
1

Components of a Theory

Software engineering is about specification, design, implementation, and main-
tenance of software artifacts. Like any engineering profession, it requires vari-
ous kinds of knowledge and skills. One of the necessary ingredients is a theory
that makes it possible

• to formulate, discuss, and reason about the properties that are essential
in software artifacts,

• to specify and design software systems that have the desired properties,
and

• to verify that software designs actually meet the given requirements.

The characteristic properties that such a theory should help to deal with are
those of the dynamic behaviors that are generated by the execution of software.

Since it is software that has made it possible to create artifacts with in-
volved dynamic behaviors, managing this kind of complexity has become an
issue only with the proliferation of software. The same problem arises, how-
ever, in any engineering of complex systems. Therefore, a theory that helps in
managing the logical complexity of dynamic behaviors is also applicable more
generally. Due to the non-physical character of software, software engineering
faces the problem, however, in a pure form, where physical theories play no
essential role.

Dealing with the complexity of dynamic behaviors is what this book is
all about. The main emphasis is on a theoretically justified specification and
design method, which supports incremental derivation of operational spec-
ifications that have the desired properties. The specific focus of this book
is on reactive systems, i.e., on systems that are in continual interaction with
their environments. By the environment we understand in this context human
users, physical environment, and other reactive systems that interact with the
system under consideration.

Although the attribute ‘reactive’ emphasizes the most distinctive charac-
teristic of the systems that we are interested in, there are other frequently
used terms that characterize some more technical aspects of such systems:



4 1 Components of a Theory

• Reactive behavior is usually associated with embedded systems, in which
software is an integral part of devices that have been designed for specific
purposes. The hardware and the software of such dedicated systems have
to be designed together, which is usually referred to as codesign.

• Real-time properties are often crucial in the requirements for reactive
systems, in which case the term real-time system is used. Depending on
whether real-time requirements are essential for correct behavior, or are
formulated as statistical requirements that have to be satisfied on the av-
erage, real-time systems are called hard or soft.

• When a system consists of cooperating subsystems that are physically
or even geographically distributed, it is called a distributed system. The
subsystems of a distributed system are often reactive, and real-time re-
quirements may also be associated with them.

• The purpose of a real-time system may be to monitor and control some
physical phenomena in its environment. In addition to discrete states, the
specification of such a system may need to refer to physical quantities
that change as continuous functions of time. Such systems are referred to
as hybrid systems.

The purpose of this introductory chapter is to outline the components
that are needed in a theoretically justified approach to reactive systems. The
structure of the chapter is as follows:

• In Sect. 1.1 we briefly analyze the relationship between theory and practice
in software specification.

• Section 1.2 outlines some general requirements for a theory that would
provide comprehensive support for the specification and design of reactive
systems.

• Section 1.3 gives a brief outline of the rest of this book.

1.1 The Role of Theory

We start by inspecting the role of an underlying theory in the specification
and design of software.

1.1.1 Theory and Practice

The history of software engineering is still very brief. In just a few decades,
software has become a ubiquitous basic technology for the implementation of
complex systems. The size and complexity of software artifacts have grown
immensely at the same time, and the qualitative character of software and its
applications have also changed rapidly.

These advances in the state of the art have been largely based on practical
rather than theoretical understanding of software. Also, due to the speed of
development, theoretical understanding of software has not had much time to



1.1 The Role of Theory 5

mature. As a result, the need of theory is often underestimated in the practice
of software engineering.

Although the driving forces for theoretical and practical developments are
different, useful theory of software cannot be developed in isolation from un-
derstanding what the essential practical problems in software and software
engineering are. Otherwise, theoretical work would remain as useless formal-
ization. On the other hand, the need for a solid underlying theory is also
becoming more and more evident in software practice. We are already fac-
ing the situation where some software cannot – or should not – be developed
without theoretically justified confidence in its behavior.

1.1.2 What Is Theory?

In a broad sense, anything that provides understanding at some level of gen-
erality can be called theory. The Oxford English Dictionary explains theory,
among other things, as “systematic conception or statement of something;
abstract knowledge, or the formulation of it.”

For theoretical understanding of practical artifacts it is important that a
theory supports thinking in terms of abstractions, which allows us to omit
those aspects of the reality that can be managed trivially, and to concentrate
on those aspects that at least potentially may cause problems. Different the-
ories may support different kinds of abstractions, which is useful for taking
multiple views of the same artifacts. For instance, focusing on logical behav-
iors abstracts away all physical characteristics, which are also important in
all digital devices.

In particular, a theory of software (or any systems with behavioral com-
plexity) should provide a rigorous basis for

• specification, i.e., formulation of the required behavioral properties,
• design methods, i.e., systematic methods for developing systems that meet

the given requirements, and
• verification, i.e., reasoning on whether the required properties are, indeed,

satisfied by the design.

In addition, effective use of a theory should also be helpful for

• validation, i.e., checking that the design (or its eventual implementation)
meets the actual needs from which the requirements were derived.

1.1.3 Reality and Abstractions

Every theory has some inherent limitations. Since abstractions do not model
all properties of reality, a theory can be used only for those properties for
which it has been designed.

Since a theory deals with abstractions, it does not say anything about the
reality itself. Therefore, theoretical results and proofs are relevant for reality



6 1 Components of a Theory

only as far as this obeys the basic assumptions that have been made in the the-
oretical models. The validity of such assumptions will always remain beyond
the reach of mathematical proofs. In addition, no formal proof of software can
show that the original informal requirements have been correctly formalized.
This is why formal methods can never remove the need for validation.

Although these remarks about distinguishing between the reality and ab-
stract models are a truism, there is considerable danger for confusion between
the two, especially in connection with software.

A written program seems to belong to reality, as its execution on real
computers gives rise to those real phenomena that we are interested in. We
are not, however, interested in these physical phenomena as such, but on their
interpretation as computations. Since widely different physical representations
can be used for computations, a program is, in fact, an abstraction that is
independent of the actual phenomena that arise in its real executions, and it
can therefore be subjected to formal analysis and proofs.

The relevance of any proofs of programs always depends on some assump-
tions, like absence of ambiguities in the programming language that is used,
correctness of all system software that it relies on (compilers, operating sys-
tems, database systems, communication protocols, etc.), fault-free operation
of the hardware involved, and satisfaction of (often implicit) assumptions on
ranges of numbers, amounts of data, frequencies of communication, etc. All
these are non-trivial assumptions, as is shown by the multitude of bugs in
commonly used system software, famous design errors in hardware, and the
Y2K problem, for instance.

Worse still, abstractions of interactive behavior make assumptions on all
partners of interaction. Therefore, reactive systems cannot be specified inde-
pendently of modeling the environments in which the systems are intended
to be used. Although assumptions on the environment can be formalized in
more and more detail when increased confidence in the satisfaction of these
assumptions is required, it is important to understand that the reality itself
always escapes full formalization.

For all these reasons, theoretically well-justified formal methods and proof
techniques can never replace testing and validation. Instead, the two kinds of
approaches complement each other and should be used in tandem to increase
our confidence in complex systems.

1.1.4 Role of Theory in Engineering

Natural sciences and the associated mathematical theories provide the basis
for theoretical understanding in traditional engineering disciplines. In practi-
cal engineering work one may not need to go to these fundamentals all the
time, but it is always possible to resort to them when necessary.

These fundamentals are considered essential in engineering education, and
one would not think of teaching only practical engineering skills without as-
sociated theoretical understanding. This shows that the importance of a uni-



1.1 The Role of Theory 7

versally accepted theoretical framework is recognized, even though practical
engineering standards and industrial practices may be more important in ev-
eryday engineering work.

In software engineering the situation is a bit different. Obviously, physics
and calculus do not provide a useful basis for understanding software. Since
no comparable and generally accepted theoretical basis has been agreed on,
software-engineering education typically concentrates on programming skills,
available tools, standard practices, organization and leadership of software
projects, etc. Instead of a general theory of programs, discrete mathematics is
taught, as well as specialized mathematical theories that are relevant in com-
puter science, like those needed for understanding compilers, computability
and complexity issues, efficiency of algorithms and data structures, etc. Al-
though all of these are essential for the software-engineering profession, they
are no replacement for an underlying theory of software.

1.1.5 Emerging Need for a Theory

The need for a general theory depends greatly on the size and complexity of the
artifacts to be constructed, and on the severeness of the potential consequences
of errors in them. Just plain logical thinking without any special theory is
sufficient for understanding short and simple programs. In larger programs,
simple programming errors can be avoided by using appropriate tools, and
an error can often be understood and corrected without much theory, once
somebody points out under which circumstances it occurs.

This has led to a situation where the significance of high-level program-
ming languages and other tools, maintainable software architectures, team-
work skills, systematic testing methods, good management of the software
process, etc., is recognized in software-intensive industry, but no stringent
need is felt for competence in an underlying theory of software.

With growing requirements for the degree of confidence in software, the
situation is, however, becoming unsatisfactory. This is the case, in particular,
with software that is used to control life-critical systems, and also with em-
bedded consumer products like automobiles, where human control more and
more often takes place through software interfaces. Networking of systems
has also greatly increased the need for trustworthiness even in the presence of
deliberate misuse and malicious attacks.

Although understanding of theoretical foundations is only one aspect in
producing high-quality software, its importance will necessarily increase when
the field becomes more mature, and when consumers become more conscious
about software quality.

Review Questions

Question 1.1.1 What are the main purposes for which a theory of software
can be used?



8 1 Components of a Theory

Question 1.1.2 What makes interactive behaviors more difficult to specify
than non-interactive behaviors?

Question 1.1.3 What makes software engineering fundamentally different
from other engineering disciplines?

1.2 Parts of a Comprehensive Theory

In computer science and software engineering, people are used to develop and
deal with different kinds of abstractions. The problem is therefore not in the
lack of useful abstractions, but in their incompatibilities, and in the lack of a
comprehensive theory that would support them.

In this section we discuss different kinds of abstractions that should fit
together in a balanced manner and without incompatibilities, in order that a
theory would be useful for the practice of software specification.

1.2.1 Spectrum of Abstractions

Specification formalisms are often classified into property-oriented and model-
oriented ones. The purpose of the former is to express required properties
independently of how they can be implemented. In the latter, specifications
are given as operational models, which can be understood as ‘abstract imple-
mentations’.

Logical foundations:
• underlying philosophy
• programming logic

Design methodology

Model-oriented abstractions:
• language concepts and paradigm
• abstract execution model

Reality

abstraction

reification

Fig. 1.1. Parts of a comprehensive theory

A practical theory cannot be limited to either category alone, since it has
to support both kinds of views. Figure 1.1 outlines the spectrum of abstrac-
tions that a successful theory has to address. Logical foundations constitute
the high end, which has to support property-oriented abstractions. Design
methodology has been placed in the middle, between logical foundations and



1.2 Parts of a Comprehensive Theory 9

model-oriented abstractions, since it deals with the design of operational mod-
els and requires language support for this, but also needs to be based on solid
logical foundations.

1.2.2 Development of Abstractions

Two opposite directions can be seen in the process of developing abstract
concepts for software, abstraction and reification, as shown in Fig. 1.1.

Abstraction

Historically, and in programming education, the dominating direction for de-
veloping understanding of software is to start with concrete programs and
to design abstractions in the bottom-up direction. Real computer architec-
tures and machine languages are then taken as the reality, for which useful
higher-level abstractions are gradually developed in terms of language ideas
and language-related programming concepts.

This approach has been very successful, and has led to effective machine-
independent languages and tools, to reusable design patterns, and to infor-
mal design methods for managing the complexity associated with software.
In particular, these abstractions help in the architecture of software, i.e., in
structuring it into units that have well-defined properties and relationships.

Together with a specification of what a program is intended to accom-
plish, such concepts make it easier to check whether a final product meets
the intentions. However, this abstraction process assigns no abstract mean-
ing to programs as such. Therefore, these concepts are not directly suited
for addressing semantically relevant relationships between programs, such as
program equivalence.

On the other hand, being independent of the meaning of programs, these
abstractions are relatively insensitive to what kinds of essential properties
programs are interpreted to possess. As an extreme example of our freedom
in this interpretation, consider being interested only in the side-effects on
console lamps, for instance. In this connection it may be interesting to recall
that the machine instructions of some early computers had side-effects on a
loudspeaker, which allowed us to interpret the meaning of a program as the
tune played by its execution.

Reification

The reification process starts with the fundamental question of what the es-
sential properties of programs really are. Mathematical abstraction of the
meaning of programs allows us to discuss rigorous reasoning on these proper-
ties, and can also give a solid basis for design methods.

One of the problems with this top-down direction is that it is possible
to start with different kinds of underlying philosophies. It may, in fact, be



10 1 Components of a Theory

the case that no single philosophy will ultimately be good for all kinds of
programs. The essential properties in mathematical subroutines, interactive
systems, and real-time control software, for instance, seem to be very different,
and specialized theories for them may therefore give better results than a
single unified theory of programs.

Another problem with top-down development of abstractions is how to
integrate the resulting rigorous methods smoothly into the software process.
In particular, bottom-up development of abstractions has led to extremely
complicated languages like C++, and gaps and incompatibilities are therefore
unavoidable between mathematically manageable basic concepts and those
that are currently advocated in practice.

1.2.3 Execution Models

Abstract execution models, or abstract machines, provide a possible first step
in providing abstractions of software. In the specification of software, such
models are important for operational specifications that can be executed, sim-
ulated, or animated. To allow effective reasoning, the models should, however,
be simpler than real execution of programs on existing computer architectures.

Turing machines, finite automata, and Petri nets are examples of abstract
execution models that have been designed for different theoretical purposes.
The notion of Turing machines has been used successfully as a basis for the
theory of computability and for complexity theory, but it would be totally
inapplicable as a basis for discussing the specification and design of software.
Finite automata, on the other hand, are suitable for modeling special classes
of software, like communication protocols, for instance, and Petri nets have
been designed for the modeling of parallelism in concurrent systems.

The execution model to be used in this book is a simple action-oriented
execution model, which will be explained in Chap. 2.

To distinguish between executions of real systems and those in a model, the
former will be called computations in the following, whereas those in abstract
machines will be referred to as executions.

Formal execution models allow rigorous reasoning on executions in ab-
stract machines, but they do not assign abstract mathematical meanings to
the models. Therefore, they may be useful in the modeling of software, but
as such they are insufficient to support a comprehensive theory. In particular,
without additional information they cannot be used to address the fundamen-
tal question of whether two different systems are equivalent or not, or whether
one of them models a correct implementation of the other.

1.2.4 Language Concepts

Programming concepts and paradigms provide the conceptual basis for the
constructs and facilities in programming languages. Therefore, the history of



1.2 Parts of a Comprehensive Theory 11

high-level languages and the associated paradigms reflects the development of
our conceptual understanding of programs.

Programming language mechanisms are, however, often treated as if they
would be the primary objects of concern, instead of the underlying concepts
that they should be designed to reflect. For instance, extending program-
ming languages to deal with concurrency has often been discussed as if this
would primarily be a question of language constructs and their implementa-
tion mechanisms, not a question of how concurrency affects the fundamental
properties of programs.

In each case, language concepts are an important step beyond execution
models. In particular, high-level programming languages have declarative fea-
tures, which allow much freedom in algorithmic implementation. Program-
ming language concepts therefore also provide useful abstractions for opera-
tional specifications, although the latter may have features that prevent au-
tomatic compilation into executable programs, in general.

One of the idealistic goals in developing high-level languages has been
that they would by themselves be sufficient for discussing the properties of
programs, so that no higher-level abstractions would be needed on top of
them. For large and complex programs this has, however, turned out to be
unrealistic.

One reason for this is that, although high-level languages aim at simplic-
ity, they are not at all simple. In fact, when all the ingredients for a modern
high-level language are put together, their combined effects are bound to lead
to complexities and ambiguities that are difficult to foresee and to manage.
For this reason, some theoreticians have often argued for much simpler pro-
gramming languages, but the practice has not followed their advice – and
often with good reason. In each case, much of the complexity of current pro-
gramming languages has to be abstracted away in order to obtain a practical
theory.

A good example of current trends in programming languages is object ori-
entation, which has proved to be a very successful paradigm. However, if the
facilities in object-oriented programming languages are adopted in specifica-
tions as such, without abstracting away some of the associated complications,
specifications are not any easier to reason about than programs.

1.2.5 Underlying Philosophy

Each theory has an underlying philosophy, which determines informally the
semantic properties that one wishes to express and reason about.

One of the fundamental distinctions to be made at this level is whether the
purpose of executions in a model is thought of as transforming input to output,
or as continued interactions between a system and its environment. Depending
on this distinction, the semantics of an approach is either transformational or
reactive.



12 1 Components of a Theory

In this connection it should be noticed that a program itself is always just
a program, not a transformational, reactive, real-time, or some other kind of
a program. Such distinctions are not in the programs themselves, but in the
theories that are useful for reasoning on their properties. This is analogous
to having just one physical reality, but different kinds of physical theories,
like classical Newtonian physics, theory of relativity, and quantum mechanics.
Different theories of software make it possible to concentrate on different kinds
of properties, and the properties that are crucial depend on the intended use
of a program in its intended application environment.

Transformational Philosophy

With transformational semantics, a program can be visualized as a black box,
which, for any input x, determines a corresponding output f(x), as illustrated
in Fig. 1.2. Instead of a purely functional correspondence between input x and
output f(x), a specification may also allow several alternatives for f(x), and
for some x it may allow the program to give no output at all.

�

input

��� ���

output

Fig. 1.2. A transformational system as a black box

· · ·

initial state
with input �

non-visible steps
final state

with output
��� ���

Fig. 1.3. Illustration of a transformational black-box execution

In an operational model of a transformational system, computations are
modeled to proceed in discrete steps, starting from an initial state, where
input x has already been read in. Intermediate steps take place in a black
box and are therefore not visible. If the execution terminates, output f(x) is
eventually available in the final state as shown in Fig. 1.3. Nonterminating
and aborted computations give no value for f(x).

Reactive Philosophies

With reactive semantics, a system is assumed to be in continual interaction
with its environment. Described as a black box, the input–output relationship



1.2 Parts of a Comprehensive Theory 13

stimuli and
responses

Fig. 1.4. A reactive system as a black box

· · · · · · · · ·

stimulus or
response step

stimulus or
response step

non-visible steps non-visible steps

Fig. 1.5. Illustration of a reactive black-box execution

of transformational systems then generalizes to stimuli and responses with
more complex causal–temporal relationships (see Fig. 1.4).

In an operational model of a reactive system, computations are normally
understood to be nonterminating. In interleaving models, stimulus steps, re-
sponse steps, and non-visible internal steps are all interleaved as illustrated
in Fig. 1.5, i.e., all steps are assumed to be taken in some sequential order
independently of the ‘execution agents’ by which they are performed. In con-
trast, true concurrency means that the concurrency of execution steps is also
modeled. Instead of total ordering, this leads only to a partial order between
the steps in an execution.

Under the so-called synchrony hypothesis, which essentially states that the
system is ‘infinitely fast’ in comparison to its environment, no new stimuli
can appear while a response is being computed. This leads to simpler models,
since it is then possible to consider a reactive execution as a sequence of trans-
formational executions. The initial state of each execution is then, however,
affected by the history of previous executions.

In principle, execution steps can be understood either as state changes or
as events with identification labels. Depending on this choice, an approach is
called either state-based or event-based.

In general, there are several possible continuations for a given prefix of
a reactive execution. Therefore, another basic question in reactive philoso-
phies is whether one wishes to express properties of individual sequences of
executions or of the whole trees that contain all possible continuations of an
initial prefix. Depending on this choice, an approach is called linear-time or
branching-time. The most obvious limitation of linear-time approaches is that
stochastic properties of possible executions cannot be formulated as properties
of individual linear executions.



14 1 Components of a Theory

Since different approaches to the modeling of reactive systems differ in
their basic philosophies, they cannot be directly mapped into each other. This
has caused some misunderstanding between their proponents. Such misunder-
standing is often a sign of confusion between reality and a theory. Once one
learns to think in terms of a given theory, one starts to consider only those
aspects of the reality to be important that this theory is able to describe, and
tends to ignore those aspects that have been abstracted away. Since different
theories abstract away different kinds of properties, it may then be that only
one’s own theory can express what one considers important.

In choosing between different alternatives for a reactive philosophy, deci-
sions are mostly based on intuition and subjective preferences. Ultimately, to
understand the consequences of such selections, one should compare all as-
pects of fully developed theories, including their support for languages, tools,
and design methods. An important point that needs to be understood in this
context is that increasing the expressiveness of a formalism also adds to its
logical complexity, and the main enemy of intellectual management is unnec-
essary complexity.

The choices on which the theory of this book is based are the following:

• The approach is ‘truly reactive’ in the sense that it is not based on the
synchrony hypothesis.

• The approach is state-based, although one can also see some event-oriented
flavor in it.

• Reasoning in the approach is based on the interleaving model, which is
simpler than true concurrency, but can still also be used for the modeling
of distributed concurrency.

• The approach is linear-time, which means that specifications determine
properties that must be satisfied by all execution sequences.

1.2.6 Programming Logic

Programming logic is a formal system for expressing properties of programs
and to reason about them. In connection with state-based reactive philoso-
phies, temporal logics are the primary vehicles for this. The choice in this
book is a variant of linear-time temporal logic called temporal logic of actions
(TLA), which will be discussed in Chaps. 3 and 4.

In principle, an expression in a programming logic is a specification for
a software system in the sense that it expresses the logical meaning of such
a system.1 In other words, expressions in the logic constitute the semantic
domain for the systems. Two systems are equivalent if they have the same
meaning in this logic, and a system is a correct implementation of a given
specification if its meaning logically implies the specification.

1To be more precise, the logical expressions that will be used in this book de-
scribe not only software, but any reactive systems together with their intended
environments.



1.2 Parts of a Comprehensive Theory 15

operational
non-operational

Fig. 1.6. The ‘iceberg’ of specifications

No matter how the logical meaning of systems is defined, if the seman-
tic domain is restricted to correspond to operational systems only, it does
not possess mathematical properties that would be easy to manage. However,
by allowing the domain to contain also non-operational ‘meanings’ that have
no operational interpretation, mathematically more elegant structures can be
achieved. This is illustrated in Fig. 1.6 as an ‘iceberg’, where the tip corre-
sponds to those specifications that have an operational interpretation. The
purpose of a specification process is to lead to specifications with their mean-
ings within this tip, but the full range of the ‘iceberg’ needs to be available
during this process.2

1.2.7 Design Methodology

As such, design methods do not provide additional abstractions to a theory.
However, as shown in Fig. 1.1 (p. 8), they have a central position in a prac-
tical theory, providing a link between logical foundations and model-oriented
abstractions.

Traditionally, design methods have been developed with a view on model-
oriented abstractions that can be supported by programming languages and
various kinds of tools for manipulating software modules. This means that the
emphasis has been on structural aspects of software, and on issues of syntactic
compatibility.3 In particular, attention has been paid to structural modular-
ity, encapsulation of design decisions within modules, and to the design of
module interfaces. The role of design methods has then largely been in pro-
viding guidelines for proper module design, in graphical illustrations for the
structural aspects of the design, and in systematic documentation of design
decisions.

2The same phenomenon is well known from extending the set of natural numbers
to real and complex numbers. In electrical engineering, for instance, one frequently
needs complex numbers in calculations, even when the final results are known to be
real.

3In syntactic aspects we also include ‘static semantics’, which makes it possible
to check that variables, objects, modules, etc., are utilized in accordance with their
definitions.



16 1 Components of a Theory

The main problem with such design methods is that no meaning is asso-
ciated with the system under design, except in terms of some scenarios of the
intended ‘dynamic properties’. Since such methods support rigorous inspec-
tion of only syntactic and structural properties, until the dynamic properties
have been determined by an essentially implementation-oriented description,
the slogan ‘correctness by design’ remains an empty phrase with them.

This problem can be overcome if design methods have a solid foundation
in programming logic. Such a foundation makes it possible to reason about the
semantic properties of a design already before any implementation-oriented
descriptions are available.

Design methodology is, in fact, a crucial part in integrating the various
aspects of a practical theory. It has to be rooted in the logical foundations of
the approach, but it also affects the concepts of modularity that need to be
supported by the design language. In fact, design methods that are supported
by a theory reveal whether the abstractions at the different levels fit together
in a reasonable manner. It should not be expected, as it is often done, that one
could build a useful approach by taking a heterogeneous set of abstractions and
associated tools, and constructing artificial bridges between them to overcome
gaps and incompatibilities.

In other words, a good theory is not for constructing tools by which theo-
retically justified quality could be added to an arbitrary software process. A
theory is a basis for thinking and understanding, and it necessarily also affects
the software process, in particular the methods and ways of thinking that are
used in early stages of specification and design. This is perhaps the biggest
obstacle in adopting a theory in practice.

Review Questions

Question 1.2.1 Why is an execution model insufficient as such as a basis
for a theory of programs?

Question 1.2.2 Why is any classification of programs (into transforma-
tional, reactive, and real-time programs, for instance) actually a classification
of theories, not of programs?

Question 1.2.3 What is the difference between transformational and reac-
tive philosophies?

Question 1.2.4 What is meant by an interleaved execution model?

Question 1.2.5 What is meant by the synchrony hypothesis?

Question 1.2.6 What is the difference between state-based and event-based
approaches?



1.3 The Structure of the Book 17

Question 1.2.7 What is the difference between linear-time and branching-
time approaches?

Question 1.2.8 Why is it reasonable that the semantic domain also contains
other ‘meanings’ than those that have operational interpretations?

Question 1.2.9 What is the role of design methodology in a theory of pro-
grams?

1.3 The Structure of the Book

A comprehensive theory for reactive systems will be described in this book.
The core chapters of the book have been grouped into three parts. These three
parts are preceded by Part I, Prologue (this chapter), and followed by Part
V, Epilogue (Chap. 11), which take a more general look at the characteristics
of the approach.

Although mathematical concepts and results are effectively utilized in the
book, formal theorems and proofs are avoided in the presentation. At the end
of most sections, some of the key points are reiterated in the form of simple
review questions given to the reader, and exercises of varying difficulty are also
given. Each chapter ends with some notes on related history and literature.

No single running example was found suitable to illustrate the different
topics discussed in the book. Instead, example specifications of varying size
and complexity are given throughout the book. Although these are only ‘aca-
demic exercises’, the reader is encouraged to study them also in those chap-
ters that he/she will not otherwise read carefully. Although the examples are
mostly placed after the text that they are supposed to illustrate, it may often
be wise to study them in parallel with the text.

1.3.1 Part II: Fundamentals

Part II of the book addresses the fundamental ideas of the approach and
consists of three chapters.

Since model-oriented abstractions are the most natural starting point for
software engineers,

• Chapter 2 introduces the execution model of action systems, which provides
the basis for operational interpretation of specifications in this theory.

This execution model is action-oriented in the sense that execution consists of
an interleaved sequence of actions, which are considered to be atomic units of
execution. To fulfill its role in the theory, the execution model is very simple,
and has no built-in support for any program structures. For instance, unlike
commonly used execution models, it has no inherent bias towards sequential
control threads. As such it provides, however, a suitable basis for operational



18 1 Components of a Theory

specification of reactive systems, and of any systems in which concurrency and
distributed execution is essential. Although the execution model could also be
used as a basis for a programming language, this is not a relevant question in
the context of this book.

To give a solid basis for the theory,

• Chapter 3 is devoted to the logical foundations of the approach.

As the logical basis we take temporal logic of actions (TLA), which is a vari-
ant of linear-time temporal logics. TLA is used here to express and reason
about properties of ‘closed systems’, where the environment of a reactive sys-
tem is also included. An important point in fitting the different parts of the
theory together is that the action-oriented execution model provides a natural
operational interpretation for TLA expressions in a certain canonical form.

To help readers who do not have strong background in logic, but who
would like to understand what it means to carry out formal proofs in detail,

• Chapter 4 gives an introduction to formal reasoning in TLA.

The deduction rules that are discussed in this chapter are not essential for
understanding how the theory can be used in practice. In particular, the reader
is warned of the fact that even ‘obvious’ properties may lead to long and
complicated proofs, when carried out in detail, and that less formal proofs in
English may be perfectly adequate in practice.

1.3.2 Part III: Building a Practical Theory

Part III of the book addresses questions on building a practical theory on the
fundamentals described in Part II, and consists of four chapters.

Since practical use of the theory requires a specification and design lan-
guage,

• Chapter 5 is devoted to language aspects, by which notions like types,
finite-state structures, object-oriented classes, relations between objects,
and multi-object actions can be built on top of the primitive execution
model and can be rigorously reasoned about.

The language ideas presented in this chapter will be used in the rest of the
book. The main purpose of the chapter is not, however, to give a detailed
language, but to present the main problems in designing a language as part
of the theory.

Of special importance in this chapter is how the facilities of object-oriented
programming languages can be abstracted to a level that is appropriate for
specifications. In particular, single-object ‘methods’ and communication pro-
tocols between objects are abstracted into multi-object actions, which allows
reasoning on collective behaviors even in early stages of specification and de-
sign.

As presented in Fig. 1.1 (p. 8), design methods have a central role in our
theory. To discuss them,



1.3 The Structure of the Book 19

• Chapter 6 introduces the basic mechanisms to support design methods.

The main principle here is that specifications are constructed in incremental
layers, and that the design can therefore proceed incrementally, with rigorous
support for the preservation of behavioral properties in each step. The mod-
ularity of the design language has been designed to support such a layered
structure, where a specification layer need not correspond to a natural mod-
ule in an implementation, but may, instead, correspond to a concern that cuts
across them in an aspect-oriented manner.

The methodology gives a theoretically solid foundation for a specification
and design process that can start at a high level of abstraction and proceed
by stepwise refinements towards an implementable form. It also supports the
preservation of certain crucial properties (safety properties) in each refinement
step, without a need to resort to explicit proofs.

To allow object-oriented specification in the full meaning of the word,

• Chapter 7 extends the discussion of language aspects to aggregate objects
and to object-oriented inheritance.

This is done in such a manner that objects of a subclass always satisfy all prop-
erties specified for the base class. This also holds when multiple inheritance
is used.

Modeling reactive systems as closed systems raises issues of partitioning
a closed system into independently implementable components. To deal with
such matters,

• Chapter 8 analyzes how interfaces can be defined in closed-system specifi-
cations, and under which conditions components in a closed-system spec-
ification can be refined independently.

A special characteristic of the design method is that interfaces between com-
ponents can first be given at a high level of abstraction; a form that models
their implementation can then be achieved by refinements.

Although partitioning of closed systems has both theoretical and practical
interest, no language support is provided for it, and the reader may wish to
skip this chapter during the first reading of the book.

1.3.3 Part IV: Distributed and Real-Time Systems

Part IV of the book provides excursions to two more specific areas, which may
not interest all readers.

Historically, the development of this theory started with an attempt to
model distributed systems at a high level of abstraction, and the notion of
multi-object actions was originally proposed for this purpose. Addressing the
specific problems of distribution,

• Chapter 9 analyzes the applicability of the interleaved execution model
to distributed systems, and how action systems can be implemented in a
distributed fashion.



20 1 Components of a Theory

In particular, it is shown in this chapter that the simple interleaved execu-
tion model does, indeed, also provide a suitable basis for the modeling of
distributed systems, in which real concurrency is involved.

Since real time is essential for many reactive systems,

• Chapter 10 describes how the theory can be applied to model and reason
about real-time properties.

The treatment in this chapter also covers hybrid systems, in which continuous
state functions of the environment are also relevant.

Bibliographic Notes

Model-oriented abstractions have a long history in computing, and are pri-
marily reflected in the evolution of programming languages.

The idea of rigorous reasoning on programs can be found even in some
early papers by Goldstine and von Neumann [68] and by Turing [190]. Serious
interest in this topic did not, however, arise before Floyd’s seminal paper [57].
At the same time, similar ideas were presented independently in a less widely
known paper by Naur [163].

The next step towards a theory of programs was Hoare’s work on asso-
ciating axioms and logical deduction rules directly with the definition of a
programming language [83]. Hoare logic involved triples of the form {P}S{Q}

with the following transformational meaning: if the execution of a program
statement S starts in a state where precondition P holds, then its execution
terminates in a state where postcondition Q holds.

Based on Hoare’s work, Dijkstra observed [43, 44] that each program state-
ment S can be given an abstract meaning as a predicate transformerΦS, which
for any postcondition Q gives the weakest precondition P for which {P}S{Q}

holds, i.e.,ΦS(Q) = P. This was a crucial step in making mathematical manip-
ulation of programs possible with the transformational basic philosophy. The
associated refinement calculus gave a solid foundation for rigorous program-
ming methods, as developed further by Gries [71], Hehner [79], Morgan [161],
and Back and von Wright [21], for instance.

As for the more established specification languages and formal methods
that are essentially based on transformational semantics, the reader is referred
to VDM [96], Z [184], and B [9]. For a more detailed history of formal reasoning
on programs the reader is referred to an extensive survey by Jones [97].

In dealing with reactive systems, the synchrony hypothesis provides the
basis for Harel’s statecharts [76] and the associated tools called STATE-
MATE [77], as well as for a family of synchronous programming languages
that includes Esterel, Lustre, and Signal [73].

As for theories with ‘truly reactive’ semantics, event-based approaches were
pioneered by Hoare’s communicating sequential processes (CSP) [86] and Mil-
ner’s calculus of communicating systems (CCS) [159, 160]. LOTOS [26] is a



1.3 The Structure of the Book 21

specification language that combines such a process-algebraic approach with
an algebraic specification of data structures.

Event ordering in distributed systems, which is essential for interleaving
models, was first discussed by Lamport [136]. An early example of such ex-
ecution models is the one given by Lynch and Fischer [149]. Partial-order
and interleaving semantics for CSP-like languages have been compared by
Reisig [176].

Temporal logic was introduced to state-based reasoning on reactive systems
by Pnueli [170, 171]. More recent textbooks by Manna and Pnueli [152, 153]
give a comprehensive treatment of this. The term ‘reactive system’ was coined
by Harel and Pnueli [78]. The inherently greater complexity of reactive sys-
tems, when compared to transformational systems, has been discussed by
Wegner [193], for instance.

Temporal logic of actions (TLA) was developed by Lamport [138, 141]. One
of its goals was to achieve the situation that an implementation relationship
between specifications corresponds to logical implication. TLA+ [144, 145] is
a language for constructing TLA specifications. The approach in this book is
based on experiences with an experimental specification language DisCo [93,
124, 49], in which TLA has been used as the logical basis.

While most research has concentrated on limited aspects of a theory,
Chandy’s and Misra’s UNITY [36] was an important milestone in develop-
ing a comprehensive theory for distributed systems. Its essential components
are an execution model and an associated language (the UNITY language),
a temporal logic tuned to deal with this language (UNITY logic), and modu-
larity constructs that support certain design methods.

Although the theory presented in this book has been developed indepen-
dently of UNITY, and its goals are somewhat different, there is much sim-
ilarity between the two approaches. The most important differences will be
discussed at the end of those chapters where the different parts of the theory
are addressed.




