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3.3 Linearization and Stability

Linearization of a nonlinear differential or difference equation of the form (2.27)
about a given trajectory (in particular an equilibrium state) yields a linear system
which, in general, will be time-varying. Since stability is a local property one might
expect that the linearization provides sufficient information to determine whether
or not the trajectory is stable. This is the idea behind an approach adopted by Li-
apunov which is now known as Liapunov’s indirect method. In order to prepare the
ground for the development of this method we need to consider stability problems
for linear systems. Actually linear models are often used in areas of application
and especially in control, so linear stability analysis is important in its own right.
Moreover, as we shall see, the theory is well developed and yields a number of spe-
cific stability criteria which lead to computable tests. By using Liapunov’s indirect
method these linear stability tests can be applied to nonlinear systems as well.
Our stability analysis will be for both time-varying and time–invariant linear sys-
tems and we will also include methods related to Liapunov functions since they will
enable us to prove the validity of the indirect method. In the last section of this
chapter the stability analysis of linear systems will be continued with a derivation
of the classical algebraic stability criteria for time–invariant linear systems.
In the first subsection we characterize the asymptotic and exponential stability of
time–varying linear systems via their evolution operator Φ and associated Liapunov
and Bohl coefficients. Whilst these results are quite satisfactory they suffer from
the drawback that one needs to compute Φ in order to check them. In Subsection
3.3.2 time-invariant systems are considered and we show that the conditions are
equivalent to constraints on the spectrum of A. We illustrate the results with some
examples and also carry out an extended case study where the numerical stabil-
ity of linear multi-step discretization methods, described in Section 2.5 is analyzed.
In Subsection 3.3.4 we examine the possibility of using time–dependent quadratic
forms as Liapunov functions for time-varying linear systems. Then these quadratic
forms are used for nonlinear systems (2.27) to derive stability properties of a given
trajectory from stability properties of the associated linearized model (Liapunov’s
indirect method). In fact we will see that the properties of asymptotic stability and
of instability can be tested via the linearized model. However this is not possible
for (marginal) stability, since the stability of a solution which is not asymptotically
stable can be destroyed by arbitrary small perturbations of the system equation (see
Subsection 3.3.2). Finally, in the last subsection we consider time-invariant systems
and time–invariant quadratic Liapunov functions. For their construction a linear
matrix equation, the algebraic Liapunov equation, must be solved. We analyze this
equation in some detail and characterize the asymptotic stability and instability
of a time-invariant linear system via the solutions of the associated algebraic Lia-
punov equation. This in turn allows us to conclude that an equilibrium point x of
a nonlinear system is exponentially stable if and only if the spectrum σ(A) of the
matrix obtained from the linearization at x satisfies σ(A) ∈ C− (resp. σ(A) ∈ D).
In addition, if σ(A) /∈ C− (resp. σ(A) /∈ D), then x is an unstable equilibrium point
of the nonlinear system.
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3.3.1 Stability Criteria for Time-Varying Linear Systems

In this subsection we analyze the stability of finite dimensional time-varying linear
systems described by differential and difference equations. Recall that for these sys-
tems the (asymptotic) stability of the equilibrium solution at the origin is equivalent
to the (asymptotic) stability of any other solution (see Subsection 3.1.2). Hence we
may attribute the stability properties to the system itself instead of the solutions.
We first express the stability properties of a linear system in terms of the associ-
ated evolution operator Φ(t, t0). We then introduce Liapunov and Bohl exponents
which measure the (uniform) exponential growth (or decrease) of the trajectories.
The main theorem of the subsection is Theorem 3.3.15 where uniform exponential
stability is shown to be equivalent to the Bohl exponent being negative and also to
the existence of a uniform estimate on the Lp-norm of the evolution operator Φ.
We consider the following system equations

ẋ(t) = A(t)x(t), t ∈ T ⊂ R (1a)

x(t + 1) = A(t)x(t), t ∈ T ⊂ Z (1b)

where the time domain T is either an interval in R or in Z which is unbounded to
the right. By assumption A(·) ∈ PC(T ; Kn×n) in (1a) and A(t) ∈ Kn×n, t ∈ T in
(1b). In both cases A(·) generates an evolution operator Φ(·, ·) (see Section 2.2),
and the solution of (1) satisfying x(t0) = x0 is given by x(t) = Φ(t, t0)x

0, t ∈ Tt0 for
all x0 ∈ Kn. Linear systems of the form (1) induce a global flow F = (T, X, ϕ) on
X = Kn given by ϕ(t; t0, x

0) = Φ(t, t0)x
0, (t0, x

0) ∈ T ×Kn, t ∈ Tt0 .
As in the previous section we provide Kn with the Euclidean norm and Kn×n with
the corresponding operator norm (spectral norm). The first two propositions are
immediate consequences of Definitions 3.1.8, 3.1.9.

Proposition 3.3.1. Let (z1, . . . , zn) be any basis of Kn. Then the following state-
ments are equivalent.

(i) The system (1) is stable at time t0 (resp. uniformly stable).

(ii) There exists a constant M which may depend on t0 (resp. independent of t0)
such that ‖Φ(t, t0)‖ ≤M for all t ∈ Tt0.

(iii) There exists a constant M which may depend on t0 (resp. independent of t0)
such that ‖Φ(t, t0)z

i‖ ≤M for all t ∈ Tt0 , i ∈ n.

Proof : (i) ⇒ (ii). Suppose that (1) is stable at time t0 (resp. uniformly stable).
Then for ε = 1, there exists δ > 0 depending on t0 (resp. independent of t0) such
that ‖x0‖ ≤ δ ⇒ ‖Φ(t, t0)x

0‖ ≤ 1 , t ∈ Tt0 .

Hence ‖Φ(t, t0)‖ ≤ δ−1 for all t ∈ Tt0 .
As (ii) ⇒ (iii) is trivial it only remains to prove (iii) ⇒ (i). Suppose (iii). Since
there exist a, b > 0 such that

a max
i∈n
|ξi| ≤ ‖

n∑

i=1

ξiz
i‖ ≤ b max

i∈n
|ξi|, ξ ∈ K

n. (2)
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we have for all x0 =
∑n

i=1 ξiz
i ∈ Kn,

‖Φ(t, t0)x
0‖ = ‖Φ(t, t0)

n∑

i=1

ξiz
i‖ ≤ max

i∈n
|ξi|

n∑

i=1

‖Φ(t, t0)z
i‖ ≤ a−1nM‖x0‖.

This proves (i). �

Proposition 3.3.2. Let (z1, . . . , zn) be any basis of Kn. Then the following state-
ments are equivalent.

(i) The system (1) is asymptotically stable at time t0 (resp. uniformly asymptoti-
cally stable).

(ii) The system (1) is globally asymptotically stable at time t0 (resp. globally uni-
formly asymptotically stable).

(iii) ‖Φ(t, t0)‖ → 0 as t→∞ (resp. uniformly in t0).

(iv) For i ∈ n, ‖Φ(t, t0)z
i‖ → 0 as t→∞ (resp. uniformly in t0).

Proof : (i) ⇒ (ii) follows directly from linearity and (ii) ⇒ (iv) and (iii) ⇒ (i) are
trivial.
(iv) ⇒ (iii). Suppose (iv) holds, then for every ε > 0 there exists a time τ(ε)
depending on t0 (independent of t0) such that ‖Φ(t, t0)z

i‖ < ε for all t ∈ Tt0+τ(ε),
i ∈ n. But then, for every x0 =

∑n
i=1 ξiz

i, ‖x0‖ = 1 we have maxi∈n |ξi| ≤ a−1 where
a > 0 satisfies (2), and thus

‖Φ(t, t0)x
0‖ = ‖

n∑

i=1

ξiΦ(t, t0)z
i‖ ≤ a−1nε , t ∈ Tt0+τ(ε) ,

hence (iii) holds. �

Remark 3.3.3. In the discrete time case

Φ(t, t0) = A(t− 1)A(t− 2) . . . A(t0) , t ∈ Tt0 . (3)

So if (1b) is (asymptotically) stable at time t0 ∈ T it will also be (asymptotically) stable
at time τ ∈ T for all τ < t0. A similar statement also holds for τ ∈ T, τ > t0 provided
that detA(k) �= 0 for k = t0, . . . , τ − 1. Furthermore, taking norms in (3) we obtain

(∀t ∈ T : ‖A(t)‖ ≤ γ ) ⇒ ‖Φ(t, t0)‖ ≤ γt−t0 , t0 ∈ T , t ∈ Tt0 . (4)

Hence the zero state of (1b) will be uniformly stable if ‖A(t)‖ ≤ 1, t ∈ T and it will
be uniformly asymptotically stable if ‖A(t)‖ ≤ γ < 1 for all t ∈ T . These conditions,
however, are far from being necessary. �

An estimate of the spectral norm ‖Φ(t, t0)‖ for the continuous time case is provided
by the next lemma.

Lemma 3.3.4. If Φ(t, t0) is the evolution operator of (1a), then

e
− R t

t0
‖A(s)‖ds ≤ σmin(Φ(t, t0)) = ‖Φ(t0, t)‖−1, ‖Φ(t, t0)‖ ≤ e

R t
t0

‖A(s)‖ds
, t ≥ t0 . (5)
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Proof : Since Φ(t0, t) = Φ(t, t0)
−1, we have

∂

∂t
Φ(t, t0) = A(t)Φ(t, t0),

∂

∂t
Φ(t0, t) = −Φ(t, t0)

−1A(t)Φ(t, t0)Φ(t, t0)
−1 = −Φ(t, t0)

−1A(t) = −Φ(t0, t)A(t)

for a.e. t > t0. Integrating yields

Φ(t, t0)− I =

∫ t

t0

A(s)Φ(s, t0)ds, Φ(t0, t)− I = −
∫ t

t0

Φ(t0, s)A(s)ds, t ≥ t0.

Hence for t ≥ t0

‖Φ(t, t0)‖ ≤ 1 +

∫ t

t0

‖A(s)‖‖Φ(s, t0)‖ds, ‖Φ(t0, t)‖ ≤ 1 +

∫ t

t0

‖Φ(t0, s)‖‖A(s)‖ds.

By Gronwall’s Lemma 2.1.18, we have

‖Φ(t, t0)‖ ≤ e
R t
t0

‖A(s)‖ds
, ‖Φ(t0, t)‖ ≤ e

R t
t0

‖A(s)‖ds
, t ≥ t0.

So the second inequality holds and the first is a consequence of σmin(Φ(t, t0)) =
‖Φ(t0, t)‖−1 for t ≥ t0. �

As a corollary of this lemma and Propositions 3.3.1, 3.3.2 we obtain

Corollary 3.3.5. The continuous time system (1a) with time-domain T = [t0,∞)
is uniformly stable if

∫ ∞
t0
‖A(s)‖ds <∞. It is (asymptotically) stable at time t1 ∈ T

if and only if it is (asymptotically) stable at time t0 ∈ T .

Proof : The first part is clear from the previous Proposition 3.3.1 and the above
lemma. The second follows from the estimates

‖Φ(t, t0)‖ ≤ ‖Φ(t, t1)‖‖Φ(t1, t0)‖, ‖Φ(t, t1)‖ ≤ ‖Φ(t, t0)‖‖Φ(t0, t1)‖, t ≥ t1 ≥ t0 (6)

and Proposition 3.3.2 and (5). �

The following proposition shows that for periodic systems (1) the stability properties
can be characterized via those of an associated time–invariant linear system. We
will see in the next subsection that efficient stability tests are available for such
systems.

Proposition 3.3.6. Suppose the generators A(·) of (1) are periodic with period
τ ∈ T , T = R or Z, τ > 0: A(t + τ) = A(t) , t ∈ T . Then (1) is uniformly
stable (uniformly asymptotically stable) if and only if the time–invariant discrete
time system

x̂(k + 1) = Φ(τ, 0)x̂(k) , k ∈ N (7)

is stable (asymptotically stable) where Φ is the evolution operator generated by (1).
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Proof : By periodicity Φ(t, t0) = Φ(t + τ, t0 + τ), t ∈ Tt0 , t0 ∈ T . Hence if t ∈ Tt0
and

t0 = k0τ + t′0 , t = kτ + t′ , 0 ≤ t′0, t′ < τ, k, k0 ∈ N, (8)

then

Φ(t, t0) = Φ(t, kτ)Φ(kτ, (k − 1)τ) · · ·Φ((k0 + 1)τ, t0) (9)

= Φ(t′, 0)Φ(τ, 0)k−k0−1Φ(τ, t′0) .

By (3), (5) there exists c > 0 such that ‖Φ(t′, 0)‖, ‖Φ(τ, t′0)‖ ≤ c for all t′0, t′ ∈
[0, τ ] ∩ T . Therefore (9) implies

‖Φ(t, t0)‖ ≤ c2‖Φ(τ, 0)k−k0−1‖ , t ∈ Tt0 as in (8) .

Applying Proposition 3.3.1 (Proposition 3.3.2) we see that (1) is uniformly (asymp-
totically) stable if (7) has this property. The converse implication is obvious since
Φ(τ, 0)k = Φ(kτ, 0). �

The next example shows that a system (1) may be unstable even though every time–
invariant system ẋ(t) = A(τ)x(t) (resp. x(t + 1) = A(τ)x(t)) frozen at time τ ∈ T
is asymptotically stable. It is also possible that every frozen system is unstable yet
(1) is stable, see Ex. 7.

Example 3.3.7. Consider the two dimensional periodic system of period 2π, where

A(t) =

[
cos t − sin t
sin t cos t

] [ −1 −5
0 −1

] [
cos t sin t
− sin t cos t

]
. (10)

Then σ(A(τ)) = {−1}, τ ∈ R+ and we will see in the next subsection that time–invariant
continuous time systems with spectrum in the open left half plane are asymptotically
stable. However it is easily verified that the evolution operator generated by A(·) is such
that

Φ(t, 0) =

[
et(cos t+ 1

2 sin t) e−3t(cos t− 1
2 sin t)

et(sin t− 1
2 cos t) e−3t(sin t+ 1

2 cos t)

]
,

which is clearly unbounded. �

Let us now turn to exponential stability. The linear system (1) is (uniformly)
exponentially stable if there exist for every t0 ∈ T a constant M > 0, and a decay
rate ω < 0 which may depend upon t0 (resp. independent of t0), such that

‖Φ(t, t0)‖ ≤Meω(t−t0), t ∈ Tt0 . (11)

The next theorem is rather surprising. A similar result does not hold for nonlinear
systems.

Theorem 3.3.8. The system (1) is uniformly exponentially stable if and only if it
is uniformly asymptotically stable.

Proof : The only if part follows immediately from (11) and Proposition 3.3.2. Con-
versely suppose that (1) is uniformly asymptotically stable. By Proposition 3.3.2
there exists τ ∈ T such that ‖Φ(t + τ, t)‖ ≤ 1/2 for all t ∈ T . Hence using the
concatenation property of Φ
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‖Φ(t0 + kτ, t0)‖ ≤ ‖Φ(t0 + kτ, t0 + (k − 1)τ)‖ . . . ‖Φ(t0 + τ, t0)‖ ≤ 2−k.

Now suppose t0 + kτ ≤ t < t0 + (k + 1)τ , t ∈ Tt0 , k ∈ N, then

‖Φ(t, t0)‖ ≤ ‖Φ(t, t0 + kτ)‖‖Φ(t0 + kτ, t0)‖ ≤ ‖Φ(t, t0 + kτ)‖2−k .

By Proposition 3.3.1 there exists M ′ > 0 such that ‖Φ(t, t0 + kτ)‖ ≤ M ′ for all
t ≥ t0 + kτ, k ∈ N, and hence

‖Φ(t, t0)‖ ≤M ′2−[(t−t0)/τ −1] , t ∈ Tt0, t0 ∈ T.

Setting M = 2M ′, ω = −(ln 2)/τ we obtain (11). �

In his doctoral thesis in 1892 Liapunov introduced characteristic numbers associated
with the flow generated by the differential equation (1a). They are now known as
Liapunov exponents and we will be particularly interested in the upper one which
characterizes the supreme exponential growth rate of the system. Our definition is
applicable to both continuous and discrete time systems (1).

Definition 3.3.9 (Liapunov exponents). If Φ(·, ·) is the evolution operator of
(1) and t0 ∈ T , the upper and lower Liapunov exponents α(Φ), α(Φ) are defined by

α(Φ) = inf{ω ∈ R; ∃Mω > 0 ∀ t ∈ Tt0 : ‖Φ(t, t0)‖ ≤Mωe
ω(t−t0)}

α(Φ) = sup{ω ∈ R; ∃Mω > 0 ∀ t ∈ Tt0 ∀ x ∈ K
n : ‖Φ(t, t0)x‖ ≥ Mωe

ω(t−t0)‖x‖}
(where we set inf ∅ :=∞, sup ∅ := −∞).

It is easily seen that the two Liapunov exponents do not depend upon t0 in the
continuous time case. In the discrete time case this is also true if det A(t) �= 0 for
all t ∈ T . But, if det A(t1) = 0 for some t1 ∈ T then det Φ(t, t0) = 0 for all (t, t0)
with t0 ≤ t1 ≤ t. So by (3) α(Φ) = −∞ if we choose t0 ≤ t1 (as we will always do
in this case). Therefore we need not indicate the dependency on t0 in our notation
of the Liapunov exponents.
While exponential stability can be characterized by α(Φ) < 0 (see the next remark),
uniform exponential stability can be characterized in terms of the upper Bohl expo-
nent introduced by Bohl in 1913.

Definition 3.3.10 (Bohl exponents). If Φ(·, ·) is the evolution operator generated
via (1), the upper and lower Bohl exponents β(Φ), β(Φ) are defined by

β(Φ) = inf{ω ∈ R; ∃Mω ∀t0 ∈ T ∀t ∈ Tt0 : ‖Φ(t, t0)‖ ≤Mωe
ω(t−t0)},

β(Φ) = sup{ω ∈ R; ∃Mω ∀t0 ∈ T ∀t ∈ Tt0 ∀x ∈ K
n : ‖Φ(t, t0)x‖ ≥ Mωe

ω(t−t0)‖x‖}.
Remark 3.3.11. (i) Clearly α(Φ) ≤ β(Φ) and β(Φ) ≤ α(Φ).

(ii) If ‖A(t)‖ ≤ γ, for all t ∈ T and some γ > 0, it follows from (3) in the discrete time case
that β(Φ) ≤ ln γ, whereas in the continuous time case we have β(Φ) ≤ γ and β(Φ) ≥ −γ
by (5).

(iii) Suppose that α(Φ) < ∞ (resp. β(Φ) < ∞), then given γ > α(Φ) (resp. γ > β(Φ))
there exists M depending on γ such that ‖Φ(t, t0)‖ ≤ Meγ(t−t0), t ∈ Tt0 for a given
t0 ∈ T (resp. ‖Φ(t, t0)‖ ≤ Meγ(t−t0), t0 ∈ T, t ∈ Tt0). So we conclude that the system
(1) is exponentially stable at time t0 (resp. uniformly exponentially stable) if and only if
α(Φ) < 0 (resp. β(Φ) < 0).
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(iv) If Φ̃(t, t0) = Φ(t0, t)
∗ denotes the evolution operator generated by −A(t)∗, then

β(Φ) = β(Φ̃). �

In general the Bohl and Liapunov exponents are not the same as the following scalar
example shows.

Example 3.3.12. (Perron). Consider the scalar system

ẋ(t) = a(t)x(t) , where a(t) = sin ln t+ cos ln t, t > 0. (12)

The corresponding evolution operator is

Φ(t, t0) = et sin ln t−t0 sin ln t0 , t ≥ t0 > 0

and ‖Φ(t, 1)‖ ≤ et, t ≥ 1 so α(Φ) ≤ 1.
For small ε > 0 let ln tn = 2nπ + π/4 + ε, ln t0n = 2nπ + π/4, then

tn sin ln tn − t0n sin ln t0n = e2nπ+π/4
[
eε sin(π/4 + ε)− sinπ/4

]
.

But for small ε, eε sin(π/4 + ε)− sin π/4 ≈ (1 + ε)(1 + ε)/
√

2− 1/
√

2 ≈
√

2 ε. Hence given
any small δ > 0 there exists ε > 0 such that eε sin(π/4 + ε) − sinπ/4 ≥ (

√
2− δ)(eε − 1).

And so for this ε

tn sin ln tn − t0n sin ln t0n ≥ (
√

2− δ)(tn − t0n) .

But then |Φ(tn, t0n)| ≥ e(
√

2−δ)(tn−t0n) .

Since tn − t0n → ∞ as n → ∞, this shows β(Φ) ≥
√

2. Now |a(t)| ≤
√

2, t > 0. Hence

|Φ(t, t0)| = |e
R t
t0
a(s)ds| ≤ e

√
2(t−t0), t ≥ t0 > 0 and so in fact β(Φ) =

√
2. �

Remark 3.3.13. In the continuous time case if A(·) generates Φ(·, ·), then for any λ ∈ C,
A(·) + λIn generates Φλ(t, t0) = eλ(t−t0)Φ(t, t0) and

α(Φλ) = α(Φ) + Reλ, β(Φλ) = β(Φ) + Reλ . (13)

If a(·) is as in the above example and −
√

2 < λ < −1 we see that α(Φλ) < 0 and β(Φλ) > 0
so that all solutions of ẋ = (a(t) + λ)x decrease exponentially although β(Φλ) > 0. �

It is easily verified (see Ex. 5) that for the upper upper Liapunov exponent we have

α(Φ) = lim sup
t→∞

ln ‖Φ(t, 0)‖
t

. (14)

The corresponding formula for the Bohl exponent is given in the next proposition.

Proposition 3.3.14. β(Φ) <∞ if and only if

sup
t0,t∈T, 0≤t−t0≤1

‖Φ(t, t0)‖ <∞ , (15)

and when this is the case

β(Φ) = lim sup
t0, t−t0→∞

ln ‖Φ(t, t0)‖
t− t0

. (16)
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Proof : Suppose β(Φ) <∞, then choosing γ > max{β(Φ), 0} there exists M(γ) >
0 such that

‖Φ(t, t0)‖ ≤M(γ)eγ(t−t0) , t0 ∈ T , t ∈ Tt0 . (17)

Hence sup0≤t−t0≤1 ‖Φ(t, t0)‖ ≤M(γ)eγ <∞. Conversely suppose (15) holds so that
‖Φ(τ, σ)‖ ≤ K for some K ≥ 1 and all σ, τ ∈ T , 0 ≤ τ − σ ≤ 1. Then for every
t0 ∈ T , t ∈ Tt0 such that t0 + (n− 1) ≤ t < t0 + n

‖Φ(t, t0)‖ ≤ ‖Φ(t, t0+n−1)‖
n−1∏

k=1

‖Φ(t0+k, t0+k−1)‖ ≤ Kn ≤ Ke(t−t0) lnK . (18)

So β(Φ) ≤ ln K and this concludes the proof of the equivalence statement.

To prove (16) we suppose β(Φ) <∞. Then (17) holds for every γ > β(Φ) and so

µ = lim sup
t0,t−t0→∞

ln ‖Φ(t, t0)‖
t− t0

≤ lim sup
t0,t−t0→∞

ln M(γ)

t− t0
+ γ = γ .

Hence µ ≤ β(Φ). Conversely, for every γ > µ there exists a time tγ ∈ T such that

ln ‖Φ(t, t0)‖
t− t0

≤ γ , i.e. ‖Φ(t, t0)‖ ≤ eγ(t−t0) , t0 ∈ Ttγ , t ∈ Tt0+tγ .

By (18)

Kγ := sup{‖Φ(t, t0)‖; t0, t ∈ T, 0 ≤ t− t0 ≤ tγ} ≤ Ketγ lnK <∞. (19)

So ‖Φ(t, t0)‖ ≤ Kγe
|γ|tγeγ(t−t0), t0 ≤ t ≤ t0 + tγ. (20)

Therefore
‖Φ(t, t0)‖ ≤ Neγ(t−t0) , t0 ∈ Ttγ , t ∈ Tt0 ,

where N = max{1, Kγe
|γ|tγ}. But by (20) this same estimate is also valid for

0 ≤ t0 ≤ t ≤ tγ . Finally if t0 ≤ tγ < t we have

‖Φ(t, t0)‖ ≤ ‖Φ(t, tγ)‖‖Φ(tγ, t0)‖ ≤ Neγ(t−tγ )Neγ(tγ−t0) = N2eγ(t−t0)

and so there exists M such that ‖Φ(t, t0)‖ ≤ Meγ(t−t0) , for all t0 ∈ T , t ∈ Tt0 .
Thus β(Φ) ≤ µ and (16) is proved. �

Note that in the discrete time case (15) holds if and only if supt∈T ‖A(t)‖ =: γ <∞
in which case α(Φ) ≤ β(Φ) ≤ ln γ.
The following theorem gives an alternative characterization for uniform exponential
stability of (1). It is closely related to the Liapunov results which we will develop
in Subsection 3.3.4.

Theorem 3.3.15. Suppose the evolution operator Φ of (1) satisfies β(Φ) <∞ then
the following statements are equivalent.

(i) The system (1) is uniformly exponentially stable.

(ii) β(Φ) < 0.
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(iii) For any p ∈ (0,∞) there exists a constant c independent of t0 ∈ T such that

∫ ∞

t0

‖Φ(t, t0)‖pdt ≤ c
(
resp.

∞∑

t=t0

‖Φ(t, t0)‖p ≤ c
)
, t0 ∈ T. (21)

(iv) For any p ∈ (0,∞) there exists a constant c independent of t0 ∈ T such that

∫ ∞

t0

‖Φ(t, t0)x‖pdt ≤ c‖x‖p (
resp.

∞∑

t=t0

‖Φ(t, t0)x‖p ≤ c‖x‖p), x ∈ K
n, t0 ∈ T. (22)

Proof : The proof is for the continuous time case. (i) ⇔ (ii) and (iii) ⇒ (iv) is
clear.
(i) ⇒ (iii): Suppose (i) then there exist constants M > 0, ω < 0 independent of
t0 ∈ T such that ‖Φ(t, t0)‖ ≤ Meω(t−t0), for all t0 ∈ T , t ∈ Tt0 . Hence (21) holds
with c = Mp/p(−ω).
(iv) ⇒ (i): Since β(Φ) < ∞ there exists M, ω > 0 independent of t0 such that
‖Φ(t, t0)‖ ≤Meω(t−t0), for all t0 ∈ T , t ∈ Tt0 . So

1− e−pω(t−t0)

p ω
‖Φ(t, t0)x‖p =

∫ t

t0

e−p ω(t−s)‖Φ(t, t0)x‖pds (23)

≤
∫ t

t0

e−p ω(t−s)‖Φ(t, s)‖p‖Φ(s, t0)x‖pds

≤ M
p
∫ t

t0

‖Φ(s, t0)x‖pds ≤M
p
c‖x‖p, t ≥ t0 .

Hence there exists γ independent of t0 ∈ T such that ‖Φ(t, t0)‖ ≤ γ, t ≥ t0. But
then for t ≥ t0, t0 ∈ T

(t− t0)‖Φ(t, t0)x‖p =

∫ t

t0

‖Φ(t, t0)x‖pds ≤
∫ t

t0

‖Φ(t, s)‖p‖Φ(s, t0)x‖pds ≤ γpc‖x‖p.

So for τ = 2pγpc
‖Φ(t0 + τ, t0)‖ ≤ 1/2 , t0 ∈ T . (24)

Now suppose t0 + (n− 1)τ ≤ t < t0 + nτ , then from (24)

‖Φ(t, t0)‖≤‖Φ(t, t0+(n−1)τ)‖
n−1∏

k=1

‖Φ(t0+kτ, t0+(k−1)τ)‖≤ γ

2n−1
<2γe−(ln 2)(t−t0)/τ .

Hence β(Φ) < −(ln 2)/τ . The reader is asked to prove the discrete time case in
Ex. 23. �

We now consider the effect of time–varying linear coordinate transformations of
the form x̃(t) = S(t)−1x(t) on the system (1), where S(·) ∈ PC1(T ;Gln(C))
(resp. S(t) ∈ Gln(C), t ∈ T ). The associated similarity transformation converts
the system (1) into

˙̃x(t) = Ã(t)x̃(t), t ∈ T, (resp. x̃(t + 1) = Ã(t)x̃(t), t ∈ T ) (25)
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where

Ã(t) = S(t)−1A(t)S(t)− S(t)−1Ṡ(t), t ∈ T, (resp. = S(t + 1)−1A(t)S(t), t ∈ T ).

The evolution operator of the system (25) is

Φ̃(t, s) = S(t)−1Φ(t, s)S(s), t, s ∈ T. (26)

In order that these transformations preserve stability properties additional assump-
tions must be imposed.

Definition 3.3.16 (Liapunov and Bohl transformation). A time-varying trans-
formation S(·) ∈ PC1(T ;Gln(C)) (resp. S(t) ∈ Gln(C), t ∈ T ) is called a Liapunov
transformation if S(·), S(·)−1 and Ṡ(·) are bounded on T . It is called a Bohl trans-
formation if

inf
{
ε ∈ R; ∃Mε > 0 ∀ t, s ∈ T : ‖S(t)−1‖ ‖S(s)‖ ≤Mεe

ε|t−s|
}

= 0.

It is easily seen that the Liapunov transformations on T form a group with respect to
pointwise multiplication, and this group of transformations preserves the properties
of stability, instability and asymptotic stability. The next proposition shows that
the property of exponential stability is invariant with respect to the larger group of
Bohl transformations.

Proposition 3.3.17. The Bohl exponent is invariant with respect to Bohl transfor-
mations.

Proof : Let ˙̃x(t) = Ã(t)x̃(t), (resp. x̃(t+1) = Ã(t)x̃(t)) be similar to (1) via a Bohl
transformation S(·). Since the evolution operator of the transformed equation is
given by (26), we have

‖Φ̃(t, s)‖ ≤ ‖S(t)−1‖‖Φ(t, s)‖‖S(s)‖, t, s ∈ T.

But by Definitions 3.3.10 and 3.3.16, for every ε > 0, there exists a constant Mε

such that

‖S(t)−1‖‖S(s)‖ ≤Mεe
ε(t−s), ‖Φ(t, s)‖ ≤ Mεe

(β(Φ)+ε)(t−s), t ≥ s ∈ T.

So β(Φ̃) ≤ β(Φ). Using the fact that S(·)−1 is also a Bohl transformation we
conclude that β(Φ̃) = β(Φ). �

It is a simple exercise to show that every time-varying linear system (1) can be
transformed into the trivial system ẋ = 0 by a time-varying coordinate transforma-
tion. In the context of stability theory it is interesting to know which time-varying
systems can be transformed into time–invariant ones via Liapunov or Bohl trans-
formations. According to a result of Liapunov this is always possible for periodic
systems.

Proposition 3.3.18. Suppose the generator A(·) of (1) is periodic with period τ >
0, τ ∈ T : A(t + τ) = A(t), t ∈ T , and det A(t) �= 0, t ∈ T in the discrete time case.
Then there exists a Liapunov transformation such that the transformed system (25)
is time-invariant.



3.3 Linearization and Stability 263

Proof : Suppose Φ(·, ·) is generated by A(·). Since A(·) is periodic, we have

Φ̇(t + τ, 0) = A(t)Φ(t + τ, 0), t ∈ T (resp. Φ(t+τ+1, 0) = A(t)Φ(t+τ, 0), t ∈ T ).

So there must exist a constant nonsingular matrix V such that Φ(t+τ, 0) = Φ(t, 0)V .
Choose L ∈ C

n×n such that eL = V and set S(t) = Φ(t, 0)e−tL/τ , t ∈ T . Then

S(t + τ) = Φ(t + τ, 0)e−(tL/τ)−L = Φ(t, 0)eLe−(tL/τ)−L = S(t).

Hence S(·) is periodic with period τ . In the continuous time case Φ is automatically
invertible and in the discrete time case this is a consequence of the assumption that
det A(t) �= 0, t ∈ T . It follows therefore that S(t), t ∈ T is invertible. Moreover

Ṡ(t) = A(t)Φ(t, 0)e−tL/τ − Φ(t, 0)e−tL/ττ−1L = A(t)S(t)− S(t)τ−1L, t ≥ 0.

And in the discrete case

S(t + 1) = Φ(t + 1, 0)e−(t+1)L/τ = A(t)S(t)e−L/τ , t ∈ T.

So the transformed system (25) is given by Â(t) = τ−1L, t ∈ T, (resp. = eL/τ ).
Clearly S(·) ∈ PC1(T ;Gln(C)) (resp. S(t) ∈ Gln(C), t ∈ T ) and the bounded-
ness of S(·), S(·)−1, Ṡ(·) is a consequence of periodicity. Hence S is a Liapunov
transformation and this completes the proof. �

3.3.2 Time–Invariant Systems: Spectral Stability Criteria

We consider systems of the form

ẋ(t) = Ax(t), t ∈ T, (resp. x(t + 1) = Ax(t), t ∈ T ) (27)

where A ∈ K
n×n and T = R+ (resp. T = N). The following result relates growth

properties of the semigroup generated by the matrix A ∈ Kn×n to the spectrum of
A, σ(A).

Lemma 3.3.19. Given A ∈ K
n×n and ω ∈ R. If

α(A) = max{Reλ ; λ ∈ σ(A)} < ω, (resp. (A) = max{|λ| ; λ ∈ σ(A)} < eω) (28)

then there exists M , depending on ω such that

‖eAt‖ ≤ Meωt , t ∈ R+, (resp. ‖At‖ ≤ Meωt , t ∈ N). (29)

Proof : The proof will be for the discrete time case. Since the spectral norm and the
spectrum of a real linear operator do not change by complexification we may assume
K = C. Let (z1, . . . , zn) be a basis of Cn consisting of generalized eigenvectors zi

of order mi, corresponding to eigenvalues λi of A. Applying Proposition 3.3.1 to
the time–invariant evolution operator Φ(t) = (Ate−ωt) we see that (Ate−ωt)t∈N is
bounded if and only if (Ate−ωtzi)t∈N is bounded for all i ∈ n. Now if (A) = 0, then
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At = 0 for t sufficiently large and it follows from (2.2.55) that for t ≥ mi − 1 and
 := (A) �= 0

‖Ate−ωtzi‖ = e−ωt‖
mi−1∑

ν=0

λt−νi

(
t

ν

)
(A− λiI)νzi‖ ≤ [

�e−ω
]t

mi−1∑

ν=0

(
t

ν

)
�−ν‖(A − λiI)νzi‖.

Since for every α ∈ (0, 1) and every polynomial p(t) ∈ K[t] we have limt→∞ αt p(t) =
0, we see that ‖Ate−ωtzi‖ → 0 as t → ∞ and so there exists M > 0 such that
‖Ate−ωt‖ ≤M for all t ∈ N. This proves (29). �

If (Φ(t)) is the semigroup of operators generated by A (continuous or discrete time),
then it is an easy consequence (see Ex. 1) of the above lemma that the Liapunov and
Bohl exponents are equal. They are sometimes called the growth rate of Φ, denoted
by ω(A) and are given by

ω(A) = β(Φ) = α(Φ) = α(A), (ω(A) = β(Φ) = α(Φ) = ln (A)) . (30)

For time invariant systems stability and uniform stability properties are equivalent
and hence as a consequence of Theorem 3.3.8 asymptotic stability is equivalent to
uniform exponential stability. The following theorem derives necessary and sufficient
conditions for the asymptotic stability of the system (27).

Theorem 3.3.20. The system (27) is asymptotically (or, equivalently, exponen-
tially) stable if and only if

Reλ < 0, (resp. |λ| < 1), λ ∈ σ(A). (31)

Proof : The proof is for the discrete time case. If (31) holds then ln (A) < 0 and
so by Lemma 3.3.19 there exists ω < 0, and M such that

‖Atx0‖ ≤ ‖At‖‖x0‖ ≤Meωt‖x0‖, t ∈ N, x0 ∈ K
n.

This implies that (27) is exponentially stable. To prove necessity suppose there
exists λ ∈ σ(A) such that |λ| ≥ 1 and let z ∈ Cn be a corresponding eigenvector.
Then

‖Atz‖ = ‖λtz‖ ≥ ‖z‖ t ∈ N

and hence (27) is not asymptotically stable. �

Theorem 3.3.21. The system (27) is stable if and only if both of the following
conditions hold for all λ ∈ σ(A)

(i) Re λ ≤ 0, (resp. |λ| ≤ 1).

(ii) If Reλ = 0 (resp. |λ| = 1) then there exist kλ linearly independent eigenvectors,
where kλ is the algebraic multiplicity of λ.

Proof : The proof is for the discrete time case. By Proposition 3.3.1 the origin is
stable if and only if all the (generalized) eigenmotions are bounded. This clearly
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implies |λ| ≤ 1 for all λ ∈ σ(A). Now suppose there exists λ ∈ σ(A) with |λ| = 1
and a generalized eigenvector z of order m > 1 then for t ≥ m− 1

Atz = λt
m−1∑

ν=0

(
t
ν

)
λ−ν(A− λI)νz and ‖Atz‖ = ‖

m−1∑

ν=0

(
t
ν

)
λ−ν(A− λI)νz‖.

The RHS is a polynomial in t of degree m−1 ≥ 1 and is therefore unbounded. Thus
conditions (i), (ii) are necessary.
Conversely if (i) and (ii) hold there exist generalized eigenvectors of order m > 1 only
for eigenvalues λ ∈ σ(A) with |λ| < 1. We know already that these eigenmotions
tend exponentially to the origin as t→∞. On the other hand if z is an eigenvector
corresponding to λ ∈ σ(A), then since |λ| ≤ 1

‖Atz‖ = ‖λtz‖ ≤ ‖z‖.

Hence all generalized eigenmotions are bounded and (27) is stable. �

Figure 3.3.1 shows the stability regions for the eigenvalues in the continuous and
discrete time case. They are denoted by C− and D respectively.

Im Im

Re Re

Re λ < 0 |λ| < 1

Figure 3.3.1: Stability regions for continuous and discrete time systems

As a consequence of Lemma 2.3.9 and Proposition 2.3.10 we have the following
characterization of asymptotic stability in terms of properties of the solutions of the
controlled systems

ẋ(t) = Ax(t) + Bu(t), t ∈ R+, x(t + 1) = Ax(t) + Bu(t), t ∈ N. (32)

We denote the solutions with x(0) = x0 ∈ K
n by ϕ(t; x0, u(·)), t ∈ R+ (resp. N).

Proposition 3.3.22. The following are equivalent.

(i) σ(A) ⊂ C− (resp. σ(A) ⊂ D).

(ii) For every x0 ∈ Kn, eAtx0 → 0 (resp. Atx0 → 0) as t→∞.

(iii) If u(·) ∈ L2(R+; Km) (resp. �2(N; Km)), then ϕ(·; x0, u(·)) ∈ L2(R+; Kn)
(resp. �2(N; Kn)) for all x0 ∈ Kn.

Proof : The proof is for the continuous time case. (i) implies (ii) by Theorem 3.3.20.
Let z ∈ Cn be an eigenvector for the eigenvalue λ ∈ σ(A), then eAtz = eλtz.
Choosing x0 = z in the complex case and x0 = Re z or Im z in the real case we see
from (2.2.44) that if (ii) holds then necessarily Reλ < 0. So (ii) implies (i). By
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Proposition 2.3.10 with C = In and t0 = 0, (i) implies (iii). Now suppose u(·) ≡ 0
and (iii) holds, then x(·) = eA·x0 ∈ L2(R+; Kn) for all x0 ∈ Kn. But ẋ(·) = Ax(·)
and so x(·) is absolutely continuous and ẋ(·) ∈ L2(R+; Kn). Applying Lemma 2.3.9
with p = n, y(·) = x(·) and t0 = 0 we see that x(t) = eAtx0 → 0 as t → ∞ for all
x0 ∈ Kn. So (iii) implies (ii). �

Remark 3.3.23. In the previous section (Proposition 3.3.6) we showed that a peri-
odic system with evolution operator Φ is stable (resp. uniformly asymptotically stable)
if and only if the associated discrete time system with system matrix Φ(τ, 0) is stable
(resp. asymptotically stable). The eigenvalues of Φ(τ, 0) are called the characteristic mul-
tipliers of (1). It follows from Theorems 3.3.20 and 3.3.21 that a periodic system (1) is sta-
ble (resp. asymptotically stable) if and only if its characteristic multipliers µ ∈ σ(Φ(τ, 0))
satisfy conditions (i) (ii) of Theorem 3.3.21 (resp. (31)) in their discrete time versions.
In contrast we have seen in Example 3.3.7 that, in general, the stability properties of a
periodic time-varying system cannot be determined via the eigenvalues of A(t). �

In the next two examples we illustrate the stability criteria by applying them to
second order scalar systems.

Example 3.3.24. Consider the second order differential equation

ξ̈(t) + 2αξ̇(t) + βξ(t) = 0, t > 0. (33)

The matrix A of the corresponding state space system has eigenvalues λ1,2 = −α ±√
α2 − β. So

(a) if α > 0, β > 0, the origin is exponentially stable;

(b) if α > 0, β = 0, the origin is marginally stable (i.e. stable but not asymptotically
stable);

(c) if α = 0, β > 0, the origin is marginally stable;

(d) if α = 0, β = 0, there is a generalized eigenvector for the zero eigenvalue and so the
origin is unstable;

(e) if α < 0 or β < 0, the origin is unstable.

The stability chart, i.e. the set of all parameter values (α, β) ∈ R
2 for which the system is

asymptotically stable is given by the positive orthant (0,∞)2. �

Example 3.3.25. Using the approximations

ξ̇(t) ≈ ξ(t + τ)− ξ(t)
τ

, ξ̈(t) ≈ ξ(t+ 2τ)− 2ξ(t + τ) + ξ(t)

τ2
, τ > 0

the differential equation of the previous example gives rise to the difference equation

ξ(t+ 2τ)− 2(ατ − 1)ξ(t + τ) + (1− 2ατ + βτ2)ξ(t) = 0, t ∈ N τ. (34)

We will examine the stability properties of this discrete time system and compare the
results with those obtained in the previous example. In order to do this we first obtain
results for the general second order difference equation

ξ(t+ 2) + a1ξ(t + 1) + a0ξ(t) = 0, t ∈ N. (35)
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The eigenvalues of the matrix A =

[
0 1
−a0 −a1

]
of the corresponding state space system

are
λ1,2 = (1/2)[−a1 ± (a2

1 − 4a0)1/2].

The parameter set (a0, a1) for which the system is stable must satisfy

−1 ≤ (1/2)[−a1 ± (a2
1 − 4a0)1/2] ≤ 1 if a2

1 ≥ 4a0

(1/4)(a2
1 + (4a0 − a2

1)) ≤ 1 if a2
1 < 4a0.

The first condition is equivalent to a2
1 − 4a0 ≤ (2 + a1)2 and (a1 − 2)2 ≥ a2

1 − 4a0, i.e.

1 + a1 + a0 ≥ 0 and 1− a1 + a0 ≥ 0. (36)

The second condition is equivalent to

1− a0 ≥ 0 if a2
1 < 4a0. (37)

This leads to the stability chart for (35) shown on the LHS of Figure 3.3.2. The shaded

α

τ
−1

α  = 1/τ + (τ/4) β

α = (τ/2) β

β-1 +1

1− a1 + a0 = 0

1 + a1 + a0 = 0

a1

a0

Figure 3.3.2: Stability charts for (35) and (34)

region inside the left triangle represents values of the parameters (a0, a1) for which |λi| < 1,
i = 1, 2 and hence values for which the system is asymptotically stable. Now consider
the boundary of the triangle. When 1 − a1 + a0 = 0 (resp. 1 + a1 + a0 = 0) then
σ(A) = {−1,−a0} (resp. {+1, a0}) and so if a0 < 1 the system is marginally stable, and
this is also the case if a0 = 1, |a1| < 2. However if a0 = 1, |a1| = 2 there are generalized
eigenvectors of order 2 so the system is unstable.
Note that if a0 = a1 = 0 the system matrix A is nilpotent and so At+2 = 0 for t ∈ N.
Thus any initial state is transferred to the origin in finite time. This can never occur in
the differentiable case.
For the discretized differential equation (34), we have

a0 = 1− 2ατ + τ2β, a1 = 2ατ − 2.

Hence 1+a1+a0 = τ2β, 1−a1+a0 = 4−4ατ+τ2β , 1−a0 = 2ατ−τ2β. So the discretized
system will be asymptotically stable if β > 0, 2ατ − τ2β > 0, 4 − 4ατ + τ2β > 0. The
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stability chart is shown on the RHS of Figure 3.3.2. Note that for any β > 0 , α > 0 there
exists τ sufficiently small such that the discretized system is asymptotically stable and as
τ → 0 the shaded region fills up the positive orthant (0,∞)2. Thus the stability chart
for the discretized system gradually approaches the stability region of the differentiable
system as τ → 0. This is not the case for all discretization schemes as we will show in the
next subsection. �

We conclude this subsection with a brief discussion of the relationship between
spectral stability criteria for continuous and discrete time systems (27) (see Ex. 27).
There is a well known rational map transforming the open left half plane C− onto
the open unit disk D and vice versa, the so-called Möbius map

m(·) : λ �→ λ + 1

λ− 1
, λ ∈ C \ {1} (38)

with inverse m−1(·) = m(·). In particular this map sends 0 to −1, ∞ to 1, −1 to 0.
The matrix version of this transformation

A �→ (A + I)(A− I)−1 (39)

is well defined on {A ∈ Kn×n; 1 �∈ σ(A)} and is known as the Cayley transform.

Proposition 3.3.26. Given A ∈ K
n×n, 1 �∈ σ(A), let Â = (A + I)(A − I)−1, then

A = (Â− I)−1(Â + I) and

σ(Â) =
{
(λ + 1)(λ− 1)−1, λ ∈ σ(A)

}
. (40)

Proof : Suppose Ax = λx, x ∈ C
n, λ ∈ C, x �= 0, then (A − I)x = (λ − 1)x,

(λ− 1)−1x = (A− I)−1x and (A + I)x = (λ + 1)x. Hence

Âx = (λ + 1)(λ− 1)−1x

and so (λ + 1)(λ− 1)−1 ∈ σ(Â), i.e. m(σ(A)) ⊂ σ(Â). Since Â(A− I) = A + I, we
get (Â−I)A = Â+I that is A = (Â−I)−1(Â+I). So applying the above argument
to Â instead of A and making use of m−1(·) = m(·) we obtain (40). �

As a result of the above proposition and Theorem 3.3.20 we see that the continuous
time system ẋ = Ax is asymptotically stable if and only if the discrete time system
x(t + 1) = (A + I)(A − I)−1x(t) is asymptotically stable. For further details and
applications of the Cayley transform see Subsection 3.4.6 and Subsection 5.3.7.

3.3.3 Numerical Stability of Discretization Methods

In this subsection we examine the stability of linear multistep discretizations meth-
ods as described in Subsection 2.3.1 (see (35))

xτ (k + 1) = xτ (k − p) + τ [b−1fk+1 + b0fk + . . . + bνfk−ν], p ∈ N. (41)

We apply this integration formula to the scalar differential equation,

ẋ = ax (42)
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(with a ∈ R, aτb−1 �= 1), i.e. we set fk = axτ (k). Substitution in (41) yields the
difference equation

xτ (k + 1) = xτ (k − p) + aτ [b−1x
τ (k + 1) + b0x

τ (k) + . . . + bνx
τ (k − ν)].

Let us first assume ν ≥ p, then introducing x1(k) = xτ (k − ν), x2(k) = xτ (k − ν +
1), . . . , xν+1(k) = xτ (k), we obtain the matrix difference equation

x(k + 1) = Ax(k)

where x(k) = [x1(k), . . . , xν+1(k)]	 ∈ Rν+1 and

A =





0 1 0 . . . . . . . . . 0
0 0 1 . . . . . . . . . 0
· · · · · · · · · · · · · · · · · · · · ·
0 0 0 . . . . . . . . . 1

aτbνγ
−1 . . . . . . . . . (1 + aτbp)γ

−1 . . . aτb0γ
−1




, γ = 1−aτb−1 �= 0.

The characteristic equation of A, after multiplication by γ is

(1− aτb−1)λ
ν+1 − λν−p − aτ [b0λ

ν + . . . + bν ] = 0. (43)

If τ = 0, the eigenvalues of A are 0 (with multiplicity ν − p) and the p + 1 distinct
roots ω1, . . . , ωp+1 of zp+1 = 1. It follows from Corollaries 4.2.4 and 4.2.3 of the
next chapter that for small τ ≥ 0 the eigenvalues of A can be written in the form
λ1(τ), . . . , λν(τ) where the first p + 1 eigenvalues with λi(0) = ωi are analytic in τ

λi(τ) = ωi + αiτ + O(τ 2), i = 1, 2, . . . , p + 1 (44)

and the remaining eigenvalues with λi(0) = 0, i = p + 2, . . . , ν + 1 are continuous in
τ . Hence if τ ≥ 0 is sufficiently small, then

|λi(τ)| < 1, i = p + 2, . . . , ν + 1.

Substituting (44) in (43) and equating terms of order 1 in τ , yields

αi =
a

p + 1
[b−1ωi + b0 + . . . + bνω

−ν
i ], i = 1, . . . , p + 1. (45)

Hence
λp+1
i (τ) = ωp+1

i + aτ [b−1ω
p+1
i + b0ω

p
i + . . . + bνω

p−ν
i ] + O(τ 2)

and since ωp+1
i = 1,

|λp+1
i (τ)|2 = 1 + 2τa Re[b−1 + b0ω

p
i + . . . + bνω

p−ν
i ] + O(τ 2).

We say that a particular discretization method is stable if, on application to an
asymptotically stable scalar differential equation (42), the resulting discrete time
system is also asymptotically stable for sufficiently small τ . Thus the discretization
method (41) is stable if and only if all the roots of (43) lie in D, for every a < 0 and
τ sufficiently small 0 < τ ≤ δ(a). So a sufficient condition is

Re[b−1 + b0ω
p
i + . . . + bνω

p−ν
i ] > 0, i = 1, . . . , p + 1, (46)
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and a necessary condition is

Re[b−1 + b0ω
p
i + . . . + bνω

p−ν
i ] ≥ 0, i = 1, . . . , p + 1.

In the case of equality higher order approximation of λi(τ) must be considered to
determine whether or not the discretization method (41) is stable.
The case p > ν leads to the same conclusions and is slightly easier to analyze since
when τ = 0 there are no roots at 0. Now let us apply the results to some of the
integration schemes introduced in Section 2.5.

Example 3.3.27. (Euler’s method). In this case (see (2.5.25)), p = 0, ν = 0, b−1 = 0,
b0 = 1, so (46) holds and Euler’s method is stable. �

Example 3.3.28. (Runge-Kutta method). This is a single step method with p = 0,
ν = 0, b−1 = 0, b0 = 1 + (1/2)τa + (1/6)τ2a2 + (1/24)τ3a3 (see Example 2.5.12), so (46)
holds and the Runge-Kutta method is stable. �

Example 3.3.29. (Midpoint method). For this method (see Example 2.5.11) p = 1,
ν = 0, b−1 = 0, b0 = 2. So ω1 = +1, ω2 = −1 and

Re[b0ω1] > 0 but Re[b0ω2] < 0.

Hence the midpoint method is unstable. �

Example 3.3.30. (Adams-Bashforth methods). For these methods (see Exam-
ple 2.5.13), p = 0, b−1 = 0 and some typical values of bi, i = 0, . . . , ν are given in Table
2.5.11. The stability condition (46) is b0 + b1 + . . . + bν > 0. Note that the values of
bi given in Table 2.5.11 all have the property that

∑ν
i=0 bi = 1, so the Adams-Bashforth

methods are stable. �

Example 3.3.31. (Milne’s method). The implicit corrector of Milne’s method (see
Example 2.5.14) applied to the scalar differential equation (42), yields

xτ (k + 1) = xτ (k − 1) + (aτ/3)[xτ (k + 1) + 4xτ (k) + xτ (k − 1)].

Hence p = 1, ν = 1, b−1 = 1/3, b0 = 4/3, b1 = 1/3. So ω1 = 1, ω2 = −1 and substitution
in the left hand side of (46) gives

Re[b−1 + b0ω1 + b1] = 2 > 0, but Re[b−1 + b0ω2 + b1] = −2/3 < 0.

So the corrector of Milne’s method is unstable and this will be the case for the predictor-
corrector algorithm as well. �

These results seem to contradict some of the convergence properties of the above
schemes as described in Section 2.5. However, the important thing to remember is
that convergence is defined relative to a finite interval [0, b] whereas stability is a
requirement on the asymptotic behaviour as t → ∞. We illustrate this distinction
by the following example.

Example 3.3.32. (Instability of the midpoint rule). Applying the midpoint rule
to the scalar differential equation (42) yields the difference equation

xτ (k + 1) = xτ (k − 1) + 2τaxτ (k), k ∈ N (47)
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Assume a < 0 so that (42) is asymptotically stable. The eigenvalues of the second order
system (47) are given by

λ1(τ) = aτ +
√

1 + a2τ2 = 1 + aτ +O(τ2), λ2(τ) = aτ −
√

1 + a2τ2 = −1 + aτ +O(τ2).

Every solution of (47) can be represented in the form

xτ (k) = c1λ
k
1(τ) + c2λ

k
2(τ). (48)

If τ = t/k, with t > 0 fixed arbitrarily, then the first eigenmotion

xτ (k) = λ1(τ)kx0 = (1 + at/k +O(t2/k2) )kx0 → eatx0 as k →∞.

Hence, on any compact interval [0, b], this eigenmotion of (47) generated by the initial
conditions xτ (0) = x0, xτ (1) = λ1(τ)x0 yields a uniform approximation of the eigenmotion
eatx0 of (42) generated by x(0) = x0. Moreover the eigenmotion xτ (k) = λ1(τ)kx0 tends
to 0 for k →∞, as does eatx0. However, the discretization (47) has a second eigenmotion

xτ (k) = λ2(τ)kx0 = (−1 + aτ +O(τ2) )k, k ∈ N

which is an unbounded oscillation. This eigenmotion of (47) is called spurious or parasitic
since it does not correspond to a solution of the differential equation (42). Any deviation
from the initial conditions xτ (0) = x0, xτ (1) = λ1(τ)x0 or any rounding error will excite
this spurious eigenmotion and then, for any given τ > 0, this eigenmotion will completely
dominate the true solution after some time. This is illustrated in Table 3.3.3 where we
apply the midpoint rule to

ẋ(t) = −x(t), x(0) = 1. (49)

We started the algorithm with the exact value xτ (0) = 1 and an order 2 approximation of

t TRUE SOL’N ERRORS t TRUE SOL’N ERRORS
kτ x(kτ) kτ x(kτ)
0.0 1.00000000 0.0000000 5.0 0.00673795 -0.0000371
0.5 0.60653066 -0.0000003 7.5 0.00055308 -0.0004520
1.0 0.36787944 -0.0000006 10.0 0.00004540 -0.0055066
1.5 0.22313016 -0.0000011 12.5 0.00000373 -0.0670841
2.0 0.13533528 -0.0000019 15.0 0.00000031 -0.8172517
2.5 0.08208500 -0.0000031 17.5 0.00000003 -9.9561596

Table 3.3.3: Errors of the midpoint rule applied to (49) with τ = 0.001

the corresponding value at time τ : xτ (1) = 1−τ . Note that we have a good approximation
of the true solution for t in the range [0, 2.5] because of the relatively small stepsize
τ = 0.001. However, for values t ≥ 15 the parasitic oscillations excited by the initial errors
and by rounding errors become so strong that any correlation between the true and the
“approximate” solutions is lost. �

The previous example illustrates the general problem. Suppose we apply a linear
multistep method of the form (41) to an initial value problem ẋ = Ax, x(0) = x0.
If the differential system is n-dimensional and ν ≥ 1 or p ≥ 1 then the dimension
of the state space X of the corresponding discrete time system x(t + 1) = Aτx(t) is
higher, namely
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dim X = n · (max{ν, p}+ 1). (50)

Only n of the n · (max{ν, p}+ 1) eigenvalues of Aτ (counting multiplicities) approx-
imate eigenvalues of A, all the others correspond to parasitic eigenmotions of the
discrete time system introduced by the multistep method. Thus a crucial question is
whether or not these parasitic eigenmotions are tending to zero with an appropriate
decay rate as t → ∞. Numerically unstable integration methods of the form (41)
generate unstable discrete time systems (27) when applied to certain asymptotically
stable differentiable systems (27). Although these integration methods may be very
efficient for the solution of initial value problems on fixed compact intervals they are
not suitable for the approximation of differentiable systems by discrete time systems
(see Section 2.5).

3.3.4 Liapunov Functions for Time-Varying Linear
Systems

In this subsection we return to time-varying linear systems of the form (1). The
time domain T is either an interval in R unbounded to the right or an interval in
Z unbounded to the right. For linear systems it is natural to choose (time–varying)
quadratic forms x �→ V (t, x) = 〈x, P (t)x〉, t ∈ T , as possible candidates for Liapunov
functions. Here we characterize stability properties of (1) in terms of these quadratic
Liapunov functions. In contrast to the previous section (where we assumed Liapunov
functions to be given) we develop a systematic construction procedure. At the end
of the subsection we will see that quadratic Liapunov functions provide a tool for
deriving stability properties of a given nonlinear system trajectory from stability
properties of the associated linearized model. Thus we will use Liapunov’s direct
method in order to prove the validity of Liapunov’s indirect method.
Throughout the subsection we assume P (t), t ∈ T is symmetric if K = R and
Hermitian if K = C. Moreover in the continuous time case we suppose that P (·) :
T �→ Hn(K) is continuous and piecewise continuously differentiable, i.e. P (·) ∈
PC1(T ; Hn(K))1. We do not assume P (·) to be continuously differentiable since
our construction process will only yield piecewise continuously differentiable P (·) if
A(·) ∈ PC(T ; Kn×n) has jump points.
Now consider

V (t, x) = 〈x, P (t)x〉 (t, x) ∈ T ×K
n (51)

as a candidate for a Liapunov function for the linear system (1). In the continuous
time case the derivative of V along the flow of (1a) is defined by

V̇ (t, x) = 〈x, Ṗ (t)x〉+ 〈A(t)x, P (t)x〉+ 〈x, P (t)A(t)x〉
= 〈x, (Ṗ (t) + A(t)∗P (t) + P (t)A(t))x〉 , (t, x) ∈ T ×K

n (52)

1This means that the derivative Ṗ (t) exists for all t ∈ T \ S where S ⊂ T is a subset without
accumulation point in R and the limit limt↓s Ṗ (t) exists at every s ∈ S. Extending Ṗ (·) by

Ṗ (s) = limt↓s Ṗ (t) to all of T , we obtain a piecewise continuous and right continuous matrix

function Ṗ (·) : T → Hn(K).
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where Ṗ (t) is defined for all t ∈ T as in the footnote. In the discrete time case

V̇ (t, x) = 〈A(t)x, P (t + 1)A(t)x〉 − 〈x, P (t)x〉
= 〈x, (A(t)∗P (t + 1)A(t)− P (t))x〉 , (t, x) ∈ T ×K

n . (53)

Suppose we define a matrix Q(t) ∈ Kn×n, t ∈ T by

Ṗ (t) + A(t)∗P (t) + P (t)A(t) + Q(t) = 0 , t ∈ T (54a)

A(t)∗P (t + 1)A(t)− P (t) + Q(t) = 0 , t ∈ T . (54b)

Then in the continuous time case Q(·) ∈ PC(T ; Hn(K)) and in the discrete time
case Q(·) = (Q(t))t∈T ∈ Hn(K)T , i.e. Q(·) is a sequence in Hn(K) defined on T . In
both cases

V̇ (t, x) = −〈x, Q(t)x〉 , (t, x) ∈ T ×K
n . (55)

As a counterpart of Theorem 3.2.17 for quadratic Liapunov functions we have

Theorem 3.3.33. Suppose that P (·) ∈ PC1(T ; Hn(K)) and Q(·) ∈ PC(T ; Hn(K))
(resp. P (·), Q(·) ∈ Hn(K)T ) satisfy (54). If α1, α2, α3 > 0, then

(i) ∀t∈T : P (t) � α1In, Q(t) � 0 ⇒ stability of (1) at any time t0 ∈ T .

(ii) ∀t∈T : α2In � P (t) � α1In , Q(t) � 0 ⇒ uniform stability of (1) on T .

(iii)∀t∈T : α2In �P (t)� α1In , Q(t)�α3In ⇒ uniform asymptotic stability of (1).

Proof : In the discrete time case the theorem is a specialization of Theorem 3.2.17
using (51) as a Liapunov function. However, for the continuous time case, V will
not, in general be a Liapunov function in the sense of Definition 3.2.16 since V may
not be continuously differentiable on T ×Kn. But t �→ V (t, x(t)) = 〈x(t), P (t)x(t)〉
is continuous and piecewise continuously differentiable for trajectories x(·) of (1).
By (52), for all t ∈ T where x(·) and P (·) are both differentiable, we have

dV

dt
(t, x(t))=〈ẋ(t), P (t)x(t)〉+〈x(t), Ṗ (t)x(t)〉+〈x(t), P (t)ẋ(t)〉= V̇ (t, x(t)). (56)

Hence if the premises in (i) are satisfied, V is a generalized Liapunov function for
(1) and then (i) follows from Theorem 3.2.7. In a similar way (ii) and (iii) follow
since V is bounded in the sense of (5) (and strictly decreasing along the flow of (1))
if the premises in (ii) (resp. (iii)) hold. �

For quadratic functions the instability Theorem 3.2.22 specializes to the following
result.

Theorem 3.3.34. Suppose that P (·) ∈ PC1(T ; Hn(K)) and Q(·) ∈ PC(T ; Hn(K))
(resp. P (·), Q(·) ∈ Hn(K)T ) satisfy (54). If there exists (t0, x

0) ∈ T × Kn and
positive constants α3, α2 such that 〈x0, P (t0)x

0〉 < 0 and for all t ∈ Tt0 , x ∈ Kn

〈x, P (t)x〉 < 0 ⇒ 〈x, Q(t)x〉 ≥ α3‖x‖2 and |〈x, P (t)x〉| ≤ α2‖x‖2

then (1) is unstable at time t0 ∈ T .
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The proof is set as Ex. 9.

Example 3.3.35. The damped Mathieu equation is of the form

ÿ + 2ζẏ + (a− 2r cos 2t)y = 0 , t ≥ 0

where ζ > 0, a > 0, r ∈ R are constants. If x1 = y, x2 = ẏ we obtain the state space
system

[
ẋ1(t)
ẋ2(t)

]
=

[
0 1

−a+ 2r cos 2t −2ζ

] [
x1(t)
x2(t)

]
=: A(t)x(t) , t ≥ 0 . (57)

Consider the matrix function

P (t) =

[
2ρζ2 + a− 2r cos 2t ρζ

ρζ 1

]
, t ≥ 0

where ρ is constant. A straight forward calculation yields

Ṗ (t) +A(t)∗P (t) + P (t)A(t) =

[ −2ζρ(a− 2r cos 2t) + 4r sin 2t 0
0 −ζ(4− 2ρ)

]
.

So Q(t) as defined by (54a) is

Q(t) =

[
2ζρ(a− 2r cos 2t)− 4r sin 2t 0

0 ζ(4− 2ρ)

]
, t ≥ 0 .

There exist positive constants α1, α2, α3 such that α2I2 � P (t) � α1I2, Q(t) � α3I2, t ≥ 0
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0
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Figure 3.3.4: Stability domain for the Mathieu equation

provided

0 < ρ < 2 , 2ρζ2 + a− 2r cos 2t > ρ2ζ2 , 2ρζ(a− 2r cos 2t)− 4r sin 2t > 0 , t ≥ 0 .

And these inequalities will hold if the following time–invariant inequalities are satisfied:

0 < ρ < 2 , ρ(2− ρ)ζ2 + a > 2|r| , ρζa > 2|r|(1 + ρ2ζ2)1/2 . (58)

Now suppose ζa > |r| (1 + 4ζ2)1/2 then by choosing ρ close to 2 it can be shown that (58)
holds and hence by Theorem 3.3.33 the time-varying system (57) is uniformly exponen-
tially stable. For ζ = 1 the stability domain determined by this inequality is shown in
Figure 3.3.4 (below the dotted line) together with the actual stability boundaries (below
the continuous lines). �
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In order to prepare the ground for Liapunov’s indirect method we now seek a partial
converse to statement (iii) in Theorem 3.3.33. For this the following lemma is useful.

Lemma 3.3.36. Suppose that A(·) generates a uniformly exponentially stable evolu-
tion operator Φ(·, ·). Given a bounded Q(·) ∈ PC(T ; Hn(K)) (resp. bounded Q(·) ∈
Hn(K)T ), the only bounded P (·) ∈ PC1(T ; Hn(K)) (resp. bounded P (·) ∈ Hn(K)T )
which solves (54) is

P (t) =

∫ ∞

t

Φ(s, t)∗Q(s)Φ(s, t)ds , t ∈ T, (59a)

P (t) =
∞∑

s=t

Φ(s, t)∗Q(s)Φ(s, t) , t ∈ T . (59b)

Proof : The proof is for the continuous time case. Suppose P (·) ∈ PC1(T ; Hn(K))
is a bounded solution of (54a) then

∂

∂s
(Φ(s, t)∗P (s)Φ(s, t)) = Φ(s, t)∗

[
Ṗ (s) + A(s)∗P (s) + P (s)A(s)

]
Φ(s, t)

= −Φ(s, t)∗Q(s)Φ(s, t) , a.e. s > t, t ∈ T. (60)

By assumption there exist constants p, q, M > 0 and ω < 0 such that ‖P (s)‖ ≤ p
and

‖Q(s)‖ ≤ q , ‖Φ(s, t)‖ ≤Meω(s−t) , s ≥ t, t ∈ T. (61)

So we may integrate (60) on [t,∞), t ∈ T to obtain (59a). It remains to show that
P (·) defined by (59a) is a bounded solution of (54a) on T . Since (61) holds, P (·) is
well defined by (59a), Hermitian and bounded on T (see (62a)). Now just as in the
proof of Lemma 3.3.4, we have

∂Φ(s, t)

∂t
= −Φ(s, t)A(t) for a.e. s > t.

Differentiating the integral in (59a)

Ṗ (t) = −Q(t)− A(t)∗
∫ ∞

t

Φ(s, t)∗Q(s)Φ(s, t)ds−
∫ ∞

t

Φ(s, t)∗Q(s)Φ(s, t)A(t)ds

= −Q(t)− A(t)∗P (t)− P (t)A(t) , a.e. t ∈ T.

This shows that P (·) ∈ PC1(T ; Hn(K)) and solves (54a). �

Note that if (61) holds and P (·) is given by (59) then P (·) is bounded by

‖P (t)‖ ≤ M2q

∫ ∞

t

e2ω(s−t)ds = M2q/(−2ω) , t ∈ T , (62a)

‖P (t)‖ ≤ M2q
∞∑

s=t

e2ω(s−t) = M2q/(1− e2ω) , t ∈ T . (62b)

Q(t) needs not necessarily be positive definite in order to conclude uniform asymp-
totic stability of (1) via the Liapunov function (51). Suppose that Q(t) = C(t)∗C(t),
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where C(·) ∈ PC(T ; Kp×n) (resp. C(·) ∈ (Kp×n)T ). We will need an extra assump-
tion which is expressed in terms of the matrices

Q(t, t0) =

∫ t

t0

Φ(s, t0)
∗C(s)∗C(s)Φ(s, t0)ds, t ∈ Tt0 , t0 ∈ T (63a)

Q(t, t0) =

t−1∑

s=t0

Φ(s, t0)
∗C(s)∗C(s)Φ(s, t0), t ∈ Tt0 , t0 ∈ T. (63b)

We will say that (A(·), C(·)) is uniformly observable on T (see Volume II) if there
exist constants τ > 0, c > 0 such that

Q(t0 + τ, t0) � cIn, t0 ∈ T. (64)

Clearly in this case Q(t1, t0) � cIn for all t0, t1 ∈ T such that t1 − t0 ≥ τ . In
the next theorem we will show that condition (64) (instead of Q(t) � α3In, see
Theorem 3.3.33 (iii)) suffices to obtain uniform asymptotic stability of (1) via the
Liapunov function (51).

Remark 3.3.37. If Q(t) = C(t)∗C(t) satisfies

Q(t) � α3In, t ∈ T, (65)

then in the discrete time case (A(·), C(·)) is uniformly observable and we may choose
the observability time τ = 1. This need not be the case for continuous time systems
(see Ex. 22). However, if β(A) > −∞ and (65) holds, then (A(·), C(·)) is uniformly
observable and the observability time τ can be made arbitrarily small (with c > 0 chosen
appropriately). In fact, we have, by assumption, the existence of ε > 0, ω < 0 such that

Φ(t, t0)∗Φ(t, t0) � εeω(t−t0)In, t ≥ t0, t0 ∈ T.

Hence it follows from (65) that for all τ > 0,

Q(t0 + τ, t0) � α3

∫ t0+τ

t0

Φ(s, t0)∗Φ(s, t0)ds � cτIn, t0 ∈ T,

where cτ = εα3(1− eωτ )/(−ω). �

Theorem 3.3.38. Suppose that Q(t) = C(t)∗C(t) for a bounded C(·) ∈ PC(T ; Kp×n)
(resp. bounded C(·) ∈ (Kp×n)T ) and (A(·), C(·)) is uniformly observable on T . Then
the following are equivalent.

(i) A(·) generates a uniformly exponentially stable evolution operator.

(ii) There exists a solution P (·) ∈ PC1(T ; Hn(K)) (resp. P (·) ∈ Hn(K)T ) of (54)
such that α2In � P (t) � α1In, t ∈ T , for some α1, α2 > 0.

(iii) There exists a bounded positive definite solution P (·) ∈ PC1(T ; Hn(K)) (resp.
bounded positive definite solution P (·) ∈ Hn(K)T ) of (54).
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Proof : The proof is for the continuous time case.
(i)⇒ (ii) Suppose that (1a) is uniformly exponentially stable, then by Lemma 3.3.36

P (t) =

∫ ∞

t

Φ(s, t)∗C(s)∗C(s)Φ(s, t)ds � 0 (66)

satisfies (54a) and hence satisfies (60). An upper bound for P (t) is given by (62a).
(60) implies that for t1 ≥ t0, t0 ∈ T

0 � Φ(t1, t0)
∗P (t1)Φ(t1, t0) = P (t0)−

∫ t1

t0

Φ(s, t0)
∗C(s)∗C(s)Φ(s, t0)ds . (67)

By the observability assumption there exists τ > 0 satisfying (64) where Q(t, t0) is
defined by (63a). Hence (ii) follows from

P (t0) �
∫ t1

t0

Φ(s, t0)
∗C(s)∗C(s)Φ(s, t0)ds � cIn , t1 ≥ t0 + τ, t0 ∈ T. (68)

(ii) ⇒ (iii) is trivial.
(iii) ⇒ (i) Suppose (iii) and let v(t) = 〈x(t), P (t)x(t)〉 where x(t) = Φ(t, t0)x

0,
(t0, x

0) ∈ T × Kn. Then v̇(t) = −〈x(t), C(t)∗C(t)x(t)〉 (see (56) and (55)) and
integrating from t0 to t1 > t0 yields (67) and hence (68). So α2In � P (t) � cIn,
t ∈ T for some α2 > 0 and c > 0 as in (64). Using again the assumption of uniform
observability, we have

v(t+τ)−v(t) = −〈x(t),Q(t+τ, t)x(t)〉 ≤ −c‖x(t)‖2 ≤ −(c/α2)v(t) , t ≥ t0, t0 ∈ T.

Setting c̃ = c/α2, we obtain v(t + τ) ≤ (1− c̃)v(t), t ≥ t0 and hence c̃ < 1 and

0 ≤ v(t + kτ) ≤ (1− c̃)kv(t) , k ∈ N , t ≥ t0 , t0 ∈ T.

For every t = t0 + kτ + r where k ∈ N, r ∈ [0, τ) we get

v(t) ≤ (1− c̃)kv(t0 + r) ≤ (1− c̃)(t−t0−τ)/τ 〈x(t0 + r), P (t0 + r)x(t0 + r)〉 .
By Theorem 3.3.33 the system (1a) is uniformly stable on T and hence there exists
M > 0 such that ‖Φ(t, t0)x

0‖ ≤M‖x0‖, t > t0, t0 ∈ T . So

〈Φ(t, t0)x
0, P (t)Φ(t, t0)x

0〉 = v(t) ≤M2α2(1− c̃)−1(1− c̃)(t−t0)/τ‖x0‖2 .

Now using the lower bound of P (t) and choosing ω = (2τ)−1 ln(1 − c̃) < 0, we
conclude

‖Φ(t, t0)‖ ≤ M([c̃(1− c̃)])−1/2eω(t−t0) , t ≥ t0, t0 ∈ T.

Hence (1) is uniformly exponentially stable on T . �

We now derive a necessary and sufficient instability criterion in terms of quadratic
Liapunov functions.

Theorem 3.3.39. Let t0 ∈ T and suppose that Q(t) = C(t)∗C(t), for a bounded
C(·) ∈ PC(Tt0; K

p×n) (resp. bounded C(·) ∈ (Kp×n)Tt0), (A(·), C(·)) is uniformly
observable on Tt0 and there exists a bounded P (·) ∈ PC1(Tt0 ; Hn(K)) (resp. bounded
P (·) ∈ Hn(K)Tt0 ) which solves (54). Then the following are equivalent
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(i) (1) is not exponentially stable at time t0.

(ii) (1) is unstable at t0.

(iii) There exist τ > 0, ω > 0, Mω > 0 and x0 ∈ Kn, x0 �= 0 such that

‖Φ(t0 + kτ, t0)x
0‖ ≥Mωe

kτω‖x0‖, k ∈ N.

(iv) There exist x0 ∈ Kn such that 〈x0, P (t0)x
0〉 < 0.

Moreover, when this is the case the Bohl exponent β(Φ) > 0.

Proof : The proof is for the continuous time case.
(iii) ⇒ (ii) ⇒ (i) is obvious.
(i) ⇒ (iv): Suppose 〈x, P (t)x〉 ≥ 0 for all (t, x) ∈ Tt0 ×Kn then by Theorem 3.3.38
A(·) generates an exponentially stable evolution operator at time t0.
(iv) ⇒ (iii): Suppose that x0 ∈ Kn is such that 〈x0, P (t0)x

0〉 < 0. Setting t1 =
t0 + kτ , k ∈ N in (67) (where τ satisfies the uniform observability condition (64))
we obtain from (67)

〈x0, P (t0)x
0〉 − 〈Φ(t0 + kτ, t0)x

0, P (t0 + kτ)Φ(t0 + kτ, t0)x
0〉

=

∫ t0+kτ

t0

‖C(s)Φ(s, t0)x
0‖2ds =

k∑

j=1

∫ t0+jτ

t0+(j−1)τ

‖C(s)Φ(s, t0)x
0‖2ds

=

k∑

j=1

∫ t0+jτ

t0+(j−1)τ

‖C(s)Φ(s, t0 + (j − 1)τ)Φ(t0 + (j − 1)τ, t0)x
0‖2ds

≥ c

k∑

j=1

‖Φ(t0 + (j − 1)τ, t0)x
0‖2 . (69)

Assume 〈x0, P (t0)x
0〉 = −α‖x0‖2, α > 0, ‖P (t)‖ ≤ α2 for all t ∈ Tt0 and set

rk =
∑k

j=1 ‖Φ(t0 + (j − 1)τ, t0)x
0‖2, then r1 = ‖x0‖2 and using (69)

crk+α‖x0‖2 ≤ −〈Φ(t0+kτ, t0)x
0, P (t0+kτ)Φ(t0+kτ, t0)x

0〉 ≤ α2‖Φ(t0+kτ, t0)x
0‖2.

Hence

α2(rk+1 − rk) = α2‖Φ(t0 + kτ, t0)x
0‖2 ≥ crk + α‖x0‖2 , r1 = ‖x0‖2 . (70)

So rk+1 ≥ (1 + c/α2)rk + α/α2‖x0‖2. From which it is easy to see that

rk ≥
[
(1 + c/α2)

k−1(1 + α/c)− α/c
] ‖x0‖2 .

Inserting this inequality in (70) we obtain

α2‖Φ(t0 + kτ, t0)x
0‖2 ≥ (1 + c/α2)

k−1(α + c)‖x0‖2 = α2M
2e2kωτ‖x0‖2 (71)

where M = ((α+c)/(α2+c))1/2, ω = (2τ)−1 ln (1+c/α2) > 0. This proves (iii) and
β(Φ) ≥ ω > 0. �
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Remark 3.3.40. (i) The system (1) is not uniformly exponentially stable if and only if
there exists a t0 ∈ T such that one of the conditions (ii)-(iv) is satisfied.
(ii) Since the in the continuous time case the Liapunov exponent α(Φ) is independent of
t0 we must have α(Φ) > 0. The same conclusion also holds for the discrete time case
provided detA(t) �= 0 for all t ∈ T (this will be the case if β(Φ) > −∞).
(iii) In comparison with the Stability Theorem 3.3.38 the Instability Theorem 3.3.39
is rather unsatisfactory since it assumes the existence of a bounded solution of (54).
On the other hand Theorem 3.3.39 is surprising in that it shows that under its as-
sumptions marginal stability cannot occur. More precisely we obtain as a consequence
of Theorem 3.3.39 and Theorem 3.3.38: If β(Φ) = 0 and Q(t) = C(t)∗C(t), where
C(·) ∈ PC(T ; Kp×n) is bounded (resp. C(·) ∈ (Kp×n)T is bounded) then either there
is no bounded P (·) ∈ PC1(Tt0 ; Hn(K)) (resp. P (·) ∈ Hn(K)Tt0 ) solving (54), for any
t0 ∈ T , or (A(·), C(·)) is not uniformly observable. �

We now describe Liapunov’s indirect method of stability analysis which proceeds via
linearization. Consider the nonlinear equations (2.27), namely

ẋ(t) = f(t, x(t)) , t ∈ T (72a)

x(t + 1) = f(t, x(t)) , t ∈ T. (72b)

Let x ∈ X ⊂ K
n be an equilibrium point of (72) and assume that f satisfies the

conditions (A1), (A2) in Subsection 3.2.2. In addition we also require that

f(t, x) = A(t)(x− x) + h(t, x− x) , (t, x) ∈ T ×X . (73)

where A(·) ∈ PC(T ; Kn×n) (resp. A(·) ∈ (Kn×n)T ) and for any ε > 0 there exists
δ > 0, such that

‖h(t, x− x)‖ ≤ ε‖x− x‖, (t, x) ∈ T × B(x, δ) . (74)

Theorem 3.3.41 (Liapunov’s indirect method). Suppose that f satisfies (73),
(74), A(·) generates a uniformly exponentially stable evolution operator and (A(·), I)
is uniformly observable. Then the equilibrium point x is uniformly exponentially sta-
ble for the nonlinear system (72). More precisely for x0 ∈ B(x, r), r > 0 sufficiently
small, the solutions ϕ(t; t0, x

0) of (72) have infinite life time and there exist con-
stants M > 0, ω < 0 such that for all t0 ∈ T

x0 ∈ B(x, r) =⇒ ∀t ∈ Tt0 : ‖ϕ(t; t0, x
0)− x‖ ≤Meω(t−t0)‖x0 − x‖. (75)

Proof : The proof is for the discrete time case. Let Q(t) ≡ In, then by Theo-
rem 3.3.38 there exists a solution P (t) ∈ Hn(K), t ∈ T of (54b) with α2In � P (t) �
α1In, t ∈ T , for some α1, α2 > 0. Consider V (t, x) = 〈x − x, P (t)(x− x)〉, (t, x) ∈
T ×X. Setting ∆x = x− x we obtain by (73) for every (t, x) ∈ T ×X

V̇ (t, x) = V (t + 1, f(t, x))− V (t, x)

= 〈A(t)∆x + h(t, ∆x), P (t + 1)(A(t)∆x + h(t, ∆x))〉 − 〈∆x, P (t)∆x〉
= −‖∆x‖2+2 Re〈h(t, ∆x), P (t+1)A(t)∆x〉+〈h(∆x, t), P (t+1)h(t, ∆x)〉.

So
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V̇ (t, x) ≤ −‖∆x‖2 + 2‖h(t, ∆x)‖ ‖P (t + 1)‖ ‖A(t)‖ ‖∆x‖+ ‖P (t + 1)‖ ‖h(t, ∆x)‖2.

In the discrete time case ‖A(·)‖ is bounded on T by the uniform stability assumption,
so we may choose ε > 0 sufficiently small to obtain

1− 2α2‖A(t)‖ε− α2ε
2 ≥ 1/2, t ∈ T.

By (74), there exists a δ > 0, such that B(x, δ) ⊂ X and

‖h(t, ∆x)‖ ≤ ε‖∆x‖ for (t, x) ∈ T × B(x, δ).

Hence
V̇ (t, x) ≤ −(1/2)‖∆x‖2 for (t, x) ∈ T ×B(x, δ).

Setting D = B(x, δ) we may apply Corollary 3.2.20 with p = 2 to conclude that
the equilibrium point x is uniformly exponentially stable and there exist constants
M > 0, ω < 0 such that (75) holds. �

Remark 3.3.42. (i) The formulation of Theorem 3.3.41 in terms of uniform exponen-
tial stability is essential and cannot be replaced by for example asymptotic stability (see
Bellman (1953) [44] for a counter example).

(ii) By Remark 3.3.37 (A(·), I) is necessarily uniformly observable in the discrete time
case and this will also hold in the continuous time case if β(Φ) > −∞. �

In order to apply the previous theorems to the stability analysis of a non-constant
trajectory of the nonlinear system (72) we proceed as described in Subsection 2.1.4.
Suppose that x̃ : Tt0 → X is a trajectory of (72) and that (t, x̃(t) + x) ∈ X for all
t ∈ Tt0 , x ∈ B(0, ρ), ρ > 0. Let

g(t, x) = f(t, x̃(t) + x)− f(t, x̃(t)), (t, x) ∈ Tt0 × B(0, ρ).

Then x = 0 is an equilibrium point of (72) with f replaced by g and x = 0 is
exponentially stable for this system if and only if x̃(·) is exponentially stable for (72).
Now g will satisfy (73), (74) with T = Tt0 (so that we may apply Theorem 3.3.41
to the equilibrium point x = 0 of the system described by g) if and only if f is
uniformly differentiable along the trajectory x̃(·) in the following sense

f(t, x) = f(t, x̃(t)) + A(t)(x− x̃(t)) + h(t, x− x̃(t)), (t, x) ∈ Tt0 ×X . (76)

where A(·) ∈ PC(Tt0 ; K
n×n) (resp. A(·) ∈ (Kn×n)Tt0 ) and for any ε > 0 there exists

δ > 0, such that

‖h(t, x− x̃(t))‖ ≤ ε‖x− x̃(t)‖, (t, z) ∈ Tt0 ×B(x̃(t), δ) . (77)

This condition will be satisfied if, for example, f is twice continuously differentiable
with respect to x in an ε-neighbourhood of the integral curve {(t, x̃(t)); t ∈ Tt0},
and its second derivative is bounded on this neighbourhood. This follows from the
fact that

‖f(t, x)− f(t, x̃(t))− f ′(t, x̃(t))(x− x̃(t))‖ ≤ (1/2)‖f ′′(t, x̃(t) + θ(t)(x− x̃(t)))‖‖x− x̃(t)‖2
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where f ′ and f ′′ denote the first and the second derivative of f with respect to x
and θ(t) ∈ [0, 1].
In the following instability theorem we use a quadratic Liapunov function which
is associated with a perturbation of the linearization (1) of (72). This widens the
applicability of the theorem.

Theorem 3.3.43. Assume that f satisfies (73), (74) and t0 ∈ T . For some r ≥ 0
let Ar(t) = A(t) − rIn (resp. r ≥ 1, Ar(t) = r−1A(t)), t ∈ T and suppose the
following hold

(i) (Ar(·), In) is uniformly observable on Tt0 .

(ii) For Q(t) ≡ In there exists a bounded Pr(·) ∈ PC1(Tt0 ; Hn(K)) (resp. bounded
Pr(·) ∈ Hn(K)Tt0 ) which solves (54) with A(t) replaced by Ar(t) on Tt0.

Then, if ẋ(t) = Ar(t)x(t) (resp. x(t + 1) = Ar(t)x(t)) is unstable at time t0, the
equilibrium point x of the nonlinear system (72) will also be unstable at time t0.

Proof : The proof is for the continuous time case. Suppose ẋ(t) = Ar(t)x(t) is
unstable at time t0. By applying Theorem 3.3.39 with Q(t) ≡ In we see that there
exists x̃ ∈ X, ‖x̃‖ = 1 such that 〈x̃, Pr(t0)x̃〉 < 0. Let V (t, x) = 〈x−x, Pr(t)(x−x)〉
for (t, x) ∈ T ×X. Setting ∆x = x− x, the derivative of V along the flow of (72a)
is given by

V̇ (t, x) = 〈∆x, Ṗr(t)∆x〉+〈A(t)∆x+ h(t,∆x), Pr(t)∆x〉+〈∆x, Pr(t)(A(t)∆x + h(t,∆x))〉
= −‖∆x‖2 + 2r〈∆x, Pr(t)∆x〉+ 2 Re〈h(t,∆x), Pr(t)∆x〉, (t, x) ∈ T ×X.

So
V̇ (t, x) ≤ −‖∆x‖2 + 2rV (t, x) + 2‖h(t, ∆x)‖ ‖Pr(t)‖ ‖∆x‖.

By assumption there exists α2 > 0 such that ‖Pr(t)‖ ≤ α2 for all t ∈ Tt0 . Choose
ε > 0 such that 4εα2 < 1. By (74), there exists a δ > 0, such that B(x, δ) ⊂ X and

‖h(t, ∆x)‖ ≤ ε‖∆x‖ for (t, x) ∈ T × B(x, δ).

Hence

V̇ (t, x)− 2rV (t, x) ≤ −(1/2)‖∆x‖2 for (t, x) ∈ T ×B(x, δ). (78)

First suppose that r = 0. Setting D = B(x, δ) and choosing x0 = x + ρx̃ for any
ρ ∈ (0, δ) we have an x0 ∈ B(x, ρ) with V (t0, x

0) < 0. Moreover since V̇ (t, x) ≤
−(1/2)‖∆x‖2 and |V (t, x)| ≤ α2‖∆x‖2, for all (t, x) ∈ Tt0 × B(x, δ), we may apply
the Instability Theorem 3.2.22 to conclude that x is unstable at t0 for (72a) .
Now suppose that r > 0 and assume by way of contradiction that x is stable for
(72a) at time t0. Then there exists a δ̃ ∈ (0, δ) such that

‖x− x‖ < δ̃ =⇒ ‖ϕ(t; t0, x)− x‖ < δ, t ≥ t0.

For every ρ ∈ (0, δ̃) we again choose x0 = x+ρx̃, then ‖x0−x‖ = ρ and V (t0, x
0) < 0.

By (78) we have

d

dt

[
e−2r(t−t0)V (t, ϕ(t; t0, x

0))
] ≤ −(1/2)e−2r(t−t0)‖ϕ(t; t0, x

0)− x‖2 ≤ 0, t ≥ t0.
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Hence, for t ≥ t0

V (t, ϕ(t; t0, x
0) ≤ e2r(t−t0)V (t0, x

0) = −e2r(t−t0)|〈x̃, Pr(t0)x̃〉|‖x0 − x‖2.

This contradicts the fact that V (t, x) is bounded on T × B(x, δ). So x is unstable
for (72a) at time t0. �

One might think that if the linear system is unstable at time t0, there will not exist
any bounded solution Pr(t) on Tt0 which solves (54) with A(t) replaced by Ar(t) and
Q(t) ≡ In. In part this is suggested by the solution formulas (59) for the uniformly
exponentially stable case. Note that even if the right hand side of this formula is
well defined we cannot use the resulting Pr(t) in applying the theorem since it is
positive definite for all t ∈ Tt0 . Let us denote by Φr(·, ·) the evolution operator
generated by Ar(·), then integrating the equation (60) with the above replacements
from t0 to t, the unique solution with initial value Pr(t0) is

Pr(t) = Φr(t0, t)
∗Pr(t0)Φr(t0, t)−

∫ t

t0

Φr(s, t)
∗Φr(s, t)ds, t ≥ t0 . (79)

So in order to apply the theorem we have to seek a non-positive definite Pr(t0) for
which the Pr(·) defined by (79) is bounded on Tt0 . Similar considerations apply in
the discrete time case, see Ex. 14. We illustrate the continuous time case for the
case r = 0 in the following simple example, see also Ex. 15.

Example 3.3.44. Consider the scalar system ẋ(t) = a(t)x(t), t ∈ R. First let us assume
that a(t) ≡ a > 0, t ∈ R, then the solution given by (59a) is not defined. However by
(79) we have p(t) = e−2a(t−t0)(p(t0) + 1/2a) − 1/2a, t ≥ t0. Choosing p(t0) = −1/2a we
conclude from the above theorem that any nonlinear system satisfying (73), (74) for which
ẋ(t) = ax(t) is the linearization will be unstable at any time t0.
Now suppose a(t) = t, t ∈ R, then Φ(t, t0) = e(t

2−t20)/2 and so again the solution given by
(59a) is not defined. But from (79) we get

p(t) = et
2
0−t2p(t0)−

∫ t

t0

es
2−t2ds, t ≥ t0.

Hence for t ≥ t0 ≥ 1/2

et
2
0−t2p(t0) ≥ p(t) ≥ et20−t2p(t0)−

∫ t

t0

2ses
2−t2ds = et

2
0−t2p(t0)− (1− et20−t2).

So p(t) is bounded for t ≥ t0 ≥ 1/2 and since we may choose p(1/2) < 0 we conclude from
the above theorem that any nonlinear system satisfying (73), (74) for which ẋ(t) = tx(t)
is the linearization will be unstable at any time t0 ≥ 1/2. �

3.3.5 Liapunov Functions for Time-Invariant Linear
Systems

In this subsection we specialize the results of the previous one to the time–invariant
case. The dynamic Liapunov equations (54) then reduce to linear matrix equations
for which effective solution procedures are available. This enables us to construct
Liapunov functions in an efficient way. Moreover we obtain a more satisfactory
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instability criterion (Theorem 3.3.49 (iv)), and the application of Liapunov’s indirect
method is simplified by the fact that it only requires the differentiability of the right
hand side of the nonlinear system at the equilibrium point in question.
In a time–invariant setting it is natural to assume that Q is constant and to require
time–invariant solutions of (54). Then the dynamic Liapunov equations become
static and take the form

A∗P + PA + Q = 0 (80a)

A∗PA− P + Q = 0 . (80b)

In contrast to the dynamic Liapunov equations it is not clear whether these linear
matrix equations have solutions. For the case where σ(A) ⊂ C− (resp. σ(A) ⊂ D) a
solution could be constructed as in Lemma 3.3.36. However this would presuppose
asymptotic stability. We need to prove the existence of solutions under more general
conditions and with a view to later applications we do this by characterizing the
eigenvalues of the Liapunov maps for a generalized version of the equations (80).

Proposition 3.3.45. Suppose A ∈ Kn×n, A1 ∈ Kn1×n1 and let L (resp. LD) be the
associated generalized Liapunov operator

L : K
n1×n → K

n1×n, X → L(X) = A1X + XA (81a)

LD : K
n1×n → K

n1×n, X → LD(X) = A1XA−X. (81b)

Then
σ(L) = {µ1 + µ; µ1 ∈ σ(A1), µ ∈ σ(A)} (82a)

σ(LD) = {µ1µ− 1; µ1 ∈ σ(A1), µ ∈ σ(A)}. (82b)

In particular, L, LD : Kn1×n → Kn1×n is a linear isomorphism if and only if

µ1 + µ �= 0 (resp. µ1µ �= 1), µ1 ∈ σ(A1), µ ∈ σ(A). (83)

Proof : The proof is for the continuous time case. Suppose that A1x
1 = µ1x

1, x1 ∈
C
n1 , x1 �= 0 and xA = µx, x	 ∈ C

n, x �= 0. Then for X = x1x, we have

L(X) = A1X + XA = A1x
1x + x1xA = (µ1 + µ)x1x = (µ1 + µ)X.

Hence µ1 + µ ∈ σ(L), i.e. the inclusion ⊂ in (82a). To prove the converse we
transform A to Schur form. In Section 4.5 we will show that for A ∈ Kn×n, there
exists a unitary matrix U ∈ Un(C) such that U∗AU is in upper triangular complex
Schur form, namely

U∗AU = S =





s11 s12 · · · s1n

0 s22 · · · s2n

. 0 . . . .

. . . . . .
0 0 . . . snn




(84)

where each diagonal element is an eigenvalue of A. Now suppose that λ is an
eigenvalue of L with eigenvector X ∈ K

n1×n, X �= 0. Then A1X + XA = λX and
multiplying on the right by U , we obtain

A1XU + XUU∗AU = A1XU + XUS = λXU.
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Defining Z = [z1 z2 . . . zn] := XU, zj ∈ Cn1 , j ∈ n, then Z �= 0 and

[A1 + sjjIn1 ]z
j = λzj −

j−1∑

i=1

sijz
i, j ∈ n . (85)

Since Z �= 0 there exists j ∈ n, such that zj �= 0 and zk = 0, k < j. But then from
(85) [A1 + sjjIn1 ]z

j = λzj and hence λ−sjj ∈ σ(A1) and this completes the proof of
(82). Since the linear map L is a vector space isomorphism if and only if 0 �∈ σ(L)
the second assertion follows. �

As a direct consequence of Proposition 3.3.45 the generalized Liapunov equations

A1P + PA + Q = 0 , (resp. A1PA− P + Q = 0). (86)

have unique solutions P ∈ Kn1×n for every Q ∈ Kn1×n if and only if condition (83)
holds. In the present context the particular case where A1 = A∗ is of special interest.
If Q = Q∗ is Hermitian and P is a solution of (86) then P ∗ is also a solution of
(86). Hence if (86) has a unique solution then the solution is necessarily Hermitian.
This leads us to introduce the following Liapunov operator on the real vector space
Hn(K) of Hermitian n× n matrices

LA : Hn(K)→ Hn(K), X �→ A∗X + XA (resp.LD
A : X �→ A∗XA−X). (87)

As an immediate consequence of Proposition 3.3.45 we obtain

Corollary 3.3.46. Suppose A ∈ K
n×n. The Liapunov operator LA (resp. LD

A) is a
linear bijection from Hn(K) onto itself if and only if

λ + µ �= 0, (resp. λ µ �= 1) λ, µ ∈ σ(A). (88)

In this (and only in this) case the algebraic Liapunov equation (80) has a unique
(Hermitian) solution for every Q ∈ Hn(K).

If σ(A) ⊂ C− (resp. σ(A) ⊂ D), then by Lemma 3.3.36 we know that the solution
of (80) is given by

P =

∫ ∞

t

eA
∗(s−t)QeA(s−t)ds =

∫ ∞

0

eA
∗ρQeAρdρ , (89a)

P =
∞∑

s=t

A∗(s−t)QAs−t =
∞∑

ρ=0

A∗ρQAρ . (89b)

Clearly, if Q � 0 then P defined by (89) is positive definite. Therefore

Corollary 3.3.47. Suppose A ∈ K
n×n and σ(A) ⊂ C− (resp. σ(A) ⊂ D). Then the

Liapunov operator LA (resp.LD
A) : Hn(K) → Hn(K) is invertible and −L−1

A (resp.
−(LD

A )−1) is a positive operator from the vector space Hn(K) ordered by � into itself,
i.e.

Q � 0⇒ P = −L−1
A (Q) � 0, (resp. .− (LD

A)−1(Q) � 0, (90)
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Remark 3.3.48. As a consequence of the next theorem the converse of Corollary 3.3.47
is also true. Hence −L−1

A , (resp. − (LDA )−1) is a positive operator on Hn(K) if and only
if the associated system ẋ = Ax (resp. x(t + 1) = Ax(t)) is asymptotically stable. This
observation shows that there is a close relationship between the stability theory of time–
invariant linear systems and the theory of positive operators. �

For time-invariant systems the matrix Q(t, t0) defined in (63) takes the form

Q(t, t0) =

∫ t

t0

eA
∗(s−t0)C∗CeA(s−t0)ds =

∫ t−t0

0

eA
∗ρC∗CeAρdρ , (91a)

Q(t, t0) =

t−1∑

s=t0

A∗(s−t0)C∗CAs−t0 =

t−t0−1∑

ρ=0

A∗ρC∗CAρ . (91b)

Hence the pair (A, C) is uniformly observable if and only if there exists c > 0, τ > 0,
such that Q(τ, 0) ≥ cIn. And it is not difficult to show (cf. Volume II) that this will
be the case if and only if (A, C) is observable in the sense that

n⋂

i=1

ker CAi−1 = {0}. (92)

As a consequence of these observations the results developed in the previous sub-
section take a simpler form.

Theorem 3.3.49. Suppose Q = C∗C, where C ∈ Kp×n.

(i) If (A, C) is observable, then (27) is asymptotically stable if and only if there
exists a solution P of (80) with P � 0.

(ii) If there exists a solution P of (80) with P � 0 and ker P �= {0}, then (A, C)
is not observable.

(iii) If there exists a solution P of (80) with P � 0, then the time-invariant system
(27) is stable, and if in fact it is asymptotically stable then (A, C) is necessarily
observable.

(iv) Suppose (A, C) is observable and there exists a solution P ∈ Hn(K) of (80).
Then there exists x0 ∈ K

n with 〈x0, Px0〉 < 0 if and only if Reλ > 0
(resp. |λ| > 1) for some λ ∈ σ(A).

Proof : The proof is for the continuous time case.
(i) The “if” statement follows from Theorem 3.3.38. Conversely, suppose that (27) is
asymptotically stable. Then P defined by (89a) solves (80a) and is positive definite
by the observability of (A, C).
(ii) If P � 0 is a solution of (80a) then it follows from (67) that

eA
∗tPeAt = P −

∫ t

0

eA
∗ρC∗CeAρdρ, t ≥ 0.

Now suppose x ∈ ker P , x �= 0 then − ∫ t

0
‖CeAρx‖2dρ = 〈x, eA

∗tPeAtx〉 ≥ 0 and

hence 〈x,Q(t, 0)x〉 =
∫ t

0
‖CeAρx‖2dρ = 0 for all t ≥ 0. Thus (A, C) is not observ-

able.
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(iii) Suppose that P � 0 solves (80a) then (27) is stable by Theorem 3.3.33. If ad-
ditionally σ(A) ⊂ C− then

∫ ∞
0

eA
∗ρC∗CeAρdρ = P � 0 and so (A, C) is observable.

(iv) follows from Theorem 3.3.39 and Theorem 3.3.38, see Remark 3.3.40. �

Remark 3.3.50. (i) If Q � 0 then rank C = n and (92) is automatically satisfied.

(ii) For higher dimensions it is a nontrivial task to solve the linear matrix equation (80).
In the next chapter we will describe an algorithm based on the reduction of A to Schur
form. An alternative is to make an inspired choice of a P = P ∗ � 0 and compute Q from
(80). If Q � 0 (� 0) then (27) is asymptotically stable (stable) whereas if this is not the
case no conclusion can be drawn.

(iii) If P � 0 solves (80) with Q = Q∗ � 0 then V (x) = 〈x, Px〉 = 〈x, x〉P = ‖x‖2P satisfies

V̇ (x) = 2 Re〈x,Ax〉P < 0 (V̇ (x) = ‖Ax‖2P − ‖x‖2P < 0), x ∈ K
n, x �= 0. (93)

So the flow is contracting with respect to the induced norm ‖ · ‖P , i.e. the distance from
the origin measured by this norm is continually decreasing along the trajectory.

(iv) If the spectral abscissa α(A) = 0 (resp. �(A) = 1) and Q � 0, then there is no solution
of (80), see Remark 3.3.40.

(v) Given r ∈ R (resp. r > 0), Q = Q∗ � 0, let us assume that (88) holds for the matrix
(A−rI) (resp. r−1A). Then from the above theorem we have that Reλ > r (resp. |λ| > r)
for some λ ∈ σ(A) if and only if the solution Pr ∈ Hn(K) of following equation (94)

P (A− rI) + (A− rI)∗P +Q = 0 (94a)
r−2 A∗PA− P +Q = 0. (94b)

satisfies 〈x0, Prx
0〉 < 0 for some x0 ∈ K

n. Moreover (88) will hold for all but a finite
number of values of r. �

Example 3.3.51. We again consider the linear oscillator studied in Example 3.3.24. For
different parameter combinations (α ∈ R, β ≥ 0) we will determine the stability properties
via the use of Liapunov functions. The Liapunov equation (80a) takes the following form

[
0 1
−β −2α

]∗ [
p1 p2

p2 p3

]
+

[
p1 p2

p2 p3

] [
0 1
−β −2α

]
+

[
q1 q2
q2 q3

]
= 0

i.e. −2βp2 + q1 = 0, p1 − 2αp2 − βp3 + q2 = 0, 2(p2 − 2αp3) + q3 = 0.

1. case: α �= 0, β > 0. In this case we choose Q = I2 and obtain the solution

p1 =
α

β
+

1

4α
(1 + β), p2 =

1

2β
, p3 =

1 + β

4αβ
.

Since p1p3 − p2
2 > 0, P � 0 if and only if p1 > 0 (or p3 > 0). 〈x, Px〉R2 < 0 for some

x ∈ R
2 (in fact −P � 0) if and only if p1 < 0 (or p3 < 0). Thus by Theorem 3.3.49 the

system is asymptotically stable if α > 0, β > 0 and it is unstable if α < 0, β > 0.
If α = 0 or β = 0 there are no solutions of the Liapunov equation when Q = I2, so we
examine the modified Liapunov equation (94a).
2. case: α < 0, β = 0. The solution of (94a) with Q = I2 is

Pr =
1

4r(α + r)(2α + r)

[
2(α + r)(2α+ r) 2α+ r
2α+ r 2r2 + 2αr + 1

]
.
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Now 2(α+r)(2α+r)(2r2 +2αr+1)− (2α+r)2 = r(2α+8α3)+O(r2), so for α < 0, r > 0
sufficiently small there exists x ∈ R

2 such that 〈x, Prx〉 < 0. Hence by Remark 3.3.50 A
has an eigenvalue with Reλ > r for small r > 0. So there is a λ ∈ σ(A) with Reλ > 0
and hence the system is unstable.

If α ≥ 0, β = 0 it is easily verified from the above formula that Pr � 0 for r > 0 and
〈x0, Prx

0〉 < 0 for some x0 ∈ K
n when r < 0 is near r = 0. Hence there is a λ ∈ σ(A) with

Reλ = 0. A similar analysis can be carried out for the case α = 0, β > 0. But as in the
case where β = 0, α ≥ 0 no stability or instability result is obtained (only the existence
of λ ∈ σ(A) with Reλ = 0). Thus stability results for these remaining cases cannot be
obtained with the choice of Q = I2, even if we use the modified Liapunov equation (94a).
In order to proceed using quadratic Liapunov functions we need to make an inspired
choice for P (or equivalently Q). The total energy of the oscillator is 1

2(βx2
1 + x2

2), so let

us consider P =

[
1
2β 0
0 1

2

]
, with the associated

Q = −A∗P − PA =

[
0 0
0 2α

]
=

[
0
√

2α
] [

0√
2α

]
=: C∗C. (95)

The parameter values we still have to analyze are α ≥ 0, β = 0 and α = 0, β �= 0, however
for these values there is more than one solution of (80a) with Q given by (95).
3. case: α = 0, β > 0. In this case there are many solutions of (80a)

P (γ, δ) =

[
βδ γ
−γ δ

]
, γ, δ ∈ R.

which are, in general, non-symmetric. However, P (0, 1) ∈ H2(R) is positive definite and
so the system is stable by Corollary 3.3.46.
4. case: β = 0, α > 0. In this case there are many symmetric solutions of (80a) with Q
given by (95)

P (γ) =

[
2αγ γ
γ 1

2 + γ
2α

]
, γ ∈ R.

Since P (1) � 0 for α > 0 we conclude from Theorem 3.3.49 the system is stable.
5. case: α = 0, β = 0. In this case there are again many symmetric solutions of (80a)

P (δ) =

[
0 0
0 δ

]
, δ ∈ R

and the pair (A,C) is unobservable since C = 0. We know from Example 3.3.24 that the
system is (marginally) unstable in the present case but we cannot infer this result from
Theorem 3.3.49.
This example illustrates the usual situation when Liapunov equations are used. Stability
or instability can be deduced for most of the parameter values by the choice of Q = In.
However certain combinations of the parameters (associated with the case Re λ = 0,
λ ∈ σ(A)) require a more subtle analysis. �

We now turn to the time-invariant version of Liapunov’s indirect method. Consider
the nonlinear equations

ẋ(t) = f(x(t)), t ∈ R, (96a)

x(t + 1) = f(x(t)), t ∈ Z (96b)
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where f is Lipschitz continuous (resp. continuous) on an open subset X ⊂ Kn,
x ∈ X, f(x) = 0 (resp. f(x) = x). In addition, suppose that f is differentiable at x
and f ′(x) = A, i.e.

f(x) = A(x− x) + h(x− x), x ∈ X. (97)

and for any ε > 0 there exists δ > 0, such that

‖h(x− x)‖ ≤ ε‖x− x‖, x ∈ B(x, δ). (98)

Theorem 3.3.52. Assume that (97), (98) hold for the nonlinear system (96). Then

(i) if Re λ < 0 (|λ| < 1) for all λ ∈ σ(A), the equilibrium state x is exponentially
stable with respect to the nonlinear system (96).

(ii) If Re λ > 0 (|λ| > 1) for some λ ∈ σ(A) then the equilibrium state x is unstable
with respect to the nonlinear system (96).

Proof : Since (A, In) is uniformly observable (i) is an immediate consequence of
Theorem 3.3.20 and Theorem 3.3.41. We prove (ii) for the continuous time case
leaving the proof for the discrete time case to the reader (Ex. 23). Suppose Reλ0 > 0
for some λ0 ∈ σ(A) and choose r ∈ (0, Reλ0) such that (88) holds for Ar = A− rIn.
Then (Ar, In) is uniformly observable and there exists a solution Pr ∈ Hn(K) of
(94a). Moreover ẋ = Arx is unstable and so by Theorem 3.3.43 we must have that
x is unstable for the nonlinear system (96a). �

As an immediate consequence of Theorem 3.3.52 we know that if the equilibrium
point x of the nonlinear system (96) is unstable then there exists λ ∈ σ(A) such that
Re λ ≥ 0 (|λ| ≥ 1), but the linearized system is not necessarily unstable. Conversely
if the equilibrium point x of the nonlinear system is (asymptotically) stable then
necessarily Re λ ≤ 0 (|λ| ≤ 1), λ ∈ σ(A), but we cannot infer that the linearization
is (asymptotically) stable. In contrast in the case of exponential stability there is a
tighter relationship between the behaviour of a nonlinear system near an equilibrium
point and its linearization. In order to express this relationship in a succinct way
we need the following definition. The solution of (96) with initial state x0 will be
denoted by ϕ(t; x0), t ∈ T (x0).

Definition 3.3.53. Let r > 0 be such that B(x, r) ⊂ X. The infimum of all ω ∈ R

for which there exists Mω ≥ 1 such that

x0 ∈ B(x, r) =⇒ ∀t ∈ T (x0) : ‖ϕ(t; x0)− x‖ ≤Mωe
ωt‖x0 − x‖ (99)

is called the (upper) growth rate of the nonlinear system (96) with initial state in
B(x, r) and is denoted by ω(f, x, r). ω(f, x) := limr↘0 ω(f, x, r) is said to be the
(upper) growth rate of (96) at the equilibrium state x.

It follows from the definition that 0 < r1 < r2 implies ω(f, x, r1) ≤ ω(f, x, r2) and
therefore ω(f, x) = infr>0 ω(f, x, r). By definition ω(f, x, r) = ∞ if there does not
exist an Mω ≥ 1, ω ∈ R such that (99) holds.
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Example 3.3.54. Let f(x) = Ax, x ∈ K
n where A ∈ K

n×n is given and x = 0. Then
ω(f, 0, r) = ω(f, 0) = ω(A) for all r > 0 where ω(A) equals the upper Liapunov (or Bohl)
coefficient of the semigroup Φ(t) = eAt generated by A, see (30). Hence Definition 3.3.53
generalizes the concept of growth rate as introduced in Subsection 3.3.2 for time-invariant
linear systems. �

Theorem 3.3.55. Assume (97), (98) hold for the nonlinear system (96). Then
the equilibrium point x is exponentially stable if and only if the linearization at x is
exponentially stable. In this case ω(f, x) = ω(A).

Proof : The proof is for the continuous time case, the proof for the discrete time
case is set as Ex. 23. Assume ω(A) < 0 and β ∈ (0,−ω(A)). Given ε > 0 choose
δ > 0 such that (98) holds and consider the time-varying nonlinear equation

ż(t) = (A + βIn)z(t) + h̃(t, z(t)), h̃(t, z) = eβth(e−βtz), z ∈ B(0, δ), t ≥ 0. (100)

Now

‖z‖ < δ =⇒ ‖h̃(t, z)‖ = eβt‖h(e−βtz)‖ ≤ eβtε‖e−βtz‖ = ε‖z‖, t ≥ 0. (101)

Hence h̃(·, ·) has the property (74) for the pair (ε, δ). Moreover σ(A+βIn) ⊂ C− and
(A +βIn, In) is uniformly observable. So we may apply Theorem 3.3.41 to conclude
that there exist positive constants δ̃, ε̃, M̃ such that

‖z(0)‖ < δ̃ =⇒ ‖z(t)‖ ≤ M̃e−ε̃t‖z(0)‖, t ≥ 0.

Let x0 = x + z(0) and ϕ(t; x0)− x = e−βtz(t), t ≥ 0, then

‖x0 − x‖ < δ̃ =⇒ ‖ϕ(t; x0)− x‖ ≤ M̃e−(β+ε̃)t‖x0 − x‖, t ≥ 0.

Moreover for t > 0, we have

ϕ̇(t; x0) = −βe−βtz(t) + e−βt[(A + βIn)z(t) + eβth(e−βtz(t))]

= A(ϕ(t; x0)− x) + h(ϕ(t; x0)− x).

So ϕ(t; x0) is the solution of (96a) with initial state x0. We see, therefore, that x is
exponentially stable for the system (96a) and its growth rate at x, ω(f, x) ≤ ω(A).
Conversely, assume that x is exponentially stable for (96a). Then given ε > 0 and
ω ∈ (ω(f, x), 0), there exists positive constants δ, M such that (98) holds and

‖x0 − x‖ < δ =⇒ ‖ϕ(t; x0)− x‖ ≤Meωt‖x0 − x‖, t ≥ 0.

Choose β ∈ (0,−ω) such that λ + µ + 2β �= 0 for all λ, µ ∈ σ(A) and set z(t) =
eβt(ϕ(t; x0) − x), t ≥ 0. Then z(·) satisfies (100) with initial state x0 − x and by
(101) h̃(·, ·) has the property (74) for the pair (ε, δ). Now if λβ ∈ σ(A + βIn), then
λβ = λ + β for some λ ∈ σ(A). So by the restriction on the choice of β we see that
λβ + µβ �= 0 for all λβ, µβ ∈ σ(A + βI) and hence there exists a solution P of the
algebraic Liapunov equation (80a) with A replaced by A+βIn and Q = In. Finally,
since (A+βIn, In) is observable, we see that all the conditions of Theorem 3.3.43 for
the equation given by (100) are satisfied. But ‖z(t)‖ ≤ Me(ω+β)t‖z(0)‖, t ≥ 0 and
so the the equilibrium point 0 of (100) is exponentially stable. Therefore A + βIn
cannot be unstable and Reλ ≤ −β for all λ ∈ σ(A). Thus ω(A) ≤ ω(f, x) and this
completes the proof. �
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Liapunov’s indirect method provides a very simple way of determining whether or
not an equilibrium state is stable since it relates the nonlinear flow to that of the
linearized flow. However it is important to stress that stability or instability of an
equilibrium state is a local property and from a practical point of view may give
misleading information. For example an equilibrium state may be asymptotically
stable but its basin of attraction may be so small that from a practical standpoint
one should think of it as being unstable. Similar considerations apply to unstable
equilibrium points. Although the construction of Liapunov functions for nonlinear
systems may be difficult, the great advantage of Liapunov’s direct method is that it
provides information about the basin of attraction.

Example 3.3.56. Consider the nonlinear oscillator

ÿ + h(y, ẏ)ẏ + g(y) = 0

where g(0) = 0. Setting x = [x1, x2]	 = [y, ẏ]	, we get the corresponding state space
system

ẋ =

[
x2

−g(x1)− h(x1, x2)x2

]
:= f(x).

Since
∂f

∂x
(0) =

[
0 1

−g′(0) −h(0, 0)

]
,

the origin will be exponentially stable if and only if g′(0) > 0 and h(0, 0) > 0. It will be
unstable if either g′(0) < 0 or h(0, 0) < 0. �

Example 3.3.57. Let us analyze the stability of an oscillator with nonlinear friction
described by the following equation

ξ̈ + (2α + ξ̇2)ξ̇ + βξ = 0.

Mechanical systems with this equation of motion are used to regulate the angular position
ξ of a gyrating mass. The corresponding state space system is

ẋ =

[
ẋ1

ẋ2

]
=

[
0 1
−β −2α

] [
x1

x2

]
−

[
0
x3

2

]
, (102)

which has one equilibrium state at (0, 0). The linearization about this equilibrium state is

ẋ =

[
0 1
−β −2α

]
x and we have analyzed the stability of this system in Example 3.3.24.

Using these results and Theorem 3.3.52, we are able to conclude that the origin is expo-
nentially stable if α > 0, β > 0 and it is unstable if α < 0. If α = 0, β > 0 the origin
of the linearized system is a centre and since it is only marginally stable we cannot apply
Theorem 3.3.52. In order to obtain information about this case and the basin of attraction
when α ≥ 0, consider the function

V (x) = (1/2)(βx2
1 + x2

2), x ∈ R
2.

This function associates with any state x, the corresponding total energy of the system.
Then lim‖x‖→∞ V (x) = ∞ and V̇ (x) = −(2α + x2

2)x2
2. The largest invariant subset in

{x ∈ R
2 : V̇ (x) = 0} = {(x1, 0);x1 ∈ R} for (102) is {(0, 0)} when α ≥ 0, β > 0. So by

Corollary 3.2.29 the origin is asymptotically stable even when α = 0, β > 0. Moreover
since every sublevel set V (x) < ρ is bounded the asymptotic stability is global. �
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Example 3.3.58. The discrete time system

x1(t + 1) = αx1(t) + x2
2(t), x2(t+ 1) = x1(t) + βx2(t) (103)

has two equilibrium points x1 = (0, 0) and x2 = ((1− α)(1 − β)2, (1− α)(1 − β)).

The linearized system about (0, 0) is given by the matrix

[
α 0
1 β

]
which has eigenvalues

α, β. So the equilibrium state (0, 0) will be exponentially stable if |α| < 1 and |β| < 1. It
will be unstable if |α| or |β| is greater than one.
The linearized system about the second equilibrium state is given by the matrix

[
α 2(1− α)(1 − β)
1 β

]
.

The characteristic equation is (λ − α)(λ − β) = 2(1 − α)(1 − β). The shaded region
in Figure 3.3.5 corresponds to those values of α, β for which this equilibrium state is
exponentially stable. The boundaries α = 1, β = 1 are obtained when λ = +1, the

(3− α)(3− β) = 8

(α− 2)(β − 2) = 1

β

α

(1, 1)

Figure 3.3.5: Stability chart for x2 with respect to (103)

boundary (3−α)(3−β) = 8 is obtained when λ = −1 and the other part of the boundary
is determined by setting λ = eıθ with cos θ = (α + β)/2. Note that the first equilibrium
point is unstable if the second one is exponentially stable. �

3.3.6 Exercises

1. Prove that the growth rate ω(A) = inf{ω ∈ R; ∃M > 0 : ‖Φ(t)‖ ≤ Meωt} of
a continuous (resp. discrete) time semigroup Φ with generator A ∈ C

n×n is equal to
the spectral abscissa α(A) = maxλ∈σ(A) Reλ (resp. the logarithm of the spectral radius
ln �(A) = ln maxλ∈σ(A) |λ|).

2. If A =

[
0 1
−2 −2

]
show that

eAt = e−t
[

cos t+ sin t sin t
−2 sin t cos t− sin t

]
, At = (

√
2)t

[
cos π4 t− sin π

4 t sin π
4 t

−2 sin π
4 t sin π

4 t+ cos π4 t

]
.

Determine
lim
t→∞

ln ‖eAt‖
t

, and lim
t→∞

ln ‖At‖
t

.
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3. Find the continuous time evolution operator generated by a(t) = t sin t on T = R+.
Show that the upper Liapunov exponent is +1, whereas the upper Bohl exponent is not
finite.

4. Show the upper Liapunov exponent for a continuous time system (1) is finite if
supt∈R+

∫ t+1
t ‖A(s)‖ds <∞.

5. Show that the Liapunov exponent of (1) is given by

α(Φ) = lim sup
t→∞

ln ‖Φ(t, 0)‖
t

(where ln ‖Φ(t, 0)‖ = −∞ if ‖Φ(t, 0)‖ = 0).

6. Prove Theorem 3.3.15 in the discrete time case.

7. Consider

A(t) =

[ −11/2 + (15/2) sin 12t (15/2) cos 12t
(15/2) cos 12t −11/2 − (15/2) sin 12t

]
.

Show that the system ẋ = A(t)x is exponentially stable even though σ(A(t)) = (2,−13)
for all t ≥ 0.

8. Prove that every scalar system ẋ(t) = a(t)x(t), t ∈ R+ (resp. x(t + 1) = a(t)x(t), t ∈
N) which has a finite upper Bohl exponent β, can be transformed via a Bohl transformation

θ(t) = e
R t
0
(a(s)−β)ds (resp. θ(t) = e−βt

∏t−1
s=0 a(s)) into the time invariant system ẋ(t) =

βx(t), (resp. x(t+ 1) = eβx(t)).

9. Consider the scalar system ẋ(t) = (4t sin t − 2t)x(t), t > t0, x(t0) = x0, t0 ∈ R+.
Prove that the solution is

Φ(t, t0)x0 = x0 exp(4 sin t− 4t cos t− t2 − 4 sin t0 + 4t0 cos t0 + t20) .

Hence show that the origin is asymptotically stable at any time t0 ∈ R+. Prove that
Φ((2n + 1)π, 2nπ) = exp((4n + 1)π(4 − π)) for n ∈ N and so the origin is not uniformly
asymptotically stable.

10. If a(t) = −(1 + t)−1, q(t) = 2(1 + t)−1 − 3(1 + t)−2 for t ∈ R+ show that a solution of
the Liapunov equation (54a) is p(t) = 1− (1 + t)−1. What conclusion can be drawn about
the stability properties of the evolution operator generated by a(·) on R+.

11. Let A(t) =

[ −2 + cos t − sin t
− sin t −2− cos t

]
, t ∈ R+, choose P (t) ≡ I2 and compute Q(t)

such that the Liapunov equation (54a) is satisfied. Use this to prove that the evolution
operator generated by A(·) is uniformly exponentially stable.

12. Let A(t) =

[
0 1
−a(t) −1/2

]
, t ∈ N, choose P (t) =

[
a(t)2 + 1/4 0

0 1

]
and compute

Q(t) such that the discrete time Liapunov equation (54b) is satisfied. Hence show that the
evolution operator generated byA(·) is uniformly exponentially stable if |a(t)| < 1/2, t ∈ N.

13. Prove the Instability Theorem 3.3.34

14. Show that the unique solution of (54b) on Tt0 with initial state P (t0) is

P (t) = Φ(t0, t)
∗P (t0)Φ(t0, t)−

t−1∑

s=t0

Φ(s, t)∗Q(s)Φ(s, t), t ≥ t0 .
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15. Suppose A(t) =

[
t 0
0 0

]
, t ∈ R. Show that for Q(t) = I2 there is not a bounded

solution of (54a). However for every r > 0 if Ar(t) = A(t) − rI2 there are bounded
solutions of (54a) on T1/2+r when A(t) is replaced by Ar(t).

16. Determine conditions on a, b, ρ for which the equilibrium state is asymptotically stable
for Goodwin’s model of supply and demand considered in Example 1.2.1.

17. Determine whether or not the following matrices correspond to asymptotically stable
systems in the continuous time and discrete time cases

(a)

[
0 1

2
1
2 0

]
(b)

[ −1 1
1 −2

]
(c)

[
0 1
−1

8 −1
2

]
.

Verify your conclusions by solving the Liapunov equations with Q = I2.

18. Find the linearized equations of motion about the equilibrium states in Ex. 2.5, 2.6.
Determine whether or not these systems are asymptotically stable.

19. Show that the system ẋ = αx3 is asymptotically stable if α < 0 and unstable if α > 0.
Note that the linearized system about the origin is marginally stable for all α ∈ R. This
example shows that no conclusions for the stability with respect to the nonlinear system
can be drawn from this fact.

20. Consider the discrete time system with matrix

A =

[
0 1
−a1 −a0

]
.

Determine the values of a0, a1 for which there is not a unique solution of the Liapunov
equation (80b). Solve the Liapunov equation when Q = I2 and hence determine those
values of a0, a1 for which the system is asymptotically stable, marginally stable or unstable.
Solve the modified Liapunov equation (94b). What further conclusions can be drawn?
Compare your results with those given in Example 3.3.25.

21. Suppose that the system ẋ = Ax is asymptotically stable, where A ∈ R
n×n. For a

step size τ > 0 consider the following discretizations

(a)
xτ (t + 1)− xτ (t)

τ
= Axτ (t), (b)

xτ (t+ 1)− xτ (t)
τ

= Axτ (t+ 1), t ∈ N.

Show that the system in (b) is necessarily asymptotically stable but the system in (a) need
not be asymptotically stable.

22. If Φ(·, ·) is generated by a(t) = −t, t ∈ R+ show that for every τ > 0,
∫ t0+τ
t0

Φ(s, t0)2ds ≤
(2t0)−1, t0 ≥ 0. This example shows that the pair (a(·), 1) is not uniformly observable.

23. Prove Theorems 3.3.43, 3.3.52 and 3.3.55 for the discrete time case.

24. Consider the system

ẋ1 = x2, ẋ2 = −2x1 − 3x2 − h(x1 + x2)

where h : R→ R is continuous h(0) = 0 and xh(x) > 0 for all x �= 0.
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(i) Find a matrix P ∈ R
n×n such that

PA+A	P + 4I = 0 where A =

[
0 1
−2 −3

]
.

(ii) Use the function V (x) = x	Px +
∫ x1+x2

0 h(s) ds to show that the origin is asymp-
totically stable.

25. Show that for the Lur’e problem (2.58) the function V (2.60) has the property

V̇ (x, σ) = −〈x,Qx〉 − rf 2(σ) + 2f(σ)〈Pb + (1/2)c, x〉

where PA+A	P +Q = 0. Hence prove that if σ(A) ⊂ C−, f(0) = 0, σ �= 0⇒ σf(σ) > 0
and

r > 〈Pb+ (1/2)c,Q−1(Pb+ (1/2)c)〉,
then the origin x = 0, σ = 0 is asymptotically stable.

26. Newton’s method for solving the equation F (x) = 0, where F : R
n → R

n is differen-
tiable, is the iterative scheme

x(t+ 1) = x(t)− [F ′(x(t))]−1F (x(t)) t ∈ N

where the inverse is assumed to exist.
This method is used to solve the scalar equation e−x − x = 0, so that

x(t+ 1) = x(t) +
e−x(t) − x(t)

e−x(t) + 1
, t ∈ N. (104)

If x is the required unique solution find the linearized equations about x and show that x
is an exponentially stable equilibrium state of (104). Use the function V (x) = |x− x| to
obtain an estimate for the basin of attraction of this equilibrium state.

27. The second order differential system ξ̈+αξ̇+βξ = 0 is asymptotically stable if and only
if α > 0, β > 0. Use the Cayley transform to obtain necessary and sufficient conditions
for the second order difference equation

ξ(t + 2) + a ξ(t + 1) + b ξ(t) = 0, t ∈ N

to be asymptotically stable.

28. Case study: A model for a continuous flow stirred tank reactor is given by

Ṫ = a(T0 − T ) + bkCe−α/T

Ċ = a(C0 − C)− kCe−α/T

where C0, T0 are the concentration and temperature of the reactant in the influent and
C, T are the concentration and temperature of the reactant in the effluent. a, b, α, k are
positive constants.

(i) Show that all equilibrium states (Ce, Te) satisfy

1 +
a

k
eα/Te =

bC0

Te − T0
,

Ce − C0

Te − T0
= −1

b
.
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(ii) Linearize the equations about an equilibrium state and hence show that an equilibrium
state is stable if C0

Te − T0
>
αCe
T 2
e

.

(iii) If T0 = 300, C0 = 10, a = 2−9, b = 30, k = 0.5, α = 3600 ln 2, find three equilibrium
states and determine whether or not they are stable. Are there any other equilibrium
states?

(iv) Use a computer to obtain a phase portrait of the system around the three equilibrium
points.

3.3.7 Notes and References

Many of the results for time-varying linear systems can be found in Daleckii and Krein

(1974) [118]. The notion of Bohl exponent is due to Bohl (1913) [65]. The proof of

Theorem 3.3.15 is given in [118] and was proved for the case p = 2 in [120]. Our proof

is based on that of [115]. Many of the books quoted in Section 3.2 contain results for

time-varying systems. For further results on time-varying Liapunov transformations, see

Gantmacher (1959 Vol. 2) [183].

The result that the growth rate of a strongly continuous semigroup is supλ∈σ(A) Re λ is

known as the spectrum determined growth condition. It holds for a large class of strongly

continuous semigroups on infinite dimensional Banach spaces. However it is not true in

general, see Zabczyk (1975) [540] for a counterexample with supλ∈σ(A) = 0 yet ‖S(t)‖ = et.

For a discussion of numerical stability of discretization methods see for example Stoer and

Bulirsch (1978) [485] and the references in Section 4.5.

The quadratic Liapunov function for linear systems was introduced in Liapunov’s original

work and many of the results in Subsection 3.3.4 and Subsection 3.3.5 can be found there.

A good account can also be found in Barbashin (Translation 1970) [33]. Extensions of

Liapunov’s result which relate the inertia i(A) to the inertia i(P ) where PA+A∗P+Q = 0,

are called inertia theorems see Carlson and Schneider (1963) [91], Wimmer (1975) [531],

Glover (1984) [188] and Datta (1999) [123].

Generalizations of Liapunov’s Theorem 3.3.33 to infinite dimensional systems, continuous

or discrete time have been obtained by Datko (1970) [119] and Zabczyk (1974) [539].

In the late 60’s determining stability domains via Liapunov functions (or otherwise) was

much in vogue and there have been many such attempts for the Mathieu equation. For

example Narenda and Taylor (1973) [387] obtained the stability domain πaζ/2 > |q|, a�
ζ2, ζ � 1.

The linearization result in Subsection 3.3.5 is essentially due to Liapunov and the fact

that an equilibrium point is exponentially stable if and only if the linearization at the

equilibrium point is exponentially stable can be found in Zabczyk (1992) [541].


