | determines a morphism

φ = φ|V | : X −B −→ P
(
V
)
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from the complement of the base locus in X to the projective space of one-
dimensional quotients of V . Given x ∈ X, φ(x) is the hyperplane in V con-
sisting of those sections vanishing at x. If one chooses a basis s0, . . . , sr ∈ V ,
this amounts to saying that φ is given in homogeneous coordinates by the
(somewhat abusive!) expression

φ(x) = [s0(x), . . . , sr(x)] ∈ Pr.

When X is an irreducible variety it is sometimes useful to ignore the base
locus, and view φ|V | as a rational mapping φ : X 99K P(V ). If |V | is free then
φ|V | : X −→ P(V ) is a globally defined morphism.

At least when B = ∅ these constructions can be reversed, so that a mor-
phism to projective space gives rise to a linear series. Specifically, suppose
given a morphism

φ : X −→ P = P(V )

from X to the projective space of one-dimensional quotients of a vector space
V , and assume that φ(X) does not lie on any hyperplanes. Then pullback of
sections via φ realizes V = H0

(
P,OP(1)

)
as a subspace of H0

(
X,φ∗OP(1)

)
,

and |V | is a free linear series on X. Moreover, φ is identified with the corre-
sponding morphism φ|V |.

Example 1.1.11. If X is a non-singular variety and B ⊆ X has codimension
≥ 2, then a similar construction works starting with a morphism

φ : X −B −→ P = P(V ).

(In fact, φ∗OP(1) extends uniquely to a line bundle L on X — corresponding
to the divisor obtained by taking the closure of the pullback of a hyperplane
— and φ∗ realizes V as a subspace of H0

(
X,L

)
, with Bs

(
|V |
)
⊆ B.) ut

Example 1.1.12. (Projection). Suppose that W ⊆ V is a subspace (say
of dimension ≥ 2). Then Bs

(
|V |
)
⊆ Bs

(
|W |

)
, so that φ|V | and φ|W | are

both defined on X − Bs(|W |). Viewed as morphisms on this set one has the
relation φ|W | = π ◦ φ|V |, where

π : P(V )−P(V/W ) −→ P(W )

is linear projection centered along the subspace P(V/W ) ⊆ P(V ). Note that
if |W | — and hence also |V | — is free, and if X is complete, then π|X is
finite (since it is affine and proper). So in this case, the two morphisms

φ|V | : X −→ P(V ) , φ|W | : X −→ P(W )

differ by a finite projection of φ|V |(X). ut



1.1 Preliminaries: Divisors, Line Bundles, and Linear Series 15

1.1.C Intersection Numbers and Numerical Equivalence

This subsection reviews briefly some definitions and facts from intersection
theory.

Intersection numbers. Let X be a complete irreducible complex variety.
Given Cartier divisors D1, . . . , Dk ∈ Div(X) together with an irreducible sub-
variety V ⊆ X of dimension k, the intersection number(

D1 · . . . ·Dk · V
)
∈ Z (1.3)

can be defined in various ways. To begin with, of course, the quantity in
question arises as a special case of the theory in [208]. However intersection
products of divisors against subvarieties do not require the full strength of
that technology: a relatively elementary direct approach based on numerical
polynomials was developed in the sixties by Snapper [546] and Kleiman [341].
Extensions and modern presentations of the Snapper–Kleiman theory appear
in [363, VI.2], [114, Chapter 1.2], and [22, Chapter 1]. We prefer to mini-
mize foundational discussions by working topologically, referring to [208] for
additional properties as needed.6 Some suggestions for the novice appear in
Remark 1.1.13.

Specifically, in the above situation each of the line bundles OX(Di) has a
Chern class

c1
(
OX(Di)

)
∈ H2

(
X;Z

)
,

the cohomology group in question being ordinary singular cohomology of X
with its classical topology. The cup product of these classes is then an element

c1
(
OX(D1)

)
· . . . · c1

(
OX(Dk)

)
∈ H2k

(
X;Z

)
:

here and elsewhere we write α ·β or simply αβ for the cup product of elements
α, β ∈ H∗(X;Z

)
. Denoting by [V ] ∈ H2k

(
X;Z

)
the fundamental class of V ,

cap product leads finally to an integer(
c1
(
OX(D1)

)
· . . . · c1

(
OX(Dk)

))
∩ [V ] ∈ H0

(
X;Z

)
= Z, (1.4)

which of course is nothing but the quantity appearing in (1.3). We generally
use one of the notations(

D1 · . . . ·Dk · V
)

,

∫
V

D1 · . . . ·Dk

6 The essential foundational savings materialize when we deal with higher-
codimension intersection theory — e.g. Chern classes of vector bundles — in
Part Two of this book. Working topologically allows one to bypass complications
involved in specifying groups to receive the classes in question. It then seemed
natural to use topologically based intersection theory throughout.
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(or a small variant thereof) for the intersection product in question. By lin-
earity one can replace V by an arbitrary k-cycle, and evidently this product
depends only on the linear equivalence class of the Di. If D1 = . . . = Dk = D
we write

(
Dk · V

)
, and when V = X is irreducible of dimension n we often

use the abbreviation
(
D1 · . . . ·Dn

)
∈ Z. Intersection numbers involving line

bundles in place of divisors are of course defined analogously.
Similar constructions work when X or V are possibly non-reduced com-

plete complex schemes provided only that V has pure dimension k. The homol-
ogy and cohomology groups of X are those of the underlying Hausdorff space:
in other words, H∗(X;Z

)
and H∗

(
X;Z

)
do not see the scheme structure of

X. However, one introduces the cycle [V ] of V , viz. the algebraic k-cycle

[V ] =
∑
Vi

(
lengthOVi

OV
)
· [Vi]

on X, where {Vi} are the irreducible components of V (with their reduced
scheme structures), and OVi is the local ring of V along Vi. By linearity we
get a corresponding class [V ] =

∑ (
lengthOVi

OV
)
· [Vi] ∈ H2k

(
X;Z

)
. Then

the cap product appearing in (1.4) defines the intersection number

(
D1 · . . . ·Dk · [V ]

)
=
∫

[V ]

D1 · . . . ·Dk ∈ Z.

Somewhat abusively we often continue to write simply
(
D1 · . . . ·Dk ·V

)
∈ Z, it

being understood that one has to take into account any multiple components
of V . If V has pure dimension d and k ≤ d then we define

(
D1 · . . . ·Dk · [V ]

)
=def

(
c1
(
OX(D1)

)
· . . . · c1

(
OX(Dk)

))
∩ [V ]

∈ H2d−2k

(
X;Z

)
. (1.5)

These intersection classes are compatible with the constructions in [208] and
they satisfy the usual formal properties, as in [208, Chapter 2].7 For instance
if X has pure dimension n and D is an effective Cartier divisor on X, then
we may view D as a subscheme of X and

c1
(
OX(D)

)
∩ [X] = [D] ∈ H2(n−1)

(
X;Z

)
(1.6)

([208, Chapter 2.5]). The same formula holds even ifD is not effective provided
that one interprets the right-hand side as the homology class of the Weil
7 More precisely, the constructions of [208, Chapter 2] yield a class(

c1

(
OX(D1)

)
· . . . · c1

(
OX(Dk)

))
∩ [V ] ∈ Ad−k(X)

in the Chow group that maps to the class in (1.5) under the cycle map
Ad−k(X) −→ H2(d−k)

(
X; Z

)
.
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divisor determined by D (Example 1.1.3). Similarly, if V is an irreducible
variety, then

c1
(
OX(D)

)
∩ [V ] = c1

(
OX(D) |V

)
∩ [V ] = [D],

where D ∈ Div(V ) is a divisor on V with OV (D) = OX(D) |V . This induc-
tively leads to the important fact that the intersection class

(
D1 · . . . ·Dk · [V ]

)
in (1.5) is represented by an algebraic (d − k)-cycle on X. In fact it is even
represented by a (d− k)-cycle on Supp(D1) ∩ . . . ∩ Supp(Dk) ∩ V .

Remark 1.1.13. (Advice for the novice). The use of topological defini-
tions as our “official” foundation for intersection theory might not be the most
accessible approach for a novice. So we say here a few words about what we
actually require, and where one can learn it. In the present volume, all one
needs for the most part is to be able to define the intersection number(

D1 · . . . ·Dn

)
=
∫
X

D1 · . . . ·Dn ∈ Z

of n Cartier divisors D1, . . . , Dn on an n-dimensional irreducible projective
(or complete) variety X. The most important features of this product (which
in fact characterize it in the projective case) are:

(i). The integer
(
D1 · . . . ·Dn

)
is symmetric and multilinear as a function of

its arguments;
(ii).

(
D1 · . . . ·Dn

)
depends only on the linear equivalence classes of the Di ;

(iii). If D1, . . . , Dn are effective divisors that meet transversely at smooth
points of X, then(

D1 · . . . ·Dn

)
= #

{
D1 ∩ . . . ∩Dn }.

Given an irreducible subvariety V ⊆ X of dimension k, the intersection num-
ber (

D1 · . . . ·Dk · V ) ∈ Z (*)

is then defined by replacing each divisor Di with a linearly equivalent divisor
D′
i whose support does not contain V , and intersecting the restrictions of the

D′
i on V .8 It is also important to know that if Dn is reduced, irreducible

and effective, then one can compute (D1 · . . . ·Dn) by taking V = Dn in (*).
The intersection product satisfies the projection formula: if f : Y −→ X is a
generically finite surjective proper map, then∫

Y

f∗D1 · . . . · f∗Dn =
(
deg f

)
·
∫
X

D1 · . . . ·Dn.

By linearity, one can replace V in (*) by an arbitrary k-cycle, and the analo-
gous constructions when X or V carries a possibly non-reduced scheme struc-
ture are handled as above by passing to cycles.
8 This is independent of the choice of D′

i thanks to (ii).
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The case dimX = 2 is treated very clearly in Chapter 5, Section 1, of
[280], and this is certainly the place for a beginner to start. The extension
to higher dimensions might to some extent be taken on faith. Alternatively,
as noted above the theory is developed in detail via the method of Snapper
and Kleiman in [363, Chapter 6.2], [114, Chapter 1.2] or [22, Chapter 1].
In this approach the crucial Theorem 1.1.24 is established along the way to
defining intersection products. A more elementary presentation appears in
[532, Chapter 4] provided that one is willing to grant 1.1.24. ut

Numerical equivalence. We continue to assume that X is a complete alge-
braic scheme over C. Of the various natural equivalence relations defined on
Div(X), we will generally deal with the weakest:

Definition 1.1.14. (Numerical equivalence). Two Cartier divisors

D1 , D2 ∈ Div(X)

are numerically equivalent, written D1 ≡num D2, if(
D1 · C

)
=
(
D2 · C

)
for every irreducible curve C ⊆ X,

or equivalently if (D1 · γ) = (D2 · γ) for all one-cycles γ on X. Numerical
equivalence of line bundles is defined in the analogous manner. A divisor
or line bundle is numerically trivial if it is numerically equivalent to zero,
and Num(X) ⊆ Div(X) is the subgroup consisting of all numerically trivial
divisors. ut

Definition 1.1.15. (Néron–Severi group). The Néron–Severi group of X
is the group

N1(X) = Div(X)/Num(X)

of numerical equivalence classes of divisors on X. ut

The first basic fact is that this group is finitely generated:

Proposition 1.1.16. (Theorem of the base). The Néron–Severi group
N1(X) is a free abelian group of finite rank.

Definition 1.1.17. (Picard number). The rank of N1(X) is called the
Picard number of X, written ρ(X). ut

Proof of Proposition 1.1.16. A divisor D on X determines a cohomology class

[D]hom = c1(OX(D)) ∈ H2
(
X;Z

)
,

and if [D]hom = 0 then evidently D is numerically trivial. Therefore the group
Hom(X) of cohomologically trivial Cartier divisors is a subgroup of Num(X).
It follows that N1(X) is a quotient of a subgroup of H2

(
X;Z

)
, and in par-

ticular is finitely generated. It is torsion-free by construction. ut
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The next point is that intersection numbers respect numerical equivalence:

Lemma 1.1.18. Let X be a complete variety or scheme, and let

D1, . . . , Dk, D
′
1, . . . , D

′
k ∈ Div(X)

be Cartier divisors on X. If Di ≡num D′
i for each i, then(

D1 ·D2 · . . . ·Dk · [V ]
)

=
(
D′

1 ·D′
2 · . . . ·D′

k · [V ]
)

for every subscheme V ⊆ X of pure dimension k.

The lemma allows one to discuss intersection numbers among numerical
equivalence classes:

Definition 1.1.19. (Intersection of numerical equivalence classes).
Given classes δ1, . . . , δk ∈ N1(X), we denote by∫

[V ]

δ1 · . . . · δk or
(
δ1 · . . . · δk · [V ]

)
the intersection number of any representatives of the classes in question. ut

Proof of Lemma 1.1.18. We assert first that if E ≡num 0 is a numerically
trivial Cartier divisor on X, then

(
E ·D2 · . . . ·Dk · [V ]

)
= 0 for any Cartier

divisorsD2, . . . , Dk. In fact, c1
(
OX(D2)

)
·. . .·c1

(
OX(Dk)

)
∩ [V ] is represented

by a one-cycle γ on X, and so
(
E · D2 · . . . · Dk · [V ]

)
= (E · γ) = 0 by

definition of numerical equivalence. This shows that
(
D1 ·D2 · . . . ·Dk · [V ]

)
=(

D′
1 ·D2 · . . . ·Dk · [V ]

)
provided that D1 ≡num D′

1, and the lemma follows by
induction on k. ut

Remark 1.1.20. (Characterization of numerically trivial line bun-
dles). A useful characterization of numerically trivial line bundles is es-
tablished in Kleiman’s exposé [52, XIII, Theorem 4.6] in SGA6. Specifically,
consider a line bundle L on a complete scheme X. Then L is numerically
trivial if and only if there is an integer m 6= 0 such that L⊗m ∈ Pic0(X), i.e.
such that L⊗m is a deformation of the trivial line bundle. We sketch a proof
in Section 1.4.D in the projective case based on a vanishing theorem of Fujita
and Grothendieck’s Quot schemes. (We also give there a fuller explanation of
the statement.) ut

Remark 1.1.21. (Lefschetz (1 , 1)-theorem). When X is a non-singular
projective variety, Hodge theory gives an alternative description of N1(X).
Set

H2
(
X;Z

)
t.f.

= H2
(
X;Z

)
/ ( torsion ) .

It follows from the result quoted in the previous remark that if D is a nu-
merically trivial divisor then [D]hom ∈ H2

(
X;Z

)
is a torsion class. Therefore
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N1(X) embeds into H2
(
X;Z

)
t.f.

. On the other hand, the Lefschetz (1, 1)-
theorem asserts that a class α ∈ H2

(
X;Z

)
is algebraic if and only if α has

type (1, 1) under the Hodge decomposition of H2
(
X;C

)
(cf. [248, Chapter 1,

§2]). Therefore

N1(X) = H2
(
X;Z

)
t.f.

∩ H1,1
(
X;C

)
. ut

Finally we say a word about functoriality. Let f : Y −→ X be a morphism
of complete varieties or projective schemes. If α ∈ Pic(X) is a class mapping
to zero in N1(X), then it follows from the projection formula that f∗(α) is
numerically trivial on Y . Therefore the pullback mapping on Picard groups
determines thanks to Example 1.1.5 a functorial induced homomorphism f∗ :
N1(X) −→ N1(Y ).

Remark 1.1.22. (Non-projective schemes). As indicated at the end
of Section 1.1.A, the integrality and projectivity hypotheses in the previous
paragraph arise only in order to use the functorial properties of line bundles
to discuss divisors. To have a theory that runs smoothly for possibly non-
projective schemes, it would be better — as in [341] — to take N1(X) to be
the additive group of numerical equivalence classes of line bundles: we leave
this modification to the interested reader. As explained above we prefer to
stick with the classical language of divisors. ut

1.1.D Riemann–Roch

We will often have occasion to draw on asymptotic forms of the Riemann–
Roch theorem, and we give a first formulation here. More detailed treatments
appear in [363, VI.2], [114, Chapter 1.2], and [22, Chapter 1], to which we will
refer for proofs.

We start with a definition:

Definition 1.1.23. (Rank and cycle of a coherent sheaf). Let X be an
irreducible variety (or scheme) of dimension n, and F a coherent sheaf on X.
The rank rank(F) of F is the length of the stalk of F at the generic point of
X. If X is reduced, then

rank(F) = dimC(X) F ⊗C(X).

If X is reducible (but still of dimension n), then one defines similarly the rank
of F along any n-dimensional irreducible component V of X: rankV (F) =
lengthOv

Fv, where Fv is the stalk of F at the generic point v of V . The cycle
of F is the n-cycle

Zn(F) =
∑
V

rankV (F) · [V ],

the sum being taken over all n-dimensional components of X. ut
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One then has

Theorem 1.1.24. (Asymptotic Riemann–Roch, I). Let X be an irre-
ducible projective variety of dimension n, and let D be a divisor on X. Then
the Euler characteristic χ

(
X,OX(mD)

)
is a polynomial of degree ≤ n in m,

with

χ
(
X,OX(mD)

)
=

(
Dn
)

n!
mn + O(mn−1). (1.7)

More generally, for any coherent sheaf F on X,

χ
(
X,F ⊗OX(mD)

)
= rank(F) ·

(
Dn
)

n!
·mn + O(mn−1). (1.8)

Corollary 1.1.25. In the setting of the theorem, if Hi
(
X,F ⊗OX(mD)

)
= 0

for i > 0 and m� 0 then

h0
(
X,F ⊗OX(mD)

)
= rank(F) ·

(
Dn
)

n!
mn + O(mn−1) (1.9)

for large m. More generally, (1.9) holds provided that

hi
(
X,F ⊗OX(mD)

)
= O(mn−1)

for i > 0. ut

Remark 1.1.26. (Reducible schemes). The formula (1.7) remains valid if
X is a possibly reducible complete scheme of pure dimension n provided as
usual that we interpret

(
Dn
)

as the intersection number
∫
[X]

Dn. The same
is true of (1.8) provided that the first term on the right is replaced by(∫

Zn(F)

Dn
)
· m

n

n!
.

With the analogous modifications, the corollary likewise extends to possibly
reducible complete schemes. ut

We do not prove Theorem 1.1.24 here. The result is established in a rela-
tively elementary fashion via the approach of Snapper–Kleiman in [363, Corol-
lary VI.2.14] (see also [22, Chapter 1]). Debarre [114, Theorem 1.5] gives a
very accessible account of the main case F = OX . However, one can quickly
obtain 1.1.24 and 1.1.26 as special cases of powerful general results: see the
next example.

Example 1.1.27. (Theorem 1.1.24 via Hirzebruch–Riemann–Roch).
Theorem 1.1.24 and the extension in 1.1.26 yield easily to heavier machinery.
In fact, if X is a non-singular variety then the Euler characteristic in question
is computed by the Hirzebruch–Riemann–Roch theorem:

χ
(
X,F ⊗OX(mD)

)
=
∫
X

ch(F ⊗OX(mD)) · Td(X).
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Viewing ch(F ⊗OX(mD)) as a polyomial in m, one has

ch(F ⊗OX(mD)) = ch(F) · ch
(
OX(mD)

)
= rank(F) ·

c1
(
OX(D)

)n
n!

mn + lower-degree terms,

which gives (1.8) in this case. On an arbitrary complete scheme one can in-
voke similarly the general Riemann–Roch theorem for singular varieties [208,
Corollary 18.3.11 and Example 18.3.6].9 ut

Finally we record two additional results for later reference. The first asserts
that Euler characteristics are multiplicative under étale covers:

Proposition 1.1.28. (Étale multiplicativity of Euler characteristics).
Let f : Y −→ X be a finite étale covering of complete schemes, and let F be
any coherent sheaf on X. Then

χ
(
Y , f∗F

)
= deg (Y −→ X) · χ

(
X , F

)
.

This follows for example from the Riemann–Roch theorem and [208, Example
18.3.9]. An elementary direct approach — communicated by Kleiman — is
outlined in Example 1.1.30.

Example 1.1.29. The Riemann–Hurwitz formula for branched coverings of
curves shows that Proposition 1.1.28 fails in general if f is not étale. ut

Example 1.1.30. (Kleiman’s proof of Proposition 1.1.28). We sketch a
proof of 1.1.28 when X is projective. Set d = deg(f). Arguing as in Example
1.4.42 one reduces to the case in which X is an integral variety and F =
OX , and by induction on dimension one can assume that the result is known
for all sheaves supported on a proper subset of X. Since f is finite one has
χ(Y,OY ) = χ(X, f∗OY ), so the issue is to show that

χ(X, f∗OY ) = d · χ(X,OX). (*)

For this, choose an ample divisor H on X. Then for p� 0 one can construct
exact sequences

0 −→ OX(−pH)d −→ f∗OY −→ G1 −→ 0,

0 −→ OX(−pH)d −→ OdX −→ G2 −→ 0,
(**)

where G1, G2 are supported on proper subsets of X. Now suppose one knew
that 1.1.28 held for F = f∗OY , i.e. suppose that one knows

χ(Y, f∗f∗OY ) = d · χ(X, f∗OY ). (***)

9 Note however that the term τX,n(F) is missing from the last displayed formula
in [208, 18.3.6].
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Since we can assume that 1.1.28 holds for G1 and G2, the exact sequences (**)
will then yield (*). So it remains to prove (***).

To this end, consider the fibre square

W
g //

g

��

Y

f

��
Y

f
// X

where W = Y ×X Y . Since f is étale, W splits as the disjoint union of a copy
of Y and another scheme W ′ étale of degree d − 1 over Y . So by induction
on d, we can assume that χ(W,OW ) = χ(Y, g∗OW ) = d · χ(Y,OY ). On the
other hand, f∗f∗OY = g∗g

∗OY = g∗OW since f is flat ([280, III.9.3]), and
then (***) follows. ut

The second result, allowing one to produce very singular divisors, will be
useful in Chapters 5 and 10.

Proposition 1.1.31. (Constructing singular divisors). Let X be an ir-
reducible projective (or complete) variety of dimension n, and let D be a
divisor on X with the property that hi

(
X,OX(mD)

)
= O(mn−1) for i > 0.

Fix a positive rational number α with

0 < αn <
(
Dn
)
.

Then when m � 0 there exists for any smooth point x ∈ X a divisor E =
Ex ∈ |mD | with

multx(E) ≥ m · α. (1.10)

Here multx(E) denotes as usual the multiplicity of the divisor E at x, i.e. the
order of vanishing at x of a local equation for E. The proof will show that
there is one large value of m that works simultaneously at all smooth points
x ∈ X.

Proof. Producing a divisor with prescribed multiplicity at a given point in-
volves solving the system of linear equations determined by the vanishing
of an appropriate number of partial derivatives of a defining equation. To
prove the Proposition we simply observe that under the stated assumptions
there are more variables than equations. Specifically, the number of sections
of OX(mD) is estimated by 1.1.25:

h0
(
X,OX(mD)

)
=

(
Dn
)

n!
mn + O(mn−1).

On the other hand, it is at most(
n+ c− 1

n

)
=

cn

n!
+ O(cn−1)
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conditions for a section of OX(mD) to vanish to order ≥ c at a smooth point
x ∈ X. Taking m � 0 and suitable m · α < c < m ·

(
Dn
)1/n, we get the

required divisor. ut

Remark 1.1.32. (Other ground fields). The discussion in this section
goes through with only minor changes if X is an algebraic variety or scheme
defined over an algebraically closed field of any characteristic. (In Section
1.1.C one would use the algebraic definition of intersection numbers, and a
different argument is required to prove that N1(X) has finite rank: see [341,
Chapter IV]). ut

1.2 The Classical Theory

Given a divisor D on a projective variety X, what should it mean for D to
be positive? The most appealing idea from an intuitive point of view is to
ask that D be a hyperplane section under some projective embedding of X
— one says then that D is very ample. However this turns out to be rather
difficult to work with technically: already on curves it can be quite subtle to
decide whether or not a given divisor is very ample. It is found to be much
more convenient to focus instead on the condition that some positive multiple
of D be very ample; in this case D is ample. This definition leads to a very
satisfying theory, which was largely worked out in the fifties and early sixties.
The fundamental conclusion is that on a projective variety, amplitude can be
characterized geometrically (which we take as the definition), cohomologically
(theorem of Cartan–Serre–Grothendieck) or numerically (Nakai–Moishezon–
Kleiman criterion).

This section is devoted to an overview of the classical theory of ample
line bundles. One of our purposes is to set down the basic facts in a form
convenient for later reference. The cohomological material in particular is
covered (in greater generality and detail) in Hartshorne’s text [280], to which
we will refer where convenient. Chapter I of Hartshorne’s earlier book [276]
contains a nice exposition of the theory, and in several places we have drawn
on his discussion quite closely.

We begin with the basic definition.

Definition 1.2.1. (Ample and very ample line bundles and divisors
on a complete scheme). Let X be a complete scheme, and L a line bundle
on X.

(i). L is very ample if there exists a closed embedding X ⊆ P of X into
some projective space P = PN such that

L = OX(1) =def OPN (1) | X.
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(ii). L is ample if L⊗m is very ample for some m > 0.

A Cartier divisor D on X is ample or very ample if the corresponding line
bundle OX(D) is so. ut

Remark 1.2.2. (Amplitude). We will interchangeably use “ampleness” and
“amplitude” to describe the property of being ample. We feel that the eupho-
nious quality of the latter term compensates for the fact that it may not be
completely standard in the present context. (Confusion with other meanings
of amplitude seems very unlikely.) ut

Example 1.2.3. (Ample line bundle on curves). If X is an irreducible
curve, and L is a line bundle on X, then L is ample if and only if deg(L) >
0. ut

Example 1.2.4. (Varieties with Pic = Z). IfX is a projective variety with
Pic(X) = Z, then any non-zero effective divisor onX is ample. (Use 1.2.6 (iv).)
This applies, for instance, whenX is a projective space or a Grassmannian. ut

Example 1.2.5. (Intersection products). IfD1, . . . , Dn are ample divisors
on an n-dimensional projective variety X, then

(
D1 · . . . · Dn

)
> 0. (One

can assume that each Di is very ample, and then the inequality reduces to
Example 1.2.3.) ut

1.2.A Cohomological Properties

The first basic fact is that amplitude can be detected cohomologically:

Theorem 1.2.6. (Cartan–Serre–Grothendieck theorem). Let L be a
line bundle on a complete scheme X. The following are equivalent:

(i). L is ample.

(ii). Given any coherent sheaf F on X, there exists a positive integer m1 =
m1(F) having the property that

Hi
(
X,F ⊗ L⊗m

)
= 0 for all i > 0 , m ≥ m1(F).

(iii). Given any coherent sheaf F on X, there exists a positive integer m2 =
m2(F) such that F ⊗ L⊗m is generated by its global sections for all
m ≥ m2(F).

(iv). There is a positive integer m3 > 0 such that L⊗m is very ample for
every m ≥ m3.

Remark 1.2.7. (Serre vanishing). The conclusion in (ii) is often referred
to as Serre’s vanishing theorem. ut

Outline of Proof of Theorem 1.2.6. (i) ⇒ (ii). We assume to begin with that
L is very ample, defining an embedding of X into some projective space P.
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In this case, extending F by zero to a coherent sheaf on P, we are reduced
to the vanishing of Hi

(
P,F(m)

)
for m � 0, which is the content of [280,

Theorem III.5.2]. In general, when L is merely ample, fix m0 such that L⊗m0

is very ample. Then apply the case already treated to each of the sheaves
F ,F ⊗ L, . . . ,F ⊗ L⊗m0−1.
(ii) ⇒ (iii). Fix a point x ∈ X, and denote by mx ⊂ OX the maximal ideal
sheaf of x. By (ii) there is an integer m2(F , x) such that

H1
(
X,mx · F ⊗ L⊗m

)
= 0 for m ≥ m2(F , x).

It then follows from the exact sequence

0 −→ mx · F −→ F −→ F / mx · F −→ 0

upon twisting by L⊗m and taking cohomology that F ⊗L⊗m is globally gen-
erated in a neighborhood of x for every m ≥ m2(F , x). By quasi-compactness
we can then choose a single natural number m2(F) that works for all x ∈ X.
(iii) ⇒ (iv). It follows first of all from (iii) that there exists a positive integer
p1 such that L⊗m is globally generated for all m ≥ p1. Denote by

φm : X −→ PH0
(
X,L⊗m

)
the corresponding map to projective space. We need to show that we can
arrange for φm to be an embedding by taking m� 0, for which it is sufficient
to prove that φm is one-to-one and unramified ([280, II.7.3]). To this end,
consider the set

Um =
{
y ∈ X

∣∣ L⊗m ⊗my is globally generated
}
.

This is an open set (Example 1.2.9), and Um ⊂ Um+p for p ≥ p1 thanks to the
fact that L⊗p is generated by its global sections. Given any point x ∈ X we
can find by (iii) an integer m2(x) such that x ∈ Um for all m ≥ m2(x), and
therefore X = ∪Um. By quasi-compactness there is a single integer m3 ≥ p1

such that L⊗m ⊗ mx is generated by its global sections for every x ∈ X
whenever m ≥ m3. But the global generation of L⊗m ⊗ mx implies that
φm(x) 6= φm(x′) for all x′ 6= x, and that φm is unramified at x. Thus φm is
an embedding for all m ≥ m3, as required.
(iv) ⇒ (i): Definitional. ut

Remark 1.2.8. (Amplitude on non-complete schemes). One can also
discuss ample line bundles on possibly non-complete schemes. In this more
general setting, property (iii) from 1.2.6 is taken as the definition of amplitude.

ut

Example 1.2.9. Let B be a globally generated line bundle on a complete
variety or scheme X. Then
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U =def

{
y ∈ X | B ⊗my is globally generated

}
is an open subset ofX. (SinceB is globally generated, it suffices by Nakayama’s
lemma to prove the openness of the set

V =def

{
y ∈ X | H0

(
X,B

)
−→ B ⊗OX/m2

y is surjective }.

But this follows from the existence of a coherent sheaf P on X, whose fibre
at y is canonically P(y) = B ⊗OX/m2

y, together with a map u : H0
(
X,B

)
⊗

OX −→ P that fibre by fibre is given by evaluation of sections. In fact if u(y)
is surjective at one point y then it is surjective in a neighborhood of y by the
coherence of coker(u). As for P, it is the sheaf P = P 2

X(B) of second-order
principal parts of B: starting with the ideal sheaf I∆ of the diagonal on X×X
one takes

P 2
X(B) = pr2,∗

(
pr∗1B ⊗ (OX×X/I2

∆)
)
.

See [257, Chapter 16] for details on these sheaves.) ut

Example 1.2.10. (Sums of divisors). Let D and E be (Cartier) divisors
on a projective scheme X. If D is ample, then so too is mD+E for all m� 0.
In fact, mD + E is very ample if m � 0. (For the second assertion choose
positive integers m1,m2 such that mD is very ample for m ≥ m1 and mD+E
is free when m ≥ m2. Then mD + E is very ample once m ≥ m1 +m2.) ut

Example 1.2.11. (Ample line bundles on a product). If L and M
are ample line bundles on projective schemes X and Y respectively, then
pr∗1L⊗ pr∗2M is ample on X × Y . ut

Remark 1.2.12. (Matsusaka’s theorem). According to Theorem 1.2.6,
if L is an ample line bundle on a projective variety X then there is an integer
m(L) such that L⊗m is very ample for m ≥ m(L). However, the proof of
the theorem fails to give any concrete information about the value of this
integer. So it is interesting to ask what geometric information m(L) depends
on, and whether one can give effective estimates. A theorem of Matsusaka [420]
and Kollár–Matsusaka [366] states that if X is a smooth projective variety
of dimension n, then one can find m(L) depending only on the intersection
numbers

∫
c1(L)n and

∫
c1(L)n−1c1(X). Siu [537] used the theory of multiplier

ideals to give an effective statement, which was subsequently improved and
clarified by Demailly [126]. A proof of the theorem of Kollár–Matsusaka via
the approach of Siu–Demailly appears in Section 10.2. An example due to
Kollár, showing that in general one cannot take m(L) independent of L, is
presented in Example 1.5.7. ut

Proposition 1.2.13. (Finite pullbacks, I). Let f : Y −→ X be a finite
mapping of complete schemes, and L an ample line bundle on X. Then f∗L
is an ample line bundle on Y . In particular, if Y ⊆ X is a subscheme of X,
then the restriction L | Y of L to Y is ample.

Remark 1.2.14. See Corollary 1.2.28 for a partial converse. ut
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Proof of Proposition 1.2.13. Let F be a coherent sheaf on Y . Then f∗
(
F ⊗

f∗L⊗m
)

= f∗F ⊗L⊗m by the projection formula, and Rjf∗
(
F ⊗ f∗L⊗m

)
= 0

for j > 0 thanks to the finiteness of f . Therefore

Hi
(
Y,F ⊗ f∗L⊗m

)
= Hi

(
X, f∗F ⊗ L⊗m

)
for all i, and the statement then follows from the characterization (ii) of
amplitude in Theorem 1.2.6. ut

Corollary 1.2.15. (Globally generated line bundles). Suppose that L is
globally generated, and let

φ = φ|L| : X −→ P = PH0
(
X,L

)
be the resulting map to projective space defined by the complete linear system
|L|. Then L is ample if and only if φ is a finite mapping, or equivalently if
and only if ∫

C

c1(L) > 0

for every irreducible curve C ⊆ X.

Proof. The preceding proposition shows that if φ is finite, then L is ample. In
this case evidently

∫
C
c1(L) > 0 for every irreducible curve C ⊆ X. Conversely,

if φ is not finite then there is a subvariety Z ⊆ X of positive dimension that
is contracted by φ to a point. Since L = φ∗OP(1), we see that L restricts to
a trivial line bundle on Z. In particular, L | Z is not ample, and so thanks
again to the previous proposition, neither is L. Moreover, if C ⊆ Z is any
irreducible curve, then

∫
C
c1(L) = 0. ut

The next result allows one in practice to restrict attention to reduced and
irreducible varieties.

Proposition 1.2.16. Let X be a complete scheme, and L a line bundle on
X.

(i). L is ample on X if and only if Lred is ample on Xred.

(ii). L is ample on X if and only if the restriction of L to each irreducible
component of X is ample.

Proof. In each case the “only if” statement is a consequence of the previous
proposition. So for (i) we need to show that if Lred is ample on Xred, then
L itself is already ample. To this end we again use characterization (ii) of
Theorem 1.2.6. Fix a coherent sheaf F on X, and let N be the nilradical of
OX , so that N r = 0 for some r. Consider the filtration

F ⊃ N · F ⊃ N 2 · F ⊃ · · · ⊃ N r · F = 0.
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The quotients N iF/N i+1F are coherent OXred -modules, and therefore

Hj
(
X, (N iF/N i+1F)⊗ L⊗m

)
= 0 for j > 0 and m� 0

thanks to the amplitude of L | Xred. Twisting the exact sequences

0 −→ N i+1F −→ N iF −→ N iF/N i+1F −→ 0

by L⊗m and taking cohomology, we then find by decreasing induction on i
that

Hj
(
X,N iF ⊗ L⊗m

)
= 0 for j > 0 and m� 0.

When i = 0 this gives the vanishings required for 1.2.6 (ii). The proof of
(ii) is similar. Specifically, supposing as we may that X is reduced, let X =
X1 ∪ · · · ∪Xr be its decomposition into irreducible components, and assume
that L | Xi is ample for every i. Fix a coherent sheaf F on X, let I be the
ideal sheaf of X1 in X, and consider the exact sequence

0 −→ I · F −→ F −→ F / I · F −→ 0. (*)

The outer terms of (*) are supported on X2∪· · ·∪Xr and X1 respectively. So
by induction on the number of irreducible components, we may assume that

Hj
(
X, IF ⊗ L⊗m

)
= Hj

(
X, (F/IF)⊗ L⊗m

)
= 0

for j > 0 and m � 0. It then follows from (*) that Hj
(
X,F ⊗ L⊗m

)
= 0

when j > 0 and m� 0, as required. ut

A theorem of Grothendieck [256, III.4.7.1] shows that — in an extremely
strong sense — amplitude is an open condition in families.

Theorem 1.2.17. (Amplitude in families). Let f : X −→ T be a proper
morphism of schemes, and L a line bundle on X. Given t ∈ T , write

Xt = f−1(t) , Lt = L | Xt.

Assume that L0 is ample on X0 for some point 0 ∈ T . Then there is an open
neighborhood U of 0 in T such that Lt is ample on Xt for all t ∈ U .

Observe that we do not assume that f is flat.

Proof of Theorem 1.2.17. We follow a proof given by Kollár and Mori [368,
Proposition 1.41]. The statement being local on T , we suppose that T =
Spec(A) is affine.

We assert to begin with that for any coherent sheaf F on X, there is a
positive integer m(F , L) such that

Rif∗
(
F ⊗ L⊗m

)
= 0 in a neighborhood Um ⊆ T of 0 (*)
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for all i ≥ 1 and m ≥ m(F , L). In fact, this is certainly true for large i — e.g.
i > dimX0 — and we proceed by decreasing induction on i. Assuming then
that (*) is known for given i ≥ 2 and all F , we need to show that it holds also
for i− 1.

To this end, consider the maximal ideal m0 ⊂ A of 0 in T , and choose
generators u1, . . . , up ∈ m0. This gives rise to a presentation

A⊕p
u−→ A −→ A/m0 −→ 0

of A/m0, where u(a1, . . . , ap) =
∑
aiui. Pulling back by f and tensoring by

F we arrive at an exact diagram:

0 // ker(f∗u⊗ 1) // OpX ⊗F

((PPPPPP
f∗u⊗1 // F // F ⊗OX0

// 0

im(f∗u⊗ 1)

88qqqqqqq

''NNNNNN

0

66mmmmmmmmm 0 .

By the induction hypothesis applied to the kernel sheaf,

Rif∗
(
ker(f∗u⊗ 1)⊗ L⊗m

)
= 0 near 0

for m � 0. Furthermore, since L0 is ample, the higher direct images of F ⊗
OX0 ⊗L⊗m — which are just the cohomology groups on X0 of the sheaves in
question — vanish when m is large. It then follows upon tensoring by L⊗m

and chasing through the above diagram that the map

Ri−1f∗(F ⊗ L⊗m)⊗OT
OpT

1⊗u // Ri−1f∗(F ⊗ L⊗m)

on direct images is surjective in a neighborhood U ′m of 0 for m � 0. On the
other hand, by construction 1⊗u factors through the inclusion m0 ·Ri−1f∗(F⊗
L⊗m) ⊂ Ri−1f∗(F ⊗ L⊗m). In other words, if m is sufficiently large, then

Ri−1f∗(F ⊗ L⊗m) = m0 ·Ri−1f∗(F ⊗ L⊗m)

in a neighborhood of 0. But by Nakayama’s lemma, this implies that

Ri−1f∗(F ⊗ L⊗m) = 0

near 0, as required. Thus we have verified (*).
We assert next that the canonical mapping

ρm : f∗f∗L⊗m −→ L⊗m

is surjective along Xt for all t in a neighborhood U ′′m of 0 provided that m is
sufficiently large. To see this, apply (*) to the ideal sheaf IX0/X of X0 in X.
One finds that
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f∗(L⊗m) −→ f∗(L⊗m ⊗OX0) = H0
(
X0, L

⊗m
0

)
(**)

is surjective when m � 0. But all sufficiently large powers of the ample
line bundle L0 are globally generated. Composing (**) with the evaluation
H0
(
X0, L

⊗m
0

)
⊗ OX0 −→ L⊗m0 , then shows that ρm is surjective along X0

for m� 0. By the coherence of coker ρm, it follows that ρm is also surjective
along Xt for t near 0, as claimed.

Shrinking T we can suppose that ρm is globally surjective for some fixed
large integer m. Now f∗(L⊗m) is itself globally generated since T is affine.
Choosing finitely many sections generating f∗(L⊗m) and pulling back to X,
we arrive at a surjective homomorphism f∗Or+1

T � L⊗m of sheaves on X.
This defines a mapping

φ : X −→ P(Or+1
T ) = Pr × T

over T . The amplitude of L0 implies that φ is finite on X0, and hence φt =
φ|Xt : Xt −→ Pr is likewise finite for t in a neighborhood of 0. Thus L⊗mt =
φ∗tOPr (1) is indeed ample. ut

Remark 1.2.18. Observe for later reference that the final step of the proof
just completed shows that there is a neighborhood U = Um of 0 in T such
that the mapping

φ : XU =def f
−1(U) −→ Pr × U

over U determined by L⊗m is finite. ut

We close this discussion by presenting some useful applications of Serre
vanishing.

Example 1.2.19. (Asymptotic Riemann–Roch, II). Let D be an ample
Cartier divisor on an irreducible projective variety X of dimension n. Then

h0
(
X,OX(mD)

)
=

(
Dn)
n!

·mn +O(mn−1).

More generally, if F is any coherent sheaf on X then

h0
(
X,F ⊗OX(mD)

)
= rank(F)

(
Dn)
n!

·mn +O(mn−1).

(This follows immediately from Theorem 1.1.24 by virtue of the vanishing

Hi
(
X,F ⊗OX(mD)

)
= 0

for i > 0 and m� 0. In fact, in the case at hand the dimensions in question
are given for m � 0 by polynomials with the indicated leading terms.) This
extends to reducible or non-reduced schemes X as in Remark 1.1.26; we leave
the statement to the reader. ut
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Example 1.2.20. (Upper bounds on h0). If E is any divisor on an
irreducible projective variety X of dimension n, then there is a constant C > 0
such that

h0
(
X,OX(mE)

)
≤ Cmn for all m.

(Fix an ample divisor D on X. Then aD − E is effective for some a � 0,
and consequently h0

(
X,OX(mE)

)
≤ h0

(
X,OX(maD)

)
. The assertion then

follows from Example 1.2.19.) See Example 1.2.33 for a generalization. ut

Example 1.2.21. (Resolutions of a sheaf). Let X be a projective variety,
and D an ample divisor on X. Then any coherent sheaf F on X admits a
(possibly non-terminating) resolution of the form

. . . −→ ⊕OX(−p1D) −→ ⊕OX(−p0D) −→ F −→ 0

for suitable integers 0 � p0 � p1 � . . . . (Choose p0 � 0 such that
F ⊗OX(p0D) is globally generated. Fixing a collection of generating sections
determines a surjective map ⊕OX −→ F⊗OX(p0D). Twisting by OX(−p0D)
then gives rise to a surjection ⊕OX(−p0D) −→ F , and one continues by ap-
plying the same argument to the kernel of this map.) Even though they may
be infinite, one can sometimes use such resolutions to reduce cohomological
questions about coherent sheaves to the case of line bundles. The next example
provides an illustration. ut

Example 1.2.22. (Surjectivity of multiplication maps). Let X be a
projective variety or scheme, and let D and E be ample Cartier divisors on
X. Then there is a positive integer m0 = m0(D,E) such that the natural
maps

H0
(
X,OX(aD)

)
⊗H0

(
X,OX(bE)

)
−→ H0

(
X,OX(aD + bE)

)
are surjective whenever a, b ≥ m0. More generally, for any coherent sheaves
F ,G on X, there is an integer m1 = m1(D,E,F ,G) such that

H0
(
X , F ⊗OX(aD)

)
⊗H0

(
X , G ⊗OX(bE)

)
−→

H0
(
X , F ⊗ G ⊗OX(aD + bE)

)
is surjective for a, b ≥ m1. (For the first statement consider on X × X the
exact sequence

0 −→ I∆ −→ OX×X −→ O∆ −→ 0, (*)

∆ ⊂ X ×X being the diagonal. Writing (aD, bE) for the divisor pr∗1(aD) +
pr∗2(bE) on X ×X, the displayed sequence (*) shows that it suffices to verify
that

H1
(
X ×X, I∆

(
(aD, bE)

))
= 0 (**)

for a, b ≥ m0. To this end, apply 1.2.21 to the ample divisor (D,E) to con-
struct a resolution
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. . .→ ⊕OX×X
(
(−p1D,−p1E)

)
−→ ⊕OX×X

(
(−p0D,−p0E)

)
−→ I∆ → 0.

By Proposition B.1.2 from Appendix B, it is enough for (**) to produce an
integer m0 such that

Hi
(
X ×X , OX×X

(
(a− pi−1)D, (b− pi−1)E

) )
= 0

whenever i > 0 and a, b ≥ m0. But this is non-trivial only when i ≤ dimX×X,
and the cohomology group in question is computed by the Künneth formula.
So the existence of the required integer m0 follows immediately from Serre
vanishing. The second statement is similar, except that one works with I∆ ⊗
pr∗1(F)⊗pr∗2(G) in place of I∆, observing that (*) remains exact after tensoring
through by pr∗1(F) ⊗ pr∗2(G) thanks to flatness. Alternatively, one could use
Fujita’s vanishing theorem (Theorem 1.4.35) to bypass 1.2.21.) ut

1.2.B Numerical Properties

A second very fundamental fact is that amplitude is characterized numerically:

Theorem 1.2.23. (Nakai–Moishezon–Kleiman criterion). Let L be a
line bundle on a projective scheme X. Then L is ample if and only if∫

V

c1(L)dim(V ) > 0 (1.11)

for every positive-dimensional irreducible subvariety V ⊆ X (including the
irreducible components of X).

Kleiman’s paper [340] contains an illuminating discussion of the history
of this basic result. In brief, it was originally established by Nakai [464] for
smooth surfaces. Moishezon [433] proved 1.2.23 for non-singular varieties of
higher dimension, and suggested in [434] a definition of intersection numbers
that led to its validity on singular varieties as well. Nakai [465] subsequently
extended the statement to arbitrary projective algebraic schemes, and finally
Kleiman [341, Chapter III] treated the case of arbitrary complete schemes.
The (now standard) proof we will give is due to Kleiman. In spite of the
collaborative nature of Theorem 1.2.23, we will generally refer to it in the
interests of brevity simply as Nakai’s criterion.

Before giving the proof we mention two important consequences. First, it
follows from the theorem that the amplitude of a divisor depends only on its
numerical equivalence class:

Corollary 1.2.24. (Numerical nature of amplitude). If D1, D2 ∈ Div(X)
are numerically equivalent Cartier divisors on a projective variety or scheme
X, then D1 is ample if and only if D2 is. ut

In particular it makes sense to discuss the amplitude of a class δ ∈ N1(X):
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Definition 1.2.25. (Ample classes). A numerical equivalence class δ ∈
N1(X) is ample if it is the class of an ample divisor. Ample (algebraic) classes
in H2

(
X,Z

)
or H2

(
X,Q

)
are defined in the same way. ut

Example 1.2.26. (Varieties with Picard number 1). If X is a projective
variety having Picard number ρ(X) = 1, then any non-zero effective divisor
on X is ample. This extends Example 1.2.4, and applies for example to a very
general abelian variety having a polarization of fixed type. ut

Remark 1.2.27. The structure of the cone of all ample classes on a fixed
projective variety is discussed further in Section 1.4. Several examples are
worked out in Section 1.5. ut

The second corollary shows that amplitude can be tested after pulling back
by a finite surjective morphism:

Corollary 1.2.28. (Finite pullbacks, II). Let f : Y −→ X be a finite and
surjective mapping of projective schemes, and let L be a line bundle on X. If
f∗L is ample on Y , then L is ample on X.

Proof. Let V ⊆ X be an irreducible variety. Since f is surjective, there is an
irreducible variety W ⊆ Y mapping (finitely) onto V : starting with f−1(V ),
one constructs W by taking irreducible components and cutting down by
general hyperplanes. Then by the projection formula∫

W

c1(f∗L)dimW = deg(W −→ V ) ·
∫
V

c1(L)dimV ,

so the assertion follows from the theorem. ut

We now turn to the very interesting proof of the Nakai–Moishezon–
Kleiman criterion. The argument will lead to several other results as well.

Proof of Theorem 1.2.23. Suppose first that L is ample. Then L⊗m is very
ample for some m� 0, and

mdimV ·
∫
V

(
c1(L)

)dimV =
∫
V

(
c1(L⊗m)

)dimV

is the degree of V in the corresponding projective embedding of X. Con-
sequently, this integral is strictly positive. (Alternatively, one could invoke
Example 1.2.5.)

Conversely, assuming the positivity of the intersection numbers appearing
in the theorem, we prove that L is ample. By Proposition 1.2.16 we are free to
suppose thatX is reduced and irreducible. The result being clear if dimX = 1,
we put n = dimX and assume inductively that the theorem is known for all
schemes of dimension ≤ n − 1. It is convenient at this point to switch to
additive notation, so write L = OX(D) for some divisor D on X.
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We assert first that

H0
(
X,OX(mD)

)
6= 0 for m� 0.

In fact, asymptotic Riemann–Roch (Theorem 1.1.24) gives to begin with that

χ
(
X,OX(mD)

)
= mn (Dn)

n!
+ O(mn−1), (*)

and (Dn) =
∫
X
c1(L)n > 0 by assumption. Now write D ≡lin A − B as

a difference of very ample effective divisors A and B (using e.g. Example
1.2.10). We have two exact sequences:

0 // OX(mD −B) ·A // OX((m+ 1)D) // OA((m+ 1)D) // 0,

0 // OX(mD −B) ·B // OX(mD) // OB(mD) // 0.

By induction, OA(D) and OB(D) are ample. Consequently the higher coho-
mology of each of the two sheaves on the right vanishes when m � 0. So we
find that if m� 0, then

Hi
(
X,OX(mD)

)
= Hi

(
X,OX(mD −B)

)
= Hi

(
X,OX((m+ 1)D)

)
for i ≥ 2. In other words, if i ≥ 2 then the dimensions hi

(
X,OX(mD)

)
are

eventually constant. Therefore

χ
(
X,OX(mD)

)
= h0

(
X,OX(mD)

)
− h1

(
X,OX(mD)

)
+ C

for some constant C and m� 0. So it follows from (*) that H0
(
X,OX(mD)

)
is non-vanishing when m is sufficiently large, as asserted. Since D is ample
if and only if mD is, there is no loss in generality in replacing D by mD.
Therefore we henceforth suppose that D is effective.

We next show that OX(mD) is generated by its global sections if m� 0.
Since D is assumed to be effective this is evidently true away from Supp(D),
so the issue is to show that no point of D is a base point of the linear series
|OX(mD)|. Consider to this end the exact sequence

0 −→ OX
(
(m− 1)D

) ·D−→ OX
(
mD

)
−→ OD

(
mD

)
−→ 0. (*)

As before, OD(D) is ample by induction. Consequently OD(mD) is globally
generated and H1

(
X,OD(mD)

)
= 0 for m � 0. It then follows first of all

from (*) that the natural homomorphism

H1
(
X,OX

(
(m− 1)D

))
−→ H1

(
X,OX

(
mD

))
(**)

is surjective for every m� 0. The spaces in question being finite-dimensional,
the maps in (**) must actually be isomorphisms for sufficiently largem. There-
fore the restriction mappings
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H0
(
X,OX(mD)

)
−→ H0

(
X,OD(mD)

)
are surjective for m� 0. But since OD(mD) is globally generated, it follows
that no point of Supp(D) is a basepoint of |mD|, as required.

Finally, the amplitude of OX(mD) — and hence also of OX(D) — now
follows from Corollary 1.2.15 since by assumption

(
mD · C

)
> 0 for every

irreducible curve C ⊆ X. ut

Remark 1.2.29. (Nakai’s criterion on proper schemes). The statement
of Theorem 1.2.23 remains true for any complete scheme X, without assuming
at the outset that X is projective. The projectivity hypothesis was used in the
previous proof to write the given divisor D as a difference of two very ample
divisors, but with a little more care one can modify this step to work on any
complete X. See [341, Chapter III] or [276, p. 31] for details. ut

We conclude this subsection with several other applications of the line of
reasoning that led to the Nakai criterion.

Example 1.2.30. (Divisors with ample normal bundle). We outline
a result due to Hartshorne [276, III.4.2] concerning divisors having ample
normal bundles. Let X be a projective variety, and let D ⊂ X be an effective
Cartier divisor on X whose normal bundle OD(D) is ample. Then:

(i). For m� 0, OX(mD) is globally generated.
(ii). For m� 0, the restriction

H0
(
X,OX(mD)

)
−→ H0

(
D,OD(mD)

)
is surjective.

(iii). There is a proper birational morphism

f : X −→ X

from X to a projective variety X such that f is an isomorphism in a
neighborhood of D, and D =def f(D) is an ample effective divisor on X.

(For (i) and (ii), argue as in the proof of Theorem 1.2.23. For (iii) assume
that m is sufficiently large so that (i) and (ii) hold, and in addition OD(mD)
is very ample. Then take X to be the image of the Stein factorization of the
mapping

φ : X −→ P = PH0
(
X,OX(mD)

)
,

defined by |OX(mD)|, with f : X −→ X the evident morphism. By (ii) and
the assumption on OD(mD), f is finite over a neighborhood of f(D). Then
since f∗OX = OX it follows that f maps a neighborhood of D isomorphically
to its image in the variety X. In particular, f is birational.) ut
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Example 1.2.31. (Irreducible curves of positive self-intersection on
a surface). Let X be a smooth projective surface, and let C ⊆ X be an
irreducible curve with

(
C2
)
> 0. Then OX(mC) is free for m� 0. ut

Example 1.2.32. (Further characterizations of amplitude). Kleiman
[341, Chapter 3, §1] gives some additional characterizations of amplitude. Let
D be a Cartier divisor on a projective algebraic scheme X. Then D is ample
if and only if it satisfies either of the following properties:

(i). For every irreducible subvariety V ⊆ X of positive dimension, there is
a positive integer m = m(V ), together with a non-zero section 0 6= s =
sV ∈ H0

(
V,OV (mD)

)
, such that s vanishes at some point of V .

(ii). For every irreducible subvariety V ⊆ X of positive dimension,

χ
(
V,OV (mD)

)
→∞ as m→∞.

(It is enough to prove this when X is reduced and irreducible. Suppose that
(i) holds. Taking first V = X and replacing D by a multiple, we can assume
that D is effective. By induction on dimension OD(D) is ample, and so by
1.2.30 (i) OX(mD) is free for m� 0. But the hypothesis implies that OX(D)
is non-trivial on every curve, and hence Corollary 1.2.15 applies. Supposing
(ii) holds, one can again assume inductively that OE(D) is ample for every
effective divisor E on X. Then the proof of Theorem 1.2.23 goes through with
little change, except that one uses (ii) rather than Riemann–Roch to control
χ(X,OX(mD)), while in order to apply 1.2.15 one notes that (ii) implies that
OX(D) restricts to an ample bundle on every irreducible curve in X.) ut

The next example shows that on a scheme of dimension n, dimensions of
cohomology groups can grow at most like a polynomial of degree n:

Example 1.2.33. (Growth of cohomology). Let X be a projective scheme
of dimension n and D a divisor on X. If F is any coherent sheaf on X then

hi
(
X,F(mD)

)
= O(mn)

for every i. (Write D = A−B as the difference of very ample divisors having
the property that neither A nor B contains any of the subvarieties ofX defined
by the associated primes of F . Then the two sequences

0 // F
(
mD −B

) ·A // F
(
(m+ 1)D

)
// F ⊗OA

(
(m+ 1)D

)
// 0,

0 // F
(
mD −B

) ·B // F
(
mD

)
// F ⊗OB

(
mD

)
// 0

are exact. By induction on dimension one finds that∣∣ hi(X,F((m+ 1)D)
)
− hi

(
X,F(mD)

) ∣∣ = O(mn−1),

and the assertion follows.) ut
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Example 1.2.34. In the setting of 1.2.33, it can easily happen that the
higher cohomology groups have maximal growth. For instance, if X is smooth
and −D is ample, then hn

(
X,OX(mD)

)
= h0

(
X,OX(KX −mD)

)
by Serre

duality, and the latter group grows like mn. For a more interesting example,
let X be the blowing-up Blp(P2) of P2 at a point, with exceptional divisor
E. Then h1

(
X,OX(mE)

)
=
(
m
2

)
has quadratic growth. ut

Example 1.2.35. (Growth of cohomology of pullbacks). Let

µ : X ′ −→ X

be a surjective and generically finite mapping of projective varieties or schemes
of dimension n. Fix a divisor D on X and put D′ = µ∗D. Then for every i ≥ 0,

hi
(
X ′,OX′(mD′)

)
= hi

(
X, (µ∗OX′)⊗OX(mD)

)
+O(mn−1).

(This follows from the Leray spectral sequence and Example 1.2.33 in view
of the fact that the higher direct images Rjµ∗OX′ (j > 0) are supported on
proper subschemes of X.) ut
Example 1.2.36. (Higher cohomology of nef divisors, I). Kollár [363,
V.2.15] shows that one can adapt the proof of Nakai’s criterion to establish
the following

Theorem. Let X be a projective scheme of dimension n, and D a
divisor on X having the property that(

DdimV · V
)
≥ 0 for all irreducible subvarieties V ⊆ X.

Then
hi
(
X,OX(mD)

)
= O(mn−1) for i ≥ 1. (1.12)

We outline Kollár’s argument here. As we will see in Section 1.4, the hypothesis
on D is equivalent to the assumption that it be nef. A stronger statement is
established in Theorem 1.4.40 using a vanishing theorem of Fujita.

(i). Arguing as in the proof of 1.2.23, one shows by induction on dimension
that ∣∣hi(X,OX((m+ 1)D

))
− hi

(
X,OX

(
mD

)) ∣∣ = O(mn−2)

provided that i ≥ 2. This yields (1.12) for i ≥ 2.
(ii). Combining (i) with asymptotic Riemann–Roch (Theorem 1.1.24), it fol-

lows that

h0
(
X,OX

(
mD

))
− h1

(
X,OX

(
mD

))
=

(
Dn
)

n!
·mn + O(mn−1).

If h0
(
X,OX(mD)

)
= 0 for all m > 0, then the left-hand side is non-

positive. But since by assumption
(
Dn
)
≥ 0, this forces

(
Dn
)

= 0 and
we get the required estimate on h1

(
X,OX(mD)

)
.
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(iii). In view of (ii), we can assume that H0
(
X,OX(m0D)

)
6= 0 for some

m0 > 0. Fix E ∈ |m0D| and consider the exact sequence

0 −→ OX
(
(m−m0)D

)
−→ OX

(
mD

)
−→ OE

(
mD

)
−→ 0.

Applying the induction hypothesis to E we find that

h1
(
X,OX

(
mD

))
− h1

(
X,OX

(
(m−m0)D

))
≤ h1

(
E,OE(mD)

)
= O(mn−2),

and the case i = 1 of (1.12) follows. ut

Remark 1.2.37. (Complete schemes). With a little more care, one can
show that 1.2.33 and 1.2.36 remain valid for arbitrary complete schemes. See
[114, Proposition 1.31]. ut

Remark 1.2.38. (Other ground fields). Except for Matsusaka’s theorem
(Example 1.2.12) all of the results and arguments appearing so far in this
section remain valid without change for varieties defined over an algebraically
closed field of arbitrary characteristic. ut

1.2.C Metric Characterizations of Amplitude

The final basic result we recall here is that whenX is smooth — and so may be
considered as a complex manifold — amplitude can be detected analytically.
The discussion will be rather brief, and we refer for instance to [604] or [248,
Chapter 1, Sections 1, 2, and 4], for background and details.

We start with some remarks on positivity of differential forms. Let X be
a complex manifold. For x ∈ X, write TxXR for the tangent space to the un-
derlying C∞ real manifold, and let J : TxXR −→ TxXR be the endomorphism
determined by the complex structure on X, so that J2 = −Id. Given a C∞
2-form ω on X, we denote by ω(v, w) = ωx(v, w) ∈ R the result of evaluating
ω on a pair of real tangent vectors v, w ∈ TxXR.

Definition 1.2.39. (Positive, (1 , 1) and Kähler forms). The 2-form ω
has type (1, 1) if

ωx(Jv, Jw) = ωx(v, w)

for every v, w ∈ TxXR and every x ∈ X. A (1, 1)-form is positive if

ωx(v, Jv) > 0

for every x ∈ X and all non-zero tangent vectors 0 6= v ∈ TxXR. A Kähler
form is a closed positive (1, 1)-form, i.e. a positive form ω of type (1, 1) such
that dω = 0. ut
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Example 1.2.40. (Local description). Let z1, . . . , zn be local holomorphic
coordinates on the complex manifold X. A two-form ω is of type (1, 1) if and
only if it can be written locally as

ω =
i

2

∑
hαβ dzα ∧ dz̄β ,

where
(
hαβ

)
is a Hermitian matrix of C-valued C∞ functions on X. It is

positive if and only if
(
hαβ

)
is positive definite at each point x ∈ X. ut

Example 1.2.41. (Hermitian metrics). Let H be a Hermitian metric on
X, given by Hermitian formsHx( , ) on TxXR varying smoothly with x ∈ X.10

Then the negative imaginary part

ω = −ImH

of H is a (1, 1)-form on X, and if H is positive definite then ω is positive.
Conversely a positive (1, 1)-form ω determines a positive definite Hermitian
metric by the rule

Hx(v, w) = ωx(v, Jw)− iωx(v, w). ut

Fix a Kähler form ω onX. Let∆ be the unit disk, with complex coordinate
z = x + iy, and suppose that µ : ∆ −→ X is a holomorphic mapping. Then
µ∗ω is likewise positive of type (1, 1), and hence

µ∗ω = φ(x, y) · dx ∧ dy,

where φ(x, y) is a positive C∞ function on ∆. Therefore if C ⊆ X is a one-
dimensional complex submanifold, then

∫
C
ω > 0 (provided that the integral

is finite). Similarly, for any complex submanifold V ⊆ X, the integrand com-
puting

∫
V
ωdimV is everywhere positive. So it is suggestive to think of a posi-

tive (1, 1)-form as one satisfying “pointwise” inequalities of Nakai–Moishezon–
Kleiman type.

Example 1.2.42. (Fubini–Study form on Pn, I). Complex projective
space Pn carries a very beautiful SU(n + 1)-invariant Kähler form ωFS. Fol-
lowing [17, Appendix 3], we construct it by first building an SU(n+1)-invariant
Hermitian metric HFS on Pn. The Fubini–Study form ωFS will then arise as
the negative imaginary part ωFS = −ImHFS of this Fubini–Study metric.

Consider the standard Hermitian inner product 〈v, w〉 = tv · w on V =
Cn+1. Set V 0 = V − {0} and denote by

ρ : V 0 −→ Pn = Psub(V )

the canonical map. Define to begin with a Hermitian metric H ′ on V 0 by
associating to x ∈ V 0 the Hermitian inner product
10 Our convention is that Hx should be complex linear in the first argument and

conjugate linear in the second.
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H ′
x(v, w) =

〈
v

|x|
,
w

|x|

〉
for v , w ∈ TxV

0 = V

and |x| =
√
〈x, x〉. The metric H ′ is constructed so as to be invariant under

the natural C∗-action on V 0. Now ρ∗TPn is canonically a quotient of TV 0,
and so H ′ induces in the usual manner a C∗-invariant metric on ρ∗TPn, which
then descends to a Hermitian metric HFS on TPn.

More explicitly, writeWx ⊆ V for theH ′
x-orthogonal complement to C·x ⊆

V , and let πx : V −→Wx be orthogonal projection:

πx(v) = v − 〈v, x〉
〈x, x〉

· x.

Then Wx is identified with Tρ(x)Pn and πx with dρx, and

Hρ(x)

(
dρxv, dρxw

)
FS

= H ′
x(πxv, πxw)

=
〈v, w〉〈x, x〉 − 〈v, x〉〈x,w〉

〈x, x〉2
.

If we take the usual affine local coordinates z1, . . . , zn on Pn — corresponding
to x = (1, z1, . . . , zn) ∈ V 0 — then one finds11 that

ωFS =def −ImHFS

=locally
i

2
·

( ∑
dzα ∧ dz̄α

1 +
∑
|zα|2

−
(∑

z̄αdzα
)
∧
(∑

zαdz̄α
)(

1 +
∑
|zα|2

)2
)
.

By construction HFS is invariant under the natural SU(n+ 1)-action on Pn,
and hence so too is ωFS.

We next verify that ωFS is indeed a Kähler form. The positivity of ωFS

follows using Example 1.2.41 from the fact that HFS is positive definite. Al-
ternatively, since ωFS is SU(n + 1)-invariant it is enough to prove positivity
at any one point p ∈ Pn, and when p = [1, 0, . . . , 0] this is clear from the lo-
cal description. Following [453, Lemma 5.20], SU(n+ 1)-invariance also leads
to a quick proof that ωFS is closed. In fact, given p ∈ Pn choose an element
γ ∈ SU(n+1) such that γ(p) = p while dγp = −Id. Then for any three tangent
vectors u, v, w ∈ TpPn one has

11 It may be useful to consider here an n-dimensional vector space W = Cn, with
its standard Hermitian product 〈u, v〉 = tu · v. Then as w varies over W the
expressions

ηw(u, v) = −Im
(
〈u, v〉

)
, η′w(u, v) = −Im

(
〈u, w〉〈w, v〉

)
define (1, 1)-forms η and η′ on W , which in terms of standard linear coordinates
w1, . . . , wn on W are given by η = i

2
·
∑

dwα ∧ dwα and η′ = i
2
·
( ∑

wαdwα

)
∧( ∑

wαdwα

)
.
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dωFS(u, v, w) = γ∗(dωFS)(u, v, w) = dωFS(−u,−v − w),

and hence dωFS = 0. ut

Example 1.2.43. (Fubini–Study form on Pn, II). Another approach to
the Fubini–Study form involves the Hopf map. Keeping the notation of the
previous example, consider the unit sphere

Cn+1 ⊇ S2n+1 = S

with respect to the standard inner product 〈 , 〉, with

p : S −→ Pn

the Hopf mapping. Denote by ωstd the standard symplectic form on Cn+1, i.e.

ωstd =
∑

dxα ∧ dyα,

where zα = xα+ iyα are the usual complex coordinates on Cn+1. Then ωFS is
characterized as the unique symplectic form on Pn having the property that

p∗ωFS = ωstd | S.

(This follows from the construction in the previous example.) ut

Suppose now given a holomorphic line bundle L onX on which a Hermitian
metric h has been fixed. We write | |h for the corresponding length function
on the fibres of L. The Hermitian line bundle (L, h) determines a curvature
form

Θ(L, h) ∈ C∞(X,Λ1,1T ∗XR) :

this is a closed (1, 1)-form on X having the property that i
2πΘ(L, h) represents

c1(L). If s ∈ Γ (U,L) is a local holomorphic section of L that doesn’t vanish
at any point of an open set U , then for instance one can define Θ(L, h) locally
by the formula

Θ = −∂∂̄ log |s|2h ,

this being independent of the choice of s.
The analytic approach to positivity is to ask that the form i

2πΘ(L, h)
representing c1(L) be positive:

Definition 1.2.44. (Positive line bundles). The line bundle L is positive
(in the sense of Kodaira) if it carries a Hermitian metric h such that i

2πΘ(L, h)
is a Kähler form. ut

Example 1.2.45. (Fubini–Study metric on the hyperplane bundle).
The hyperplane bundle OPn(1) on Pn carries a Hermitian metric h whose
curvature form is a multiple of the Fubini–Study form ωFS (Example 1.2.42).
In fact, the standard Hermitian product 〈v, w〉 = tv · w on V = Cn+1 gives
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rise to a Hermitian metric on the trivial bundle VPn on Pn = Psub(V ). Then
OPn(−1) inherits a metric as a sub-bundle of VPn , which in turn determines a
metric h onOPn(1). Very explicitly, write [x] ∈ Pn for the point corresponding
to a vector x ∈ V − {0} and consider a section s ∈ V ∗ = H0

(
Pn,OPn(1)

)
.

Then h is determined by the rule

∣∣s( [x]
)∣∣2
h

=
|s(x)|2

〈x, x〉
,

where the numerator on the right is the squared modulus of the result of
evaluating the linear functional s on the vector x.

If we work with the usual affine coordinates z = (z1, . . . , zn) on Pn cor-
responding to the point x = (1, z1, . . . , zn) ∈ V and take s ∈ V ∗ to be the
functional given by projection onto the zeroth coordinate, then∣∣s( [x]

)∣∣2
h

=
1

1 +
∑
|zα|2

.

An explicit calculation [248, p. 30] shows that

i

2π
Θ(OPn(1), h) =locally − i

2π
· ∂∂̄ log

(
1

1 +
∑
|zα|2

)
=

i

2π
·

( ∑
dzα ∧ dz̄α

1 +
∑
|zα|2

−
(∑

z̄αdzα
)
∧
(∑

zαdz̄α
)(

1 +
∑
|zα|2

)2
)

=
1
π
· ωFS.

In particular, OPn(1) is positive in the sense of Kodaira. ut

The beautiful fact is that if L is a positive line bundle on a compact Kähler
manifold X, then X is algebraic and L is ample:

Theorem. (Kodaira embedding theorem). Let X be a compact Kähler
manifold, and L a holomorphic line bundle on X. Then L is positive if and
only if there is a holomorphic embedding

φ : X ↪→ P

of X into some projective space such that φ∗OP(1) = L⊗m for some m > 0.

One direction is elementary: if such an embedding exists, then the pullback
of the standard Fubini–Study metric on OP(1) determines a positive metric
on L⊗m and hence also on L. Conversely, if one assumes that X is already
a projective variety — in which case it follows by the GAGA theorems that
L is an algebraic line bundle — then the amplitude of a positive line bundle
is a consequence of the Nakai criterion. Indeed, i

2πΘ(L, h) represents c1(L),
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and as we have noted, the positivity of this form implies the positivity of the
intersection numbers appearing in 1.2.23.12

The deeper assertion is that as soon as L is a positive line bundle on
a compact Kähler manifold, some power of L has enough sections to define
a projective embedding of X. This is traditionally proved by establishing
for positive line bundles an analogue of the sort of vanishings appearing in
Theorem 1.2.6. We refer to [248, Chapter 2, §4] for details.

1.3 Q-Divisors and R-Divisors

For questions of positivity, it is very useful to be able to discuss small pertur-
bations of a given divisor class. The natural way to do so is through the formal-
ism of Q- and R-divisors, which we develop in this section. As an application,
we establish that amplitude is an open condition on numerical equivalence
classes.

1.3.A Definitions for Q-Divisors

As one would expect, a Q-divisor is simply a Q-linear combination of integral
Cartier divisors:

Definition 1.3.1. (Q-divisors). Let X be an algebraic variety or scheme.
A Q-divisor on X is an element of the Q-vector space

DivQ(X) =def Div(X)⊗Z Q.

We represent a Q-divisor D ∈ DivQ(X) as a finite sum

D =
∑

ci ·Ai, (1.13)

where ci ∈ Q and Ai ∈ Div(X). By clearing denominators we can also write
D = cA for a single rational number c and integral divisor A, and if c 6= 0
then cA = 0 if and only if A is a torsion element of Div(X). A Q-divisor D is
integral if it lies in the image of the natural map Div(X) −→ DivQ(X). The
Q-divisor D is effective if it is of the form D =

∑
ciAi with ci ≥ 0 and Ai

effective. ut

Definition 1.3.2. (Supports). Let D ∈ DivQ(X) be a Q-divisor. A codi-
mension one subset E ⊆ X supports D, or is a support of D, if D admits a
representation (1.13) in which the union of the supports of the Ai is contained
in E. ut
12 Recall ([248, p. 32]) that if V is singular, one computes

∫
V

c1(L)dim V by integrat-
ing the appropriate power of i

2π
Θ(L, h) over the smooth locus of V .
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Since the expression (1.13) may not be unique, E is not canonically deter-
mined. But this does not cause any problems.

All the usual operations and properties of Cartier divisors extend naturally
to this setting simply by tensoring with Q:

Definition 1.3.3. (Equivalences and operations on Q-divisors). As-
sume henceforth that X is complete.

(i). Given a subvariety or subscheme V ⊆ X of pure dimension k, a Q-valued
intersection product

DivQ(X)× . . .×DivQ(X) −→ Q,(
D1, . . . , Dk

)
7→
∫

[V ]

D1 · . . . ·Dk =
(
D1 · . . . ·Dk · [V ]

)
is defined via extension of scalars from the analogous product on Div(X).

(ii). Two Q-divisors D1, D2 ∈ DivQ(X) are numerically equivalent, written

D1 ≡num D2,

(or D1 ≡num,Q D2 when confusion seems possible) if(
D1 · C

)
=
(
D2 · C

)
for every curve C ⊆ X. We denote byN1(X)Q the resulting finite-dimen-
sional Q-vector space of numerical equivalence classes of Q-divisors.

(iii). Two Q-divisors D1, D2 ∈ DivQ(X) are linearly equivalent, written

D1 ≡lin,Q D2 (or simply D1 ≡lin D2)

if there is an integer r such that rD1 and rD2 are integral and linearly
equivalent in the usual sense, i.e. if r

(
D1−D2

)
is the image of a principal

divisor in Div(X).

(iv). If f : Y −→ X is a morphism such that the image of every associ-
ated subvariety of Y meets a support of D ∈ DivQ(X) properly, then
f∗D ∈ DivQ(Y ) is defined by extension of scalars from the corresponding
pullback on integral divisors (this being independent of the representa-
tion of D in (1.13)).

(v). If f : Y −→ X is an arbitrary morphism of complete varieties or pro-
jective schemes, extension of scalars gives rise to a functorial induced
homomorphism f∗ : N1(X)Q −→ N1(Y )Q compatible with the divisor-
level pullback defined in (iv). ut

Remark 1.3.4. More concretely, these operations and equivalences are de-
termined from those on integral divisors by writing D =

∑
ciAi — or, after

clearing denominators, D = cA — and expanding by linearity. So for instance
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D ≡num,Q 0 if and only if
∑
ci(Ai ·C) = 0 for every curve C ⊆ X. Note also

that there is an isomorphism

N1(X)Q = N1(X)⊗Z Q. ut

Remark 1.3.5. It can happen that two integral divisors in distinct linear
equivalence classes become linearly equivalent in the sense of (iii) when con-
sidered as Q-divisors. For this reason one has to be careful when dealing with
Q-linear equivalence. For the most part we will work with numerical equiva-
lence, where this problem does not arise. ut

Continue to assume that X is complete. The definition of ampleness for
Q-divisors likewise presents no problems:

Definition 1.3.6. (Amplitude for Q-divisors). A Q-divisor

D ∈ DivQ(X)

is ample if any one of the following three equivalent conditions is satisfied:

(i). D is of the form D =
∑
ciAi where ci > 0 is a positive rational number

and Ai is an ample Cartier divisor.

(ii). There is a positive integer r > 0 such that r ·D is integral and ample.

(iii). D satisfies the statement of Nakai’s criterion, i.e.(
DdimV · V

)
> 0

for every irreducible subvariety V ⊆ X of positive dimension. ut

(The equivalence of (i)–(iii) is immediate.) As before, amplitude is preserved
by numerical equivalence, and we speak of ample classes in N1(X)Q.

As an illustration, we prove that amplitude is an open condition under
small perturbations of a divisor:

Proposition 1.3.7. Let X be a projective variety, H an ample Q-divisor on
X, and E an arbitrary Q-divisor. Then H + εE is ample for all sufficiently
small rational numbers 0 ≤ |ε| � 1. More generally, given finitely many Q-
divisors E1, . . . , Er on X,

H + ε1E1 + . . .+ εrEr

is ample for all sufficiently small rational numbers 0 ≤ |εi| � 1.

Proof. Clearing denominators, we may assume that H and each Ei are
integral. By taking m � 0 we can arrange for each of the 2r divisors
mH ± E1, . . . ,mH ± Er to be ample (Example 1.2.10). Now provided that
|εi| � 1 we can write any divisor of the form
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H + ε1E2 + . . .+ εrEr

as a positive Q-linear combination of H and some of the Q-divisors H± 1
mEi.

But a positive linear combination of ample Q-divisors is ample. ut

Remark 1.3.8. (Weil Q-divisors). As in Example 1.1.3, write WDiv(X)
for the additive group of Weil divisors on an irreducible variety X. The group
of Weil Q-divisors is defined to be

WDivQ(X) =def WDiv(X)⊗Z Q.

So a Weil Q-divisor is just a Q-linear combination of codimension-one subva-
rieties. As before, there is a cycle class map [ ] : DivQ(X) −→ WDivQ(X).

Now assume that X is normal. Then the cycle mapping is injective, and
in this case one can identify DivQ(X) with a subgroup of WDivQ(X). This
provides a convenient and concrete way of manipulating Cartier Q-divisors on
a normal variety. A Weil Q-divisor E ∈ WDivQ(X) is said to be Q-Cartier if
it lies in DivQ(X). Thus all the operations and equivalence relations defined
in Definition 1.3.3 make sense for Q-Cartier Weil Q-divisors provided that X
is normal. (However we do not attempt to pass to Weil divisors when X fails
to be normal.) ut

Example 1.3.9. To illustrate the preceding remark, consider the quadric
cone X ⊂ P3 with vertex O, and let E ⊂ X be a ruling of X, i.e. a line
through O (Figure 1.1). Viewed as a Weil divisor, E is not Cartier. But if A

E

X

O

Figure 1.1. Ruling of quadric cone

is the Cartier divisor obtained by intersecting X with the hyperplane in P3

tangent to X along E, then A = 2 ·E. Thus E is Q-Cartier, and in particular
we can compute its self-intersection:(

E · E
)

=
(

1
2A ·

1
2A
)

= 1
4

(
A ·A

)
= 1

4 · 2
= 1

2 . ut
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1.3.B R-Divisors and Their Amplitude

The definition of R-divisors proceeds in an exactly analogous fashion. Thus
one defines the real vector space

DivR(X) = Div(X)⊗R

of R-divisors on X. Supposing X is complete, there is an associated R-
valued intersection theory, giving rise in particular to the notion of numerical
equivalence. Very concretely, an R-divisor D is represented by a finite sum
D =

∑
ciAi where ci ∈ R and Ai ∈ Div(X). It is numerically trivial if

and only if
∑

ci
(
Ai · C

)
= 0 for every curve C ⊆ X. The resulting vector

space of equivalence classes is denoted by N1(X)R. We say that D is effec-
tive if D =

∑
ciAi with ci ≥ 0 and Ai effective. Pullbacks and supports of

R-divisors are likewise defined as before.

Example 1.3.10. One has an isomorphism

N1(X)R = N1(X)⊗Z R.

(Use the fact — to be established shortly in the proof of Proposition 1.3.13 —
that a numerically trivial R-divisor is an R-linear combination of numerically
trivial integral divisors.) ut

For ampleness of R-divisors, however, the situation is slightly more subtle
(Remark 1.3.12). We take as our definition the analogue of (i) in 1.3.6:

Definition 1.3.11. (Amplitude for R-divisors). Assume that X is com-
plete. An R-divisor D on X is ample if it can be expressed as a finite sum

D =
∑

ciAi

where ci > 0 is a positive real number and Ai is an ample Cartier divisor. ut

Observe that a finite positive R-linear combination of ample R-divisors is
therefore ample.

Remark 1.3.12. (Nakai inequalities for R-divisors). If D is an ample
R-divisor then certainly (

DdimV · V
)
> 0 (*)

for every irreducible V ⊆ X of positive dimension. However, now it is no
longer clear that these inequalities characterize amplitude. For instance, if
D =

∑
ciAi with ci > 0 and Ai integral and ample, then(

DdimV · V
)
≥
(∑

ci
)dimV

thanks to the fact that the intersection product on integral Cartier divisors is
Z-valued. In particular, for fixed ample D the intersection numbers in (*) are
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bounded away from zero. On the other hand, one could imagine the existence
of an R-divisor D satisfying (*) but for which the intersection numbers in
question cluster toward 0 as V varies over all subvarieties of a given dimension.
Surprisingly enough, however, these difficulties don’t actually occur: a theorem
of Campana and Peternell [78] states that the Nakai inequalities (*) do in fact
imply that an R-divisor D on a projective variety is ample. This appears
as Theorem 2.3.18 below. However we prefer to develop the general theory
without appealing to this result. ut

As before, amplitude depends only on numerical equivalence classes:

Proposition 1.3.13. (Ample classes for R-divisors). The amplitude of
an R-divisor depends only upon its numerical equivalence class.

Proof. It is sufficient to show that if D and B are R-divisors, with D ample
and B ≡num 0, then D + B is again ample. To this end, observe first that B
is an R-linear combination of numerically trivial integral divisors. Indeed, the
condition that an R-divisor

B =
∑

riBi ( ri ∈ R , Bi ∈ Div(X) )

be numerically trivial is given by finitely many integer linear equations on
the ri, determined by integrating over a set of generators of the subgroup of
H2

(
X,Z

)
spanned by algebraic 1-cycles on X. The assertion then follows from

the fact that any real solution to these equations is an R-linear combination
of integral ones.

We are now reduced to showing that if A and B are integral divisors, with
A ample and B ≡num 0, then A+ rB is ample for any r ∈ R. If r is rational
we already know this. In general, we can fix rational numbers r1 < r < r2,
together with a real number t ∈ [0, 1], such that r = tr1 + (1− t)r2. Then

A+ rB = t
(
A+ r1B

)
+ (1− t)

(
A+ r2B),

exhibiting A+rB as a positive R-linear combination of ample Q-divisors. ut

Example 1.3.14. (Openness of amplitude for R-divisors). The state-
ment of Proposition 1.3.7 remains valid for R-divisors. In other words:

Let X be a projective variety and H an ample R-divisor on X. Given
finitely many R-divisors E1, . . . , Er, the R-divisor

H + ε1E1 + . . .+ εrEr

is ample for all sufficiently small real numbers 0 ≤ |εi| � 1.

(When H and each Ei are rational this follows from the proof of Proposition
1.3.7, and one reduces the general case to this one. To begin with, since each
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Ej is a finite R-linear combination of integral divisors, there is no loss of
generality in assuming at the outset that all of the Ej are integral. Now write
H =

∑
ciAi with ci > 0 and Ai ample and integral, and fix a rational number

0 < c < c1. Then

H +
∑

εjEj =
(
cA1 +

∑
εjEj

)
+
(
c1 − c

)
A1 +

∑
i≥2

ciAi.

The first term on the right is governed by the case already treated, and the
remaining summands are ample.) ut

Example 1.3.15. If X is projective, then the finite-dimensional vector space
N1(X)R is spanned by the classes of ample divisors on X. (Use 1.3.14.) ut

Remark 1.3.16. (More general ground fields). The discussion in this
section again goes through with only minor changes ifX is a projective scheme
over an arbitrary algebraically closed ground field. (In the proof of 1.3.13
one would replace H2

(
X;Z) with the group N1(X) of numerical equivalence

classes of curves (Definition 1.4.25).) ut

1.4 Nef Line Bundles and Divisors

We have seen that if X is a projective variety, then a class δ ∈ N1(X)Q is
ample if and only if it satisfies the Nakai inequalities:∫

V

δdimV > 0 for all irreducible V ⊆ X with dimV > 0.

This suggests that limits of ample classes should be characterized by the
corresponding weak inequalities∫

V

δdimV ≥ 0 for all V ⊆ X. (*)

It is a basic and remarkable fact (Kleiman’s theorem) that it suffices to test
(*) when V is a curve. For this reason, it turns out to be very profitable to
work systematically with such limits of ample classes. From the contemporary
viewpoint these so-called nef divisors lie at the heart of the theory of positivity
for line bundles.

We start in Section 1.4.A with the definition and basic properties. The
most important material appears in Section 1.4.B, which contains Kleiman’s
theorem and its consequences. It is reinterpreted in the following subsection,
where we introduce the ample and nef cones. Finally we discuss in Section
1.4.D an extremely useful vanishing theorem due to Fujita.
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1.4.A Definitions and Formal Properties

We begin with the definition.

Definition 1.4.1. (Nef line bundles and divisors). Let X be a complete
variety or scheme. A line bundle L on X is numerically effective, or nef, if∫

C

c1(L) ≥ 0

for every irreducible curve C ⊆ X. Similarly, a Cartier divisor D on X (with
Z, Q, or R coefficients) is nef if(

D · C
)
≥ 0

for all irreducible curves C ⊂ X. ut

The definition evidently depends only on the numerical equivalence class of L
or D, and so one has a notion of nef classes in N1(X), N1(X)Q, and N1(X)R.
Note that any ample class is nef, as is the sum of two nef classes.

Remark 1.4.2. The terminology “nef,” although now standard, did not come
into use until the mid 1980s: it was introduced by Reid.13 The concept previ-
ously appeared in the literature under various different names. For example,
in his paper [623] Zariski speaks of “arithmetically effective” divisors. Kleiman
used “numerically effective” in [341]. In that paper, a divisor satisfying the
conclusion of Theorem 1.4.9 was called “pseudoample.” ut

Remark 1.4.3. (Chow’s lemma). In dealing with nefness, one can often
use Chow’s Lemma to reduce statements about complete varieties or schemes
to the projective case. Specifically, suppose that X is a complete variety (or
scheme). Then there exists a projective variety (or scheme) X ′, together with
a surjective morphism f : X ′ −→ X that is an isomorphism over a dense open
subset of X. In the relative setting, an analogous statement holds starting
from a proper morphism X −→ T . See [280, Exercise II.4.10] for details. ut

The formal properties of nefness are fairly immediate:

Example 1.4.4. (Formal properties of nefness). Let X be a complete
variety or scheme, and L a line bundle on X.

(i). Let f : Y −→ X be a proper mapping. If L is nef, then f∗(L) is a nef
line bundle on Y . In particular, restrictions of nef bundles to subschemes
remain nef.

(ii). In the situation of (i), if f is surjective and f∗(L) is nef on Y , then L
itself is nef.

13 Reid was motivated by the fact that nef is also an abbreviation for “numerically
eventually free.”
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(iii). L is nef if and only if Lred is nef on Xred.

(iv). L is nef if and only if its restriction to each irreducible component of X
is nef.

(For (ii) one needs to check that if f : Y −→ X is a surjective morphism of
(possibly non-projective) complete varieties, and if C ⊂ X is an irreducible
curve, then there is a curve C ′ ⊂ Y mapping onto C. To this end, one can
use Chow’s lemma to reduce to the case in which Y is projective, where the
assertion is clear. See [341, Chapter I, Section 4, Lemma 1].) ut

Example 1.4.5. Let X be a complete variety (or scheme) and L a globally
generated line bundle on X. Then L is nef. ut

Example 1.4.6. (Divisors with nef normal bundle). Let X be a com-
plete variety, and D ⊆ X an effective divisor on X. If the normal bundle
ND/X = OD(D) to D in X is nef, then D itself is a nef divisor. In particular,
if X is a surface and C ⊆ X is an irreducible curve with (C2) ≥ 0, then C is
nef. (This generalizes the previous example.) ut

Example 1.4.7. (Nefness on homogeneous varieties). Let X be a com-
plete variety, and suppose that a connected algebraic group G acts transitively
on X. Then any effective divisor D on X is nef. This applies for instance to ar-
bitrary flag manifolds and abelian varieties. (Fix an irreducible curve C ⊂ X.
Then the translate gD of D by a general element g ∈ G meets C properly.
Moreover, gD ≡num D since G is connected. Therefore(

D · C
)

=
(
gD · C

)
≥ 0,

and hence D is nef.) ut

Remark 1.4.8. (Metric characterizations of nefness). Let X be a com-
plex projective manifold, and L a line bundle on X. In the spirit of Section
1.2.C, it is natural to ask whether one can recognize the nefness of L met-
rically. If L carries a Hermitian metric h such that the corresponding Chern
form c1(L) = i

2πΘ(L, h) is non-negative, then certainly L is nef. However,
there are examples [133, Example 1.7] of nef bundles that do not admit such
metrics.

On the other hand, one can in effect use Corollary 1.4.10 below to reduce
to the case of positive bundles. Specifically, fix a Kähler form ω on X. Then
L is nef if and only if for every ε > 0 there exists a Hermitian metric hε on L
such that

i

2π
Θ(L, hε) > −ε · ω

in the sense that i
2πΘ(L, hε) + ε ω is a Kähler form. This also gives a way

of defining nefness on arbitrary compact Kähler manifolds (which might not
contain any curves). We refer to [133, §1.A] for details, and to [126, §6] for a
survey. ut
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1.4.B Kleiman’s Theorem

The fundamental result concerning nef divisors is due to Kleiman [341]:

Theorem 1.4.9. (Kleiman’s theorem). Let X be a complete variety (or
scheme). If D is a nef R-divisor on X, then(

Dk · V
)
≥ 0

for every irreducible subvariety V ⊆ X of dimension k. Similarly,∫
V

c1(L)dimV ≥ 0

for every nef line bundle L on X.

Before giving the proof, we present several applications and corollaries.
The essential content of Kleiman’s theorem is to characterize nef divisors

as limits of ample ones. The next statement gives a first illustration of this
principle; another formulation appears in Theorem 1.4.23.

Corollary 1.4.10. Let X be a projective variety or scheme, and D a nef
R-divisor on X. If H is any ample R-divisor on X, then

D + ε ·H

is ample for every ε > 0. Conversely, if D and H are any two divisors such
that D + εH is ample for all sufficiently small ε > 0, then D is nef.

Proof. If D + εH is ample for ε > 0, then(
D · C

)
+ ε
(
H · C

)
=
(
(D + εH) · C

)
> 0

for every irreducible curve C. Letting ε → 0 it follows that (D · C) ≥ 0, and
hence that D is nef.

Assume conversely that D is nef and H is ample. Replacing εH by H, it
suffices to show that D+H is ample. To this end, the main point is to verify
that D+H satisfies the Nakai-type inequalities appearing in Definition 1.3.6
(iii). Provided that D+H is (numerically equivalent to) a rational divisor, this
will establish that it is ample; the general case will follow by an approximation
argument.

So fix an irreducible subvariety V ⊆ X of dimension k > 0. Then

((
D +H)k · V

)
=

k∑
s=0

(
k

s

)(
Hs ·Dk−s · V

)
. (*)

Since H is a positive R-linear combination of integral ample divisors, the
intersection (Hs ·V ) is represented by an effective real (k−s)-cycle. Applying
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Kleiman’s theorem to each of the components of this cycle, it follows that
(Hs ·Dk−s ·V ) ≥ 0. Thus each of the terms in (*) is non-negative, and the last
intersection number (Hk ·V ) is strictly positive. Therefore

(
(D+H)k ·V

)
> 0

for every V , and in particular if D +H is rational then it is ample.
It remains to prove that D+H is ample even when it is irrational. To this

end, choose ample divisors H1, . . . ,Hr whose classes span N1(X)R. By the
open nature of amplitude (Example 1.3.14), the R-divisor

H(ε1, . . . , εr) = H − ε1H1 − . . .− εrHr

remains ample for all 0 ≤ εi � 1. But the classes of these divisors fill up an
open14 subset of N1(X)R, and consequently there exist 0 < εi � 1 such that
D′ = D + H(ε1, . . . , εr) represents a rational class in N1(X)R. The case of
the corollary already treated shows that D′ is ample. Consequently so too is

D +H = D′ + ε1H1 + . . .+ εrHr,

as required. ut

The corollary in turn gives rise to a test for amplitude involving only
intersections with curves:

Corollary 1.4.11. Let X be a projective variety or scheme, and H an ample
R-divisor on X. Fix an R-divisor D on X. Then D is ample if and only if
there exists a positive number ε > 0 such that(

D · C
)(

H · C
) ≥ ε (1.14)

for every irreducible curve C ⊂ X.

In other words, the amplitude of a divisor D is characterized by the require-
ment that the degree of any curve C with respect to D be uniformly bounded
below in terms of the degree C with respect to a known ample divisor. (See
Example 1.5.3 for a concrete illustration of how this can fail.)

Proof of Corollary 1.4.11. The inequality (1.14) is equivalent to the condition
that D − εH be nef. So assuming (1.14) holds, it follows from the previous
Corollary 1.4.10 that

D =
(
D − εH

)
+ εH

is ample. Conversely, if D is ample then D − εH is even ample for 0 ≤ ε� 1
(Example 1.3.14). ut
14 Openness refers here to the usual topology on the finite-dimensional real vector

space N1(X)R.
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Example 1.4.12. If H1 and H2 are ample divisors on a projective variety
X, then there are positive rational numbers M,m > 0 such that

m ·
(
H1 · C

)
≤
(
H2 · C

)
≤ M ·

(
H1 · C

)
for every irreducible curve C ⊂ X. (Choose M and m such that M ·H1 −H2

and H2 −m ·H1 are both ample.) ut

Seshadri’s criterion for amplitude is another application. Aside from its in-
trinsic interest, this result forms the basis for our discussion of local positivity
in Chapter 5. As a matter of notation, given an irreducible curve C, multxC
denotes the multiplicity of C at a point x ∈ C.

Theorem 1.4.13. (Seshadri’s criterion). Let X be a projective variety
and D a divisor on X. Then D is ample if and only if there exists a positive
number ε > 0 such that (

D · C
)

multxC
≥ ε (1.15)

for every point x ∈ X and every irreducible curve C ⊆ X passing through x.

In other words, we ask that the degree of every curve be uniformly bounded
below in terms of its singularities.

Proof of Theorem 1.4.13. We first show that (1.15) holds when D is ample.
To this end note that if Ex is an effective divisor which passes through x
and meets an irreducible curve C properly, then the local intersection number
i(Ex, C;x) of Ex and C at x is bounded below by multxC. In particular,(

Ex · C
)
≥ multxC.

But if D is ample, so that mD is very ample for some m� 0, then for every x
and C one can find an effective divisor Ex ≡lin mD with the stated properties.
Therefore (D · C) ≥ 1

mmultxC for all x and C.
Conversely, suppose that (1.15) holds for some ε > 0. Arguing by induction

on n = dimX, we can assume that OV (D) is ample for every irreducible
proper subvariety V ⊂ X. In particular,

(
DdimV · V

)
> 0 for every proper

V ⊂ X of positive dimension. By Nakai’s criterion, it therefore suffices to
show that (Dn) > 0.

To this end, fix any smooth point x ∈ X, and consider the blowing-up

µ : X ′ = Blx(X) −→ X

of X at x, with exceptional divisor E = µ−1(x). We claim that the R-divisor

µ∗D − ε · E

is nef on X ′. Granting this, Theorem 1.4.9 implies:
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Dn
)
X
− εn =

((
µ∗D − ε · E

)n)
X′

≥ 0

(where we indicate with a subscript the variety on which intersection numbers
are being computed). Therefore (Dn) > 0, as required. For the nefness of(
µ∗D − ε · E

)
, fix an irreducible curve C ′ ⊂ X ′ not contained in E and set

C = µ(C ′), so that C ′ is the proper transform of C. Then(
C ′ · E

)
= multxC

thanks to [208, p. 79] (see Lemma 5.1.10). On the other hand,(
C ′ · µ∗D

)
X′ =

(
C ·D

)
X

by the projection formula. So the hypothesis (1.15) implies that
(
(µ∗D − ε ·

E) · C ′
)
≥ 0. Since OE(E) is a negative line bundle on the projective space

E the same inequality certainly holds if C ′ ⊂ E. Therefore
(
µ∗D− εE

)
is nef

and the proof is complete. ut

As a final application, we prove a result about the variation of nefness in
families:

Proposition 1.4.14. (Nefness in families). Let f : X −→ T be a surjective
proper morphism of varieties, and let L be a line bundle on X. For t ∈ T put

Xt = f−1(t) , Lt = L | Xt.

If L0 is nef for some given 0 ∈ T , then there is a countable union B ⊂ T of
proper subvarieties of T , not containing 0, such that Lt is nef for all t ∈ T−B.

Proof. First, we can assume by Chow’s lemma that f is projective. Next, after
possibly shrinking T , we can write L = OX(D) where D is a Cartier divisor
on X whose support does not contain any of the fibres Xt. Fix also a Cartier
divisor A on X such that At = A|Xt is ample for all t. According to Corollary
1.4.10, Dt is nef if and only if Dt + 1

mAt is ample for every positive integer
m > 0. By assumption this holds when t = 0, and it follows from Theorem
1.2.17 that the locus on T where Dt+ 1

mAt fails to be ample is contained in a
proper algebraic subset Bm ⊂ T not containing 0. Then take B = ∪Bm. ut

Remark 1.4.15. It seems to be unknown whether one actually needs a count-
able union of subvarieties in 1.4.14. ut

We now turn to the proof of Kleiman’s theorem.

Proof of Theorem 1.4.9. One can assume that X is irreducible and reduced,
and by Chow’s Lemma one can assume in addition that X is projective. We
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proceed by induction on n = dimX, the assertion being evident if X is a
curve. We therefore suppose that

(Dk · V ) ≥ 0 for all irreducible V ⊂ X of dimension ≤ n− 1, (*)

and the issue is to show that (Dn) ≥ 0. Until further notice we suppose that
D is a Q-divisor: the argument reducing the general case to this one appears
at the end of the proof.

Fix an ample divisor H on X, and consider for t ∈ R the self-intersection
number

P (t) =def

(
D + tH

)n ∈ R.

Expanding out the right-hand side, we can view P (t) as a polynomial in t,
and we are required to verify that P (0) ≥ 0. Aiming for a contradiction, we
assume to the contrary that P (0) < 0.

Note first that if k < n, then(
Dk ·Hn−k) ≥ 0. (**)

In fact, H being ample, Hn−k is represented by an effective rational k-cycle.
So (**) follows by applying the induction hypothesis (*) to the components
of this cycle. In particular, for k < n the coefficient of tn−k in P (t) is non-
negative. Since by assumption P (0) < 0, it follows that P (t) has a single real
root t0 > 0.

We claim next that for any rational number t > t0, the Q-divisor D+ tH
is ample. To verify this, it is equivalent to check that((

D + tH
)k · V ) > 0

for every irreducible V ⊆ X of dimension k. When V = X this follows from
the fact that P (t) > P (t0) = 0. If V ( X one expands out the intersection
number in question as a polynomial in t. As in (*) and (**) all the coefficients
are non-negative, while the leading coefficient

(
Hk · V

)
is strictly positive.

The claim is established.
Now write P (t) = Q(t) +R(t), where

Q(t) =
(
D ·
(
D + tH

)n−1
)
,

R(t) =
(
tH ·

(
D + tH

)n−1
)
.

If t > t0 then (D+tH) is ample, and hence
(
D·(D+tH)n−1

)
is the intersection

of a nef divisor with an effective 1-cycle. Therefore Q(t) ≥ 0 for all rational
t > t0, and consequently Q(t0) ≥ 0 by continuity. On the other hand, thanks
to (**) all the coefficients of R(t) are non-negative, and the highest one (Hn)
is strictly positive. Therefore R(t0) > 0. But then P (t0) > 0, a contradiction.
Thus we have proven the theorem in the case that D is rational.
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It remains only to check that the theorem holds when D is an arbitrary
nef R-divisor. To this end, choose ample divisors H1, . . . ,Hr whose classes
span N1(X)R. Then ε1H1 + . . .+ εrHr is ample for all εi > 0. In particular,

D(ε1, . . . , εr) = D + ε1H1 + . . .+ εrHr,

being the sum of a nef and an ample R-divisor, is (evidently) nef. But the
classes of these divisors fill up an open subset in N1(X)R, and therefore we
can find arbitrarily small 0 < εi � 1 such that D(ε1, . . . , εr) is (numerically
equivalent to) a rational divisor. For such divisors, the case of the Theorem
already treated shows that(

D(ε1, . . . , εr)k · V
)
≥ 0

for all irreducible V of dimension k. Letting the εi → 0, it follows that (Dk ·
V ) ≥ 0. ut

Example 1.4.16. (Intersection products of nef classes). Let

δ1, . . . , δn ∈ N1(X)R

be nef classes on a complete variety or scheme X. Then∫
X

δ1 · . . . · δn ≥ 0.

(By Chow’s lemma, one can assume thatX is projective. Then using Corollary
1.4.10 one can perturb the δi slightly so that they become ample classes. But
in this case the assertion is clear.) ut

Remark 1.4.17. Let X be a projective variety and L a line bundle on X. By
analogy with Kleiman’s theorem, one might be tempted to wonder whether the
strict positivity of the degrees

∫
C
c1(L) of L on every curve C ⊆ X implies

that
∫
V
c1(L)dimV > 0 for every V ⊆ X. However, this is not the case. A

counter-example due to Mumford is outlined in Example 1.5.2 below. ut

Example 1.4.18. (Minimal surfaces). Let X be a smooth projective sur-
face of non-negative Kodaira dimension, i.e. with the property that |mKX | 6=
∅ for somem > 0. ThenX is minimal — in other words, it contains no smooth
rational curves having self-intersection (−1) — if and only if the canonical di-
visor KX is nef. (Fix D ∈ |mKX |, and write D =

∑
aiCi with ai > 0 and Ci

irreducible. If C ⊆ X is an irreducible curve with
(
KX ·C

)
< 0, then evidently

C must appear as one of the Ci, say C = C1. Then
(
a1C · C

)
≤
(
D · C

)
< 0,

and it follows from the adjunction formula that C is a (−1)-curve.) ut

Remark 1.4.19. (Higher-dimensional minimal varieties). The previ-
ous example points to a notion of minimality for varieties of higher dimension.
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A non-singular projective variety is minimal if its canonical divisor KX is nef.
More generally, a minimal variety is a normal projective variety, having only
canonical singularities, with KX nef.15 Kawamata, Shokurov, Reid, and oth-
ers have shown that minimal varieties share many of the excellent properties
of minimal surfaces (cf. [326] or [368] for an overview). By analogy with the
case of surfaces, it is natural to ask whether every smooth projective variety
— say of general type, to fix ideas — is birationally equivalent to a minimal
variety. Mori [440] proved that this is so in dimension three, but in arbitrary
dimensions the question remains open as of this writing. However the minimal
model program of trying to construct such models has led to many important
developments. We again refer to [368] or [114] for a survey. Section 1.5.F
describes some related work. ut

1.4.C Cones

The meaning of Theorem 1.4.9 is clarified by introducing some natural and
important cones in the Néron–Severi space N1(X)R and its dual. This view-
point was pioneered by Kleiman in [341, Chapter 4].

Let X be a complete complex variety or scheme. We start by defining the
nef and ample cones. As a matter of terminology, if V is a finite-dimensional
real vector space, by a cone in V we understand a set K ⊆ V stable under
multiplication by positive scalars.16

Definition 1.4.20. (Ample and nef cones). The ample cone

Amp(X) ⊂ N1(X)R

of X is the convex cone of all ample R-divisor classes on X. The nef cone

Nef(X) ⊂ N1(X)R

is the convex cone of all nef R-divisor classes. ut

It follows from the definitions that one could equivalently define Amp(X) to
be the convex cone in N1(X)R spanned by the classes of all ample integral
(or rational) divisors, i.e. the convex hull of all positive real multiples of such
classes.

Remark 1.4.21. As soon as ρ(X) = dimN1(X)R ≥ 3 the structure of these
cones can become quite complicated. For example, they may or may not be
polyhedral. Several concrete examples are worked out in the next section. ut
15 See [516], [364], [368], or [114] for the relevant definitions. One of the requirements

is that KX exist as a Q-Cartier divisor, so that the intersection products
(
KX ·C

)
defining nefness make sense.

16 In order that the ample classes form a cone in N1(X)R, we do not require that
cones contain the origin.
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Remark 1.4.22. (Visualization). It is sometimes convenient to represent
a cone by drawing its intersection with a hyperplane not passing through the
origin. For example, the pentagonal cone shown in Figure 1.2 would be drawn
as a pentagon in the plane. ut

Figure 1.2. Representing cones

We view N1(X)R as a finite-dimensional vector space with its standard
Euclidean topology. This allows one in particular to discuss closures and in-
teriors of sets of numerical equivalence classes of R-divisors.

At least in the projective case, Kleiman’s theorem is equivalent to the fact
that the nef cone is the closure of the ample cone.

Theorem 1.4.23. (Kleiman, [341]). Let X be any projective variety or
scheme.

(i). The nef cone is the closure of the ample cone:

Nef(X) = Amp(X).

(ii). The ample cone is the interior of the nef cone:

Amp(X) = int
(
Nef(X)

)
.

Proof. It is evident that the nef cone is closed, and it follows from Example
1.3.14 that Amp(X) is open. This gives the inclusions

Amp(X) ⊆ Nef(X) and Amp(X) ⊆ int
(
Nef(X)

)
.

The remaining two inclusions

Nef(X) ⊆ Amp(X) and int
(
Nef(X)

)
⊆ Amp(X) (*)
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are consequences of Corollary 1.4.10. In fact let H be an ample divisor on X.
If D is any nef R-divisor then 1.4.10 shows that D+εH is ample for all ε > 0.
Therefore D is a limit of ample divisors, establishing the first inclusion in (*).
For the second, observe that if the class of D lies in the interior of Nef(X),
then D − εH remains nef for 0 < ε� 1. Consequently

D =
(
D − εH

)
+ εH

is ample thanks again to Corollary 1.4.10. ut

Remark 1.4.24. (Non-projective complete varieties). Kleiman [341]
shows that 1.4.23 (ii) holds on a possibly non-projective complete variety X
assuming only that the Zariski topology onX is generated by the complements
of effective Cartier divisors: this is automatic, for instance, if X is smooth or
Q-factorial. In this setting, Nef(X) has non-empty interior if and only if X is
actually projective. ut

Another perspective is provided by introducing the vector space of curves
dual to N1(X)R:

Definition 1.4.25. (Numerical equivalence classes of curves). Let X
be a complete variety. We denote by Z1(X)R the R-vector space of real one-
cycles on X, consisting of all finite R-linear combinations of irreducible curves
on X. An element γ ∈ Z1(X)R is thus a formal sum

γ =
∑

ai · Ci

where ai ∈ R and Ci ⊂ X is an irreducible curve. Two one-cycles γ1, γ2 ∈
Z1(X)R are numerically equivalent if(

D · γ1

)
=
(
D · γ2

)
for every D ∈ DivR(X). The corresponding vector space of numerical equiva-
lence classes of one-cycles is written N1(X)R. Thus by construction one has
a perfect pairing

N1(X)R ×N1(X)R −→ R , (δ, γ) 7→
(
δ · γ

)
∈ R.

In particular,N1(X)R is a finite dimensional real vector space on which we put
the standard Euclidean topology. (Of course one defines numerical equivalence
of integral and rational one-cycles similarly.) ut

The relevant cones in N1(X)R are those spanned by effective curves:

Definition 1.4.26. (Cone of curves). Let X be a complete variety. The
cone of curves

NE(X) ⊆ N1(X)R

is the cone spanned by the classes of all effective one-cycles on X. Concretely,
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NE(X) =
{∑

ai[Ci]
∣∣∣ Ci ⊂ X an irreducible curve, ai ≥ 0

}
.

Its closure
NE(X) ⊆ N1(X)R

is the closed cone of curves on X. ut

The notation NE(X) seems to have been introduced by Mori in his fun-
damental paper [438]. The abbreviation is suggested by the observation — to
be established momentarily — that NE(X) is dual to the cone of numerically
effective divisors. ut

Remark 1.4.27. An example in which NE(X) is not itself closed is given in
1.5.1. ut

A basic fact is that NE(X) and Nef(X) are dual:

Proposition 1.4.28. In the situation of Definition 1.4.26, NE(X) is the
closed cone dual to Nef(X), i.e.

NE(X) =
{
γ ∈ N1(X)R |

(
δ · γ

)
≥ 0 for all δ ∈ Nef(X)

}
.

Proof. This is a consequence of the theory of duality for cones. Specifically,
suppose that K ⊆ V is a closed convex cone in a finite-dimensional real vector
space. Recall that the dual of K is defined to be the cone in V ∗ given by

K∗ =
{
φ ∈ V ∗ | φ(x) ≥ 0 ∀ x ∈ K

}
.

The duality theorem for cones (cf. [35, p. 162]) states that under the natural
identification of V ∗∗ with V , one has K∗∗ = K. In the situation at hand, take

V = N1(X)R , K = NE(X).

Then Nef(X) = NE(X)∗ by definition. Consequently

NE(X) = Nef(X)∗,

which is the assertion of the proposition. ut

Continue to assume that X is complete, and fix a divisor D ∈ DivR(X),
not numerically trivial. We denote by

φD : N1(X)R −→ R

the linear functional determined by intersection with D, and we set

D⊥ = { γ ∈ N1(X)R |
(
D · γ

)
= 0

}
,

D>0 =
{
γ ∈ N1(X)R |

(
D · γ

)
> 0

}
.

Thus D⊥ = kerφD is a hyperplane and D>0 an open half-space in N1(X)R.
One defines D≥0 , D≤0 , D<0 ⊂ N1(X)R similarly.
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D ⊥

D >0

NE(X)
___

Figure 1.3. Test for amplitude via the cone of curves

Theorem 1.4.29. (Amplitude via cones). Let X be a projective variety
(or scheme), and let D be an R-divisor on X. Then D is ample if and only if

NE(X)− {0} ⊆ D>0.

Equivalently, choose any norm ‖ ‖ on N1(X)R, and denote by

S = { γ ∈ N1(X)R | ‖γ‖ = 1 }

the “unit sphere” of classes in N1(X)R of length 1. Then D is ample if and
only if (

NE(X) ∩ S
)
⊆
(
D>0 ∩ S

)
. (1.16)

The theorem is illustrated in Figure 1.3: D is ample if and only if the closed
cone NE(X) (except the origin) lies entirely in the positive halfspace de-
termined by D. The result is sometimes known as Kleiman’s criterion for
amplitude.

Proof of Theorem 1.4.29. We assume that (1.16) holds, and show that D is
ample. To this end, consider the linear functional φD : N1(X)R −→ R deter-
mined by intersection with D. Then φD(γ) > 0 for all γ ∈

(
NE(X) ∩ S

)
. But

NE(X) ∩ S is compact, and therefore φD is bounded away from zero on this
set. In other words, there exists a positive real number ε > 0 such that

φD(γ) ≥ ε for all γ ∈ NE(X) ∩ S.

Thus (
D · C

)
≥ ε · ‖C‖ (*)

for every irreducible curve C ⊆ X. On the other hand, choose ample divisors
H1, . . . ,Hr on X whose classes form a basis of N1(X)R. Then ‖ ‖ is equivalent
to the “taxicab” norm
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‖γ‖taxi =
∑∣∣(Hi · γ

)∣∣.
Setting H =

∑
Hi it therefore follows from (*) that for suitable ε′ > 0,(

D · C
)
≥ ε′ ·

(
H · C

)
for every irreducible curve C ⊆ X. But then the amplitude of D is a con-
sequence of Corollary 1.4.11. We leave the converse to the reader (cf. [363,
Proposition II.4.8]). ut

Example 1.4.30. Let X be a projective variety. Then the closed cone of
curves NE(X) ⊂ N1(X)R does not contain any infinite straight lines. In other
words, if γ ∈ N1(X)R is a class such that both γ,−γ ∈ NE(X), then γ = 0. ut

Example 1.4.31. (Finiteness of integral classes of bounded degree).
Let X be a projective variety, and H an ample divisor on X. Denote by
N1(X) = N1(X)Z the group of numerical equivalence classes of integral one-
cycles, and put

NE(X)Z = NE(X) ∩N1(X)Z.

Then for any positive number M > 0, the set{
γ ∈ NE(X)Z

∣∣∣ (H · γ
)
≤M

}
is finite. (One can choose ample R-divisors H1, . . . ,Hr forming a basis of
N1(X)R such that H =

∑
Hi. If γ ∈ NE(X)Z, then(

H · γ
)

=
∑(

Hi · γ
)

=
∑∣∣(Hi · γ

)∣∣
is the norm ‖γ‖taxi of γ in the “taxi-cab” norm determined by the Hi. So the
set in question is contained in the closed ball of radius M with respect to this
norm. Being compact, this ball contains only finitely many integer points.) ut

Definition 1.4.32. (Extremal rays). Let K ⊆ V be a closed convex cone
in a finite-dimensional real vector space. An extremal ray r ⊆ K is a one-
dimensional subcone having the property that if v + w ∈ r for some vectors
v, w ∈ K, then necessarily v, w ∈ r. ut

An extremal ray is contained in the boundary of K.

Example 1.4.33. (Curves on a surface). If X is a smooth projective
surface, then a one-cycle is the same thing as a divisor. Hence

N1(X)R = N1(X)R,

and in particular the various cones we have defined all live in the same finite-
dimensional vector space.
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[C ]


C ≥ 0

NE(X)
___

C  ⊥



Figure 1.4. Curve of negative self-intersection on a surface

(i). One has the inclusion

Nef(X) ⊆ NE(X),

with equality if and only if
(
C2
)
≥ 0 for every irreducible curve C ⊂ X.

(ii). If C ⊂ X is an irreducible curve with
(
C2
)
≤ 0, then NE(X) is spanned

by [C] and the subcone

NE(X)C≥0 =def C≥0 ∩ NE(X).

(iii). In the situation of (ii), [C] lies on the boundary of NE(X). If in addition(
C2
)
< 0 then [C] spans an extremal ray in that cone.

The conclusion of (iii) when
(
C2
)
< 0 is illustrated in Figure 1.4 (drawn

according to the convention of Remark 1.4.22). (It is evident that Amp(X) ⊆
NE(X), and the inclusion in (i) follows by passing to closures. For (ii), observe
that if C ′ ⊂ X is any effective curve not containing C as a component, then(
C ·C ′

)
≥ 0. If

(
C2
)
< 0, then [C] does not lie in NE(X)C≥0, and the second

assertion of (iii) follows.) Kollár analyzes the cone of curves on an algebraic
surface in more detail in [363, II.4]. ut

Remark 1.4.34. (Positive characteristics). The material so far in this
section goes through for varieties defined over an algebraically closed field of
arbitrary characteristic. ut

1.4.D Fujita’s Vanishing Theorem

We now discuss a theorem of Fujita [195] showing that Serre-type vanishings
can be made to operate uniformly with respect to twists by nef divisors.
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Fujita’s result is very useful in applications. The proof will call on vanishing
theorems for big and nef line bundles to be established in Section 4.3, so from
a strictly logical point of view Fujita’s statement is somewhat out of sequence
here.17 We felt however that an early presentation is justified by the insight
it provides.

Here is Fujita’s theorem:

Theorem 1.4.35. (Fujita’s vanishing theorem). Let X be a complex pro-
jective scheme and let H be an ample (integral) divisor on X. Given any
coherent sheaf F on X, there exists an integer m(F ,H) such that

Hi
(
X,F ⊗OX(mH +D)

)
= 0 for all i > 0 , m ≥ m(F ,H),

and any nef divisor D on X.

The essential point here is that the integer m(F ,H) is independent of the nef
divisor D.

Proof of Theorem 1.4.35. Arguing as in the proof of Proposition 1.2.16, it
suffices to prove the theorem under the additional assumption that X is irre-
ducible and reduced. Moreover, by induction on dimX one can assume that
the theorem is known for all sheaves F supported on a proper subscheme of
X. To streamline the discussion, we will henceforth say that the theorem holds
for a given coherent sheaf G if the statement is true when F = G.

We claim next that it is enough to exhibit any one integer a ∈ Z such
that the theorem holds for OX(aH). In fact, according to Example 1.2.21 an
arbitrary coherent sheaf F admits a (possibly infinite) resolution by bundles
of the form ⊕OX(−pH). Using Proposition B.1.2 and Remark B.1.4 from
Appendix B this reduces one to proving the stated vanishing for finitely many
such bundles. On the other hand, if the theorem holds for OX(aH) for any
one integer a, then it follows formally (by suitably adjusting m(F ,H)) that
it holds for any finite collection of the line bundles OX(bH).

Let µ : X ′ −→ X be a resolution of singularities, and consider the torsion-
free sheaf

KX = µ∗OX′(KX′)

where KX′ is a canonical divisor on X ′.18 If a � 0 there is an injective
homomorphism

u : KX −→ OX(aH)

of coherent sheaves on X, deduced from a non-zero section of OX′
(
µ∗(aH)−

KX′
)
. The cokernel of u is supported on a proper subscheme of X, so one can

17 Needless to say, the proof of vanishing in 4.3 does not draw on Fujita’s result.
The interested reader can go directly to Chapter 4 after skimming Sections 2.1.A,
2.2.A, and 3.1.

18 This is the Grauert–Riemenschneider canonical sheaf on X: see Example 4.3.12.
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assume that the theorem holds for coker(u). Therefore it is enough to show
that the theorem holds for F = KX , for this then implies the statement for
OX(aH).

Finally, take F = KX . Here Example 4.3.12 applies, but we recall the ar-
gument. The vanishing theorem of Grauert–Riemenschneider (Theorem 4.3.9)
guarantees that

Rjµ∗OX′(KX′) = 0 for j > 0.

Thus Proposition B.1.1 in Appendix B yields

Hi
(
X , KX ⊗OX(aH +D)

)
= Hi

(
X ′ , OX′

(
KX′ + µ∗(aH +D)

) )
(*)

for all i. On the other hand, if a > 0 then µ∗(aH +D) is a nef divisor on X ′

whose top self-intersection number is positive (i.e. it is “big” in the sense of
2.2.1: see 2.2.16). But then the group on the right in (*) vanishes thanks to
Theorem 4.3.1. ut

Remark 1.4.36. (Positive characteristics). Fujita uses an argument with
the Frobenius to show that the theorem also holds over algebraically closed
ground fields of positive characteristic. ut

We next indicate some applications of Fujita’s result. The first shows that
the set of all numerically trivial line bundles on a projective variety forms a
bounded family.

Proposition 1.4.37. (Boundedness of numerically trivial line bun-
dles). Let X be a projective variety or scheme. Then there is a scheme T (of
finite type! ) together with a line bundle L on X × T having the property that
any numerically trivial line bundle L on X arises as the restriction

Lt = L |Xt for some t ∈ T,

where Xt = X × {t}.

Proof. It is equivalent to prove the boundedness of the bundles L ⊗ B for
any fixed line bundle B independent of L. With this in mind, choose a very
ample line bundle OX(1) on X. Since any numerically trivial line bundle is
nef, 1.4.35 shows that there exists an integer m0 � 0 such that

Hi
(
X,L⊗OX(m0 − i)

)
= 0

for i > 0 and every numerically trivial bundle L. By an elementary result of
Mumford — appearing below as Theorem 1.8.3 — this implies first that

AL =def L⊗OX(m0)

is globally generated. Theorem 1.8.3 also gives Hi
(
X,L⊗OX(m)

)
= 0 for

i > 0 and m ≥ m0, so that
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h0
(
X,L⊗OX(m)

)
= χ

(
X,L⊗OX(m)

)
= χ

(
X,OX(m)

)
for m ≥ m0 and every numerically trivial L: in the second equality we are
using Riemann–Roch to know that twisting by L does not affect the Euler
characteristic. In particular, all the bundles AL have the same Hilbert polyno-
mial, and they can each be written as a quotient of the trivial bundle ONX for
N = χ

(
X,OX(m0)

)
. But Grothendieck’s theory of Quot schemes implies that

the set of all quotients of ONX having fixed Hilbert polynomial is parametrized
by a scheme H of finite type, and there exists moreover a universal quotient
sheaf ONX×H � F flat over H. (See [300, Chapter 2.2] for a nice account of
Grothendieck’s theory.) We then obtain T as the open subscheme of H con-
sisting of points t ∈ H for which Ft is locally free on X = Xt (cf. [300, Lemma
2.18]). ut

Proposition 1.4.37 has as a consequence the characterization of numerically
trivial bundles mentioned in Remark 1.1.20, at least for projective schemes:

Corollary 1.4.38. (Characterization of numerically trivial line bun-
dles). Let X be a projective variety or scheme, and L a line bundle on X.
Then L is numerically trivial if and only if there is an integer m > 0 such
that L⊗m is a deformation of the trivial line bundle.

Keeping notation as in 1.4.37, the conclusion means that there exists an ir-
reducible scheme T , points 0, 1 ∈ T , and a line bundle L on X × T such
that

L1 = L⊗m and L0 = OX .

The proof will show that one could even take T to be a smooth connected
curve.

Proof of Corollary 1.4.38. If L⊗m is a deformation of OX then evidently L is
numerically trivial. Conversely, according to the previous result all numerically
trivial line bundles fall into finitely many irreducible families. Therefore there
must be two distinct integers p 6= q such that L⊗p and L⊗q lie in the same
family. But then L⊗(p−q) is a deformation of the trivial bundle. The statement
immediately before the proof follows from the fact that any two points on an
irreducible variety can be joined by a map from a smooth irreducible curve to
the variety (Example 3.3.5). ut

Remark 1.4.39. It is established in [52, XIII, Theorem 4.6] that the corollary
continues to hold if X is complete but possibly non-projective. ut

We conclude with a result that strengthens the statement of Example
1.2.36. It shows that the growth of the cohomology of a nef line bundle is
bounded in terms of the degree of the cohomology:
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Theorem 1.4.40. (Higher cohomology of nef divisors, II). Let X be a
projective variety or scheme of dimension n, and D a nef divisor on X. Then
for any coherent sheaf F on X,

hi
(
X,F(mD)

)
= O(mn−i). (1.17)

Proof. We may suppose by induction that the statement is known for all
schemes of dimension ≤ n−1. Thanks to Fujita’s theorem, there exists a very
ample divisor H having the property that Hi

(
X,F(mD +H)

)
= 0 for i > 0

and every m ≥ 0. Assuming as we may that H doesn’t contain any of the
subvarieties of X defined by the associated primes of F , we have the exact
sequence

0 −→ F(mD) ·H−→ F(mD +H) −→ F(mD +H)⊗OH −→ 0.

Therefore when i ≥ 1,

hi
(
X,F(mD)

)
≤ hi−1

(
H,F(mD +H)⊗OH

)
= O

(
m(n−1)−(i−1)

)
as required. ut

Combining the Theorem with 1.1.25 one has:

Corollary 1.4.41. (Asymptotic Riemann–Roch, III). Let X be an irre-
ducible projective variety or scheme of dimension n, and let D be a nef divisor
on X. Then

h0
(
X,OX(mD)

)
=

(
Dn
)

n!
·mn + O(mn−1).

More generally,

h0
(
X,F ⊗OX(mD)

)
= rank(F) ·

(
Dn
)

n!
·mn + O(mn−1) (1.18)

for any coherent sheaf F on X. ut

Example 1.4.42. Kollár [363, VI.2.15] shows that in the situation of Theo-
rem 1.4.40 one can prove a slightly weaker statement without using Fujita’s
vanishing theorem. Specifically, with X, F , and D as in 1.4.40 he establishes
the bound

hi
(
X,F ⊗OX(mD)

)
= O(mn−1) for i ≥ 1. (1.19)

In particular, one can avoid Fujita’s result for Corollary 1.4.41. (When F =
OX , Kollár’s argument was outlined in Example 1.2.36. In general, arguing as
in Proposition 1.2.16, one first reduces to the case in which X is reduced and
irreducible. If rank(F) = 0 then F is supported on a proper subscheme, so
the statement follows by induction on dimension. Assuming rank(F) = r > 0
fix a very ample divisor H. Then F(pH) is globally generated for p � 0, so
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there is an injective homomorphism u : OrX(−pH) −→ F whose cokernel is
supported on a proper subscheme of X. Then (1.19) for the given sheaf F is
implied by the analogous assertion for the line bundle OX(−pH). This in turn
follows from the previously treated case of OX by choosing a general divisor
A ∈ |pH | and arguing by induction on dimension from the exact sequence

0 −→ OX(−A) −→ OX −→ OA −→ 0.

We refer to [363, VI.2.15] for details.) ut

1.5 Examples and Complements

This section gives some concrete examples of ample and nef cones, and
presents some further information about their structure. We begin with ruled
surfaces in Section 1.5.A. The product of a curve with itself is discussed in
1.5.B, where in particular we prove an interesting theorem of Kouvidakis.
Abelian varieties are treated in Section 1.5.C, while 1.5.D contains telegraphic
summaries of some other situations in which ample cones have been studied.
Section 1.5.E is concerned with results of Campana and Peternell describing
the local structure of the nef cone. We conclude in 1.5.F with a brief summary
(without proofs) of Mori’s cone theorem. We warn the reader that the present
section assumes a somewhat broader background than has been required up
to now.

1.5.A Ruled Surfaces

As a first example, we work out the nef and effective cones for ruled surfaces.
At one point we draw on some facts concerning semistability that are discussed
and established later in Section 6.4. The reader may consult [280, Chapter V,
§2] or [114, Chapter 1.9] for a somewhat different perspective.

Let E be a smooth projective curve of genus g, let U be a vector bundle
on E of rank two, and set X = P(U) with

π : X = P(U) −→ E

the bundle projection. For ease of computation we assume that U has even
degree. After twisting by a suitable divisor, we can then suppose without loss
of generality that degU = 0.

Recall that N1(X)R is generated by the two classes

ξ = c1
(
OP(U)(1)

)
and f = [F ],

where F is a fibre of π. The intersection form on X is determined by the
relations
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Figure 1.5. Néron–Severi group of a ruled surface

(
ξ2
)

= degU = 0 ,
(
ξ · f

)
= 1 ,

(
f2
)

= 0.

In particular,
(
(af + bξ)2

)
= 2ab. If we represent the class (af + bξ) by the

point (a, b) in the f -ξ plane, it follows that the nef cone Nef(X) must lie
within the first quadrant a, b ≥ 0. Moreover, the fibre F is evidently nef (e.g.
by Example 1.4.6). Therefore the non-negative “f -axis” forms one of the two
boundaries of Nef(X). Equivalently, f lies on the boundary of NE(X).

The second ray bounding Nef(X) depends on the geometry of U . Specifi-
cally, there are two possibilities:

Case I: U is unstable. By definition, a rank-two bundle U of degree 0 is
unstable if it has a line bundle quotient A of negative degree a = deg(A) < 0.
Assuming such a quotient exists,

C = P(A) ⊂ P(U) = X

is an effective curve in the class af + ξ. One has
(
C2
)

= 2a < 0, and it follows
from Example 1.4.33 that the ray spanned by [C] bounds NE(X). Therefore
Nef(X) is bounded by the dual ray generated by (−af + ξ). The situation is
illustrated in Figure 1.5.

Case II: U is semistable. By definition, a bundle of degree 0 is semistable
if it does not admit any quotients of negative degree. It is a basic fact that if
U is semistable then so too are all the symmetric powers SmU of U (Corollary
6.4.14). In the present situation this implies that if A is a line bundle of degree
a such that H0

(
E,SmU ⊗A

)
6= 0, then a ≥ 0. Now suppose that C ⊂ X is

an effective curve. Then C arises as a section of OP(U)(m) ⊗ π∗A for some
integer m ≥ 0 and some line bundle A on E. On the other hand,

H0
(
P(U),OP(U)(m)⊗ π∗A

)
= H0

(
E,SmU ⊗A

)
,
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so by what we have just said a = degA ≥ 0. In other words, the class (af+mξ)
of C lies in the first quadrant. So in this case Nef(X) = NE(X) and the cones
in question fill up the first quadrant of the f -ξ plane.

Example 1.5.1. (Ruled surfaces where NE(X) is not closed). In the
setting of Case II, it is interesting to ask whether the “positive ξ-axis” R+ · ξ
actually lies in the cone NE(X) of effective curves, or merely in its closure.
In other words, we ask whether there exists an irreducible curve C ⊂ X with
[C] = mξ for some m ≥ 1. The presence of such a curve is equivalent to the
existence of a line bundle A of degree 0 on E such that H0

(
E,SmU ⊗A

)
6= 0,

which implies that SmU is semistable but not strictly stable. Using a theorem
of Narasimhan and Seshadri [474] describing stable bundles in terms of unitary
representations of the fundamental group π1(E), Hartshorne checks in [276,
I.10.5] that if E has genus g(E) ≥ 2 then there exist bundles U of degree 0
on E having the property that

H0
(
E,SmU ⊗A

)
= 0 for all m ≥ 1 (1.20)

whenever degA ≤ 0: in fact this holds for a “sufficiently general” semistable
bundle U . Thus there is no effective curve C on the resulting surfaceX = P(U)
with class [C] = mξ, and therefore the positive ξ-axis does not itself lie in the
cone of effective curves. This example is due to Mumford. ut

Example 1.5.2. (Non-ample bundle that is positive on all curves).
Mumford observed that the phenomenon just described also yields an example
of a surface X carrying a line bundle L such that

∫
C
c1(L) > 0 for every

irreducible curve C ⊆ X on X, but where L fails to be ample. In fact, let
U be a bundle satisfying the condition in (1.20) and take X = P(U) and
L = OP(U)(1). This shows that it is not enough to check intersections with
curves in Nakai’s criterion. By the same token it gives an example in which
the linear functional φξ determined by intersection with ξ is positive on the
cone of curves NE(X) for a non-ample bundle ξ, explaining why one passes
to the closed cone NE(X) in Theorem 1.4.29. ut

Example 1.5.3. The line bundle L = OP(U)(1) constructed in Example 1.5.1
is nef but not ample. It is instructive to see explicitly how the condition in
Corollary 1.4.11 fails for L (as of course it must). In fact, a theorem of Segre,
Nagata, and Ghione (Examples 7.2.13, 7.2.14) implies that for every m there
is a line bundle Am on E of degree ≤ g such that H0

(
E,SmU ⊗Am

)
6= 0. As

above, this gives rise to a curve Cm ⊂ X with
∫
Cm

c1(L) = degAm bounded.
For the reference ample class H one can take for instance H = ξ + f . Then
one sees that the intersection numbers

(
Cm ·H

)
go to infinity with m, and so

lim
m→∞

(
Cm · c1(L)

)(
Cm ·H

) = 0. ut
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1.5.B Products of Curves

Our next examples involve products of curves, and we start by establishing
notation. Denote by E a smooth irreducible complex projective curve of genus
g = g(E). We set

X = E × E,

with projections pr1, pr2 : X −→ E. Fixing a point P ∈ E, consider in
N1(X)R the three classes

f1 = [ {P} × E ] , f2 = [ E × {P} ] , δ = [ ∆ ],

where ∆ ⊂ E ×E is the diagonal (Figure 1.6). Provided that g(E) ≥ 1 these

f2

δ

E

E

f1

P

P

Figure 1.6. Cartesian product of curve with itself

classes are independent, and if E has general moduli then it is known that
they span N1(X)R. Intersections among them are governed by the formulae(

δ · f1
)

=
(
δ · f2

)
=
(
f1 · f2

)
= 1,(

(f1)2
)

=
(
(f2)2

)
= 0,(

δ2
)

= 2− 2g.

Elliptic curves. Assume that g(E) = 1. Then X = E × E is an abelian
surface, and one has:

Lemma 1.5.4. Any effective curve on X is nef, and consequently

NE(X) = Nef(X).

A class α ∈ N1(X)R is nef if and only if(
α2
)
≥ 0 ,

(
α · h

)
≥ 0,
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for some ample class h. In particular, if

α = x · f1 + y · f2 + z · δ,

then α is nef if and only if

xy + xz + yz ≥ 0
x+ y + z ≥ 0.

(*)

If we identify x·f1+y ·f2+z ·δ in the natural way with
the point (x, y, z) ∈ R3, then the equations (*) define
a circular cone K ⊂ R3. When ρ(X) = 3 — which
as we have noted is the case for a sufficiently general
elliptic curve E — it is precisely the nef cone, i.e. K =
Nef(X). In general, K is the intersection of Nef(X)
with a linear subspace ofN1(X)R. In either event, the
proposition shows that Nef(X) is not polyhedral. (See
also Example 1.5.6 and Proposition 1.5.17.) Kollár
analyzes this example in more detail in [363, Chapter
II, Exercise 4.16].

Proof of Lemma 1.5.4. The first statement is a special case of Example 1.4.7.
A standard and elementary argument with Riemann–Roch (cf. [280, V.1.8])
shows that if D is an integral divisor on X such that

(
D2
)
> 0 and

(
D ·H

)
> 0

for some ample H, then for m� 0, mD is linearly equivalent to an effective
divisor. The second statement follows, and one deduces (*) by taking h =
f1 + f2 + δ. ut

Remark 1.5.5. (Irrational polyhedral cones). One can use this example
to construct a projective variety V with ρ(V ) = 2 for which Nef(V ) ⊆ R2 is
an irrational polyhedron: see Example 5.4.17. ut

Remark 1.5.6. (Arbitrary abelian surfaces). An analogous statement
holds on an arbitrary abelian surface X. Specifically, NE(X) = Nef(X) and
α ∈ N1(X)R is nef if and only if

(
α2
)
≥ 0 and

(
α · h

)
≥ 0 for some ample

class h. Moreover, if ρ(X) = r then in suitable linear coordinates x1, . . . , xr
on N1(X)R, Nef(X) is the cone given by

x2
1 − x2

2 − . . .− x2
r ≥ 0 , x1 ≥ 0.

(Note that in any event r ≤ 4.) Abelian varieties of arbitrary dimension are
discussed below. ut

Example 1.5.7. (An example of Kollár). If D is an ample divisor on
a variety Y , then by definition there is a positive integer m(D) such that
OY (mD) is very ample when m ≥ m(D). We reproduce from [152, Example
3.7] Kollár’s example of a surface Y on which the integer m(D) cannot be
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bounded independently of D. (By contrast, if Y is a smooth curve of genus
g then one can take m(D) = 2g + 1.) Keeping notation as above, start with
the product X = E × E of an elliptic curve with itself, and for each integer
n ≥ 2, form the divisor

An = n · F1 + (n2 − n+ 1) · F2 − (n− 1) ·∆,

F1, F2 being fibres of the two projections pr1,pr2 : X −→ E. One has
(
An ·

An
)

= 2 and
(
An · (F1 + F2)

)
= n2 − 2n + 3 > 0. It follows from 1.5.4 that

An is ample.
Now set R = F1 + F2, let B ∈ |2R | be a smooth divisor, and take for Y

the double cover f : Y −→ X of X branched along B (see Proposition 4.1.6
for the construction of such coverings). Let Dn = f∗An. Then Dn is ample,
and we claim that the natural inclusion

H0
(
X,OX(nAn)

)
−→ H0

(
Y,OY (nDn)

)
(*)

is an isomorphism. It follows that n · Dn cannot be very ample, and hence
that m

(
Dn

)
> n. For the claim, observe that f∗OY = OX ⊕ OX(−R), and

therefore
f∗
(
OY (nDn)

)
= OX(nAn)⊕OX(nAn −R).

So to verify that (*) is bijective, it suffices to prove that

H0
(
X,OX(nAn −R)

)
= 0.

But this follows from the computation that
(

(n ·An −R)2
)
< 0. ut

Curves of higher genus. Suppose now that g = g(E) ≥ 2. In this case the
ample cone of X = E × E is already quite subtle, and not fully understood
in general. Here we will give a few computations emphasizing the interplay
between amplitude on X and the classical geometry of E. Some related results
appear in Section 5.3.A.

Following [602], it is convenient to make a change of variables and replace
δ by the class

δ′ = δ − (f1 + f2).

This brings the intersection product into the simpler form(
δ′ · f1

)
=
(
δ′ · f2

)
= 0 ,

(
δ′ · δ′) = −2g.

Given a positive real number t > 0, we focus particularly on understanding
when the class

et = t(f1 + f2)− δ′

is nef.19 Since (f1 +f2) is ample, et becomes ample for t� 0. For the purpose
of the present discussion set
19 This amounts to determining part of the ample cone of the symmetric product

S2E: see Example 1.5.14.
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t(E) = inf
{
t > 0 | et is nef

}
. (1.21)

Since
(
et · et

)
= 2t2 − 2g, we find that in any event t(E) ≥ √

g.
An interesting result of Kouvidakis [370] shows that for many classes of

curves, the invariant t(E) reflects in a quite precise way the existence of special
divisors on E. As a matter of terminology, we say that a branched covering

π : E −→ P1

is simple if π has only simple ramification (locally given by z 7→ z2) and if no
two ramification points in E lie over the same point of P1. Writing B ⊂ P1

for the branch locus of π, this condition guarantees that π1(P1 −B) acts via
monodromy as the full symmetric group on a general fibre π−1(y) (cf. [54,
Lemma 1.3]).

Theorem 1.5.8. (Theorem of Kouvidakis). Assume that E admits a sim-
ple branched covering

π : E −→ P1

of degree d ≤ [
√
g ] + 1. Then t(E) = g

d−1 .

Corollary 1.5.9. If E is a very general curve of genus g, then
√
g ≤ t(E) ≤ g

[
√
g ]
.

The assumption on E means that the conclusion holds for all curves parame-
terized by the complement of a countable union of proper subvarieties of the
moduli space Mg.

Remark 1.5.10. It is natural to conjecture that t(E) =
√
g for very general

E of sufficiently large genus. When g is a perfect square, this follows from
the corollary. Ciliberto and Kouvidakis [92] have shown that the statement
is implied by a conjecture of Nagata (Remark 5.1.14) provided that g ≥
10. When E is a general curve of genus 3 it follows from computations of
Kouvidakis [370] and Bauer and Szemberg [41] that t(E) = 9

5 . ut
Remark 1.5.11. If E is a very general curve of large genus, Kollár asks
whether the diagonal ∆ ⊆ E × E is the only irreducible curve of negative
self-intersection. ut

Proof of Corollary 1.5.9. By the Riemann existence theorem, there exists a
curve E0 of genus g admitting a simple covering π : E0 −→ P1 of degree
d = [

√
g] + 1. Theorem 1.5.8 shows that

t(E0) =
g

[
√
g ]
.

The corollary then follows by letting E0 vary in a complete family of curves
of genus g, and applying Proposition 1.4.14 to the corresponding family of
products. ut
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For the theorem the essential observation is the following

Lemma 1.5.12. Assume that there exists a reduced irreducible curve

C0 ⊂ E × E

with [C0] = es = s(f1 + f2)− δ′ for some s ≤ √
g. Then et is nef if and only

if t ≥ g
s , and consequently t(E) = g

s .

Proof. This could be deduced from Example 1.4.33 (ii), but it is simplest to
argue directly. Suppose then that t ≥ g

s . One has
(
et ·C0

)
= 2st−2g ≥ 0, so it

remains to show that if C1 ⊂ E×E is any irreducible curve distinct from C0,
then

(
et · C1) ≥ 0. The intersection product on E × E being non-degenerate,

we can write
[C1] = x1f1 + x2f2 − yδ′ + α

where α ∈ N1(X)R is a class orthogonal to f1, f2, and δ′. By intersecting with
f2 and f1, we find that x1, x2 ≥ 0. Moreover

(
C1 · C0

)
≥ 0 since C0 and C1

meet properly, which yields

s(x1 + x2)− 2gy ≥ 0. (*)

But
(
C1 · et

)
= t(x1 + x2) − 2gy, and the two inequalities in the hypothesis

of the Lemma imply that t ≥ s. Therefore (*) shows that
(
C1 · et

)
≥ 0, as

required. ut

Proof of Theorem 1.5.8. Thanks to the lemma, it suffices to produce an irre-
ducible reduced curve C = Cf ⊂ E×E having class (d− 1)(f1 + f2)− δ′, and
these exist very naturally. Specifically, consider in E × E the fibre product

E × E ⊃ E ×P1 E =
{
(x, y) | π(x) = π(y)

}
.

This contains the diagonal ∆E as a component, and we take C to be the
residual divisor: set theoretically, C is the closure of the set of all pairs (x, y) ∈
E × E with x 6= y such that π(x) = π(y). Thus

[C] = d(f1 + f2)− δ

= (d− 1)(f1 + f2)− δ′.

Moreover C is clearly reduced (being generically so), and it is irreducible
thanks to the fact that the monodromy of f is the full symmetric group. ut

Example 1.5.13. (Characterization of hyperelliptic curves). It follows
from Theorem 1.5.8 that if E is hyperelliptic, then t(E) = g. In fact, this
characterizes hyperelliptic curves: if E is non-hyperelliptic, then

t(E) ≤ g − 1.
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This strengthens and optimizes a result of Taraffa [564], who showed that

t(E) ≤ 2
√
g2 − g ≈ 2g

for any curve E of genus g. (The main point is to check that any non-
hyperelliptic curve E carries a simple covering π : E −→ P1 of degree g
(cf. [54, Lemma 1.4]). Then, as in the proof of (1.5.8), let C = Cπ be the
curve residual to ∆E in E ×P1 E ⊂ E × E. The class of C is given by
[C] = (g−1)(f1+f2)−δ′, and C is irreducible since f is simple. But

(
C2
)
≥ 0,

and consequently C is nef.) ut

Example 1.5.14. (Symmetric products). Following [370] let Y = S2E
be the second symmetric product of E, so that there is a natural double cover
p : X = E×E −→ S2E = Y . This gives rise to an inclusion p∗ : N1(Y )R −→
N1(X)R realizing the Néron–Severi space of Y as a subspace in that of X.
The classes

f = f1 + f2 and δ′

lie in N1(Y )R, and when E has general moduli they span it. The invariant
t(E) determines one of the rays bounding the intersection

Nef(Y ) ∩
(
R · δ′ + R · f

)
of Nef(Y ) with the subspace spanned by δ′ and f . The other bounding ray
is generated by gf + δ′. In other words, (sf + δ′) ∈ N1(Y )R is nef iff s ≥ g.
(The class gf + δ′ in question is the pullback of the theta divisor ΘE of the
Jacobian of E under the Abel–Jacobi map u : S2E −→ Jac(E). Hence gf + δ′

is nef, and since f is ample so too is (sf + δ′) when s ≥ g. On the other hand,
δ = [∆] is effective and(

(sf + δ′) · (δ)
)

=
(
(sf + δ′) · (δ′ + f)

)
= 2s− 2g.

Consequently (sf + δ′) is not nef when s < g.) ut

Remark 1.5.15. (Higher-dimensional symmetric product). Let E be
a general curve of even genus g = 2k. Using deep results of Voisin from [598],
Pacienza [490] works out the nef cone of the symmetric product Y = SkE.
Since ρ(Y ) = 2, the cone in question is determined as above by two slopes: in
the case at hand, Pacienza shows that they are rational. ut

Example 1.5.16. (Vojta’s divisor). Fix real numbers r, s > 0 and let

a1 = a1(r) =
√

(g + s)r , a2 = a2(r) =

√
(g + s)
r

.

Put vr = a1f1 + a2f2 + δ′, so that
(
vr · vr

)
= 2s. If
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r >
(g + s)(g − 1)

s
,

then vr is nef. (See [602, Proposition 1.5].) This divisor — or more precisely the
height function it determines — plays an important role in Vojta’s proof of the
Mordell conjecture (i.e. Faltings’ theorem). See [382] for a nice overview. ut

1.5.C Abelian Varieties

In this subsection, following [78], we describe the ample and nef cones of an
abelian variety of arbitrary dimension.

Let X be an abelian variety of dimension n, and let H be a fixed ample
divisor on X. The essential point is the following, which generalizes Lemma
1.5.4.

Proposition 1.5.17. An arbitrary R-divisor D on X is ample if and only if(
Dk ·Hn−k) > 0 (1.22)

for all 0 ≤ k ≤ n, and D is nef if and only if
(
Dk ·Hn−k) ≥ 0 for all k.

Sketch of Proof. If D is ample or nef, then the stated inequalities follow from
Examples 1.2.5 and 1.4.16. Conversely, we show that if D is an integral divisor
satisfying (1.22), then D is ample: since there are only finitely many inequali-
ties involved, the corresponding statement for R-divisors follows. To this end,
consider the polynomial P (t) = PD(t) ∈ Z[t] defined in the usual way by the
expression

PD(t) =
( (
D + t ·H

)n )
.

The given inequalities imply that P (t) > 0 for every real number t ≥ 0. So
it is enough to show that if D is not ample, then PD(t) has a non-negative
real root t0 ≥ 0. But this follows from the theory of the index of a line bundle
on an abelian variety ([447, pp. 154–155]). In brief, write X = V/Λ as the
quotient of an n-dimensional complex vector space modulo a lattice, and let
hD, hH be the Hermitian forms on V determined by D and H. To say that D
fails to be ample means that hD is not positive definite. On the other hand,
hD + t · hH is positive definite for t� 0. Hence there exists t0 ≥ 0 such that
hD + t0 · hH is indefinite. But then PD(t0) = 0. (See [383, p. 79] for a more
detailed account.) ut

Corollary 1.5.18. If δ ∈ N1(X)R is a nef class that is not ample, then(
δn
)

= 0.

Proof. If δ is nef but not ample, then the proposition implies that(
δk · hn−k

)
= 0 for some k ∈ [1, n],
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h being a fixed ample class. But the Hodge-type inequalities in Corollary 1.6.3
show that (

δk · hn−k
)n

≥
(
δn
)k
·
(
hn
)n−k

.

Since both terms on the right are non-negative, the assertion follows. ut

Remark 1.5.19. (Examples of hypersurfaces of large degree bound-
ing the nef cone). Corollary 1.5.18 gives rise to explicit examples in which
the nef cone is locally bounded by polynomial hypersurfaces of large degree:
see [78, Example 2.6]. General results of Campana–Peternell about this nef
boundary appear in Section 1.5.E. ut

Remark 1.5.20. Bauer [37] shows that the nef cone Nef(X) of an abelian
variety is rational polyhedral if and only if X is isogeneous to a product
of abelian varieties of mutually distinct isogeny types, each having Picard
number one. ut

1.5.D Other Varieties

We survey here a few other examples of varieties whose ample cones have been
studied in the literature. Our synopses are very brief: relevant definitions and
details can be found in the cited references.

Blow-ups of P2. Let X be the blowing up of the projective plane at ten or
more very general points. Denote by ei ∈ N1(X) the classes of the exceptional
divisors, and let ` be the pullback to X of the hyperplane class on P2. We
may fix 0 < ε� 1 such that h =def `− ε ·

∑
ei is an ample class.

It is known that one can find (−1)-curves of arbitrarily high degree on X
(see [280, Exercise V.4.15]). In other words, there exists a sequence Ci ⊆ X
of smooth rational curves with(

Ci · Ci
)

= −1 and
(
Ci · h

)
→∞ with i.

By 1.4.32, each [Ci] generates an extremal ray in NE(X). On the other hand,
letKX denote as usual a canonical divisor onX. Then

(
Ci·KX

)
= −1 does not

grow with i. This means that the rays R+ · [Ci] generated by the Ci cluster in
N1(X)R towards the plane K⊥

X defined by the vanishing of KX . The situation
— which is an illustrative instance of Mori’s cone theorem (Theorem 1.5.33)
— is illustrated schematically in Figure 1.7. It is conjectured that NE(X)
is circular on the region (KX)>0 — i.e. that NE(X) ∩ (KX)>0 consists of
classes of non-negative self-intersection — but this is not known. (The cone
of curves of X is governed by a conjecture of Hirschowitz [289]. See [426] for
an account of some recent work on this question using classical methods, and
Remarks 5.1.14 and 5.1.23 for a related conjecture of Nagata and an analogue
in symplectic geometry.)
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KX
⊥

NE(X)
__

(KX)<0

Figure 1.7. Cone of curves on blow-up of P2.

K3 surfaces. Kovács [371] has obtained very precise information about the
cone of curves of a K3 surface X. He shows for example that if ρ(X) ≥ 3,
then either X does not contain any curves of negative self-intersection, or else
NE(X) is spanned by the classes of smooth rational curves on X. He deduces
as a corollary that either NE(X) is circular, or else has no circular part at all.

Holomorphic symplectic fourfolds. Hassett and Tschinkel [283] have stud-
ied the ample cone on holomorphic symplectic varieties of dimension four.
They formulate a conjecture giving a Hodge-theoretic description of this cone
(at least in important cases), and they present some evidence for this con-
jecture. Huybrechts [298] [299] establishes some related results on the Kähler
cone of hyper-Kähler manifolds. Divisors on hyper-Kähler manifolds are also
studied by Boucksom in [67].

Mg,n. A very basic question, going back to Mumford, is to describe the am-
ple cone of the Deligne–Mumford compactification Mg,n of the moduli space
parameterizing n-pointed curves of genus g. The case of g = 0 is already
very interesting and subtle: the variety M0,n has a rich combinatorial struc-
ture, and has been the focus of considerable attention (cf. [328], [310]). Fulton
conjectured that the closed cone of curves NE(M0,n) is generated by certain
natural one-dimensional boundary strata in M0,n. This has been verified for
n ≤ 6 by Farkas and Gibney [183] following earlier work of Farber and Keel.
Gibney, Keel, and Morrison [222] show that the truth of Fulton’s conjecture
for all n would in fact lead to a description of the ample cone of Mg,n in
all genera. Fulton conjectured analogously that the closed cone Eff(M0,n) of
pseudoeffective divisors (Definition 2.2.25) should be generated by boundary
divisors, but counterexamples were given by Keel and by Vermeire [587]. This
pseudoeffective cone has been studied for small n by Hassett and Tschinkel
[284]. ut



82 Chapter 1. Ample and Nef Line Bundles

1.5.E Local Structure of the Nef Cone

We present here an interesting theorem of Campana and Peternell [78] de-
scribing the local structure of the nef cone at a general point. It depends on
their result — which we prove later as Theorem 2.3.18 — that the Nakai–
Moishezon inequalities characterize the amplitude of real divisor classes.

We start by introducing some notation and terminology intended to
streamline the discussion. Let X be an irreducible projective variety or scheme
of dimension n and V ⊆ X a subvariety. Then intersection with V determines
a real homogeneous polynomial on N1(X)R:

ϕV : N1(X)R −→ R , ϕV (ξ) =
∫
V

ξdimV .

Thus degϕV = dimV , and ϕV is given by an integer polynomial with respect
to the natural integral structure onN1(X)R. By Kleiman’s theorem (Theorem
1.4.9), all the ϕV are non-negative on Nef(X).

Definition 1.5.21. (Null cone). The null cone NV ⊆ N1(X)R determined
by V is the zero-locus of ϕV :

NV =
{
ξ ∈ N1(X)R | ϕV (ξ) = 0

}
. ut

Note that ϕV and NV depend only on the homology class of V . Consequently
as V varies over all subvarieties of X, only countably many distinct functions
and cones occur.

Example 1.5.22. When X is a smooth surface, NX is the familiar quadratic
cone of classes of self-intersection zero. ut

Example 1.5.23. If X is the blow-up of Pn at k points, then in suitable
coordinates NX is the Fermat-type hypersurface defined by the equation

xn = yn1 + . . .+ ynk . ut

Example 1.5.24. (Singularities of the null cone). Let f : X −→ Y
be a surjective morphism of irreducible projective varieties or schemes with
dimX = n and dimY = d. Then ϕX vanishes with multiplicity n − d along
the image of f∗ : N1(Y )R −→ N1(X)R. (Given ξ = f∗η, consider ϕX(ξ + h)
for any ample h ∈ N1(X)R.) This result is due to Wísniewski [610]: see that
paper or [363, Exercise III.1.9] for some applications. ut

Remark 1.5.25. (Calabi–Yau threefolds). Wilson [608], [609] uses a deep
and careful analysis of the null cone NX — especially its arithmetic properties
— to prove some interesting results about the geometry of a Calabi–Yau
threefold X. For example, he proves that if ρ(X) > 19, then X is a resolution
of singularities of a “Calabi–Yau model” (i.e. a Calabi–Yau threefold that may
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have mild singularities) of smaller Picard number. Wilson also shows that the
ample cones of Calabi–Yau threefolds are invariant under deformations if and
only if none of the manifolds in question contains a smooth elliptic ruled
surface. ut

Definition 1.5.26. (Nef boundary). The nef boundary BX ⊆ N1(X)R of
X is the boundary of the nef cone:

BX = ∂Nef(X).

It is topologized as a subset of the Euclidean space N1(X)R. ut

Example 1.5.27. We may restate Corollary 1.5.18 as asserting that if X is
an abelian variety then BX ⊆ NX , i.e. its nef boundary lies on the null cone
of X. ut

The results of Campana and Peternell are summarized in the next two
statements:

Theorem 1.5.28. Given any point ξ ∈ BX on the nef boundary, there is a
subvariety V ⊆ X such that ϕV (ξ) = 0.

In other words, any point in the nef boundary actually lies on one of the null
cones NV ⊆ N1(X)R. The possibility that V = X is of course not excluded.

Because there are only countably many such cones, at most points the nef
boundary BX must then look locally like one of them:

Theorem 1.5.29. There is an open dense set CP(X) ⊆ BX with the prop-
erty that for every point ξ ∈ CP(X), there is an open neighborhood U = U(ξ)
of ξ in N1(X)R, together with a subvariety V ⊆ X of X (depending on ξ ),
such that

BX ∩ U(ξ) = NV ∩ U(ξ).

In other words, BX is cut out in U(ξ) by the polynomial ϕV .

The conclusion of the theorem is illustrated schematically in Figure 1.8, which
shows (with the convention of Remark 1.4.22) null cones bounding Nef(X).
Note however that in general there may be infinitely many cones NV required
to fill out the nef boundary in Theorem 1.5.28, leading to clustering phenom-
ena not shown in the picture.

Remark 1.5.30. The proof of 1.5.29 will show that we can take

dϕV (ξ) 6= 0 for ξ ∈ CP(X).

It follows that NV is smooth at ξ, and moreover that we can choose U(ξ) so
that ϕV < 0 on U(ξ)− Nef(X). In other words, U(ξ) ∩ Nef(X) is defined on
U(ξ) by the inequality {ϕV ≥ 0}. ut
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Nef(X)

Figure 1.8. Null cones bounding Nef(X)

Example 1.5.31. If ξ ∈ CP(X), and if NV is the corresponding null cone as
in 1.5.30, then the dual hypersurface

NV ∗ ⊆ N1(X)∗R = N1(X)R

of hyperplanes tangent toNV bounds NE(X) in a neighborhood of the tangent
plane to NV at ξ. ut

Remark 1.5.32. (Numerical characterization of the Kähler cone).
Demailly and Paun [132] have recently established the striking result that an
analogue of Theorem 1.5.28 remains true on any compact Kähler manifold.
Given such a manifold X one considers the cone Kahler(X) of all Kähler
classes in H1,1

(
X,R

)
(Definition 1.2.39). The main result of [132] is that

Kahler(X) is a connected component of the set of all classes α ∈ H1,1
(
X,R

)
such that ∫

V

αdimV > 0 (*)

for every irreducible analytic subvariety V ⊆ X of positive dimension. It fol-
lows for instance that if X contains no proper subvarieties, then the Kähler
cone of X is a connected component of the set of classes with positive self-
intersection. When X is projective, Demailly and Paun prove moreover that
Kahler(X) actually coincides with the set of classes satisfying (*). These
results of course imply 1.5.28 (at least on smooth varieties), but in fact
they are stronger since in general N1(X)R might span a proper subspace
of H1,1

(
X,R

)
. ut

Proof of Theorem 1.5.28. This is a restatement of the Nakai criterion for R-
divisors (Theorem 2.3.18). In fact, if ξ ∈ BX then certainly ϕV (ξ) ≥ 0 for all
V ⊆ X. But if ϕV (ξ) > 0 for every V then the result in question implies that
ξ ∈ Amp(X). ut
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Proof of Theorem 1.5.29. Given a subvariety V ⊆ X, let

OV =
{
ξ1 ∈ BX

∣∣ some neighborhood of ξ1 in BX lies in NV
}
,

and put
O =

⋃
V⊆X

OV .

Clearly O is open, and we claim that it is dense in BX . For in the contrary case
we would find a point z ∈ BX having a compact neighborhood K in BX such
that

(
K−NV

)
is dense in K for every V . Since there are only countably many

distinct NV as V varies over all subvarieties of X, Baire’s theorem implies that⋂
V

(
K −NV

)
= K −

⋃
V

NV

is dense, hence non-empty. But by Theorem 1.5.28, K ⊆
⋃
V NV , a contradic-

tion.
Now let P ⊆ BX denote the set of all points satisfying the conclusion of

the theorem. Again P is open by construction, so the issue is to show that
it is dense. To this end, fix any point ξ1 ∈ O and a subvariety V ⊆ X of
minimal dimension such that ξ1 ∈ OV . Choose also a very ample divisor H on
X meeting V properly, and let h ∈ N1(X)R denote its numerical equivalence
class. Then ξ1 6∈ O(V ∩H) thanks to the minimality of V . Therefore ξ1 is a limit
of points ξ ∈ OV such that∫

V

(
ξdimV−1 · h

)
> 0. (*)

We will show that if ξ ∈ OV is any point satisfying (*), then ξ ∈ P . This
implies the required density of P , and will complete the proof.

So fix such a point ξ. We claim first that dϕV (ξ) 6= 0, and hence that NV
is non-singular near ξ. In fact,(

dimV
)
·
∫
V

(
ξdimV−1 · h

)
= lim

t→0

1
t
·
∫
V

(
ξ + t · h

)dimV

is the directional derivative of ϕV at ξ in the direction h, which is non-
vanishing by (*). We now argue that if U(ξ) is a small convex neighborhood
of ξ in N1(X)R, then

BX ∩ U(ξ) = NV ∩ U(ξ). (**)

This will show that ξ ∈ P , as required. For (**), the point roughly speaking
is that BX ∩ U(ξ) — being a piece of the boundary of a closed convex set
with non-empty interior — is a topological manifold, and since BX ∩ U(ξ) ⊆
NV ∩ U(ξ) for sufficiently small U(ξ), the sets in question must coincide. In
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more detail, let L ⊆ N1(X)R be the embedded affine tangent space to NV at
ξ, and let

π : N1(X)R −→ L

be an affine linear projection. Thus π restricts to an isomorphism NV −→ L
in a neighborhood of ξ. On the other hand, since BX is the boundary of a
closed convex set, the image under π of a convex neighborhood of ξ in BX is
a convex neighborhood of π(ξ) in L. But BX ∩U(ξ) ⊆ NV by construction, so
this implies that BX ∩U(ξ) contains an open neighborhood of ξ in NV . After
possibly shrinking U(ξ), (**) follows. ut

1.5.F The Cone Theorem

Let X be a smooth complex projective variety, and KX a canonical divisor
on X. In his seminal paper [438], Mori proved that the closed cone of curves
NE(X) has a surprisingly simple structure on the subset of N1(X)R of classes
having negative intersection with KX . He showed moreover that this has im-
portant structural implications for X. We briefly summarize here some of
these results, and state some simple consequences, but we don’t give proofs.
Chapter 1 of the book [368] contains an excellent introduction to this circle
of ideas, and full proofs appear in Chapters 1 and 3 of that book. See also
[114] for an account aimed at novices, and [419] for a very detailed exposition
in the spirit of [368].

As above, let X be a smooth projective variety. Given any divisor D on
X write

NE(X)D≥0 = NE(X) ∩ D≥0

for the subset of NE(X) lying in the non-negative half-space determined by
D. Mori [438] first of all proved

Theorem 1.5.33. (Cone Theorem). Assume that dimX = n and that KX

fails to be nef.

(i). There are countably many rational curves Ci ⊆ X, with

0 ≤ −
(
Ci ·KX

)
≤ n+ 1,

that together with NE(X)KX≥0 generate NE(X), i.e.

NE(X) = NE(X)KX≥0 +
∑
i

R+ · [Ci].

(ii). Fix an ample divisor H. Then given any ε > 0, there are only finitely
many of these curves — say C1, . . . , Ct — whose classes lie in the region
(KX + ε ·H)≤0. Therefore

NE(X) = NE(X)(KX+εH)≥0 +
t∑
i=1

R+ · [Ci].
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The theorem was illustrated in the example of P2 blown up at ten or more
points: see Figure 1.7.

Example 1.5.34. (Fano varieties). Let X be a Fano variety, i.e. a smooth
projective variety such that −KX is ample. Then NE(X) ⊆ N1(X)R is a finite
rational polytope, spanned by the classes of rational curves. (Apply statement
(ii) of the cone theorem.) ut
Example 1.5.35. (Adjoint bundles). LetX be a smooth projective variety
of dimension n, and H any ample integer divisor on X. Then KX + (n+ 1)H
is nef, and KX + (n+ 2)H is ample. More generally, if D is any ample divisor
such that (

D · C
)
≥ n+ 1 (respectively

(
D · C

)
≥ n+ 2)

for every irreducible curve C ⊆ X, then KX +D is nef (respectively KX +D
is ample). (This follows from the inequalities on the intersection numbers(
Ci·KX

)
appearing in statement (i) and the fact that the intersection numbers(

Ci ·H
)

are positive integers.) See Example 1.8.23 and Section 10.4.A for some
remarks on the interest in statements of this sort. ut

Mori proved Theorem 1.5.33 via his “bend and break” method. This in
turn has found a multitude of other applications, for example to the circle
of ideas involving rational connectedness. We refer to Kollár’s book [363] for
an extensive survey of some of these developments. An alternative cohomo-
logical approach to the cone theorem — which works also on mildly singular
varieties, but does not recognize the curves Ci as rational — was developed
by Kawamata and Shokurov following ideas of Reid ([317], [534], [517]). We
again refer to [368, Chapter 3] for details.

The rational curves Ci appearing in the cone theorem generate extremal
rays of NE(X) in the sense of Definition 1.4.32. Mori showed that if dimX = 3,
and if r is an extremal ray in NE(X)(K+εH)≤0, then there is a mapping

contr : X −→ X

that contracts every curve whose class lies in r. This was extended to smooth
projective varieties of all dimensions, as well as to varieties with mild sin-
gularities, by Kawamata and Shokurov, again following ideas of Reid. This
contraction theorem is of great importance, because it opens the door to the
possibility of constructing minimal models for varieties of arbitrary dimen-
sion. Specifically, given a projective variety X whose canonical bundle is not
nef, these results guarantee that X carries an extremal curve which contracts
under the corresponding morphism contr : X −→ X. Then one would like
to repeat the process starting on X. Unfortunately, this naive idea runs into
problems coming from the singularities of X. However this minimal model
program has led to many important developments in recent years. Besides the
book [368] of Kollár and Mori, the reader can consult [326], [114], or [419] for
an account of some of this work.
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1.6 Inequalities

In recent years, generalizations and analogues of the classical Hodge index
inequality have arisen in several contexts, starting with work of Khovanskii
and Teissier (cf. [334], [566], [567], [420], [411], [126]). This section is devoted
to a presentation of some of this material. We start with some inequalities
of Hodge type among the intersection numbers of nef divisors on a complete
variety, and then discuss briefly some related results of Teissier for the mixed
multiplicities of m-primary ideals.

1.6.A Global Results

The basic global result is a generalization of the Hodge index theorem on
surfaces. The statement was known (at least by experts) to follow from in-
equalities of Khovanskii, Matsusaka, and Teissier (Example 1.6.4); it achieved
wide circulation in Demailly’s paper [124]. The direct argument we give is due
to Beltrametti and Sommese [50, Chapter 2.5], and independently to Fulton
and Ein (see [205, p. 120]).

Theorem 1.6.1. (Generalized inequality of Hodge type). Let X be an
irreducible complete variety (or scheme) of dimension n, and let

δ1, . . . , δn ∈ N1(X)R

be nef classes. Then(
δ1 · . . . · δn

)n
≥
(
(δ1)n

)
· . . . ·

(
(δn)n

)
. (1.23)

Proof. We can assume first of all that X is reduced since in general its cycle
satisfies [X] = a · [Xred] for some a > 0. By Chow’s lemma (Remark 1.4.3),
we can suppose also that X is projective. In this case, it suffices to prove the
theorem under the additional assumption that the δi are ample. In fact, if the
stated inequality holds for δi ∈ Amp(X), then by continuity it holds also for
δi ∈ Nef(X) = Amp(X) (Theorem 1.4.23).

We now argue by induction on n = dimX. If X is a smooth projective
surface, then the stated inequality is a version of the Hodge index theorem (cf.
[280], Exercise V.1.9). As in the previous paragraph, once one knows (1.23) for
ample classes, it follows also for nef ones. This being said, if X is singular, one
deduces (1.23) by passing to a resolution. We assume henceforth that n ≥ 3,
and that (1.23) is already known on all irreducible varieties of dimension n−1.

We next claim that given any ample classes

β1, . . . , βn−1, h ∈ N1(X)R,

one has the inequality



1.6 Inequalities 89(
β1 · . . . · βn−1 · h

)n−1

≥
(
(β1)n−1 · h

)
· . . . ·

(
(βn−1)n−1 · h

)
. (1.24)

In fact, it suffices by continuity to prove this when h and the βi are rational
ample classes. So we may assume that they are represented by very ample
divisors B1, . . . , Bn−1 and H on X, and the issue is to verify the inequality(

B1 · . . . ·Bn−1 ·H
)n−1

≥
(
(B1)n−1 ·H

)
· . . . ·

(
(Bn−1)n−1 ·H

)
.

We suppose that H is an irreducible projective scheme of dimension n − 1,
and that each Bi meets H properly. Denoting by Bi the restriction of Bi to
H, the inequality in question is equivalent term by term to the relation(

B1 · . . . ·Bn−1

)n−1

≥
(
(B1)n−1

)
· . . . ·

(
(Bn−1)n−1

)
of intersection numbers on H. But this follows by applying the induction
hypothesis to H.

We now show that the desired inequality (1.23) follows formally from
(1.24). So let

δ1, . . . , δn ∈ N1(X)R

be n ample classes on X.20 Fix some index j ∈ [1, n] and apply (1.24) with
h = δj and β1, . . . , βn−1 the remaining δi. One finds(

δ1 · . . . · δn
)n−1

≥
∏
i6=j

(
δn−1
i · δj

)
.

Taking the product over j yields(
δ1 · . . . · δn

)n(n−1)

≥
∏
j

∏
i6=j

(
δn−1
i · δj

)
. (1.25)

But now apply (1.24) with h = β1 = . . . = βn−2 = δi and βn−1 = δj to obtain(
δn−1
i · δj

)n−1

≥
(
δni

)n−2(
δi · δn−1

j

)
.

Therefore∏
j

∏
i6=j

(
δn−1
i · δj

)n−1

≥
∏
j

∏
i6=j

(
δni

)n−2

·
(
δi · δn−1

j

)

=

(∏
i

(
δni

)(n−1)(n−2)
)∏

j

∏
i6=j

(
δj · δn−1

i

) .

20 The amplitude of the δi guarantees that all of the intersection numbers appearing
in the computations that follow are positive. Therefore we can cancel and take
roots without further thought.
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The second term on the right cancels against the left-hand side, and taking
(n− 2)nd roots one arrives at∏

j

∏
i6=j

(
δn−1
i · δj

)
≥
∏
i

(
δni

)(n−1)

.

The inequality (1.23) follows by plugging this into (1.25) and taking (n− 1)st

roots. ut

We record some variants and special cases. To begin with, one has the
following:

Variant 1.6.2. Let X be an irreducible complete variety or scheme of di-
mension n, and fix an integer 0 ≤ p ≤ n. Let

α1, . . . , αp, β1, . . . , βn−p ∈ N1(X)R

be nef classes. Then(
α1 · . . . · αp · β1 · . . . · βn−p

)p
≥
(
αp1 · β1 · . . . · βn−p

)
· . . . ·

(
αpp · β1 · . . . · βn−p

)
. (1.26)

Indication of Proof. Following the argument leading to the inequality (1.24)
in the proof of the theorem, one applies 1.6.1 to the complete intersection
B1 ∩ . . . ∩Bn−p of suitable very ample divisors on X. ut

The case of two classes is particularly useful:

Corollary 1.6.3. (Inequalities for two classes). Let X be an irreducible
complete variety or scheme of dimension n, and let α, β ∈ N1(X)R be nef
classes on X. Then the following inequalities are satisfied:

(i). For any integers 0 ≤ q ≤ p ≤ n,(
αq · βn−q

)p
≥
(
αp · βn−p

)q
·
(
βn
)p−q

. (1.27)

(ii). For any 0 ≤ i ≤ n,(
αi · βn−i

)n
≥
(
αn
)i
·
(
βn
)n−i

. (1.28)

(iii). ( (
α+ β

)n )1/n

≥
( (
αn
) )1/n

+
( (
βn
) )1/n

. (1.29)

Proof. For (i), take α1 = . . . = αq = α and αq+1 = . . . = αp = β1 = . . . =
βn−p = β in Variant 1.6.2. Statement (ii) is the special case q = i and p = n
of (i). For (iii) expand out (α+ β)n, apply (ii), and take nth roots. ut
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Example 1.6.4. (Inequalities of Khovanskii and Teissier). In the situ-
ation of 1.6.3, put si =

(
αi · βn−i

)
. Then for all 1 ≤ i ≤ n− 1,

s2i ≥ si−1 · si+1.

In other words, the function i 7→ log si is concave. (Apply 1.6.2 with p = 2,
α1 = α, α2 = β, β1 = . . . = βi−1 = α, and βi = . . . = βn−p = β.) See
[363, VI.2.15.8] for some applications due to Matsusaka. The papers [253]
and [489] of Gromov and Okounkov have some interesting ideas on concavity
statements of this sort. Okounkov also establishes an inequality [489, (3.6)]
closely related to (1.29). ut

Remark 1.6.5. (Positive characteristics). The material in this section
remains valid for varieties defined over an algebraically closed field of arbitrary
characteristic. ut

1.6.B Mixed Multiplicities

We now sketch some local analogues originating with Teissier. Let X be a
variety or scheme of pure dimension n, and let x ∈ X be a (closed) point with
maximal ideal m ⊆ OX . We suppose given k ≤ n ideal sheaves

a1, . . . , ak ⊆ OX with Supp(OX/ai) = {x},

i.e. we assume that the ai are m-primary. Fix also non-negative integers
d1, . . . , dk with

∑
di = n. Then one can define the mixed multiplicity

e
(
a
[d1]
1 ; a

[d2]
2 ; . . . ; a

[dk]
k

)
∈ N

of the ai, for instance by the property that the lengths

lengthOX

(
OX/at11 · . . . · atkk

)
are given for ti � 0 by a polynomial of the form∑

d1+...+dk=n

n!
d1! · . . . · dk!

e
(
a
[d1]
1 ; a

[d2]
2 ; . . . ; a

[dk]
k

)
· td11 · . . . · tdk

k

+
(

lower degree terms
)
.

So for example e(a[n]) = e(a) is the classic Samuel multiplicity of a (viewed
as an ideal in the local ring O = OX,x). When X is affine, and one takes di
“general” elements gi,1, . . . , gi,di ∈ ai,21 then e

(
a
[d1]
1 ; a

[d2]
2 ; . . . ; a

[dk]
k

)
com-

putes the intersection multiplicity at x of the corresponding divisors. More
geometrically, let
21 For instance, one can take general C-linear combinations of a system of generators

of the ideal in question: see Definition 9.2.27.
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µ : X ′ −→ X

be a proper birational map that dominates the blow-up of each ai, so that
ai ·OX′ = OX′(−fi) for some effective Cartier divisor fi on X ′ contracting to
x. Then

e
(
a
[d1]
1 ; a

[d2]
2 ; . . . ; a

[dk]
k

)
= (−1) ·

(
(−f1)d1 · . . . · (−fk)dk

)
.

Note that by allowing repetitions, it is enough to study the multiplicities
e(a1 ; . . . ; an) associated to n (possibly non-distinct) ideals a1, . . . , an ⊆ OX .
We refer to [565], [566], [567], [514], [519], [349], and [350] for fuller accounts
and further developments.

Example 1.6.6. (Samuel multiplicity of a product). Given m-primary
ideals a, b ⊆ OX as above, the Samuel multiplicity e(ab) of their product has
the expression

e
(
ab
)

=
n∑
i=0

(
n

i

)
e
(
a[i] ; b[n−i])

in terms of the mixed multiplicities of a and b. (This follows immediately from
the definition.) ut

Teissier [565], [566] and Rees–Sharp [514] proved some inequalities among
these mixed multiplicities that one can view as local analogues of the global
statements appearing in the previous subsection.

Theorem 1.6.7. (Inequalities for mixed multiplicities). Fix x ∈ X as
above.

(i). For any m-primary ideals a1, . . . , an ⊆ OX , one has

e(a1 ; . . . ; an)n ≤ e(a1) · . . . · e(an).

(ii). Given m-primary ideals a, b ⊆ OX , and any integers 0 ≤ q ≤ p ≤ n,

e
(
a[q] ; b[n−q])p ≤ e

(
a[p] ; b[n−p])q · e(b)p−q.

(iii). With a, b ⊆ OX as in (ii), and 0 ≤ i ≤ n,

e
(
a[i] ; b[n−i])n ≤ e

(
a
)i · e(b)n−i.

(iv). In the situation of (iii), set mi = e
(
a[i] ; b[n−i]). Then for 1 ≤ i ≤ n−1,

m2
i ≤ mi−1 ·mi+1.
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Remark 1.6.8. (Reversal of inequalities). Note that compared to the
global statements, the direction of the inequalities here is reversed. This may
be explained by noting that the global results finally come down to the fact
that the intersection form has signature (1,−1) on a two-dimensional space of
ample classes on a surface. One can view the local inequalities, on the other
hand, as ultimately springing from the negativity of the intersection form on
the space spanned by the exceptional curves in a birational map of surfaces.
Of course, the classical Hodge index theorem is at work in both cases. ut

Example 1.6.9. (An inequality of Teissier). Given m-primary ideals
a, b ⊆ OX as in the theorem, the Samuel multiplicities of a, b, and ab satisfy
the inequality

e
(
ab
)1/n ≤ e

(
a
)1/n + e

(
b
)1/n

. ut

Example 1.6.10. Teissier gives the following nice example in [566, Example
A]. Consider polynomials f1, . . . , fn ∈ C[z1, . . . , zn] defining a finite map f :
Cn −→ Cn, and let g1, . . . , gn−1 be general elements in the ideal generated by
the fi. Assume that f1, . . . , fn all vanish at the origin, so that f(0) = 0. The gi
cut out a curve Γ ⊆ Cn which is typically singular at 0. But the multiplicity
of Γ at 0 is bounded by the degree of f :

mult0(Γ ) ≤
(
deg f

)1− 1
n .

(Take a = (z1, . . . , zn), b = (f1, . . . , fn), and i = 1 in (iii).) One can replace
the polynomials in question by convergent power series. ut

Remark 1.6.11. It will follow from the proof that the inequalities in the theo-
rem hold for m-primary ideals a1, . . . , an ⊆ O in any Noetherian n-dimensional
local ring (O,m) having infinite residue field. ut

Sketch of Proof of Theorem 1.6.7. We focus on (i). When n = 2 the assertion
is that e(a; b)2 ≤ e(a) · e(b): this was established by Teissier [565] for normal
surfaces and by Rees and Sharp [514], Theorem 2.2, for m-primary ideals in
any local Noetherian ring (O,m) of dimension two.22 As in the cited papers,
we proceed by induction on n = dimX. Specifically, Teissier ([565], p. 306)
shows23 that if f ∈ an is sufficiently general, and if one denotes by

Y = div(f) ⊆ X

the hypersurface cut out by f , and by ai ⊆ OY the ideals determined by the
ai, then

eX
(
a1 ; . . . ; an

)
= eY

(
a1 ; . . . ; an−1

)
, (*)

22 In the geometric setting, the idea roughly speaking is to resolve the singularities of
the blow-up of ab, and to use the fact that the intersection form on the exceptional
fibre is negative.

23 Teissier proves this assuming only that the residue field of (O, m) is infinite.
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where we are using subscripts to indicate the scheme on which the multiplic-
ities are computed. By induction, one finds that

eX
(
a1 ; . . . ; an

)n−1 = eY
(
a1 ; . . . ; an−1

)n−1

≤ eY (a1) · . . . · eY (an−1)

= eX
(
a
[n−1]
1 ; an

)
· . . . · eX

(
a
[n−1]
n−1 ; an

)
,

where in the last line we have used (*) again to express the multiplicity of ai
on Y as a mixed multiplicity on X. The resulting inequality

e
(
a1 ; . . . ; an

)n−1 ≤ e
(
a
[n−1]
1 ; an

)
· . . . · e

(
a
[n−1]
n−1 ; an

)
of mixed multiplicities on X is the analogue of equation (1.24) in the proof of
Theorem 1.6.1, and as in that argument the inequality appearing in (i) now
follows formally. ut

1.7 Amplitude for a Mapping

In this section we outline the basic facts concerning amplitude relative to a
mapping. We follow the conventions of Grothendieck in [255], which differ
slightly from those adopted by Hartshorne in [280].

By way of preparation, consider a proper mapping f : X −→ T of schemes,
and a coherent sheaf F on X. Then f∗F is a coherent sheaf on T , and so one
can form the T -scheme

P(F) =def ProjOT

(
Sym(f∗F)

)
−→ T

whose fibre over a given point t ∈ T is the projective space of one-dimensional
quotients of the fibre f∗(F)⊗C(t). This is the analogue in the relative setting
of the projective space of sections of a sheaf on a fixed complete variety.
Moreover, there is a natural mapping f∗f∗F −→ F whose surjectivity is the
analogue of the global generation of F in the absolute situation.

These remarks motivate

Definition 1.7.1. (Amplitude for a map). Let f : X −→ T be a proper
mapping of algebraic varieties or schemes, and let L be a line bundle on X.

(i). L is very ample relative to f , or f -very ample, if the canonical map

ρ : f∗f∗L −→ L

is surjective and defines an embedding
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X
� � j //

f   @
@@

@@
@@

@ P(f∗L)

{{xx
xx

xx
xx

x

T

of schemes over T .
(ii). L is ample relative to f , or f -ample, if L⊗m is f -very ample for some

m > 0.

A Cartier divisorD onX is very ample for f if the corresponding line bundle is
so, and f -amplitude for Cartier Q-divisors is defined by clearing denominators.

ut
Example 1.7.2. If E is a vector bundle on a scheme T , then the Serre line
bundle OP(E)(1) on X = P(E) is ample for the natural mapping π : P(E) −→
T . ut

We start by recording several useful observations.

Remark 1.7.3. (Amplitude is local on the base). Observe that both
properties in 1.7.1 are local on T . In other words, either condition holds for
f : X −→ T if and if only it holds for each of the restrictions fi : Xi =
f−1(Ui) −→ Ui of f to the inverse images of the members of an open covering
{Ui} of T . ut
Remark 1.7.4. (Equivalent condition for f-very ample). The condition
in Definition 1.7.1 (i) is equivalent to the existence of a coherent sheaf F on
T , plus an embedding i : X ↪→ P(F) over T , such that L = OP(F)(1) |X.
In fact, such an embedding gives rise to a surjection τ : f∗F −→ L, which
determines a homomorphism σ : F −→ f∗L together with a factorization

f∗F τ // //

f∗σ $$H
HH

HH
HH

HH
L

f∗f∗L

ρ

<<zzzzzzzzz

of τ . It follows in the first place that ρ is surjective. Moreover, the given
embedding i is realized as the composition of the morphism j : X −→ P(f∗L)
arising from ρ with a linear projection(

P(f∗L)−P(cokerσ)
)
−→ P(F)

of T -schemes. This shows that j is an embedding. (See [255, II.4.4.4] for de-
tails.)

It follows in particular that if T is affine — so that f∗L is globally gen-
erated — then L is very ample for f if and only if there is an embedding
j : X ↪→ PN × T such that L = j∗OPN×T (1). This is taken as the definition
of very ample relative to a mapping in [280]. ut
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Remark 1.7.5. The condition in 1.7.1 (ii) does not appear as the definition
of f -amplitude in [255], but it is equivalent to that definition by virtue of [255,
II.4.6.11]. ut

An analogue of Theorem 1.2.6 holds in the present setting:

Theorem 1.7.6. Let f : X −→ T be a proper morphism of schemes, and L
a line bundle on X. Then the following are equivalent:

(i). L is ample for f .

(ii). Given any coherent sheaf F on X, there exists a positive integer m1 =
m1(F) such that

Rif∗
(
F ⊗ L⊗m

)
= 0 for all i > 0 , m ≥ m1(F).

(iii). Given any coherent sheaf F on X, there is a positive integer m2 =
m2(F) such that the canonical mapping

f∗f∗
(
F ⊗ L⊗m

)
−→ F ⊗ L⊗m

is surjective whenever m ≥ m2.

(iv). There is a positive integer m3 > 0 such that L⊗m is f-very ample for
every m ≥ m3.

References for Proof. As in the proof of Theorem 1.2.6, for (i) =⇒ (ii) one
reduces first to the case in which L is very ample for f . The assertion being
local on T , one can suppose that T is affine, and then [280, III.5.2] applies.
Note that if T is affine, then the condition in (iii) is equivalent to asking
that F ⊗ L⊗m be globally generated. This being said, (ii) ⇔ (iii) follows (at
least when f is projective) from [280, III.5.3], and under the same hypothesis
(iii) ⇒ (iv) is a consequence of [280, II.7.6]. For an arbitrary proper mapping
f , and the remaining implications, consult [255, II.4.6.8, II.4.6.11] and [256,
III.2.6]. ut

Example 1.7.7. Suppose given a diagram

Y
µ //

g
��@

@@
@@

@@
X

f~~~~
~~

~~
~

T

of schemes over T , with µ finite. If L is an f -ample line bundle on X, then
µ∗L is ample relative to g. ut

The following useful result allows one in practice to reduce to the absolute
setting:
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Theorem 1.7.8. (Fibre-wise amplitude). Let f : X −→ T be a proper
morphism of schemes, let L be a line bundle on X, and for t ∈ T set

Xt = f−1(t) , Lt = L | Xt.

Then L is ample for f if and only if Lt is ample on Xt for every t ∈ T .

Proof. If L is ample for f , then the previous Example 1.7.7 shows that each
of the restrictions Lt is ample on Xt. Conversely, suppose that Lt is ample
for every t ∈ T . As noted in Remark 1.2.18, the proof of Theorem 1.2.17
shows that every point t ∈ T has a neighborhood U with the property that
L|f−1(U) = φ∗

(
OP×T (1)

)
for a finite mapping XU = f−1(U) −→ Pr × U

of schemes over U . Recalling that f -amplitude is local on T , it follows from
Example 1.7.7 that L is indeed ample with respect to f . ut

Corollary 1.7.9. (Nakai’s criterion for a mapping). In the setting of
the previous theorem, a Q-divisor D on X is ample with respect to f if and
only if

(
DdimV · V

)
> 0 for every irreducible subvariety V ⊂ X of positive

dimension that maps to a point in T . ut

The next result summarizes the connection between relative and global
amplitude.

Proposition 1.7.10. Consider a morphism

f : X −→ T

of projective schemes. Let L be a line bundle on X, and let A be an ample
line bundle on T . Then L is f-ample if and only if L⊗ f∗

(
A⊗m

)
is an ample

line bundle on X for all m� 0.

Proof. Assume that L is f -ample. Replacing L by a high power, we can sup-
pose that f∗f∗L −→ L is surjective. Since A is ample, f∗(L)⊗A⊗p is globally
generated if p is sufficiently large. Therefore its pullback f∗f∗(L)⊗ f∗A⊗p is
likewise generated by its global sections, and choosing generators gives rise to
a morphism

φ : X −→ P× T

of schemes over T with the property that L⊗ f∗(A⊗p) = φ∗pr∗1OP(1). More-
over, φ is finite since it is evidently so on each fibre of f . Therefore

L⊗ f∗(A⊗p+1) = φ∗
(
pr∗1OP(1)⊗ pr∗2A

)
is the pullback of an ample line bundle under a finite map, and consequently
is ample. The converse follows from 1.7.8. ut

Finally, we say a few words about nefness for a mapping. Here one takes
the analogue of 1.7.8 as the definition:
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Definition 1.7.11. (Nefness relative to a mapping). Given a proper
morphism f : X −→ T as above, a line bundle L on X is nef relative to
f if the restriction Lt = L |Xt of L to each fibre is nef, or equivalently if(
c1(L) · C

)
≥ 0 for every curve C ⊆ X mapping to a point under T . ut

Note that the analogue of Proposition 1.7.10 need not be true.

Example 1.7.12. The following example is taken from [368, Example 1.46].
Let X = E×E be the product of an elliptic curve with itself and f : X −→ E
the first projection. Let D = E × {point} and denote by ∆ ⊆ E × E the
diagonal. Then D −∆ is f -nef. However, for any divisor A on E the divisor

D −∆+ f∗(A)

has self-intersection −2, and hence cannot be nef. ut

Remark 1.7.13. (Fujita vanishing for a mapping). In his paper [331],
Keeler extends Fujita’s vanishing theorem 1.4.35 to the relative setting. ut

Remark 1.7.14. (Other ground fields). Everything in this section goes
through to varieties defined over an algebraically closed field of arbitrary char-
acteristic. ut

1.8 Castelnuovo–Mumford Regularity

The Cartan–Serre–Grothendieck theorems imply that all the cohomological
subtleties that may be associated to a coherent sheaf F on a projective space
P disappear after twisting by a sufficiently high multiple of the hyperplane
line bundle. Specifically, for m� 0:

• the higher cohomology groups of F(m) vanish;

• F(m) is generated by its global sections;

• the maps H0(P,F(m))⊗H0(P,OP(k)) −→ H0(P,F(m+ k)) are surjec-
tive for every k > 0.

Castelnuovo–Mumford regularity gives a quantitative measure of how much
one has to twist in order that these properties take effect. It then governs
the algebraic complexity of a coherent sheaf, and for this reason has been the
focus of considerable recent activity. As we shall see, regularity is also well
adapted to arguments involving vanishing theorems.

In the first subsection, we give the definition and basic properties, and
describe some variants. The complexity-theoretic meaning is indicated in the
second, and in the third we survey without proof several results giving bounds
on regularity. Section 1.8.D gives a brief overview — also without proof — of
a circle of ideas surrounding syzygies of algebraic varieties.
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1.8.A Definitions, Formal Properties, and Variants

Fix a complex vector space V of dimension r+1, and denote by P = P(V ) the
corresponding r-dimensional projective space. We start with the definition of
m-regularity of a coherent sheaf on P.

Definition 1.8.1. (Castelnuovo–Mumford regularity of a coherent
sheaf). Let F be a coherent sheaf on the projective space P, and let m be an
integer. One says that F is m-regular in the sense of Castelnuovo–Mumford
if

Hi
(
P,F(m− i)

)
= 0 for all i > 0.

As long as the context is clear, we usually speak simply of an m-regular sheaf.

Example 1.8.2. (i). The line bundle OP(a) is (−a)-regular.

(ii). The ideal sheaf IL ⊆ OP of a linear subspace L ⊆ P is 1-regular.

(iii). If X ⊆ P is a hypersurface of degree d, then its structure sheaf OX —
viewed via extension by zero as a coherent sheaf on P — is (d − 1)-
regular. ut

While the formal definition may seem rather non intuitive, a result of
Mumford gives a first indication of the fact that Castelnuovo–Mumford regu-
larity measures the point at which cohomological complexities vanish.

Theorem 1.8.3. (Mumford’s theorem, I). Let F be an m-regular sheaf
on P. Then for every k ≥ 0:

(i). F(m+ k) is generated by its global sections.

(ii). The natural maps

H0(P,F(m)) ⊗ H0(P,OP(k)) −→ H0(P,F(m+ k))

are surjective.

(iii). F is (m+ k)-regular.

Proof. Since F(m+ `) is in any event globally generated for `� 0 (Theorem
1.2.6), the surjectivities in (ii) imply that F(m) itself must already be gen-
erated by its global sections. The same is then true of F(m + k) whenever
k ≥ 0. Hence we need only prove (ii) and (iii), and thanks to (iii) it suffices
to treat the case k = 1.

For this we consider the canonical Koszul complex of bundles on P = P(V )
(see Appendix B.2). Denote by VP = V ⊗C OP the trivial vector bundle on
P with fibre V . Starting with the surjective bundle map

VP(−1) = V ⊗OP(−1) −→ OP,

form the exact sequence
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0 −→ Λr+1VP(−r − 1) −→ . . . −→ Λ2VP(−2) −→ VP(−1) −→ OP −→ 0.
(K•)

Twisting through by F(m+ 1) yields an exact complex

. . . −→ Λ3VP ⊗F(m− 2) −→ Λ2VP ⊗F(m− 1) −→ VP ⊗F(m)
−→ F(m+ 1) −→ 0. (*)

The m-regularity of F implies that Hi
(
P, Λi+1VP ⊗F(m− i)

)
= 0, and it

follows by chasing through (*) that the map

H0
(
P,F(m)

)
⊗H0

(
P,OP(1)

)
= H0

(
P, VP ⊗F(m)

)
→ H0

(
P,F(m+ 1)

)
is surjective. This proves (ii). For (iii) one twists (K•) by F(m) and argues
similarly. ut

Theorem 1.8.3 is equivalent to a variant involving globally generated ample
line bundles on any projective variety. Since we frequently use it in this form,
we give the relevant definition and statement explicitly:

Definition 1.8.4. (Regularity with respect to a globally generated
ample line bundle). Let X be a projective variety and B an ample line
bundle on X that is generated by its global sections. A coherent sheaf F on
X is m-regular with respect to B if

Hi
(
X,F ⊗B⊗(m−i)) = 0 for i > 0. ut

Then 1.8.3 becomes:

Theorem 1.8.5. (Mumford’s theorem, II). Let F be an m-regular sheaf
on X with respect to B. Then for every k ≥ 0:

(i). F ⊗B⊗(m+k) is generated by its global sections.

(ii). The natural maps

H0
(
X,F ⊗B⊗m

)
⊗H0

(
X,B⊗k

)
−→ H0

(
X,F ⊗B⊗(m+k)

)
are surjective.

(iii). F is (m+ k)-regular with respect to B.

Proof. One repeats the proof of Theorem 1.8.3 with OP(1) replaced by B
and V replaced by H0

(
X,B

)
. Alternatively, one can apply 1.8.3 to the direct

image of F under the finite map X −→ P determined by B. ut

For most purposes, dealing with sheaves on projective space involves little
loss in generality. This is therefore the context in which we shall work —
unless stated otherwise — for the remainder of this section.

A number of additional concrete examples are worked out in the next sub-
section. Here we continue by presenting some formal properties of regularity.
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Example 1.8.6. (Extensions). An extension of two m-regular sheaves on
the projective space P is itself m-regular. ut

Example 1.8.7. Suppose that a coherent sheaf F on P is resolved by a long
exact sequence

. . . −→ F2 −→ F1 −→ F0 −→ F −→ 0

of coherent sheaves on P. If Fi is (m+ i)-regular for every i ≥ 0, then F is m-
regular. Moreover, in this case the mapping H0

(
P,F0(m)

)
−→ H0

(
P,F(m)

)
is surjective. ut

A partial converse of Example 1.8.7 provides a useful characterization of
m-regularity.

Proposition 1.8.8. (Linear resolutions). Let F be a coherent sheaf on
the projective space P. Then F is m-regular if and only if F is resolved by a
long exact sequence

. . . −→ ⊕OP(−m− 2) −→ ⊕OP(−m− 1) −→ ⊕OP(−m) −→ F −→ 0
(1.30)

whose terms are direct sums of the indicated line bundles.

Proof. Given a long exact sequence (1.30), the m-regularity of F follows from
Example 1.8.7 (or equivalently by reading off the vanishings Hi

(
P,F(m −

i)
)

= 0 for i > 0). Conversely, supposing that F is m-regular, we construct
the resolution (1.30) step by step. To this end, recall first from Proposition
1.8.3 (i) that F(m) is globally generated. Setting W = H0

(
P,F(m)

)
, one

therefore has a surjective sheaf homomorphism e : WPOP(−m) −→ F . Let
F1 = ker e:

0 −→ F1 −→WP ⊗OP(−m) −→ F −→ 0. (*)

We will show momentarily that F1 is (m+1)-regular. Granting this, set W ′ =
H0
(
P,F1(m+ 1)

)
and map the corresponding trivial bundle W ′

P to F1(m+1)
to construct an exact sequence

W ′
P ⊗OP(−m− 1) −→WP ⊗OP(−m) −→ F −→ 0.

Then continue until one arrives finally at (1.30). As for the (m+1)-regularity
of F1, it is almost immediate. In fact, by construction the homomorphism
H0
(
P,WP

)
−→ H0

(
P,F(m)

)
determined by (*) is surjective, and there-

fore H1
(
P,F1(m)

)
= 0. On the other hand, it follows from (*) and the m-

regularity of F that

Hi+1
(
P,F1

(
(m+ 1)− (i+ 1)

))
= Hi+1 (P,F1(m− i))

= Hi (P,F(m− i))
= 0

for i > 0. Therefore F1 is (m+ 1)-regular, as required. ut
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We next use Proposition 1.8.8 to show that at least for vector bundles,
regularity has pleasant tensorial properties.

Proposition 1.8.9. (Regularity of tensor products). Let F be a coher-
ent sheaf on P, and let E be a locally free sheaf on P. If F is m-regular and
E is `-regular, then E ⊗F is (`+m)-regular.

Corollary 1.8.10. (Wedge and symmetric products). If E is an m-
regular locally free sheaf, then the p-fold tensor power T pE is (pm)-regular.
In particular, ΛpE and SpE are likewise (pm)-regular. ut

Proof of Proposition 1.8.9. Starting with the resolution (1.30) of F appearing
in Proposition 1.8.8, tensor through by E to obtain a complex

. . . −→ ⊕E(−m− 2) −→ ⊕E(−m− 1) −→ ⊕E(−m) −→ E ⊗F −→ 0.

Since tensoring by a locally free sheaf preserves exactness, this sequence is in
fact exact. But E(−m− i) is (`+m+ i)-regular thanks to the `-regularity of
E, and so the (`+m)-regularity of E ⊗F follows from Example 1.8.7. ut

Remark 1.8.11. This proof shows that it suffices for Proposition 1.8.9 to
assume that at every point of P either E or F is locally free. ut

Example 1.8.12. Chardin informs us that he has found examples for which
Proposition 1.8.9 fails when the sheaves in question are not locally free along
a set of dimension ≥ 2. ut

Example 1.8.13. In the situation of Proposition 1.8.9, the natural map

H0
(
P,F(m)

)
⊗H0

(
P, E(`)

)
−→ H0

(
P,F ⊗ E(m+ `)

)
is surjective. ut

Remark 1.8.14. (Regularity in positive characteristics). Everything
we have said so far except Corollary 1.8.10 goes through without change for
varieties defined over an algebraically closed field of arbitrary characteristic.
(In positive characteristics, the symmetric and alternating products appearing
in 1.8.10 may no longer be direct summands of the tensor product.) ut

Example 1.8.15. (Green’s theorem). Let W ⊆ H0
(
P,OP(d)

)
be a sub-

space of codimension c giving a free linear series. Then the map

sk : W ⊗H0
(
P,OP(k)

)
−→ H0

(
P,OP(d+ k)

)
determined by multiplication of polynomials is surjective for k ≥ c. In other
words, any homogeneous polynomial of degree ≥ d+c lies in the ideal spanned
by W . (Let Md be the vector bundle on P = P(V ) arising as the kernel of
the evaluation map on forms of degree d:

0 −→Md −→ SdV ⊗OP −→ OP(d) −→ 0.
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Then Md is 1-regular, and so ΛkMd is k-regular thanks to 1.8.10. On the other
hand, W determines an analogous bundle MW ,

0 −→MW −→W ⊗OP −→ OP(d) −→ 0,

and the two bundles in question sit in a sequence 0 −→ MW −→ Md −→
OcP −→ 0. One then uses the Eagon–Northcott complex (EN1) from Appendix
B to show that MW is (c + 1)-regular, which implies that sk is surjective as
soon as k ≥ c.) This result and its generalizations have interesting applications
to infinitesimal computations in Hodge theory: see [236], [237], or [83, Chapter
7]. ut
Remark 1.8.16. (Warning on generalized regularity). Owing to the fact
that a globally generated ample line bundle B on a projective variety X need
not itself be (−1)-regular, one should not expect Propositions 1.8.8 and 1.8.9
or Corollary 1.8.10 to extend to the setting of Definition 1.8.4. For example,
F = OX has a (trivial) linear resolution, but it is not in general 0-regular.
However, Arapura [14, Corollary 3.2] observes that if R = max{1, regB(OX)},
then F ⊗B⊗m has an “R-linear” resolution. ut

It is often useful to know the best possible regularity of a sheaf:

Definition 1.8.17. (Regularity of a sheaf). The Castelnuovo–Mumford
regularity reg(F) of a coherent sheaf F on P is the least integer m for which
F is m-regular (or −∞ if F is supported on a finite set, and hence m-regular
for all m� 0). ut

We conclude this subsection by discussing some variants.

Example 1.8.18. (Regularity with respect to a vector bundle). Let
X be an irreducible projective variety of dimension n, and let U be a vector
bundle on X having the property that for every point x ∈ X, there is a section
of U whose zero locus is a finite set containing x. (Example: U = B⊕ · · · ⊕B
(n times), where B is a globally generated ample line bundle on X.) If F is a
coherent sheaf on X such that

Hi
(
X,ΛiU∗ ⊗F

)
= 0 for i > 0,

then F is globally generated. (Let s ∈ Γ (X,U) be a section vanishing on a
finite subscheme Z ⊂ X. Form the Koszul complex K• determined by the
resulting map U∗ −→ OX and suppose for the moment that K• is exact
(which will be the case e.g. if X is smooth and rankU = dimX) and that F
is locally free. Tensoring through by F , the given vanishings imply that the
restriction map

H0
(
X,F

)
−→ H0

(
X,F ⊗OZ

)
is surjective, and hence that F is globally generated at every point of Z.
Thanks to Example B.1.3 in Appendix B, the same argument works even if
K• is not exact or F is not locally free, since in any event K•⊗F is exact off
the finite set Z.) ut
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Example 1.8.19. (Global generation on Grassmannians). Let G =
G(k,m) be the Grassmannian of k-dimensional quotients of an m-dimensional
vector space, and denote by Q the tautological rank k quotient bundle on G.
Suppose that F is a coherent sheaf on G satisfying the condition that for
every i > 0,

Hi
(
G, Λi1Q∗ ⊗ · · · ⊗ Λim−kQ∗ ⊗F

)
= 0 whenever i1 + · · ·+ im−k = i.

Then F is globally generated. (Given any point x ∈ G, the (m−k)-fold direct
sum V = Q⊕· · ·⊕Q has a section vanishing precisely at x.) This result is due
to M. Kim [335], who used it to study branched coverings of Grassmannians.
(See Sections 6.3.D and 7.1.C.) ut

Remark 1.8.20. (Regularity on Grassmannians). A general theory of
regularity on Grassmannians has been developed and studied by Chipalkatti
[90]. ut

Remark 1.8.21. (Regularity on abelian varieties). Pareschi and Popa
have introduced some very interesting notions of regularity on an abelian
variety X with respect to an arbitrary ample line bundle L on X [496], [497].
For example, let F be a coherent sheaf on X, and assume that F satisfies the
vanishing

Hi
(
X,F ⊗ L−1 ⊗ P

)
= 0 for all i > 0 and P ∈ Pic0(X).

It is established in [496] that then F is globally generated. This generalizes a
useful lemma of Kempf. Pareschi and Popa establish similar statements under
weaker hypotheses, and use them to prove several striking results about the
geometry of abelian varieties and their subvarieties, as well as the equations
defining their projective embeddings. ut

Just as regularity can be valuable for proving that a sheaf is globally
generated, it is also useful for establishing that certain line bundles are very
ample:

Example 1.8.22. (Criterion for very ample bundles). Let X be an
irreducible projective variety of dimension n, and B an ample line bundle
that is generated by its global sections. One has then the following

Proposition. Let N be a line bundle on X that is 0-regular with
respect to B in the sense of Definition 1.8.4. Then N ⊗ B is very
ample.

(As N ⊗B is free, it is enough to show that the sheaf N ⊗B ⊗mx is globally
generated for any point x ∈ X, mx being the maximal ideal of x. As in
Example 1.8.18 this in turn will follow if we show that given any x ∈ X, there
is a finite scheme Z = Z(x) containing x such that N ⊗ B ⊗ IZ is 0-regular
with respect to B, for this implies the 0-regularity of N ⊗ B ⊗ mx. Having
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fixed x, take Z to be the zero-scheme cut out by n general sections of B that
vanish at x. As in Example 1.8.18, form the resulting Koszul complex and
twist by B ⊗N : one reads off the required 0-regularity of B ⊗N ⊗ IZ from
the vanishings giving the 0-regularity of N .) ut

The next example shows that Kodaira-type vanishing theorems are well
suited to regularity statements.

Example 1.8.23. (Adjoint bundles). Let X be a smooth complex projec-
tive variety of dimension n and let D be an ample divisor on X. As usual
denote by KX a canonical divisor on X, and let P be an arbitrary nef divisor
on X. There has been a great deal of interest recently in adjoint-type bundles
of the form

Lk = OX(KX + kD + P ).

One can view these as the analogues of line bundles of large degree on curves
(see Section 10.4.A). Under various hypotheses on D, divisors of this shape
have also been extensively studied by Sommese and his school (see [50]), as
well as by Fujita (see [197]).

Assume now that D is free (and ample). Then the divisor Lk above
is free when k ≥ n + 1 and very ample when k ≥ n + 2. (The Kodaira
vanishing theorem 4.2.1 asserts that if A is any ample divisor on X, then
Hi
(
X,OX(KX +A)

)
= 0 for i > 0. One uses this as input to Theorem 1.8.5

and Example 1.8.22.) These results for Lk are elementary special cases of a
celebrated conjecture of Fujita, which asserts that the same statements should
hold — at least when P = 0 — assuming only that D is ample. Fujita’s conjec-
ture is discussed in more detail in Section 10.4. See also Theorem 1.8.60. ut

We conclude by outlining a relative notion of regularity.

Example 1.8.24. (Regularity with respect to a mapping). Let f :
X −→ Y be a proper surjective mapping of varieties (or schemes). We suppose
given a line bundle A on X satisfying:

(a). A is ample for f ;
(b). The canonical mapping f∗f∗A −→ A is surjective.

For example, condition (b) holds if A is globally generated. If Y is normal and
X is the normalized blowing-up of a sheaf of ideals a ⊆ OY , with exceptional
divisor E ⊆ OX , then (a) and (b) hold with A = OX(−E). (For (b), use that
a ⊆ f∗OX(−E).)

Given a coherent sheaf F on X, we define F to be m-regular with respect
to A and f if

Rif∗
(
F ⊗A⊗(m−i)) = 0 for i > 0.

Then the natural analogue of Theorem 1.8.3 holds in this setting. Specifically,
assume that F is m-regular with respect to A and f . Then for every k ≥ 0:
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(i). The homomorphism

f∗f∗
(
F ⊗A⊗(m+k)

)
−→ F ⊗A⊗(m+k)

is surjective;
(ii). The map

f∗
(
F ⊗A⊗m

)
⊗ f∗

(
A⊗k

)
−→ f∗

(
F ⊗A⊗(m+k)

)
is surjective;

(iii). F is (m+ k)-regular with respect to A and f .

(The statement being local on Y , one can assume that Y is affine. Then
there exists a finite-dimensional vector space V ⊆ H0

(
Y, f∗A

)
of sections that

generate f∗A, giving rise to a surjective bundle map VY = V ⊗OY −→ f∗A.
Pulling back and composing with f∗f∗A −→ A, one arrives at a surjective
map VX −→ A of bundles on X, and now one argues as in the proof of
Theorem 1.8.3. Namely, form the corresponding Koszul complex and twist by
F ⊗A⊗m:

. . . −→ Λ2VX ⊗F ⊗A⊗(m−1) −→ VX ⊗F ⊗A⊗m −→ F ⊗A⊗(m+1) −→ 0.

Chasing through the complex and using the hypothesis of m-regularity, one
finds that the map VY ⊗ f∗

(
F ⊗ A⊗m

)
−→ f∗

(
F ⊗ A⊗(m+1)

)
is surjective.

But this factors through

f∗A⊗ f∗
(
F ⊗A⊗m

)
−→ f∗

(
F ⊗A⊗(m+1)

)
,

and (ii) follows. The proof of (iii) is similar, while for (i) one uses (ii) plus
the fact that f∗f∗

(
F ⊗A⊗(m+k)

)
−→ F ⊗A⊗(m+k) is surjective for k � 0 by

virtue of the f -amplitude of A.) ut

Example 1.8.25. (Regularity on a projective bundle). Let X be a
variety or scheme, and E a vector bundle on X, with projectivization π :
P(E) −→ X. A coherent sheaf F on P(E) is m-regular with respect to π if

Riπ∗
(
F ⊗OP(E)(m− i)

)
= 0

for i > 0. If this condition holds, then:

(i). π∗π∗
(
F ⊗OP(E)(m)

)
surjects onto F ⊗OP(E)(m);

(ii). The mapping

π∗
(
F ⊗OP(E)(m)

)
⊗ π∗OP(E)(k) −→ π∗

(
F ⊗OP(E)(m+ k)

)
is surjective for k ≥ 0; and

(iii). F is (m+ 1)-regular for π.

(This follows from the previous example with A = OP(E)(1).) ut
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1.8.B Regularity and Complexity

We now present some results suggesting that the regularity of a sheaf governs
the complexity24 of the algebraic objects associated with it.

Continuing to work on the projective space P = P(V ), denote by S =
Sym(V ) the homogeneous coordinate ring of P, so that S is a polynomial ring
in r + 1 variables. Fix a coherent sheaf F on P, and let

F =
⊕
k

H0
(
P,F(k)

)
be the corresponding graded S-module. We assume for simplicity that

H0
(
P,F(k)

)
= 0 for all k � 0,

so that F is finitely generated.25

Like any finitely generated S-module, F admits a minimal graded free
resolution E•:

0 −→ Er+1 −→ . . . −→ E1 −→ E0 −→ F −→ 0. (1.31)

Here each Ep is a free graded S-module,

Ep =
⊕
i

S(−ap,i),

and minimality means that the maps of E• are given by matrices of homoge-
neous polynomials containing no non-zero constants as entries. The integers
ap,i ∈ Z specifying the degrees of the generators of Ep are uniquely determined
by F and hence F . Set

ap = ap(F) = max
i
{ap,i},

so that ap is the largest degree of a generator of the pth module of syzygies of F .
Algorithms for computing with homogeneous polynomials typically proceed
degree by degree, so the integers a0, . . . , ar+1 in effect serve as a measure of
the algebraic complexity of F or the underlying sheaf F .

From the present point of view, the basic meaning of regularity is that it
is equivalent to an upper bound on all of the ap.

Theorem 1.8.26. (Regularity and syzygies). The sheaf F is m-regular
if and only if each of the integers ap = ap(F) satisfies the inequality

ap ≤ p+m. (1.32)
24 We stress that we are using the term “complexity” in a non-technical sense.
25 This is equivalent to the assumption that none of the associated primes of F have

zero-dimensional support. If this condition is not satisfied, then one should work
instead with a truncation F≥k0 = ⊕k≥k0H0

(
P,F(k)

)
of F .
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So knowing the regularity of a coherent sheaf is the same thing as having
bounds on the degrees of generators of all the modules of syzygies of the
corresponding module.

Example 1.8.27. (Complete intersections). Let X ⊆ P be the complete
intersection of hypersurfaces of degrees d1, . . . , de, and let IX be the ideal
sheaf of X. Then the Koszul resolution of the homogeneous ideal IX of X
shows that

reg(IX) = (d1 + · · ·+ de − e+ 1).

In this example, the regularity is governed by the highest module of syzygies
of IX rather than by the degrees of its generators. ut

Indication of Proof of Theorem 1.8.26. The argument parallels the proof of
Proposition 1.8.8. If F admits a resolution satisfying the degree bound (1.32),
then sheafifying yields a resolution of F to which Example 1.8.7 applies. As-
sume conversely that F is m-regular. Then it follows from statement (ii) of
Mumford’s theorem that all the generators of F occur in degrees ≤ m. Choos-
ing generators then gives rise to an exact sequence of S-modules

0 −→ F1 −→ ⊕S(−a0,i) −→ F −→ 0

with all a0,i ≤ m. The sheafification of F1 is (m + 1)-regular, and hence all
generators of F1 occur in degrees ≤ (m+ 1). Continuing the process step by
step leads to the required resolution. ut

A particularly interesting case occurs when F is the ideal sheaf of a sub-
variety (or subscheme) of projective space:

Definition 1.8.28. (Regularity of a projective subvariety). We say that
a subvariety (or subscheme) X ⊆ P is m-regular if its ideal sheaf IX is. The
regularity of X is the regularity reg(IX) of its ideal. ut

Thus if X is m-regular, then its saturated homogeneous ideal

IX = ⊕H0
(
P, IX(k)

)
is generated by forms of degrees ≤ m, and the pth syzygies among these
generators appear in degrees≤ m+p. In the next subsection we will discuss the
problem of bounding the regularity of X in terms of geometric data. Section
1.8.D centers around some more subtle invariants associated to syzygies.

We conclude this subsection with some examples. The first shows that in
checking the regularity of a subvariety, some of the vanishings in the definition
are automatic:

Example 1.8.29. IfX ⊆ P has dimension n, then (form > 0)X ism-regular
if and only if Hi

(
P, IX(m− i)

)
= 0 for 1 ≤ i ≤ n+ 1. ut



1.8 Castelnuovo–Mumford Regularity 109

Example 1.8.30. (Regularity of finite sets). Suppose that X ⊆ P is a
finite subset consisting of d distinct (reduced) points. Then X is d-regular, and
if the points of X are collinear then X is not (d − 1)-regular. The analogous
statement holds if X is a finite scheme of length d. ut

Example 1.8.31. (Regularity of some monomial curves). Suppose that
C ⊂ Pr is a smooth rational curve, embedded by a possibly incomplete linear
series. Then (for m > 0) C is m-regular if and only if hypersurfaces of degree
m− 1 cut out a complete linear series on C, i.e. the map

H0(P,OP(m− 1)) −→ H0(C,OC(m− 1))

is surjective. If C is the image of the embedding

P1 ↪→ P3 , [s, t] 7→ [sd, sd−1t, std−1, td],

then C is (d− 1)-regular but not (d− 2)-regular. ut

Example 1.8.32. (Regularity of a disjoint union). Let X,Y ⊂ P be
disjoint subvarieties or subschemes. If X is m-regular and Y is `-regular, then
X ∪ Y is (m + `)-regular. (Use Remark 1.8.11.) Sidman proves some related
results for homogeneous ideals in [535]. ut

Remark 1.8.33. (Algebraic pathology). Castelnuovo–Mumford regular-
ity does not behave very well with respect to natural algebraic operations,
but examples are hard to come by. For example, given a homogeneous ideal
I ⊆ S, Ravi [513] raised the question whether reg(

√
I) ≤ reg(I).26 However

counter-examples were only recently given, by Chardin and D’Cruz [86]. This
paper also gives an example in which the regularity of an ideal increases af-
ter removing some positive-dimensional embedded components. In general,
the absence of systematic techniques for constructing examples is one of the
biggest lacunae in the current state of the theory. ut

Remark 1.8.34. (Work of Bayer and Stillman). Bayer and Stillman
[43] establish a more precise connection between regularity and complexity.
Namely, suppose that I ⊆ S is the saturated homogeneous ideal of a scheme
X ⊆ P. Most computational algorithms in algebraic geometry are based on
choosing coordinates on P, and working with Gröbner bases. Bayer and Still-
man show that the regularity reg(X) of X is equal to the largest degree of a
generator of the initial ideal in(I) of I with respect to the reverse-lex order
on generic coordinates. In other words, the regularity of X is already detected
as soon as one computes Gröbner bases. In the same paper [43], Bayer and
Stillman give a computationally efficient method of calculating the regularity
of an ideal. ut

26 Concerning the meaning of regularity for an arbitrary homogeneous ideal, see the
comments following Example 1.8.38.
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1.8.C Regularity Bounds

The results of the previous section point to the interest in finding upper
bounds on the regularity of a projective scheme X ⊆ P in terms of geometric
data. Here we survey without proof some of the main results in this direction.
While the picture is not yet complete, a rather fascinating dichotomy emerges,
as emphasized in the influential survey [42] of Bayer and Mumford. On the one
hand, for arbitrary schemes X — for which essentially best-possible bounds
are known — the regularity can grow doubly exponentially as a function of
the input parameters. On the other hand, the situation for “nice” varieties is
very different: in particular, the regularity of non-singular varieties is known
or expected to grow linearly in terms of geometric invariants. (The situation
for reduced but possibly singular varieties remains somewhat unclear.)

Gotzmann’s bound. The earliest results bounded regularity in terms of
Hilbert polynomials. Given a projective scheme X ⊆ P, with ideal sheaf
I = IX ⊆ OP, write

Q(k) = χ
(
X,OX(k)

)
for the Hilbert polynomial of X. In the course of his construction of Grothen-
dieck’s Hilbert schemes, Mumford [445] bounded the regularity of X in terms
of Q.27 Although one could render the statements effective, Mumford’s ar-
guments were not intended to give sharp estimates. Brodmann has extended
Mumford’s boundedness theorem in various ways (see [72, Chapters 16 and
17] and the references therein).

Using a different approach, Gotzmann [228] subsequently found the opti-
mal statement in this direction:

Theorem 1.8.35. (Gotzmann’s regularity theorem). There are unique
integers

a1 ≥ a2 ≥ . . . ≥ as ≥ 0

such that Q(k) can be expressed in the form

Q(k) =
(
k + a1

a1

)
+
(
k + a2 − 1

a2

)
+ . . .+

(
k + as − (s− 1)

as

)
,

and then I is s-regular. ut

We refer to [238], [240, §3], and [74] for discussion, proofs, and generalizations.

Example 1.8.36. (One-dimensional schemes). Suppose that X ⊆ Pr is
a one-dimensional scheme of degree d and arithmetic genus p = 1−χ

(
X,OX

)
,

so that
Q(k) = dk + (1− p).

27 In fact, Mumford introduced Definition 1.8.1 and proved Theorem 1.8.3 in order
to establish the boundedness of the family of all projective subschemes having
given Hilbert polynomial.
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Then the Gotzmann representation is obtained by taking

s =
(
d

2

)
+ (1− p),

a1 = . . . = ad = 1 , ad+1 = . . . = as = 0.

In particular, X is
((
d
2

)
+ 1 − p

)
-regular. One can contrast this statement

with the Castelnuovo-type bound from [259] for reduced irreducible curves: if
X ⊆ Pr is a non-degenerate curve of degree d, then X is (d + 2 − r)-regular
(see 1.8.46). ut

Bounds from defining equations. As Bayer remarks, in an actual compu-
tation — where a scheme is described by explicit equations — the degrees of
generators of an ideal will be known or bounded from the given input data.
So it is very natural to look for regularity bounds in terms of these degrees.

We start with a definition:

Definition 1.8.37. (Generating degree of an ideal). The generating
degree d(I) of an ideal sheaf I ⊆ OP is the least integer d such that I(d) is
generated by its global sections. Similarly, if

J ⊆ S = C[T0, . . . , Tr]

is a homogeneous ideal, the generating degree d(J) of J is the largest degree
of a minimal generator of J . ut

Note that if I ⊆ S is the saturated homogeneous ideal determined by an ideal
sheaf I ⊆ OP, then d(I) ≥ d(I).

Example 1.8.38. (Generating degree of a smooth variety). Let X ⊆
Pr be a smooth variety of dimension n, and write IX for the ideal sheaf of X
in Pr. Then

d(IX) ≤ deg(X),

i.e. X is cut out scheme-theoretically by hypersurfaces of degree ≤ deg(X).
(Let Λ ⊆ Pr be a linear space of dimension r − n− 1 disjoint from X. Then
the cone CΛ(X) over X centered on Λ is a hypersurface of degree d = deg(X)
passing through X. As Λ varies, these hypersurfaces generate IX(d).) This
result is due to Mumford: see [448] for details. ut

The first bounds are most naturally stated for homogeneous ideals. One
can develop the general theory in this context (cf. [42] or [164]), but for present
purposes it is simplest to recall that a homogeneous ideal I ⊆ S is m-regular
if I is saturated in degrees ≥ m and if the corresponding ideal sheaf I is
m-regular. Bayer and Mumford [42, Proposition 3.8] give a very elementary
proof of an essentially doubly exponential bound:
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Theorem 1.8.39. (Bound for arbitrary ideals). If I ⊆ C[T0, . . . , Tr] is
any homogeneous ideal, then

reg(I) ≤
(
2d(I)

)r!
. ut

They also observe [42, Theorem 3.7] that work of Giusti and Galligo leads to

the stronger bound reg(I) ≤
(
2d(I)

)2r−1

.
Quite surprisingly, the shape of these statements cannot be avoided: there

are examples of ideals whose regularity actually grows doubly exponentially
in the generating degree. Indeed, Bayer and Stillman [44] show that a con-
struction used by Mayr and Meyer leads to the following remarkable fact:

Set r = 10n and fix an integer d ≥ 3. Then there exists an ideal
I ⊆ C[T0, . . . , Tr] with d(I) = d+ 2 and

reg(I) ≥ (d)2
n−1

.

Note that by introducing a new variable and working on Pr+1 one can then
get ideal sheaves whose regularity satisfies the analogous bounds. We remark
that the example of Mayr–Meyer–Bayer–Stillman is rather combinatorial in
nature: it would be interesting to have also more geometric constructions.

By contrast, for the ideals of non-singular varieties the picture is com-
pletely different. Specifically, a result of Bertram, Ein, and the author from
[55] leads to a linear inequality in the generating degree:

Theorem 1.8.40. (Linear bound for smooth ideals). Let X ⊂ Pr be a
smooth irreducible complex projective variety of dimension n and codimension
e = r − n, and set d = d(I). Then

Hi
(
Pr, IX(k)

)
= 0 for i ≥ 1 and k ≥ e · d− r.

In particular, X is (ed− e+ 1)-regular.

The proof — which is a very quick application of vanishing theorems — ap-
pears in Section 4.3.B below. A more algebraic approach has recently been
given by Chardin and Ulrich [87].

Example 1.8.41. The bound in the theorem is achieved by the complete in-
tersection of e hypersurfaces of degree d, so the statement is the best possible.
In fact, these are the only borderline cases (Example 1.8.43). ut

Example 1.8.42. (Criterion for projective normality). As in Theorem
1.8.40, suppose that X ⊆ Pr is a smooth subvariety of dimension n and
codimension e that is cut out by hypersurfaces of degree d. If ed ≤ r + 1
then X is projectively normal, and if ed ≤ r then X is projectively Cohen–
Macaulay. These inequalities apply for instance to n-folds X ⊆ P2n+1 or
X ⊆ P2n that are cut out by quadrics. ut
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Example 1.8.43. (Borderline cases of regularity bound). In the situ-
ation of Theorem 1.8.40, X fails to be (ed− e)-regular if and only if it is the
transversal complete intersection of e hypersurfaces of degree d. So we may say
that complete intersections have the worst regularity among all smooth vari-
eties cut out by hypersurfaces of a given degree. (The vanishings in Theorem
1.8.40 show that if X fails to be (ed− e)-regular, then necessarily

Hn+1
(
Pr, IX(ed− e− n− 1)

)
= Hn

(
X,OX(ed− r − 1)

)
6= 0,

or equivalently H0
(
X,ωX ⊗OX(r + 1− ed)

)
6= 0. Assuming for simplicity

thatX has dimension≥ 1, choose e general hypersurfacesD1, . . . , De of degree
d passing through X, so that

D1 ∩ · · · ∩De = X ∪X ′.

But X ∩X ′ is an effective divisor on X representing the line bundle

OX(de)⊗ det(N∗
X/P) = ω−1

X (ed− r − 1).

It follows that X∩X ′ = ∅, and since X∪X ′ is in any event connected (e.g. by
Theorem 3.3.3), we conclude that X = D1 ∩ · · · ∩De. See [55] for details.) ut

Remark 1.8.44. (Generators of different degrees). The result estab-
lished in [55] takes into account generators of different degrees. Specifically,
suppose that X ⊂ Pr is a non-singular variety of codimension e cut out
scheme-theoretically by hypersurfaces of degrees d1 ≥ d2 ≥ · · · ≥ dm. Then

Hi
(
Pr, IaX(k)

)
= 0 for i > 0 and k ≥ ad1 + d2 + · · ·+ de − r,

and in particular X is (d1 + · · · + de − e + 1)-regular. Again this regularity
statement is sharp (exactly) for complete intersections. ut

Remark 1.8.45. (Regularity of singular subvarieties). It would be very
interesting to know to what extent these results remain valid for reduced (but
possibly singular) varieties X ⊆ P. One can use multiplier ideals to construct
sheaves J ⊆ IX that have the expected regularity, but J may differ from IX
along the singular locus of X. See Example 10.1.5 for further discussion. ut

Castelnuovo-type bounds. Consider a subvariety X ⊆ Pr with ideal sheaf
IX . For i ≥ 2 (and k ≥ −r) there is an isomorphism

Hi
(
P, IX(k)

)
= Hi−1

(
X,OX(k)

)
.

Therefore these groups depend only on the line bundle on X defining the em-
bedding, and in practice they can often be handled relatively easily. Thus
the essential point for regularity bounds is usually to control the groups
H1
(
P, IX(k)

)
, which measure the failure of hypersurfaces of degree k to cut
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out a complete linear series on X. This leads to a connection with some clas-
sical results of Castelnuovo.

Specifically, let C ⊆ Pr be a smooth irreducible curve of degree d that
doesn’t lie in any hyperplanes. Castelnuovo proved that hypersurfaces of de-
grees ≥ d− 2 cut out a complete linear series on C. By the argument leading
up to his celebrated bound on the genus of a space curve, this implies that C
is (d− 1)-regular. The optimal statement along these lines was established by
Gruson, Peskine, and the author in [259]:

Theorem 1.8.46. (Regularity for curves). Let C ⊆ Pr be an irreducible
(but possibly singular) reduced curve of degree d. Assume that C is non-
degenerate, i.e. that it doesn’t lie in any hyperplanes. Then C is (d+ 2− r)-
regular.

Example 1.8.31 exhibits some borderline examples in P3. The paper [259] also
treats the case of possibly reducible curves.

The natural extrapolation of 1.8.46 to smooth varieties of higher dimension
occurred to several mathematicians at the time of [259].

Conjecture 1.8.47. (Castelnuovo-type regularity conjecture). Con-
sider a smooth non-degenerate subvariety X ⊆ Pr of dimension n and degree
d. Then X is (d+ n+ 1− r)-regular.

This has been established for surfaces by Pinkham and the author in [505] and
[391], and for threefolds by Ran in [511]. We refer to [375] for a nice survey
and some extensions. Eisenbud and Goto conjecture in [165] that the bound
should hold for any reduced and irreducible non-degenerate variety. For some
evidence in this direction see the papers [499], [137] of Peeva–Sturmfels and
Derksen–Sidman.

Example 1.8.48. (Mumford’s bound). Suppose that X ⊆ Pr is a smooth
subvariety of degree d. Then X is

(
(n + 1)(d − 1) + 1

)
-regular. (By taking a

generic projection, one reduces to the case r = 2n + 1 and e = n + 1. Then
use the fact that X is scheme-theoretically cut out by hypersurfaces of degree
d (Example 1.8.38) and apply 1.8.40.) ut

Asymptotic regularity of powers of an ideal. It is a basic principle in
commutative algebra that the powers of an ideal often exhibit better behavior
than the ideal itself. Recently it has become clear that this holds in particular
for Castelnuovo–Mumford regularity.

Specifically, the regularity of powers of an ideal is studied in several papers
([55], [560], [220], [84], [100], [354], [99], [535]). Asymptotically the picture
becomes very clean. Most notably, Cutkosky, Herzog, and Trung [100], and
independently Kodiyalam [354] prove the appealing result:

Theorem 1.8.49. Let I ⊂ C[T0, . . . , Tr] be an arbitrary homogeneous ideal.
Then
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lim
k→∞

reg(Ik)
k

= lim
k→∞

d(Ik)
k

≤ d(I),

where as above, d(J) is the generating degree of a homogeneous ideal J . ut

These authors also show that the limit in question is an integer. The essential
point is to exploit the finite generation of certain Rees rings. Analogous results
for ideal sheaves — deduced from Fujita’s vanishing theorem — were given in
[99], and are reproduced in Section 5.4.

1.8.D Syzygies of Algebraic Varieties

There are a number of natural settings — particularly involving embeddings
defined by complete linear series — in which the regularity of a variety car-
ries only coarse geometric information (cf. Example 1.8.52). In his pioneering
paper [235], Green observed that in such cases it is interesting to study more
delicate algebraic invariants, involving syzygies. This circle of ideas has gener-
ated considerable work in recent years, and we present here a quick overview
— entirely without proof — of some of the highlights. Eisenbud’s forthcoming
book [163] contains a detailed introduction from a more algebraic perspective.

Let X be an irreducible projective variety, and L a very ample line bundle
on X defining an embedding

φL : X ↪→ P = PH0
(
X,L

)
.

Consider the graded ring RL = R(X,L) = ⊕H0
(
X,L⊗m

)
determined by

L (Definition 2.1.17), and write S = SymH0
(
X,L

)
for the homogeneous

coordinate ring of P. Viewed as an S-module,RL admits as in (1.31) a minimal
graded free resolution E•:

... // ⊕S(−a2,j) // ⊕S(−a1,j) //
S

⊕
⊕S(−a0,j)

// RL // 0.

E2 E1 E0

Here the first summand in E0 corresponds to the degree zero generator of
RL given by the constant function 1, and a0,j ≥ 2 for every j thanks to
the fact that φL defines a linearly normal embedding. Similarly, a moment’s
thought reveals that ai,j ≥ i + 1 for all i ≥ 1 and every j. Observe that φL
defines a projectively normal embedding of X if and only if E0 = S, i.e. the
summands ⊕S(−a0,j) are not actually present. In this case, the remainder of
E• determines a resolution of the homogeneous ideal IX/P of X in P.

We ask when the first p terms in E• are as simple as possible:
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Definition 1.8.50. (Property (Np)). The embedding line bundle L satisfies
Property (Np) if E0 = S, and

ai,j = i+ 1 for all j

whenever 1 ≤ i ≤ p. A divisor D satisfies (Np) if (Np) holds for the corre-
sponding line bundle OX(D). ut

Thus, very concretely:

(N0) holds for L ⇐⇒

For every m ≥ 0, the natural maps

SmH0
(
X,L

)
−→ H0

(
X,L⊗m

)
are surjective;

(N1) holds for L ⇐⇒
(N0) is satisfied, and the homogeneous ideal
I = IX/P of X in P is generated by quadrics;

(N2) holds for L ⇐⇒

(N1) is satisfied, and the first module of syzy-
gies among quadratic generators Qα ∈ I is
spanned by relations of the form∑

LαQα = 0,

where the Lα are linear forms;

and so on. Properties (N0) and (N1) were studied by Mumford [448], who
called them “normal generation” and “normal presentation” respectively. The
present terminology was introduced in [241].

Example 1.8.51. (Rational and elliptic normal curves). A rational
normal cubic C ⊆ P3 satisfies (N2). An elliptic normal curve E ⊆ P3 of
degree 4 satisfies (N1) but not (N2). (C is defined by the maximal minors of
a 2× 3 matrix of linear forms, and so admits an Eagon–Northcott resolution
(EN0) from Appendix B. Similarly, E is the complete intersection of two
quadrics.) ut

Example 1.8.52. (Regularity of curves of large degree). Let X be a
smooth curve of genus g ≥ 1, and let L be a line bundle of degree d ≥ 2g+ 1.
Then L defines an embedding X ⊆ Pd−g in which X is 3-regular but not 2-
regular. This uniform behavior of Castelnuovo–Mumford regularity contrasts
with a number of interesting results and questions relating the syzygies to the
geometry of X and L: see 1.8.53, 1.8.54, and 1.8.58. ut

Curves. Consider to begin with a non-singular projective curve X of genus
g, and a line bundle L on X. A classical result of Castelnuovo, Mattuck [421]
and Mumford [448] states that if degL ≥ 2g+1 then L is normally generated,
while Fujita [191] and Saint-Donat [521] showed that if degL ≥ 2g + 2 then
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L is normally presented. Green [235] proved that these are special cases of a
general result for higher syzygies:

Theorem 1.8.53. (Syzygies of curves of large degree). Assume that
degL ≥ 2g + 1 + p. Then (Np) holds for L.

The crucial point for the proof is to interpret syzygies via Koszul cohomology.
A quick formulation using vector bundles appears in [392].

Remark 1.8.54. (Borderline cases). The inequality in 1.8.53 is best pos-
sible. In fact, it is established in [243] that if L is a line bundle of degree
2g + p, then (Np) fails for L if and only if either X is hyperelliptic or X has
a (p+ 2)-secant p-plane in the embedding defined by L. ut

The most interesting statements concern canonical curves, where L =
OX(KK) is the canonical bundle. Here there are again two classical results:
Noether’s theorem that KX defines a projectively normal embedding if X
is non-hyperelliptic, and Petri’s theorem that the homogeneous ideal of a
canonical curve X ⊆ Pg−1 is generated by quadrics unless X is trigonal or a
smooth plane quintic (cf. [15, Chapter III, §2, §3]). Green realized that this
should generalize to higher syzygies via the Clifford index:

Definition 1.8.55. (Clifford index). Let A be a line bundle on a smooth
curve X. The Clifford index of A is

Cliff(A) = deg(A)− 2r(A),

where as usual r(A) = h0
(
X,A

)
− 1. The Clifford index of X itself is

Cliff(X) = min
{
Cliff(A) | h0

(
X,A

)
≥ 2 , h1

(
X,A

)
≥ 2.

}
. ut

Thus Clifford’s theorem states that Cliff(X) ≥ 0, with equality if and only ifX
is hyperelliptic. Similarly, Cliff(X) = 1 if and only if X is trigonal or a smooth
plane quintic. If X is a general curve of genus g, then Cliff(X) =

[
g−1
2

]
.

The natural extension of the theorems of Noether and Petri is contained
in a celebrated conjecture of Green:

Conjecture 1.8.56. (Green’s conjecture on canonical curves). The
Clifford index Cliff(X) is equal to the least integer p for which Property (Np)
fails for the canonical divisor KX .

One direction is elementary: it was established by Green and the author in
[235, Appendix] that if Cliff(X) = e, then (Ne) fails. What seems very difficult
is to start with a syzygy and produce a line bundle. The first non-classical
case p = 2 was treated by Schreyer [527] and Voisin [596].

The most significant progress to date on Green’s conjecture is due to Voisin
[598], [601], who proves that it holds for general curves:

Theorem 1.8.57. (Voisin’s theorem on canonical curves). If X is a
general curve of genus g, then Green’s conjecture holds for X.
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At least in the case of even genus, the idea is to study curves lying on a
suitably generic K3 surface: it was established in [390] that such curves are
Brill–Noether general, so this is a natural place to look. By a number of deep
calculations, Voisin is able to establish a vanishing on the surface that implies
1.8.57. Cases of 1.8.57 had been obtained previously by Teixiodor.

Remark 1.8.58. (Further conjectures for curves). Green and the author
proposed in [241] a more general conjecture. Specifically, suppose that L is a
very ample line bundle with

degL ≥ 2g + 1 + p− 2 · h1
(
X,L

)
− Cliff(X).

Then (Np) should hold for L unless φL embedsX with a (p+2)-secant p-plane.
The case p = 0 is treated in [241]. In another direction, one can consider the
full resolution of a curve X of large degree. Conjecture 3.7 of [241] asserts
that its grading depends (in a precise way) only on the gonality of X. This
has recently been established for general curves of large gonality by Aprodu
and Voisin [12] using the ideas of Voisin from [598]. ut

Abelian varieties. Embeddings of abelian varieties were also considered clas-
sically from an algebraic perspective. Let X be an abelian variety of dimension
g, and let L be an ample line bundle on X. It is a classical theorem of Lef-
schetz that L⊗m is very ample provided that m ≥ 3, and Mumford, Koizumi
[355] and Sekiguchi [529] proved that L⊗m is normally generated in this case.
Mumford [448] and Kempf [333] proved that if m ≥ 4, then X is cut out by
quadrics under the embedding defined by L⊗m. The author remarked that
these statements admit a natural extrapolation to higher syzygies, and the
resulting conjecture was established by Pareschi [495]:

Theorem 1.8.59. (Pareschi’s theorem). Property (Np) holds for L⊗m as
soon as m ≥ p+ 3.

Pareschi’s theorem has been systematized and extended by Pareschi and Popa
through their work on regularity for abelian varieties ([496], [497]).

Varieties of arbitrary dimension. Inspired by Fujita’s conjectures (Section
10.4.A), Mukai observed that one can rephrase Green’s Theorem 1.8.53 as
asserting that if A is an ample divisor on a curve C then D = KC + (p+ 3)A
satisfies (Np). Given an ample divisor A on a smooth projective variety X
of dimension n, he remarked that it is then natural to wonder whether D =
KX + (n + p + 2)A satisfies (Np). At the moment this seems completely out
of reach: even Fujita’s conjecture that the divisor in question is very ample
when p = 0 remains very much open as of this writing.

However, the situation becomes much simpler if one works with very ample
instead of merely ample divisors. Specifically, Ein and the author [153] used
vanishing theorems for vector bundles to establish:
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Theorem 1.8.60. (Syzygies of “hyperadjoint” divisors). Let X be a
smooth projective variety of dimension n, let B be a very ample divisor on X,
and let P be any nef divisor. Then

D = KX + (n+ 1 + p)B + P

satisfies Property (Np).

When p = 0 the assertion is that KX +(n+1)B defines a projectively normal
embedding of X: a simple proof appears in Example 4.3.19. (Note that if
X = Pn, p = 0, and B is a hyperplane divisor, then D is trivial, so the
statement needs to be properly interpreted. However in all other cases the
divisor in question is actually very ample.) Syzygies of surfaces have been
studied by Gallego and Purnaprajna [218], [217].

Notes

The material in Sections 1.1–1.4 is for the most part classical, although the
contemporary outlook puts greater emphasis on nef bundles and Q-divisors
than earlier perspectives. Chapter 1 of Hartshorne’s notes [276] remains an
excellent source for the basic theory of ample and nef divisors. We have also
drawn on [363, Chapter VI] and [368, Chapter 1.5], as well as Debarre’s pre-
sentation [114]. Theorem 1.4.40 (at least for locally free sheaves on smooth
varieties) appears in [126].

The essential facts about Castelnuovo–Mumford regularity are present or
implicit in [445] and [448]. Examples 1.8.18, 1.8.22, and 1.8.24 are general-
ized folklore, while Proposition 1.8.9 was noted by the author some years
ago in response to a question from Ein. Special cases of Mumford’s Theorem
1.8.5 have been rediscovered repeatedly in the literature in connection with
vanishing theorems.




