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Invariant Measures

We introduce a discrete dynamical system in terms of a measure preserving
transformation T defined on a probability space. In other words, we consider
{T" :n € N} or {T" : n € Z} depending on whether T is invertible or not. The
approach can handle not only purely mathematical concepts, but also physical
phenomena in nature and data compression in information theory. Examples
of such measure preserving transformations include an irrational translation
modulo 1, the multiplication by 2 modulo 1, the beta transformation, the
Gauss transformation, a toral automorphism, the baker’s transformation and
the shift transformation on the set of infinite binary sequences. A method of
classifying them is also introduced.

2.1 Invariant Measures

Definition 2.1. (i) Let (X1,p1) and (Xa,u2) be measure spaces. We say
that a mapping T : X1 — Xs is measurable if T~1(E) is measurable for
every measurable subset EE C Xs. The mapping is measure preserving if
pi(T7YE) = pa(E) for every measurable subset E C Xo. When X1 = Xo
and pp = p2, we call T o transformation.

(i) If a measurable transformation T : X — X preserves a measure [, then
we say that p is T-invariant (or invariant under T ). If T is invertible and if
both T and T~ are measurable and measure preserving, then we call T an
invertible measure preserving transformation.

Theorem 2.2. Let (X, A, ) be a measure space. The following statements
are equivalent:

(i) A transformation T : X — X preserves [i.

(ii) For any f € L*(X, ) we have

[ @ [ s
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(iii) Define a linear operator Up in LP(X, ) by
Urf)(x) = f(Tx) .
Then Ur is norm-preserving, i.e., ||{Ur fll, = || f|lp-
Proof. First we show the equivalence of (i) and (ii). To show (ii) = (i), take
f=1g. Then
w(B) = [ 1@ an= [ fT@)au= [ trpe) = urE).

To show (i) = (ii), observe first that a complex-valued measurable function
f can be written as a sum

f=f—fa+i(fs— fa)

where i = 4/—1 and each f; is real, nonnegative and measurable. Thus we
may assume that f is real-valued and f > 0. If f = 1 for some measurable
subset F, then

[ s@an=n(E) = @B = [ 1rsp@an= [ 17 au.

By linearity the same relation holds for a simple function f. Now for a general
nonnegative function f € L! choose an increasing sequence of simple functions
$n, > 0 converging to f pointwise. Then {s,, o T}, is an increasing sequence
and it converges to f o T pointwise. Hence

/ f(Tz)dp = lim $n(Tx)dp = lim Sp(z)dp = / fz)du .
X X X

n—oo X n—oo
The proof of the equivalence of (i) and (iii) is almost identical. O
Ezample 2.3. (Irrational translations modulo 1) Let X = [0, 1). Consider
Tr=xz+0 (mod1l)

for an irrational number 0 < # < 1. Since T preserves the one-dimensional
length, Lebesgue measure is invariant under 7'. See the left graph in Fig. 2.1.

Ezample 2.4. (Multiplication by 2 modulo 1) Let X = [0,1). Consider
Tr=2r (modl).

Then T preserves Lebesgue measure. Even though the map doubles the length
of an interval I, its inverse image has two pieces in general, each of which has
half the length of I. When we add them, the sum equals the original length
of I. For a generalization, see Ex. 2.11.



2.1 Invariant Measures 49

Fig. 2.1. The translation by § = v/2 — 1 modulo 1 (left) and a piecewise linear
transformation (right)

Ezample 2.5. (A piecewise linear mapping) Let X = [0,1). Define

_ [2z (modl), O§x<%,
TI_{ZLJ: (mod 1), L<a<l.

Then T preserves Lebesgue measure since the inverse image of [0, a] consists
a a

of three intervals of lengths 5, ¢ and ¢. See the right graph in Fig. 2.1.

Ezample 2.6. (The logistic transformation) Let X = [0, 1]. Consider
Tr=4z(1 —x) .
The invariant probability density function of T is given by
1
pr) = ————=,

my/x(l —x)

which is unbounded but has its integral equal to 1. See Fig. 2.2. The same
density function p(z) is invariant under transformations obtained from the
Chebyshev polynomials. See Maple Programs 2.6.1, 2.6.2.

Fig. 2.2. y = 42(1 — z) (left) and y = p(x) (right)
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Ezample 2.7. (The beta transformation) Take 8 = (v/5+1)/2 = 1.618-- -,
which satisfies 32— 3—1 = 0. Hence 3—1 = 1/3 = (v/5—1)/2, which is called
the golden ratio. See Fig. 2.3 where two similar rectangles can be found.

Fig. 2.3. The golden ratio: two rectangles are similar

Let X = [0,1). Consider the so-called §-transformation

Tx =Pz (mod1).

Its invariant probability density is given by

g 1

, 0<z<—,

ple) = lgﬁ 1 h
1+52, BS.’E<1

For the proof of invariance, it suffices to check the inverse image of [0, a] for

every a. See Fig. 2.4 and Maple Program 2.6.3.

There are many other choices for 8 which lead to a nice formula for p(z).

For example, try 3 = 1+ /2. Consult [Pa],[Re].

Fig. 2.4. y = {fz} (left) and y = p(x) (right)
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Ezample 2.8. (The Gauss transformation) Let X = [0,1). To study continued
fractions we consider

1
Tz:; (mod1),0<ax <1, and T0=0.

See Fig. 2.5. Note that T"x = 0 for some n if and only if x is rational. In 1812
C.F. Gauss, in a letter to P.S. Laplace, wrote that the invariant probability
density of T is given by

1 1
~log2x+1"°

p(z)

where log denotes the natural logarithm. For the proof it suffices to show that

1 1
/ dx :/ dz
T-1(0,a) T+ 1 (0,0) T+ 1

for every 0 < a < 1. Since

ran -0 ()

n=1

we have

N
1 1 1
/ dx lim E <log ntl log ntlt a>
T-1(0,0) T+ 1 N—oo n n+a

n=1

= ]\;im (log(N + 1) —log(N + 1+ a) + log(1 + a))

: a
- A}gnoo log <1 + N—i—l) +log(1l +a)

|
=log(l+a)= | ——daz.
og(1+a) a1
1
1
y Yy 1
0 X 1 0 X 1

Fig. 2.5. y = {1/z} (left) and y = p(x) (right)
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Ezample 2.9. Let X = (—o00,00). Consider

1
Te=x——.
T

Then T preserves Lebesgue measure, i.e.,

/_Zf(m)dxz/_if(x—i) da

for every integrable function f. To prove it, observe that the inverse image of
an interval (a,b) under T is the union of two intervals

(a—\/a2+4 b—\/b2+4> i <a+\/a2+4 b+\/b2+4>

2 ’ 2 2 ’ 2
the sum of whose lengths is equal to b — a.

Ezample 2.10. (D. Lind) Let X = (—o00,00). Consider

1 1
Te == <x — > .
2 z
Then T has a finite invariant density function

p(z) !

T
To prove it, first observe that the inverse image of an interval (a,b) is the
union of two intervals

(a—vVa?2+1,b—+vb*+1) and (a+Va?+1,0+ V0> +1).
Next, use the identity

arctan(a + v a? + 1) + arctan(a — vV a? + 1) = arctana .
The transformation T comes from the Newton’s method of finding the roots
of f(x) = 2 + 1. The tangent line to the graph y = f(z) at = c is of the
form y = f'(¢)(z — ¢) + f(c). It intersects the x-axis at
fe)
f'(e)

r=cC—

The iteration algorithm

Tnyl = Tp — fl(.’L' )
n

224+1 1 1
Te =z — =-(z—=]).
e 2z 2<x 33)

If there existed a real root of f(x) = 0, then x,, would converge to a limit.
Since f(z) # 0 for any real z, the iteration algorithm does not converge to a
limit and the corresponding behavior of T is random. See Fig. 2.6.

is interpreted as
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Fig. 2.6. The Newton method does not work for f(x) = z? + 1

Ezample 2.11. (Endomorphisms of compact groups) Let G be a compact
group with the left Haar measure p such that p(G) = 1. A continuous onto
endomorphism ¢ : G — G preserves u. This is a generalization of Ex. 2.4. For
the proof, define

v(E) = ule™(E))
for E C G. Then v is also a probability measure. Let zA = {xa : a € A} for
x € G, A C G. To show the rotation invariance, take an arbitrary element of
G. Since ¢ is onto, an element is of the form ¢(x) for some z. Since

y€ ¢ (¢(z)E) & ¢(y) € ¢(z)E
& ¢(z) 'o(y) = p(z'y) € E
sz lye (b_l(E)
syecxp (B),

where the symbol < denotes logical equivalence, we have ¢~ !(¢(z)E) =
r¢~(E). Hence

v(¢(x)E) = (¢~ (¢(2)E)) = plzd ™ (E)) = (¢~ (E)) = v(E) .

Thus v is also a left Haar measure. By the uniqueness we have 4 = v and
w(E) = u(¢~(E)). The proof for the right Haar measure is almost identical.

Ezample 2.12. (The baker’s transformation) Imagine a baker mixing flour
and water when trying to make dough. The essence of the process can be
explained as follows: Let X = [0,1] x [0, 1] and define T': X — X by

(2z,%y) , 0<zx
T =
o) {<2x1,;y+;>, t<e

IA A
—_ N

First, press down the unit square, cut in the middle, and move the right half to
the top of the left half. The transformation 7" preserves the two-dimensional
Lebesgue measure on the unit square. See Fig. 2.7.
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Fig. 2.7. The baker’s transformation

We introduce an approach in plotting a graph or a diagram, which may
be called the mathematical pointillism: A geometric object is described by
plotting sufficiently many points on it. For example, to sketch a graph of a
function f : [a,b] — R we choose sufficiently many, say S = 1000, values z;
and plot (z;, f(z;)) € R?, 1 < j < S.If f is continuous and the points z;
are more or less densely distributed in [a, b], then the points (z;, f(x;)) as a
collection look like a connected graph to the naked eye. Various versions of
this idea are used throughout the book.

Let C ={(z,y): 0<a < %,0 <y < 1}. To sketch the images of C under
iterations of T' we employ the mathematical pointillism. Take S = 4000 points
in C. The successive images of those S points under T, T? and T2 are plotted
from left to right in Fig. 2.8. See Maple Program 2.6.4.

Fig. 2.8. Successive images of a rectangle C under the baker’s transformation

Ezample 2.13. (A toral automorphism) Let T? denote the two-dimensional
torus with Lebesgue measure, which is regarded as the unit square whose
boundaries are identified in the standard way, i.e., left with right and top

with bottom. Take
21
= (1)

and consider a transformation 7 : T2 — T2 given by

T(x,y) = 2z +y,z+y) (mod1l).
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Since det A = 1, we see that T is invertible and preserves Lebesgue measure.
Thus T is a toral automorphism. It is called the Arnold cat mapping because
V.I. Arnold often draws in his books a face of a cat on the unit square and
describes its deformation as T is iterated to indicate how T" acts geometrically
in the directions of eigenvectors. See [ArA].

Let D ={(z,y): 0 <z < %,0 <y< %} and take S = 4000 points in D.
We plot the images of those points under 7, 72 and T? from left to right in
Fig. 2.9 employing the mathematical pointillism. See Maple Program 2.6.5.

Fig. 2.9. Successive images of a square D under the Arnold cat mapping

Ezample 2.14. (Lambda transformations) Let X = [0,1]. For 0 < ¢ < 1 define
a A-transformation 1. by

1—c¢c 1—-¢’

Then 7, preserves Lebesgue measure since the inverse image of an interval
is a union of two intervals and the sum of their lengths is the length of E. See
Fig. 2.10. The graph of 7. looks like the uppercase Greek letter A.

Fig. 2.10. The A-transformation 7. for ¢ = 3/10



56 2 Invariant Measures

Ezample 2.15. (Truncated A-transformations) Let X = [0,1]. For 1 <a <1,
let b= (2a — 1)/a and define

1—a
To(z) = b

r+a, 0<x<b,

See the left graph in Fig. 2.11 for a = 2, b = 1. Observe that 7,([0,a]) = [a, 1]
and T,([a,1]) = [0,a]. Thus, if u is a T,-invariant probability measure, then

u((0,a]) = 3 = u(fa, 1))

Note that if 4 is invariant under T, then it is also invariant under (7,)2. The
restrictions of (73,)? to [0, a] and [a, 1], with corresponding invariant measures
%dx and ﬁ dz, are essentially A-transformations, and they preserve the
normalized Lebesgue measures on [0,a] and [a, 1], respectively. (These two
intervals are ergodic components of (7},)2. See the right graph in Fig. 2.11.
For the definition of ergodicity, see Chap 3.) In summary, for % <a<1we
have

1
2 O<zr<a,

a
plx) = 1 .
m, a<x< .

The T,-invariance of dy = p(x) de may be checked directly: it suffices to prove
w(T71E) = u(E) for the intervals F such that E C [0,a] or E C [a, 1].

Fig. 2.11. The truncated A-transformation T, (left) and (7,)? (right) for a = 2/3

2.2 Other Types of Continued Fractions

There are continued fractions arising from transformations other than the
Gauss transformation.
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Example 2.16. Let X = (—%, %) Define

This is the continued fraction to the nearest integer. Rieger ([Riel],[Rie2])
showed that the invariant probability density is given by

1

T

1

T

1

1 1 1< <0

_— —— <=z

1 1’ 2 ’
ple) = A . 1

mix—f—ﬁ, <$<§,

where 3 = @ See Fig. 2.12 where y = Tz is plotted away from x = 0.
Nakada [Na] considered a generalization of the form

|

on the interval (o — 1,a) for 3 <a < 1.

1

x

Tx =

T

—|—1—oz}7 x#0,

é \17
y o y |
—0.4-
04 0 _ 04 04 0 _ 04
X X

Fig. 2.12. y = Tz (left) and y = p(z) (right) for Tz = |1/z| — [|1/z]| + 1/2]

Ezample 2.17. Let X = (—%, %) Define
1
T = — — [—F], x#0.
x

Put o = ¥3-1 = 0.6180--- and § = 355 = 0.3819--. Nakada, Ito and

Tanaka [NIT] showed that the invariant probability density is given by

1
P0) = O )@ = Al

where C' = —21In(1++/5) +21n(3++/5). The transformation T is a real version
of a complex continued fraction introduced by Hurwitz [Hur]. See Fig. 2.13.
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0.4
i - 4
y 07 y |
—0.4-
0.4 0 0.4 04 0 0.4
X X

Fig. 2.13. y = Tz (left) and y = p(z) (right) for Tz =1/z — [1/x + 1/2]

Ezample 2.18. Put a = ‘/52*1 and 8 = % Let X = (—a, «). Define

Tz:é—sgn(x) [4—5], x #£0,

where sgn(z) T e {£1},  # 0. In [NIT] it is shown that the invariant

el
probability density is given by

1
55 —a<r<-—0,
o2 _g<u<p
P2 =T s
1
12’ b<z<a,

where C' is the normalizing constant given in Ex. 2.17. See Fig. 2.14 where
y = Tz is plotted away from x = 0. Consult Maple Program 2.6.6.

0.5-

1 04
-0.5 0 0.5 - 0 x B o

Fig. 2.14. y = Tz (left) and y = p(x) (right) for Tz = 1/z — sgn(z) [1/|z| + 3]

For more examples of various types of continued fractions consult [DK].
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2.3 Shift Transformations

In this section we study shift transformations, which can be used in digitizing
a transformation defined on a continuous space such as an interval. They are
the main object of investigation in relation to data compression in Chap. 14.

Consider infinite strings made up of k£ symbols. For notational convenience
we choose k symbols from {0,1,...,k — 1} or {1,2,...,k}. This choice is
convenient for computer simulations, too. Put X = [[{°{1,...,k}. An element
x of X is denoted by (z1,x2,3,...) or simply (z1z2x3...). If kK = 2 then x
is said to be a binary sequence. Let p1,...,pr be nonnegative numbers such
that p1 +---+pr = 1. For ¢ > 1 let define a cylinder set (or a block) of length
n by

[a1,...,an]t,. t4n—1={x € X xp1=a1,...,Tign =an} .

Define p on cylinder sets by

p(las, .- anlt, . t4n—1) = Pay " Da, -

A probability measure on X, again denoted by p for notational simplicity,
is uniquely defined on the o-algebra generated by cylinder sets. We call p
the (p1,...,px)-Bernoulli measure and X is the Bernoulli shift space. The
one-sided Bernoulli shift transformation on X, defined by

(r1xox3...) — (T22324 .. .)

preserves the measure p. Similarly, we define the two-sided Bernoulli shift
transformation by

(...;}0]}11‘2. ) — (...;}11‘2.’173...)

on [T _{1,...,k} where % denotes the Oth coordinate in a sequence.
Let X = [[°{1,...,k}. Let P = (P;;) be a k x k stochastic matrix.
Suppose that 7 = (7m;) > 0 satisfies >, m; = 1 and wP = . Define p by

M([alv S 7an]t7~-,t+n—1) = Tay Payar ** Par_ran -

Then there exists a unique shift invariant probability measure, again denoted
by w, on the o-algebra generated by the cylinder sets. We call p the Markov
measure and X the Markov shift space.

Let Pr(B|A) denote the conditional probability of an event B given that
an event A has occurred. (Informally we write Pr(A — B).) Then P defines
the transition probability

Pr(zpi1 =7 |an=1) =P .

Markov shifts are Bernoulli shifts if the rows of P are identical. When there
is no danger of confusion, a shift means either T' or (X,T). In general, a
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Markov measure of order m > 1 is defined by the conditional probability

Pr(blay,...,an) of seeing b given that we have just seen ai,...,a,. Note
that the sequence of appearance is a1, . . ., Gy, b. The numbers Pr(blay, ..., am)
satisfy

k
ZPr(b|a1,...7am) =1.
b=1

Only the case m = 1 is considered in this book. For more information consult
[KemS], and for a related result see [Ham].

We identify a Bernoulli measure or a Markov measure with a measure
on [0,1] through the binary expansion. In other words, a binary sequence
(bibobs .. .) is identified with Y | b,27™. (See Maple Programs 2.6.7, 2.6.8.)
If p ¢ {0, %, 1}, then the (p,1 — p)-Bernoulli measure represented on [0, 1] is
singular continuous. In Fig. 2.15 for p = %, cylinder sets of length n = 9 in
the Bernoulli shift correspond to intervals of the form [27™(i — 1),27™4). The
probability of each cylinder set is equal to the height of the vertical bar times
27" so that the area under the histogram is equal to 1. For more examples

see Sect. 5.5.

30+
20

10

Fig. 2.15. Approximation of the (1/4,3/4)-Bernoulli measure by a histogram

2.4 Isomorphic Transformations

How can we compare and classify measure preserving transformations defined
on probability spaces? First we discuss the general concept of equivalence
relation among objects under study and then present a method of classifying
measure preserving transformations.

Among a collection of objects under investigation, different objects may
share the same mathematical structures. They are regarded as being identical.
An equivalence relation on a set X is a rule that specifies whether two elements
xz,y € X are the identical from a given mathematical viewpoint. In this case,
we say that x and y are equivalent, and write x ~ y. Rigorously, we require
the following three conditions:
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(i) (reflexivity) z ~ z for z € X,
(i) (symmetry) if 2 ~ y then y ~ x for z,y € X, and
(iii) (transitivity) if  ~ y and y ~ z then z ~ z for z,y,z € X.

An equivalence class containing z is the set of all y satisfying = ~ y, and
is denoted by [z]. If [z] N [y] # @ then [z] = [y], and so X is the disjoint
union of equivalence classes. Any element from an equivalence class is called
a representative of that equivalence class. If we want to study a mathematical
property shared by all elements in the same equivalence class, then it is enough
to study it with only one representative from each class.

For example, we have equivalence relations in linear algebra: two vector
spaces V and W are isomorphic if there exists a bijective mapping ¢ : V. — W
such that ¢(vy + v2) = ¢(v1) + ¢(v2) and ¢(cv) = cop(v) for vy, ve,v € V and
a scalar ¢. Two finite-dimensional vector spaces are isomorphic if and only
if they have the same dimension. Once the equivalence of vector spaces is
understood, we want to compare two linear transformations 7': V — V and
S : W — W represented by matrices A and B, respectively, where V and W
are isomorphic vector spaces. This is usually done by using similarity: A ~ B
if and only there exists an invertible matrix P such that A = P~'BP.

Now we study how to compare measure spaces and measure preserv-
ing transformations defined on them. These correspond to comparing vector
spaces and matrices, respectively.

Definition 2.19. (i) Let (X1, p1) and (X2, pe) be measure spaces. A mapping
¢ : X1 — Xg is said to be almost everywhere bijective if there exist E1 C X3
and By C Xo such that p1(E1) =0 = pa(E2) and ¢ : X1 \ By — Xo \ Es is
one-to-one and onto.

(i) Furthermore, if there exists an almost everywhere bijective mapping
¢ 1 (X1,u1) — (Xao,p2) such that ¢ and ¢~* are measurable and measure
preserving, then (X1,p1) and (Xo, p2) are said to be isomorphic and ¢ is
called an isomorphism of (Xi,u1) and (Xa,u2). (By the inverse of ¢, we
mean the inverse of ¢ : X1\ By — X3\ Es.)

It is known that there is essentially just one type of a probability measure
space. More precisely, if X is a complete metric space with a countable dense
subset and if X has a continuous Borel probability measure p, then (X, pu)
is isomorphic to [0,1] with Lebesgue measure. (Most examples satisfy this
condition.) Thus the classification problem for probability spaces is trivial

but the construction of an isomorphism ¢ is not always easy.

Ezample 2.20. (Isomorphic spaces) Let X = J]7°{0, 1} be the (3, )-Bernoulli
shift space, i.e., each symbol has probability % Then X is isomorphic to [0, 1]
with Lebesgue measure. To see why, take z = (b1,b2,...) € X and define

Px) = bp27",
n=1

which is almost everywhere bijective and measure preserving.
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Ezample 2.21. (Isomorphic spaces) The unit interval and the unit square are
isomorphic, where the measures under consideration are Lebesgue measures.
To see why, take x € [0, 1] and express it in the binary expansion

x:ian_", b, =0,1.
n=1

For some z the binary expansion is not unique, but the set of such points has
measure zero, and we ignore them. Define ¢ : [0,1] — [0, 1]? by

¢(.’E) = <Z b2n712_n, Z b2n2_n> .
n=1 n=1

Then ¢ is defined almost everywhere and measure preserving. Similarly, the
unit interval is isomorphic to the k-dimensional cube [0, 1]* for any k.

Now we compare two measure preserving transformations.

Definition 2.22. (3) Let Ty : (X1,u1) — (X1,p1) and Ty @ (Xo,p2) —
(X2, pu2) be measure preserving. They are said to be isomorphic if there exists
an isomorphism ¢ : (X1,pu1) — (Xa, pe) such that g o Ty = T o ¢, i.e., the
following diagram commutes:

(X1, 1) S (X1, 1)

‘| ‘|

T
(Xa, p2) —— (X, p2)

(1t is assumed that Ty (X1 \ F1) C X1\ By and Ty(X2 \ E2) C X5\ Ey where
Ey and E5 are given in Definition 2.19.)

(i) Suppose that ¢ is measure preserving and ¢ o Ty = Ty o ¢. If ¢ is not
necessarily almost everywhere bijective, then Ty is said to be a factor of Ty
and ¢ is called a factor map. In this case Ty is called an extension of T5.
(iii) Sometimes the objects under discussion belong to the topological category:
X1, Xo are topological spaces, ¢ is a homeomorphism, the measures are Borel
measures, and Ty, T are continuous mappings. In this case we often call ¢
a (topological) conjugacy. If ¢ is not one-to-one, it is called a (topological)
semi-conjugacy.

Ezample 2.23. (Isomorphic transformations) The (3, 3)-Bernoulli shift space

X1 = [I77°{0,1} and X, = [0,1] are isomorphic via the isomorphism ¢ in
Ex. 2.20. Define T : X7 — X; by

T1((b1,b2,b3,...)) = (ba, b3, by,...),
and define T : Xo — X5 by
To(x) =2x (mod 1) .

Then 77 and 75 are isomorphic since ¢ o T7 = T5 o ¢.
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Ezample 2.24. (Isomorphic transformations) Let X = [0, 1] and consider two
transformations Tz = 4z(1 — z) and

N — 2x 0<zx

T l2-2z, i<uz
Note that A preserves Lebesgue measure dx and that T preserves dy =
plx)dz, p(z) = ﬂ\/ﬁ Define ¢ by ¢(z) = sin® (z) = (1 — cos(rz)),

0 <z < 1. (See the left graph in Fig. 2.16.) Then ¢ : (X,dz) — (X,p) is
measure preserving. To see this, it suffices to observe that

sin?(ma/2)
length of ¢~([0, $(a))) = a = / p(z) dz = ([0, B(a))

where the second equality is obtained by taking derivatives with respect to a.
Since

To(x) = 4sin? (gx) (1 — sin? (gx)) = sin?(mz) = ¢(Ax) ,
the following diagram commutes, and hence A and T are isomorphic.
(X, dz) —2— (X, dz)

‘| d

(X7/J') —T) (X>/1')

Fig. 2.16. y = sin®(72/2) (left) and y = sin®(7z) (right)

Ezample 2.25. (Isomorphic transformations) Let X = [0, 1] and consider
Sx=2r (mod1l) and Tz=4z(1-x).
Note that S preserves Lebesgue measure dz and that T preserves du =

(@) da. p(w) = L. Define 1 : (X.dw) — (X,j0) by ¥(z) = sin’(r).
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(See the right graph in Fig. 2.16. Since ¢ is almost everywhere two-to-one,
it cannot be used to determine whether 7" and S are isomorphic. But it is
a semi-conjugacy as can be seen in the following.) Note that ¢ is measure
preserving. To see this, it suffices to check that, for 0 < a < %,

sin?(7a)
length of $~1([0, ¥(a)]) = 2a = / p(e) dz = ([0, %(a)])

and, for % <a<l,

sin®(wa)
fength of 5[0, 6(@) =201~ @) = [ pla)de = u(0,0()

by taking derivatives with respect to a. Since
Ti(x) = 4sin®(rx)(1 — sin®(rx)) = sin?(27x) = ¥(Sx) ,
the following diagram commutes:

(X, dv) —>— (X, da)

| |
(X,n) —— (X,p)

Combining Exs. 2.23, 2.24, 2.30, we see that the four transformations A,
T, S and the (%, %)—Bernoulli shift transformation are isomorphic. See Maple
Program 2.6.9.
Ezample 2.26. (Isomorphic transformations) Consider Sz = 2z (mod 1) on
the unit interval [0, 1), which is identified with the unit circle by x ~— ie?7i2.
Note that « is the angle between the tangent line to |z| =1 at z = i and the
line connecting i and ie?>™*. By the standard stereographic projection ¢ of
the unit circle onto R, as z increases from 0 to 1, a point on |z| = 1 starts
from z = i and moves counterclockwise while the corresponding point on R
moves from —oo to +00. The straight line connecting i and ie?™® is given by

i4t(ie?™® —i) = —tsin2mrz +1i(1 +t(cos2mz — 1)), —o0 <t < 00.
It intersects the real axis when ¢t = —1/(cos 2wz — 1), and hence
¢(x) = sin 2wz /(cos 2mrx — 1) = — cot .

See Fig. 2.17.
A measure p on R is induced by ¢, i.e.,

u((—o0, —cotwa)) = a
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y 10

-10

Fig. 2.17. The stereographic projection of the unit circle onto the real line (left)
and y = —cotmz, 0 < z < 1 (right)

for 0 < a <1, so that ¢ : ([0,1), dz) — (R, 11) is measure preserving where
dz is the normalized Lebesgue measure. Let us find p(x) such that

dpy = pdez .

—cota
/ plx)yde =a,
—o0

by taking derivatives with respect to a, we obtain

Since

—sin? 7a — cos? a
5 T=1

p(— cot ma) (

sin“ wa
Hence
(2)= 11
P =21 + 22
Define
T=¢oSogpt.

Then T preserves p on R and the following diagram commutes:
(X, dz) —2— (X, dz)
‘| ‘|
Rop) —— (R.p)

Hence S and T are isomorphic. It remains to find the explicit formula for 7'
Since

1
T(—cotmz) = — cot 2mx = i(tan wx — cot Tx) ,

1 1
Te=-(z-=).
. 2(90 x)

We may start with 7" and p and find S later. See Ex. 2.10.

we have
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Ezample 2.27. (Isomorphic transformations) Let X = [0,1]® and T be the

baker’s transformation. Let Y = J],_{0,1} be the two-sided (3, 1)-Bernoulli
shift space and let X be the left shift transformation on Y. For z = (a,b) € X
we have the binary expansions

a:Zan_j_l , b:Zbﬂ_j .
j=0 j=1
Then define ¢ : X — Y by

d)(.]?) = d)((a, b)) = ( cey b_Q, b_l,é,o,a,l, as, .. )

the symbol * indicates the Oth position. Note that ¢ o T'= X o ¢. Thus T is
isomorphic to Y. See Ex. 2.33 for more information.

2.5 Coding Map

If we look for a not necessarily continuous conjugacy mapping, then the fol-
lowing idea can be used in some cases.

Definition 2.28. Let T be measure preserving on a probability space (X, ).
A partition P = {Ey, E1} of X is generating with respect to T if subsets of
the form

E,NT'E,n---nT-"VE,

generate all the measurable subsets in X. (We may consider a partition P
consisting of any number of subsets. For example, if there are 3 subsets in P,
then we use the ternary expansion in the following discussion.)

Let T be measure preserving on a probability space (X, u). Suppose that
we have a generating partition P = {Ey, E1} of X. Assume that

ﬁ T7-"=VE;

n=1

n

contains at most a single element with probability one for any choice of a
sequence i1, 42,13, ..., which would imply that the coding map ¢ defined in
the following is one-to-one almost everywhere. (This assumption is satisfied
in the following examples. See p.274 in [Pet].)

Let

v =]J{o,1}
1
and let X : Y — Y be the left shift transformation

X (’il,ig,ig,. . ) = (ig,ig,i4, N ) .
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For x € X define the coding map ¢ : X — Y by

(b(l‘) = (il,i27i3,...) ey

where
™'z €E,, n>1.
Often (i1,...,4,) and (i1,49,13,...) are called the (P,n)-name and P-name
of x, respectively.
Let [é1,...,4,] denote a cylinder set in Y, i.e.,
[7:17"'7in] = {(ylayQay?)a"') eyY: Yk :ikn 1 S k S n} .
Then

GE,NT B, N---NT~ " VE ) =Ti1,... 0] .

n

Define a probability measure v on Y by
v([it, .. yin)) = W(Eyy NT E;, N---NnT~"VE; .
Then ¢ : (X, u) — (Y, v) is measure preserving and
poT =Xo¢.

Thus T and X' are isomorphic. This method may be used to convert an orbit
of a transformation 7" defined on a continuous space into a digitized sequence,
which is easier to study in many applications.

Now consider the case when X = [0,1]. Here is how to visualize ¢ based
on the mathematical pointillism. Define v : Y — [0, 1] by

o0

’Y((ila 12,13, . )) = Z in27".

n=1

Define a set function vy on the images of cylinder sets under v by

vo(y([i1s -y in])) = v([ir, -+, in)) -

Then there is a unique probability measure v on [0, 1] such that vo(v(E)) =
v(E) for E C Y. Even when p is absolutely continuous, vy can be singular.
Put ¢ =yo0¢. Then ¢ oT = S o1 where Sz = 2z (mod 1), and the following
diagram commutes:

(X, pn) —— (X, p)
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In later chapters, to simplify the notation, we sometimes write [i1,...,%,] to
denote the inverse image

d)_l([ila oo azn]) = Ei1 N T_lEiz n---N T_(n_l)Ei

n
if there is no danger of confusion.

Ezample 2.29. Let X = [0,1] and Tx = 2z (mod 1). Take the partition P =
{Eo, E1} where Ey = [0,1), Ey = [3,1). Then we have ¢(z) = (b1, ba, b3, ...)
where z = Y7 b,27", b, € {0,1}. Since ¢ = yo ¢ = id, it is clear that v
is Lebesgue measure. See Fig. 2.18 for the graph of ¢ : [0,1) — [0, 1), which
is nothing but y = =x.

Fig. 2.18. y = ¢(x) for Tz = 2z (mod 1)

Ezample 2.30. Let T be the A-transformation given in Ex. 2.24. Recall that
T preserves Lebesgue measure. Take the partition P = {Ey, E1} where Ey =
[0, %), E = [%, 1]. Using the coding map ¢ defined by P, we observe that the
A-transformation is isomorphic to the (%, %)—Bernoulli shift transformation.
Note that v is Lebesgue measure. For the graph of ¢ : [0,1] — [0,1] see

Fig. 2.19.

Fig. 2.19. y = ¢(x) for the A-transformation
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Ezample 2.31. (Bernoulli transformation) Let 0 < p < 1. Take the Bernoulli
transformation T, on X = [0, 1] given by

(Recall that the Bernoulli shift transformation is defined on the set of infinite
sequences while the Bernoulli transformation is defined on an interval.) Then
T, preserves Lebesgue measure. Choose the partition P = {Ey, E1} where
Ey = [0,p), E1 = [p,1]. Then v is the (p,1 — p)-Bernoulli measure on ¥ =
[1°{0,1}. See Fig. 2.20. For p = 3 we have Ex. 2.29.

Fig. 2.20. The Bernoulli transformation (left) and y = ¢(x) (right) for p = 0.2

Example 2.32. Let 8 = @ and Tx = Bz (mod 1). We show that T is
isomorphic to a Markov shift transformation. Take the partition P = {Ey, F1 }
where Ey = [0, %), E, = [%, 1). Note that

T(Ey) =EyUE,, T(E))=E.

(This can be proved by checking the graph of the [-transformation. See
Fig. 2.4.) Hence v is the Markov measure on Y = [[[°{0,1} defined by the

matrix 1/6 1/ﬁ2
p- (W)

Note that P is a stochastic matrix since 1/3 + 1/3% = 1. Observe that the
binary string ‘11’ does not appear in any sequence ¢(x). (If ‘1’ appears first,
then ‘0’ should appear in the next position either by the property of P or by
the property of the S-transformation.) Thus the range of ¢ is included in the
interval [0, 2] since

2
z/;(x)§1><2’1+0><2’2+1><2’3+0><2’4+~--:§.

Hence v4([0, 2]) = 1 and 1((3,1]) = 0. See Fig. 2.21.
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Fig. 2.21. y = ¢(z) for the S-transformation

Ezample 2.33. Let X = [0,1] x [0,1] and T be the baker’s transformation
in Ex. 2.27. Take the partition P = {Ey, E1} where E, = [0,3) x [0,1],
Ey = [3,1] x [0,1]. Let Y = J[™,_{0,1} be the two-sided (3, 1)-Bernoulli
shift space and let X' be the left shift transformation on Y. Define ¢ : X — Y
by

E3
d(x) = (... i-1,%0,%1,12,.-.)

where T"z € E; , n € Z, and the symbol * indicates the Oth position.

2.6 Maple Programs

In this section we present Maple programs for the study of basic properties of
ergodic transformations. Simulations for shift transformations with singular
continuous invariant measures are also included. Many of the components of
Maple programs in this chapter will be reused later. Thus the explanations in
this chapter are more detailed than the ones in later chapters. As the chapter
number increases, the level of programs will increase slightly and gradually.

Here is a correspondence of concepts between ergodic theory and Maple
programming. See Table 2.1. For a flowchart see Fig. 2.22.

Table 2.1. Comparison of concepts

Ergodic Theory Maple Programming
a transformation T a function T:=x->...
a starting point xo seed [0]
iterations of T' a do loop
z; =T (zi—1) seed[i] :=T(seed[i-1])
an orbit of length n  for i from 1 to n
a probability space a set of inputs




START

seed[0]
i=1

2.6 Maple Programs

seed[i] = T(seed[i—1])

i = Orbit Length ?

YES

END

Fig. 2.22. A flowchart for iterations of a transformation T’

i+1

e S —

NO

71

For the convenience of computer simulations we consider transformations
defined on low dimensional Euclidean spaces or the shift transformations on

the one-sided shift spaces.

2.6.1 The logistic transformation

Find the invariant density of Tz = 4z(1 — ).

> with(plots):
Define a transformation 7.
> T:=x-> 4xx*(1-x);

Draw the graph y =Tz, 0 < x < 1. See Fig. 2.2
> gl:=plot(T(x),x=0..1,y=0..1,axes=boxed) :

> g2:=listplot([[1/2,0],[1/2,1]],color=green):

> display(gl,g2);

Define a probability density function p(z).
> rho:= x->1/(Pi*sqrt(x*(1-x)));

p=x—

™

1

z(1l—x)

Since p(x) — +00 as © — 0+ or x — 1—, we draw the graph y = p(z) only

on the interval [e,1 — ¢] for some small € > 0. See Fig. 2.2.
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> plot(rho(x),x=0.01..0.99);
Check whether fol p(z)dr = 1.
> int(rho(x),x=0..1);
1
Find the inverse images of b, where b is a point on the positive y-axis.

> a:=solve(T(x)=b,x);

1 1 1 1
a::§+§\/l—b, 5—5\/1717
In the following definition note that a; < as.
> al:=1/2-1/2*sqrt(1-b);

1 1-b
1:=—-—
“T s 2
> a2:=1/2+1/2*sqrt(1-b);
1 1-b
2= -
2=ty
Find inverse images of b = % under 7.
> b:=2/3:
> al;
1_ V3
2 6
> a2;
1, V3
2 6
> gb:=listplot([[al,0], [al,b]],color=green):
> g6:=listplot([[a2,0], [a2,b]],color=green):
> g7:=plot(b,x=0..1,color=green,tickmarks=[2,2]):
> display(gl,gb,g6,g7);

See Fig. 2.23.

0 at , a2 1

Fig. 2.23. Two inverse images of b = 1/3 under the logistic transformation

From now on we treat b again as a symbol.
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> b:="b’;
b:=b

> al;

1 1-0

2 2
> a2;

1 1-0

2t

Find the measure of T71([b,1]).
> measurel:=int(rho(x),x=al..a2);
2arcsin(v/1 — b)
71'

measurel :=
Find the measure of [b, 1].
> measure2:=int(rho(x),x=b..1);
1 —m+2arcsin(2b — 1)
2 s

measure? = —

Compare the two values.

> d:=measurel-measure?2;

Joe 2arcsin(v/1 — b) n 1 —7 4 2arcsin(2b — 1)
= 3

Assume 0 < b < 1. When V\77Te make assumptions about a variable, it is printed
with an appended tilde.

> assume(b < 1, b > 0):
To show d = 0 we show sin(nd) = 0.

>  dd:=simplify(Pixd);

dd :=2arcsin(v/1—b7) — g + arcsin(2b6” — 1)
> expand(sin(dd)):
>  simplify(%);

0
This shows that d is an integer. Since |d| < 1, we conclude d = 0.

2.6.2 Chebyshev polynomials

Consider the transformations f : [0,1] — [0, 1] obtained from Chebyshev
polynomials T': [-1,1] — [—1, 1] with deg T > 2 after the normalization of the
domains and ranges. When degT" = 2, we obtain the logistic transformation.
The transformations share the same invariant density function.

> with(plots):
We need a package for orthogonal polynomials.

> with(orthopoly);
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G, H, L, P, T, U]
The letter ‘T’ is from the name of a Russian mathematician P.L. Chebyshev.
Many years ago his name was transliterated as Tchebyshev, Tchebycheff or
Tschebycheff. That is why ‘T’ stands for Chebyshev polynomials.
Let w(z) = (1 — 22)"%2 and let H = L?([—1,1],wdz) be the Hilbert space
u(z)v(x)w(x)dz for u,v € H.

with the inner product given by (u,v) = fil

Chebyshev polynomials are orthogonal in H. Let us check it! Choose integers
m and n. Take small integers for speedy calculation.

> m:=b:
> n:=12:
> int(T(m,x)*T(n,x)/sqrt(1-x"2) ,x=-1..1);

0

Chebyshev polynomials are defined on [—1, 1] and therefore we normalize the
domain so that the induced transformations are defined on [0, 1].
Choose the degree of a Chebyshev polynomial.

> Deg:=3;
Define a Chebyshev polynomial.

> Chev:=x->T(Deg,x):

> plot(Chev(x),x=-1..1);
The graph of T is omitted to save space. Normalize the domain and the range
of T'. In this subsection f denotes the transformation since ‘I’ is reserved for
the Chebyshev polynomial.

> f:=x->expand((Chev(2xx-1)+1)/2):
Now f is a transformation defined on [0, 1].

> f(x);

1623 — 2422 +9x

Draw the graph y = f(z).

> plot(f(x),x=0..1);
See Fig. 2.24.

Fig. 2.24. A transformation f defined by a Chebyshev polynomial
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Now we prove that the transformations defined by Chebyshev polynomials all
share the same invariant density. It is known that T'(n, cos§) = cos(n#).

> T(Deg,cos(theta))-cos(Deg*theta) ;
4cos(0)% — 3cos(f) — cos(30)
> simplify(%);
0
Define a topological conjugacy ¢ based on the formula in [AdMc]. It will be

used as an isomorphism for two measure preserving transformations f and g.
The formula in Ex. 2.24 may be used, too.

>  phi:=x->(1+cos(Pi*x))/2;
1 1
=z — 3 + gcos(wx)
Draw the graph y = ¢(z).
> plot(phi(x),x=0..1,y=0..1,axes=boxed);
See the left graph in Fig. 2.25.

Fig. 2.25. The topological conjugacy ¢(x) (left) and its inverse (right)

Find the inverse of ¢.
> psi:=x->arccos(2*x-1)/Pi;

arccos(2x — 1)

Yi=x —
Draw the graph y = ¢(z) = ¢~ (z).
> plot(psi(x),x=0..1,y=0..1,axes=boxed);

See the right graph in Fig. 2.25.
Check ¢(¢p(x)) = x.

> phi(psi(x));

™

x
Define a transformation g(x) = ¥(f(4(x))).
> g:=x->psi(f(phi(x)));

g =z — p(f(d(x)))
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Draw the graph y = g(z).
> plot(g(x),x=0..1,y=0..1,axes=boxed) :
See Fig. 2.26.

Fig. 2.26. A transformation g conjugate to f through ¢

It is obvious that g preserves Lebesgue measure dz on X = [0, 1]. Find the
invariant probability measure y for f.

(X, dz) —L— (X, dz)
a 3
(X,p) —1— (X,p)

Note that the inverse image of [¢(x), 1] under ¢ is [0, ], which has Lebesgue
measure equal to z. For u to be an f-invariant measure, it must satisfy

u(lo(x),1]) = =

for 0 <z < 1. Thus u([y,1]) = ¥(y) and p([0,y]) =1 —(y) for 0 <y < 1.
> -diff(psi(y),y);

1
—y?+ym
Hence d )
p(y) = @( —P(y)) = W .

2.6.3 The beta transformation

Find the invariant measure of the S-transformation.
> with(plots):
> beta:=(1+sqrt(5))/2:

Define the transformation 7.
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> T:=x-> frac(betax*x):
Define the invariant probability density function p(x).

> rho:=x->piecewise( 0<=x and x< 1/beta, beta”3/(1+beta"2),

1/beta <= x and x < 1, beta"2/(1+beta"2) );

i ise(0 < dz< G L dz<1 52)

= x — plecewise rzand r < —, ,— <zandzx , ———

’ P = 51452 8 1+ 52
> plot(T(x),x=0..1,y=0..1,axes=boxed) ;

See the left graph in Fig. 2.4.

> b0:=T(1);
1 V5
b0 := —= + —
0 2 + 2
> plot(rho(x),x=0..1);
See the right graph in Fig. 2.4.
> int(rho(x),x=0..1);
15+ 75

(5+v5) (2+V5)
> simplify(%);
1
When we make assumptions about a variable, a tilde is appended.
> assume(b >= 0, b <= 1);
> b

> ml:=beta”3/(1+beta”2):

> m2:=beta”2/(1+beta”2):
Find the cumulative density function (cdf) for the invariant measure. In the
following, cdf(b) is the measure of the interval [0, b].

> cdf:=piecewise( b<=1/beta, ml*b, b>=1/beta, mil*(1/beta)+
m2* (b-1/beta) ):

> plot(cdf(b),b=0..1);
See Fig. 2.27.
Find the inverse image (or inverse images) of a point b on the y-axis.
> al:=solve(beta*x=b,x);
2h
S 1+V5
> a2:=solve(beta*x-1=b,x);
2(1+0b"
a2 = 7< +b)
1++5
In the following, cdf_inverse(b) is the measure of the inverse image of [0, b].

> cdf_inverse:=piecewise( b <= b0, mi*al + m2*(a2-1/beta),
b >= b0, mi*al + m2*%(1-1/beta) ):

al
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b~

Fig. 2.27. The cumulative density function for the B-transformation

Check the graph, which is not shown here.
> plot(cdf_inverse(b),b=0..1);
>  simplify(cdf-cdf_inverse) ;
0
This shows that p(z) is invariant under 7.

2.6.4 The baker’s transformation

Using the mathematical pointillism we draw images of a rectangle under the
iterates of the baker’s transformation. See Fig. 2.8.

> with(plots):
Define the baker’s transformation.

> T:=(x,y)->(frac(2*x), 0.5%y+0.5*trunc(2.0%*x));

T := (z, y) — (frac(22), 0.5y + 0.5 trunc(2.0 z))

> S:=4000:
Choose a starting point of an orbit of length S.

> seed[0] :=(sqrt(3.0)-1,evalf(Pi-3)):
Generate S points evenly scattered in the unit square.

> for i from 1 to S do seed[i]:=T(seed[i-1]): od:

> pointplot({seq([seed[i]],i=1..8)},symbolsize=1);
See the left plot in Fig. 2.28.
Generate S points evenly scattered in C = {(z,y): 0 <z < %,O <y<1}.

> for i from 1 to S do
> imageO[i]:=(seed[i][1]1/2,seed[i]1[2]): od:

> pointplot({seq([image0[il],i=1..S)},symbolsize=1);
See the right plot in Fig. 2.28.
Find T(C).

> for i from 1 to S do imagel[i]:=T(imageO[i]): od:

> pointplot({seq([imagel1[i]],i=1..8)},symbolsize=1);
See the first graph in Fig. 2.8.
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Fig. 2.28. Evenly scattered points in the unit square (left) and a rectangle C' (right)

Find T?(C).
> for i from 1 to S do image2[i]:=T(T(imageO[i])): od:
> pointplot({seq([image2[i]l],i=1..8)},symbolsize=1);
See the second graph in Fig. 2.8.
Find T3(C).
> for i from 1 to S do image3[i]:=T(T(T(imageO[i]))): od:
> pointplot({seq([image3[i]],i=1..8)},symbolsize=1);
See the third graph in Fig. 2.8.
In the preceding three do loops, if we want to save computing time and

memory, we may repeatedly use seed[i] :=T(seed[i]): and plot seed[i],
1 <4< S. See Maple Program 2.6.5.

2.6.5 A toral automorphism

Find the successive images of D = {(z,y) : 0 <z < %,0 <y< %} under the
Arnold cat mapping.

> with(plots):
Define a toral automorphism.

> T:=(x,y)->(frac(2*x+y) ,frac(x+y));

> seed[0] :=(evalf(Pi-3),sqrt(2.0)-1):

> S5:=4000:

> for i from 1 to S do seed[i]:=T(seed[i-1]): od:

Find S points in D.
> for i from 1 to S do
> seed[i] :=(seed[i] [1]/2,seed[i][2]/2): od:

> pointplot({seq([seed[i]],i=1..8)},symbolsize=1);
See Fig. 2.29.
Find T(D).

> for i from 1 to S do seed[i]:=T(seed[i]): od:

> pointplot({seq([seed[il],i=1..8)},symbolsize=1);
See the first plot in Fig. 2.9.
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Fig. 2.29. Evenly scattered points in the square D

Find T%(D).

> for i from 1 to S do seed[i]:=T(seed[i]): od:

> pointplot({seq([seed[i]],i=1..8)},symbolsize=1);
See the second plot in Fig. 2.9.
Find T3(D).

> for i from 1 to S do seed[i]:=T(seed[i]): od:

> pointplot({seq([seed[i]],i=1..8)},symbolsize=1);
See the third plot in Fig. 2.9.

2.6.6 Modified Hurwitz transformation

> with(plots):
Define two constants o« and f.
> alpha:=(sqrt(5)-1)/2: beta:=(3-sqrt(5))/2:

Define a new command.
> bracket:=x->piecewise( 0 <= x, floor(x + beta), 0 > x,
-floor(-x + beta) );

Define the transformation 7.
> T:=x-> 1/x - bracket(1/x);
Define a probability density where C'is an undetermined normalizing constant.

> rho:=x->piecewise(-alpha<=x and x<-beta,C/(2-x),-beta<=x
and x<beta, C/(1-(1/4)*x"2), beta<=x and x<alpha, C/(2+x)):

Compute the integral of p(x) over the interval —a < z < a.
> int(rho(x),x=-alpha..alpha);
20(3+v/5) —2CIn(v/5 + 1)
Choose C so that p is a probability density function.
> C:=1/(-2*%1n(sqrt(5)+1)+2*1n(3+sqrt(5)));
1

C =
—2In(v5 +1) 4+ 21In(3 + V/5)
Plot the invariant density function p(x).
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> plot(rho(x),x=-alpha..alpha);
See Fig. 2.14.

2.6.7 A typical point of the Bernoulli measure

Find a typical binary sequence xg with respect to the (%, %)—Bernoulli measure.
Consult Sect. 2.3 and see Fig. 2.30.

Fig. 2.30. The graph corresponding to the (i, %)-Bernoulli shift

Generate four numbers 0,1,2,3 with probability i each.
> ran:=rand(0..3):
Choose the number of significant decimal digits for xy.
> N_decimal:=10000:
> N_decimalx*log([2.](10);
33219.28095
> N_binary:=33300:

This is the number of binary significant digits needed to produce a decimal
number with N_decimal significant decimal digits.

> evalf(2~(-N_binary),10);
0.5025096306 1010024
> for j from 1 to N_binary do d[j]l:=ceil(ran()/3): od:
Find the number of the bit ‘1’ in the binary sequence {d,}.
> num_1:=add(d[j],j=1..N_binary);
num_1 = 24915

The following number should be close to % by the Birkhoff Ergodic Theorem.
See Chap. 3 for more information.

> evalf(num_1 / N_binary);
0.7481981982
Convert the binary number 0.d;dsds . .. into a decimal number.
> Digits:=N_decimal:
> M:=N_binary/100;
M =333
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To compute 22’3:3100 ds27%, calculate 100 partial sums first then add them all.

In the following partial_sum[k] is stored as a quotient of two integers.
> for k from 1 to 100 do
> partial_sum[k]:=add(d[s+M*(k-1)]/2"s,s=1..M): od:

> x0:=evalf (add(partial_sum([k]/2"~ (M*(k-1)),k=1..100));

20 := 0.964775085321818215215.. ..
This is a typical point for the Bernoulli measure represented on [0, 1].

2.6.8 A typical point of the Markov measure

Find a typical binary Markov sequence x( defined by a stochastic matrix P.
Consult Sect. 2.3 and see Fig. 2.31.

> with(linalg):
> P:=matrix([[1/3,2/3],[1/2,1/211);

12
33
P =
11
22
13 2/3 1/2
1/2

Fig. 2.31. The graph corresponding to P

Choose the positive vector in the following:

> eigenvectors(transpose(P));

RN N RN S

The Perron-Frobenius eigenvector is given by the following:

> v:=[3/7,4/7]:
3 4
77

>  evalm(v&*P) ;
Observe that the rows of P™ converge to v. See Theorem 5.21.
> evalf (evalm(P&~20),10);

0.4285714286 0.5714285714
0.4285714286 0.5714285714
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> 3/7.;

0.4285714286
> 4/7.;

0.5714285714

Construct a typical binary Markov sequence of length N_binary.

> ran0O:=rand(0..2): ranl:=rand(0..1):
> N_decimal:=10000:
> N_decimal*log[2.](10);

33219.28095
> N_binary:=33300;

N _binary := 33300
> evalf(2.0"(-N_binary),5);
0.50251 10~10024

As in the previous case this shows that the necessary number of binary digits
is equal to 33300 when we use 10000 significant decimal digits.

> d[0]:=1:

> for j from 1 to N_binary do

> if d[j-1]=0 then d[j]:=ceil(ran0()/2):
> else d[jl:=ran1(): fi

> od:

Count the number of the binary symbol 1.
> num_1:=add(d[j],j=1..N_binary);
num-1 = 19111

The following is an approximate measure of the cylinder set [1];, which should
be close to % = 0.5714 ... by the Birkhoff Ergodic Theorem in Chap. 3.

> evalf(num_1 / N_binary,10);
0.5739039039
Convert the binary number 0.d1dzds ... into a decimal number.
> Digits:=N_decimal;
Digits := 10000
In computing add(d[s]/2"s,s=1..33300), we first divide it into 10 partial
sums, and calculate each partial sum separately, then finally add them all.

> M:=N_binary/10;
M := 3330

In the following partial_sum[k] is stored as a quotient of two integers.
> for k from 1 to 10 do
> partial_sum[k]:=add(d[s+M*(k-1)]/2"s,s=1..M): od:

> x0:=evalf (add(partial_sum[k]/2~ (Mx(k-1)),k=1..10));

20 := 0.58976852039782534571049721 . ..
This is a typical point for the Markov measure represented on [0, 1].
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2.6.9 Coding map for the logistic transformation

Let Ey = [0, %), E, = [%, 1]. For € [0,1] define a binary sequence b, by
T 'z € Ep, . We identify (by,ba,...) with ¢(z) = > 0,27™ and sketch the
graph of 1. Consult Sect. 2.5 for the details.
> with(plots):
> Digits:=100:
Choose the logistic transformation.
> Ti=x-> 4xx*x(1-x):
Choose the number of points on the graph.
> N:=2000:
> M:=12:
Choose a starting point of an orbit.
> seed[0] :=evalf (Pi-3):
Find ¢(z).
> for n from 1 to N+M-1 do
> seed[n]:=T(seed[n-1]):

> if seed[n] < 1/2 then b[n]:=0: else b[n]:=1: fi:
>  od:

Find ¢(x).
> for n from 1 to N do
> psi[n]:=add(b[n+i-1]1/2"i,i=1..M): od:

We don’t need many Digits now.

> Digits:=10:

> pointplot([seq([seed[n],psiln]],n=1..N)],symbolsize=1);
See Fig. 2.32.

Fig. 2.32. y = ¢(x) for the logistic transformation





