
2 Lie Algebras

In this chapter we fix our conventions and terminology and we provide a quick
review of the notions in differential geometry and in Lie theory that will be
used. Since algebraic geometry, mainly the geometry of Abelian varieties, will
only show up later and since we will need to do in that case a little more
than just a review, we defer that subject to Part II of the book.

2.1 Structures on Manifolds

Our manifolds will always be either real smooth or complex holomorphic. In
both cases the algebra of functions on such a manifold M will be denoted
by F(M). Thus F(M) is the algebra of smooth functions on M when M is
a real manifold while F(M) is the algebra of holomorphic functions on M
when M is a complex manifold; when M = Cn or a smooth affine variety we
will often restrict ourselves to the polynomial functions on M (usually called
regular functions on M). Since many of the basic definitions and construc-
tions that are given below are algebraic they apply to complex (algebraic)
manifolds as well as real manifolds, and we will just write “Let M be a man-
ifold” when our definition or construction applies to the real as well as to the
complex case. Similarly, the word “map” will stand for “smooth map” (resp.
“holomorphic map” or “regular map”) in the case of smooth manifolds (resp.
holomorphic manifolds or (non-singular) algebraic varieties).

2.1.1 Vector Fields and 1-Forms

For a manifold M and a point m ∈ M the (real or holomorphic) tangent
space to M at m is denoted by TmM and its dual space, the cotangent space
to M at m, is denoted by T ∗

mM . The tangent and cotangent spaces to M
form the fibers of the tangent bundle TM , resp. the cotangent bundle T ∗M .
A vector field V is a section of the tangent bundle while a 1-form ω is a
section of the cotangent bundle; the values of V and ω at m ∈M are simply
denoted by V(m) and ω(m), where V(m) ∈ TmM and ω(m) ∈ T ∗

mM . The
F(M)-modules of vector fields and 1-forms on M will be denoted by X(M)
and Ω(M). We will find it convenient to denote the pairing between a vector
space and its dual, such as TmM and T ∗

mM , by 〈· , ·〉.
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For example, if V ∈ X(M) and ω ∈ Ω(M) then we may define a function
ω(V) ∈ F(M) by setting

ω(V)(m) := 〈ω(m),V(m)〉 (2.1)

for all m ∈ M . To a function F ∈ F(M) we may associate its differential
dF ∈ Ω(M), which is a 1-form, hence can be applied to vector fields on M .
This is used to associate to every vector field V on M a derivation on F(M):
for F ∈ F(M) we define V [F ] ∈ F(M) by

V [F ] := dF (V), (2.2)

which means in view of (2.1) that

V [F ](m) = 〈dF (m),V(m)〉 (2.3)

for m ∈ M . Saying that V is a derivation on F(M) means that if F,H ∈
F(M) then

V [FH ] = V [F ]H + FV [H ],

an easy consequence of (2.2) and the Leibniz rule for differentials. It follows
from (2.3) that V [F ](m) depends on V(m) (and F ) only; it is the derivative of
F at m in the direction of V(m), hence it is legitimate to write it as V(m)[F ].
At m ∈M the derivation property then reads

V(m)[FH ] = (V(m)[F ])H(m) + F (m)(V(m)[H ]);

one says that V(m) defines a derivation on F(M) at m.
It is a fundamental fact that, conversely, every derivation on M corre-

sponds to a unique vector field on M and that every derivation at m cor-
responds to a unique tangent vector at m. As a corollary, since the com-
mutator of two derivations is a derivation we may define the Lie bracket
[V1,V2] of V1, V2 ∈ X(M) as the vector field that corresponds to the deriva-
tion V1 ◦ V2 − V2 ◦ V1. This way, X(M) becomes an infinite-dimensional Lie
algebra. For F ∈ F(M) and for V1,V2 ∈ X(M) one has

[FV1,V2] = F [V1,V2]− V2[F ]V1. (2.4)

Notice also that if U ⊆ M is a coordinate neighborhood then a derivation
on F(U) is completely determined once its effect on all elements xi of a
coordinate system (x1, . . . , xn) on U is known, where n := dimM . Indeed,
since in terms of these coordinates

dF =
n∑

i=1

∂F

∂xi
dxi

we have in view of (2.2) that

V [F ] =
n∑

i=1

∂F

∂xi
V [xi]. (2.5)
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When we are dealing with a fixed vector field V we often write Ḟ for V [F ],
where F ∈ F(M). In this notation, the coordinate expression (2.5) takes the
form

Ḟ =
n∑

i=1

∂F

∂xi
ẋi.

There is a one-to-one correspondence between vector fields on the coordinate
neighborhood U and differential equations on U of the form

dx1

dt
= f1(x1, . . . , xn),

... (2.6)
dxn
dt

= fn(x1, . . . , xn),

where fi ∈ F(U), for i = 1, . . . , n. Indeed, given a vector field V , define the
functions fi by fi := V [xi]; given the functions fi, define V [xi] := fi and
extend V to a derivation on F(U) by using (2.5). Solutions to (2.6) are easily
interpreted as parametrized curves in U , whose tangent vector at each point
coincides with the value of V at that point; we will usually consider solutions
that are defined on an open ball Bε around ε, where Bε := {t ∈ C | |t| < ε} in
the holomorphic case and Bε := {t ∈ R | |t| < ε} in the smooth real case. For
that reason a solution x(t) = (x1(t), . . . , xn(t)) to (2.6), defined on Bε, and
such that x(0) = m is often called an integral curve of V , starting at m. The
well-known uniqueness and existence theorem for differential equations can
(in the holomorphic case) be formulated in terms of vector fields and integral
curves as follows.

Theorem 2.1 (Picard Theorem for ODE’s). Let V be a holomorphic
vector field on an open subset U of Cn and let m ∈ U . There exists an integral
curve of V, starting at m; this integral curve x(t;m) is unique in the sense
that any two integral curves of V that start at m coincide on the intersection
of their domains. Moreover, x(t;m) depends in a holomorphic way on m.

The analogous theorem for smooth vector fields on open subsets of Rn of
course also holds. The theorem and its smooth analog imply that given a
vector field V on an n-dimensional manifold M we can find for any m ∈ M
a coordinate neighborhood U of m, with coordinates (x1, . . . , xn), an open
subset U ′ ⊆ U and an ε > 0, such that the solution x(t;m) is defined for
(t,m) ∈ (Bε × U ′). The map

Φ : Bε × U ′ → U
(t,m) �→ Φt(m) := x(t;m)

is called the flow of V .
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For a fixed t ∈ Bε the map Φt : U ′ → U is a biholomorphism (diffeomor-
phism, in the smooth case) from U ′ to Φt(U ′). It is customary to pretend that
for small |t| the local biholomorphism (diffeomorphism) Φt is global if we are
in the case of a vector field on a manifold M and to write Φt : M →M , but
of course — unless M is compact — the globalness needs not be true. For ex-
ample, one writes the fundamental property that links directional derivatives
to flows in the form

V [F ] =
d

dt |t=0
Φ∗
tF,

where F ∈ F(M) and Φ∗
tF = F ◦ Φt. Theorem 2.1 and its smooth analog

lead to the following theorem, that we will use often.

Theorem 2.2 (Straightening Theorem). Let V be a vector field on a
manifold M of dimension n and suppose that V(m) �= 0, where m ∈M . Then
there exist coordinates x1, . . . , xn on a neighborhood U of m such that the
restriction of V to U is the first coordinate vector field, i.e., V [F ] = ∂F/∂x1.

In the same spirit we can, intuitively speaking, parameterize a neighborhood
of an analytic hypersurface by local coordinates on the hypersurface on the
one hand, and by the parameter which is going with any fixed vector field, on
the other hand, assuming that the vector field is transversal to the divisor.
Precisely, the following theorem holds (see Figure 2.1).

Theorem 2.3. Let M be a complex manifold of dimension n and let V be a
holomorphic vector field on M . Suppose that D is an analytic hypersurface
of M and let m0 be a smooth point of D. If V is transversal to D at m0, then
there exist neighborhoods U and V of m0 in D, resp. in M , and there exists
ε > 0, such that the restriction of Φ to Bε × U is a biholomorphism onto V .
In addition, if U is a coordinate neighborhood of m0 in D, with coordinates
x2, . . . , xn then V is a coordinate neighborhood of m0 in M , with holomorphic
coordinates (t, x2, . . . , xn), where V = ∂

∂t (on V ). In the latter case,

D ∩ V = {m ∈ V | t(m) = 0} .

It follows that, under the above transversality assumption, we can write any
holomorphic function F on V locally as a series

F (t) = tp(f (0) + f (1)t + · · ·), (2.7)

where the coefficients f (0), f (1), . . . of the series F (t) are holomorphic func-
tions on a neighborhood of m0 in D. By analyticity, the series F (t) is actually
convergent on an open neighborhood in M of an open dense subset of the
irreducible component D′ of D that contains m0, and it coincides on this
neighborhood with the function F . We call the series (2.7) the Taylor series
of F with respect to V , starting at D′, and we denote it by F (t;D′).
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Fig. 2.1. When a holomorphic vector field V on a complex manifold M is transver-
sal to a divisor D at m0 ∈ D then a neighborhood V ofm0 in M admits holomorphic
coordinates that come from coordinates s = (s1, . . . , sn−1) on D, plus the time co-
ordinate t that goes with V.

Since V is transversal to D′ at m0, the integer p in (2.7) is equal to
ordD′(F ), the order of vanishing of F along D′, if f (0) is not identically zero
on D′. The restriction of F to D′ is given by substituting 0 for t in this Taylor
series, i.e., by the first coefficient of its Taylor series.

The same can be done for meromorphic functions on U : writing such a
function F as the ratio G/H of two holomorphic functions we define the
Laurent series of F with respect to V , starting at D′, denoted F (t;D′), to
be the quotient G(t;D′)/H(t;D′). In this case the series converges for small,
non-zero |t|. The Laurent series of F is still of the form (2.7), where

p = ordD′(F ) = ordD′(G)− ordD′(H)

is now any integer. Under the assumption that f (0) is not identically zero
on D′, it is still true that p is the order of vanishing of F along D′, which in
the case of negative p means that F has a pole of order −p along D′.

2.1.2 Distributions and the Frobenius Theorem

Instead of having a vector at every point of a manifold M , as is the case of a
vector field on M , one may have a one-dimensional subspace of the tangent
space to M , at every point of M . This is what is called a 1-dimensional
distribution on M ; a k-dimensional distribution ∆ on M is then the datum
of a k-dimensional subspace ∆(m) of TmM for every m ∈M . One says that
∆ is smooth (or holomorphic) if there exist for every m ∈ M smooth (or
holomorphic) vector fields V1, . . . ,Vk, on a neighborhood U of m, such that

∆(m) = span {V1(m), . . . ,Vk(m)} , for any m ∈ U.
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The notion of an integral curve is easily adapted to the case of a k-
dimensional distribution ∆: a k-dimensional connected immersed subman-
ifold M ′ of M is called an integral manifold of ∆ if TmM ′ = ∆(m) for
any m ∈ M ′. In contrast to the case of integral curves, integral manifolds
need not exist in general, even locally. One obstruction comes from the fol-
lowing fact: if V1 and V2 are two vector fields on M which are tangent to
some submanifold M ′ (such as the candidate integral manifold) then their
Lie bracket [V1,V2] is also tangent to M ′. In order to rephrase this in the lan-
guage of distributions, let us say that a vector field V on U ⊆M is adapted
to ∆ on U if V(m) ∈ ∆(m) for every m ∈ U . In these terms the obstruction
reads: if V1 and V2 are adapted to ∆ on some open subset U then [V1,V2] is
also adapted to ∆ on U . One says that ∆ is an integrable distribution if for
any V1 and V2 that are adapted to ∆ on an open subset U , their commutator
[V1,V2] is also adapted to ∆ on U . The Frobenius Theorem says that the
above obstruction to the existence of integral manifolds is the only one.

Theorem 2.4 (Frobenius). Suppose that ∆ is a (smooth or holomorphic)
k-dimensional distribution on M . If ∆ is integrable then there exists through
any point m0 ∈M a unique maximal integral manifold for ∆.

The above version of the Frobenius Theorem is the analogue of Theorem 2.1
for distributions. For a short and elementary proof, which is immediately
adapted to the holomorphic case, we refer to [42] or [108]. Another version
of the Frobenius Theorem is the following.

Theorem 2.5 (Frobenius). Under the conditions of Theorem 2.4 coordi-
nates x1, . . . , xn can be chosen in a neighborhood U of any point m0 ∈ M
such that

∆(m) = span
{

∂

∂x1
(m), . . . ,

∂

∂xk
(m)

}
, for any m ∈ U.

In terms of these coordinates the integral manifold of ∆|U through m0 is given
by the connected component of

{m ∈ U | xi(m) = xi(m0) for i = k + 1, . . . ,m}
that contains m0.

It is clear that the latter version of the Frobenius Theorem generalizes the
Straightening Theorem (Theorem 2.2). It implies that the maximal integral
manifolds of an integrable distribution on M form the leaves of a foliation
on M .

In applications it is sometimes necessary to consider the more general
concept of a singular distribution, in which the dimension of the subspace
of TmM may vary with m. This happens for example when one considers
the singular distribution associated with the Hamiltonian vector fields on a
Poisson manifold, as we will see in Section 3.4. For a good account on singular
distributions we refer to [107, Appendix 3].
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2.1.3 Differential Forms and Polyvector Fields

We will make frequent use of k-forms and k-vector fields on manifolds and of
the operations on and between them. For k ∈ N we denote the F(M)-module
of k-forms on a manifold M by Ωk(M); an element of Ωk(M) is by definition
a section of

∧k T ∗M , in particular Ω0(M) = F(M) and Ω1(M) = Ω(M).
We let

Ω∗(M) :=
n⊕

k=0

Ωk(M),

where n := dim(M). An element of Ω∗(M) will be called a differential form.
There is an F(M)-bilinear map

∧ : Ω∗(M)× Ω∗(M)→ Ω∗(M),

which associates to two differential forms ω, ω′ their wedge product ω ∧ ω′.
This operation makes Ω∗(M) into a graded associative algebra over F(M),
called the Grassmann algebra of M . It is graded commutative, which means
that for ω ∈ Ωk(M) and ω′ ∈ Ωl(M) we have

ω ∧ ω′ = (−1)klω′ ∧ ω.

The fact that a 1-form can be evaluated on a vector field to produce an
element of F(M) generalizes in two ways to a k-form ω, where k � 1. We can
evaluate ω on k vector fields V1, . . . ,Vk, giving ω(V1, . . . ,Vk) ∈ F(M); from
this point of view a k-form is an F(M)-k-linear map on X(M) with values
in F(M). Or we can insert one vector field V as the first argument to ω,
yielding a (k − 1)-form, which is denoted by ıVω; from this point of view a
k-form is, for k � 1, an F(M)-linear map X(M) → Ωk−1(M). Notice that
it is from the former point of view natural to define a k-form by prescribing
its value on all k-tuples of vector fields on M ; however, one still needs to
check besides skew-symmetry that the k-form is indeed F(M)-k-linear. It is
convenient to extend the above definition of ıV to all of Ω∗(M) by defining
ıVω = 0, for all 0-forms, i.e. functions, ω on M .

The differential is a linear map d : Ω∗(M)→ Ω∗(M) which maps k-forms
to (k + 1)-forms according to the following formula:

dω (V0, . . . ,Vk) =
k∑

i=0

(−1)iVi
[
ω(V0, . . . , V̂i, . . . ,Vk)

]
(2.8)

+
∑

i<j

(−1)i+jω
(
[Vi,Vj ],V0, . . . , V̂i, . . . , V̂j , . . . ,Vk

)
.

As we just pointed out one has to verify that the right hand side of this
formula is F(M)-(k + 1)-linear, but that is an easy consequence of (2.4).
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We have that d◦d = 0, which implies that each exact differential form (an
element of Ω∗(M) that is in the image of d) is a closed differential form (an
element ω ∈ Ω∗(M) for which dω = 0). On a coordinate neighborhood every
closed differential form is exact, but this is false for general open subsets of
manifolds. The differential of a wedge satisfies the graded Leibniz rule

d(ω ∧ ω′) = dω ∧ ω′ + (−1)kω ∧ dω′,

where ω is a k-form and ω′ an l-form. The differential is not an F(M)-linear
map, as is seen from the following formula: if F ∈ F(M) and ω ∈ Ωl(M)
then

d(Fω) = dF ∧ ω + Fdω, F ∈ F(M), ω ∈ Ωk(M).
We will also consider k-vector fields, mainly in the case k = 2, 3, in which
cases we speak of a bivector field or a trivector field. A k-vector field is by
definition a section of

∧k
TM , hence we can evaluate any k-form ω on any

k-vector field P : for P a k-vector field of the form P = V1 ∧ . . . ∧ Vk, we
let ω(P ) = ω(V1 ∧ . . . ∧ Vk) := ω(V1, . . . ,Vk). Since vector fields correspond
to derivations we have that a 2-vector field corresponds to a skew-symmetric
biderivation, a 3-vector field corresponds to a skew-symmetric triderivation,
and so on. Namely, if P is a k-vector field the value of the corresponding
skew-symmetric k-derivation on k functions F1, . . . , Fk ∈ F(M) is denoted1,
resp. defined by

P [F1 ∧ · · · ∧ Fk] := (dF1 ∧ · · · ∧ dFk)(P ) (2.9)

and we have that P is completely specified on a coordinate neighborhood U
once it is known on all k-tuples (xi1 , . . . , xik), with 1 � i1 < i2 · · · < ik � n =
dimM , where the k-tuples are taken from any chosen system of coordinates
(x1, . . . , xn) on U . Explicitly, (2.5) admits the following generalization to
arbitrary k-vector fields,

P [F1 ∧ . . . ∧ Fk] =
n∑

i1,...,ik=1

∂F1

∂xi1
· · · ∂Fk

∂xik
P [xi1 ∧ . . . ∧ xik ].

We denote the F(M)-module of k-vector fields by Xk(M), in particular
X0(M) = F(M) and X1(M) = X(M), and we let

X∗(M) :=
n⊕

k=0

Xk(M),

where n := dim(M). An element of X∗(M) is called a polyvector field. We
can define, as in the case of differential forms, a wedge product

∧ : X∗(M)× X∗(M)→ X∗(M),

which makes X∗(M) into a graded associative algebra which is the covariant
analogue of the Grassmann algebra.
1 We use P [F1 ∧ . . . ∧ Fk] instead of P [F1, . . . , Fk] to avoid confusion with the

notation for Lie brackets. Moreover, this notation makes sense in view of (2.9).
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2.1.4 Lie Derivatives

The most important operation on k-forms and on k-vector fields is the Lie
derivative. For V ∈ X(M) and ω ∈ Ωk(M) we denote the Lie derivative of ω in
the direction of V by LVω. For F ∈ F(M) and V ∈ X(M) the Lie derivative
is given by LVF := V [F ] = dF (V), while for an arbitrary k-form ω (with
k > 0) its Lie derivative LVω is the k-form whose value on V1 . . . ,Vk ∈ X(M)
is given by

LVω(V1, . . . ,Vk) := V [ω(V1, . . . ,Vk)]−
k∑

i=1

ω(V1, . . . , [V ,Vi], . . . ,Vk); (2.10)

again one checks that the right hand side of this formula is F(M)-k-linear,
so that LVω is indeed a k-form.

The Lie derivative LVω measures how ω changes in the direction of V ,
hence LVω = 0 if and only if ω is constant on the integral curves of V . This
follows immediately from the following alternative (geometric!) definition,

LVω =
d

dt |t=0
Φ∗
tω,

where Φ denotes the (local) flow of V on M . The most useful expression for
LVω is given by the following formula, known as Cartan’s Formula

LVω = dıVω + ıVdω; (2.11)

for example, Cartan’s formula implies at once that LVω is F(M)-k-linear,
i.e., that it is a k-form. We will also need the formula

ı[V1,V2]ω = LV1ıV2ω − ıV2LV1ω, (2.12)

which is valid for V1, V2 ∈ X(M) and ω ∈ Ω∗(M). Let us prove (2.12) when
ω is a two-form (this is the only case which will be used), in which case both
sides of (2.12) are one-forms. For any vector field V we have, in view of (2.10)
applied to the one-form ıV2ω,

LV1ıV2ω(V) = V1[ıV2ω(V)]− ıV2ω([V1,V ]) = V1[ω(V2,V)]− ω(V2, [V1,V ]).

Applying (2.10) again, but now to the two-form ω we get

ıV2LV1ω(V) = LV1ω(V2,V) = V1[ω(V2,V)]− ω([V1,V2],V)− ω(V2, [V1,V ]).

It follows that for any vector field V

LV1ıV2ω(V)− ıV2LV1ω(V) = ω([V1,V2],V) = ı[V1,V2]ω(V),

showing (2.12).
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The Lie derivative LVW of a vector field W is given by LVW := [V ,W ],
while the Lie derivative of an arbitrary k-vector field P is the k-vector field
LVP , defined by

LVP [F1 ∧ . . .∧ Fk] := V [P [F1 ∧ . . . ∧Fk]]−
k∑

i=1

P [F1 ∧ . . .∧ V [Fi] ∧ . . . ∧Fk],

(2.13)
where F1, . . . , Fk ∈ F(M). As in the case of the Lie derivative of a differential
form, the Lie derivative LVP of a k-vector field P on M also measures how
P changes in the direction of V , hence LVP = 0 if and only if P is constant
on the integral curves of the vector field V .

Example 2.6. In order to get familiar with the notations, let us verify that
LVW = [V ,W ], for any V ,W ∈ X(M). In fact, if F ∈ F(M) then (2.13)
implies

(LVW) [F ] = V [W [F ]]−W [V [F ]] = (V ◦W −W ◦ V)[F ] = [V ,W ][F ],

proving our claim.

2.2 Lie Groups and Lie Algebras

Unless otherwise stated, all Lie groups and Lie algebras will be defined over C.
We use the standard convention that Lie groups are denoted by boldface
capital letters (G,H, . . .) and their Lie algebras by the corresponding gothic
letters (g, h, . . .). The main examples of Lie groups include linear groups,
i.e., Lie subgroups of GL(n) = GL(Cn), the non-commutative group of all
invertible n× n matrices (with coefficients in C), where the group operation
is given by the usual product of matrices. Similarly, the main examples of
Lie algebras include matrix Lie algebras, i.e., Lie subalgebras of gl(n) =
gl(Cn), the Lie algebra of all n × n matrices (with coefficients in C), where
the Lie bracket is given by the commutator of matrices. In fact, according
to Ado’s Theorem, every finite-dimensional Lie algebra is isomorphic to a
matrix Lie algebra, but the corresponding theorem does not hold true for
(finite-dimensional) Lie groups. gl(n) is the Lie algebra of GL(n), and the
Lie algebra of a given linear group can easily be realized as a matrix Lie
algebra. This is done by using the exponential map exp, which is a natural
local biholomorphism exp : U ⊆ g→ G between an open neighborhood U of
the origin 0 of any finite-dimensional Lie algebra g and an open neighborhood
of the unit element e ∈ G. For X ∈ g = TeG close to 0, expX is the Lie
group element Φ1(e) where Φ denotes the flow of the left invariant vector
field on G, defined by X . For example, taking g = gl(n) and G = GL(n) the
map exp is the usual exponential of matrices and the conditions that define
a subgroup of GL(n) are easily translated in the conditions that define its
Lie algebra.
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Example 2.7. Consider the linear group G of all orthogonal n× n matrices.
For X ∈ gl(n) and for small |t|, consider the invertible matrix exp(tX) =
Idn +tX + t2X2 + O(t3). Orthogonality of exp(tX) yields

Idn = exp(tX)exp(tX)�

= (Idn +tX + t2X2 + O(t3))
(
Idn +tX� + t2(X2)� + O(t3)

)

= Idn +t(X + X�) + O(t2),

hence the Lie algebra g of G is given by the matrices X for which X+X� = 0,
i.e., g is the Lie algebra of all skew-symmetric n× n matrices.

More generally, Lie subalgebras of a finite-dimensional Lie algebra g are in
one-to-one correspondence with connected Lie subgroups of G; notice how-
ever that a Lie subgroup needs not be closed in its ambient Lie group (consider
the subgroup generated by a generic element of the complex torus C2/Z2).

The tangent space TgG to G at an element g ∈ G is naturally identified
with g: the left translation map Lg−1 : G→ G maps g to e, and its differential
maps TgG to g. Similarly we can identify the cotangent spaces to G with g∗

(the dual vector space to g) and so on.

Example 2.8. Suppose that G is a linear group which is closed (as a topolog-
ical subspace of GL(n)). Elements of TG are then naturally represented by
pairs of matrices (g,X), where a vector (g,X) acts by definition on F ∈ F(G)
by

(g,X)[F ] := lim
t→0

F (g + tX)− F (g)
t

,

where F is any (holomorphic) extension of F to a small open neighborhood
of g in its ambient space, the space of all n × n matrices (this can be done
because G is closed). Then dLg−1(g,X) = (e, g−1X), so that (g,X) gets
naturally identified with the matrix g−1X . The same result holds true when
G is not closed, because a small neighborhood in G of any element g of G is
closed in a small neighborhood of g in GL(n).

Since g (resp. g∗) is a vector space, its tangent spaces are also naturally
identified with g (resp. g∗). These identification will be (ab)used in the sequel,
often without further mention. A particular instance of this that will be used
throughout the text is the following: if F ∈ F(g∗) and ξ ∈ g∗ then the
differential of F at ξ is a linear map

dF (ξ) : Tξg∗ → C

which under the above identifications gets naturally identified with an el-
ement of g. Conversely, an element X ∈ g will often be viewed (without
changing notations) as a linear map g∗ → C, a change of perspective that
is made transparent by the notations, which simply read 〈X, ξ〉 = 〈ξ,X〉 for
X ∈ g and ξ ∈ g∗.
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Lie groups appear most often through their action (always taken to be a
left action) on manifolds. By assumption, if

χ : G×M →M

is an action, then for each g ∈ G the map χg : M → M , defined by m �→
χ(g,m) is a biholomorphism, with inverse m �→ χ(g−1,m). We will usually
write g·m or gm for χ(g,m). The action allows us to associate to each element
X ∈ g a vector field X, whose value at m, denoted X(m), is the derivation
on F(M) at m given by

X(m)[F ] :=
d

dt |t=0
F ((exp tX) ·m),

for all F ∈ F(M). The vector field X is called the fundamental vector field
corresponding to X ∈ g. Its flow is given by the action of the one-parameter
group exp tX . The fundamental vector fields describe infinitesimally the ac-
tion of G on M and they span the tangent space to the orbits of G at every
point of M .

The simplest action of a Lie group G on a vector space S is a linear ac-
tion, which means that for each g ∈ G one has that χg ∈ GL(S). Then one
can view χ as a homomorphism χ : G → GL(S) and one says that χ is a
representation of G on S. A subspace T ⊆ S is called an invariant subspace if
χg leaves T stable, i.e. χg(T ) ⊆ T , for all g ∈ G. Then χ induces a represen-
tation G→ GL(T ) which is called a subrepresentation. A representation χ of
G on S is called an irreducible representation if dimS > 0 and if χ does not
admit a non-trivial (i.e., with T different from {0} and T ) subrepresentation.
In general an invariant subspace T may or may not have a complement T ′ in
S which is also an invariant subspace. One says that a representation χ is a
completely reducible representation if any invariant subspace admits a com-
plementary subspace which is also invariant. In that case one can describe χ
as a direct sum of irreducible representations.

The above terminology applies equally to the case of Lie algebra repre-
sentations, with the understanding that a representation of g on S is a Lie
algebra homomorphism g → End(S), the Lie bracket in End(S) being the
commutator of endomorphisms. One also says that S is a g-module. Using
the fact that End(S) is the Lie algebra of GL(S) and using our convention
that we identify all tangent spaces to G with g, every representation of G
on S leads to a representation of g on S by mapping X ∈ g �→ X ∈ End(S).
The fact that this gives indeed a representation follows from the formula

[X,Y ] = [X,Y ] X,Y ∈ g.

The two most important examples are the adjoint and the coadjoint action
(representation) of a Lie group G on its Lie algebra g, resp. on the dual g∗

of its Lie algebra.
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For g ∈ G, we define Adg to be the endomorphism of g which is the
derivative of the conjugation map Cg : G → G : h �→ ghg−1 at the iden-
tity, Adg := dCg(e). The adjoint action or adjoint representation of G on g
is then given by

Ad : G→ GL(g) : g �→ Adg .

For example, if G is a linear group and g its (matrix) Lie algebra, then it
follows, as in Example 2.8, that

Adg X = dCg(e)(X) = gXg−1,

where g ∈ G and X ∈ g.
The representation of g on itself which corresponds to the adjoint action

is called the adjoint representation of the Lie algebra g on itself and is de-
noted by ad; the image of X ∈ g under ad will, for readability, be written
as adX . By the above definition, adX is the fundamental vector field X on g
that corresponds to the adjoint action, viewed as an endomorphism of g (by
identifying all tangent spaces of g to g). Explicitly, adX Y = [X,Y ], for Y ∈ g.

We now turn to the coadjoint action. For g ∈ G we define Ad∗
g by duality:

〈
Ad∗

g ξ,X
〉

=
〈
ξ,Adg−1 X

〉
,

where ξ ∈ g∗ and X ∈ g. The resulting map

Ad∗ : G→ GL(g∗) : g �→ Ad∗
g

is called the coadjoint action or the coadjoint representation of G on g∗. Its
orbits are called coadjoint orbits and they play an important role in what
follows. The representation of g on g∗ that corresponds to the coadjoint rep-
resentation is denoted by ad∗ and is called the coadjoint representation of g
on g∗. The relation between ad and ad∗ is consequently given by

〈ad∗
X ξ, Y 〉 = 〈ξ,− adX Y 〉 = 〈ξ, [Y,X ]〉 , (2.14)

where ξ ∈ g∗ and X,Y ∈ g.
A function H ∈ F(g) (resp. H ∈ F(g∗)) is called Ad-invariant (resp. Ad∗-

invariant) if H (AdgX) = H(X) for all g ∈ G and X ∈ g (resp. H
(
Ad∗

g ξ
)

=
H(ξ) for all g ∈ G and ξ ∈ g∗). The algebra of Ad-invariant functions on g
is denoted by F(g)G, while the algebra of Ad∗-invariant functions on g∗ is
denoted by F(g∗)G.

In the following lemma we describe two properties of Ad∗-invariant func-
tions that we will use. The Ad-invariant functions have similar properties,
that are easily written down, and are proven in the same way, but these
properties will not be used explicitly used here.
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Lemma 2.9. Let H ∈ F(g∗)G. For any ξ ∈ g∗ and for any X ∈ g we have
that 〈ξ, [dH(ξ), X ]〉 = 0, i.e., one has for any ξ ∈ g∗ that

ad∗
dH(ξ) ξ = 0.

Moreover, for any g ∈ G and ξ ∈ g∗ the following diagram is commutative.

g∗ g

g∗ g

�dH

�
Ad∗

g

�
Adg

�
dH

Proof. Let X ∈ g and ξ ∈ g∗. If H ∈ F(g∗)G then H(ξ) = H
(
Ad∗

g ξ
)

for all
ξ ∈ g∗ and g ∈ G. Taking any X ∈ g we therefore have that

〈
ad∗

dH(ξ) ξ,X
〉

= −〈ad∗
X ξ, dH(ξ)〉 = − ad∗

X ξ [H ]

= − d

dt |t=0
H
(
Ad∗

exp tX ξ
)

= − d

dt |t=0
H(ξ) = 0,

showing the first property. In order to prove that the above diagram is com-
mutative, differentiate for a fixed g ∈ G the identity H = H ◦Ad∗

g at ξ ∈ g∗.
It gives

dH(ξ) = dH(Ad∗
g ξ) ◦ (d Ad∗

g)(ξ) = dH(Ad∗
g ξ) ◦Ad∗

g,

because, for fixed g, the map Ad∗
g is a linear map. Thus, for η ∈ g∗, we have

〈dH(ξ), η〉 =
〈
dH(Ad∗

g ξ),Ad∗
g η
〉

=
〈
Adg−1

(
dH(Ad∗

g ξ)
)
, η
〉
.

It follows that dH(Ad∗
g ξ) = Adg(dH(ξ)), which proves that the diagram is

commutative. ��
Lie algebras often come equipped with a non-degenerate symmetric bilinear
form

〈· |· 〉 : g× g → C.

Such a form allows us to identify g with g∗, simply by assigning to X ∈ g the
linear form X̂ which maps Y ∈ g to 〈X |Y 〉, i.e.,

〈X̂, Y 〉 = 〈X |Y 〉
for all X,Y ∈ g. Its inverse is the linear map g∗ → g : ξ �→ X , where X
is the unique element of g which satisfies 〈X |Y 〉 = 〈ξ, Y 〉, for all Y ∈ g. A
symmetric bilinear form 〈· |· 〉 on g will be called Ad-invariant when for any
g ∈ G and for any X,Y ∈ g one has

〈AdgX | Adg Y 〉 = 〈X |Y 〉 .
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Ad-invariance of 〈· |· 〉 implies the following associativity-like rule: for any
X,Y, Z ∈ g one has

〈adY X |Z〉 = −〈X | adY Z〉 , (2.15)

so that adY is skew-symmetric with respect to 〈· |· 〉. Ad-invariance of 〈· |· 〉
also implies that for any g ∈ G the following diagram is commutative.

g g∗

g g∗

�∧

�
Adg

�
Ad∗

g

�
∧

(2.16)

Indeed, for any X,Y ∈ g it follows from the definitions and from Ad-
invariance that

〈
Ad∗

g X̂, Y
〉

=
〈
X̂,Adg−1 Y

〉
=
〈
X | Adg−1 Y

〉

= 〈Adg X |Y 〉 =
〈

̂AdgX,Y
〉
.

In words: upon identifying a Lie algebra with its dual (using an non-
degenerate Ad-invariant symmetric bilinear form 〈· |· 〉), the adjoint and coad-
joint actions get identified. The datum of a bilinear form on g leads to a
notion of orthogonality: for any subset A ⊆ g the 〈· |· 〉-orthogonal of A is the
subspace of g, defined by

A⊥ := {Y ∈ g | 〈X |Y 〉 = 0 for all X ∈ A} .

Example 2.10. Consider the subalgebras a and b of gl(n) which consist re-
spectively of the skew-symmetric and the upper triangular matrices. Obvi-
ously, gl(n) = a ⊕ b (direct sum of vector spaces). Consider on gl(n) the
non-degenerate symmetric bilinear form defined by 〈X |Y 〉 := Trace(XY ).
Then a⊥ is the subspace of gl(n) consisting of all symmetric matrices, while
b⊥ consists of all strictly upper triangular matrices.

The main example of an Ad-invariant symmetric bilinear form is the Killing
form of g, which is defined by

〈X |Y 〉 := Trace(adX ◦ adY ). (2.17)

The Killing form of g is non-degenerate if and only if g is a semi-simple Lie
algebra. Semi-simple Lie algebras and simple Lie algebras will be defined
in the next section. Together with their infinite-dimensional analogues, the
(twisted) affine Lie algebras, they will be the main types of Lie algebras
encountered in this book.
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2.3 Simple Lie Algebras

A non-empty subset h of a Lie algebra g is called an ideal when [g, h] ⊆ h.
If g contains no other ideals than 0 and itself and dim g > 1 then g is called
a simple Lie algebra. A Lie algebra that is isomorphic to the direct sum of
simple Lie algebras is called a semi-simple Lie algebra. Such a Lie algebra
is characterized by the fact that its Killing form 〈· |· 〉 (see (2.17)) is non-
degenerate. Moreover, for any simple Lie algebra g the Killing form is, up to
a constant, the unique Ad-invariant symmetric bilinear form on g which is
non-degenerate.

2.3.1 The Classification

We describe in this paragraph the elements that appear in the classification
and in the representation theory of simple Lie algebras, since we will need
them in what follows. For proofs and details we refer to [87].

In this paragraph we assume that g is a simple Lie algebra (over C).
Let h ⊆ g be a Cartan subalgebra of g, i.e., h is Abelian ([h, h] = 0) and
self-normalizing (x ∈ g and [x, h] ⊆ h implies x ∈ h). The dimension of h
is called the rank of g, denoted Rk g. It does not depend on the choice of h
because one shows that h is unique up to an automorphism of g. For X ∈ h
the endomorphism adX : g → g is diagonalizable and commutativity of h
implies that adh is a family of simultaneously diagonalizable endomorphisms
of g, leading to a direct sum decomposition of g into eigenspaces of adh,

g = h⊕
∑

α∈Φ
gα, (2.18)

where each subspace gα can be shown to be one-dimensional. An element α
of Φ is called a root, Φ ⊆ h∗ is called a root system and the decomposition
(2.18) is called the root space decomposition. A root α ∈ Φ is a collection of
eigenvalues of adh in the sense that if Eα ∈ gα then

[H,Eα] = 〈α,H〉Eα for all H ∈ h.

Notice that 0 is not a root because we assumed that h is self-normalizing. It
can be shown that the root system Φ spans h∗ and that a (non-unique) basis
Π for h∗ can be extracted from Φ, with the following property: any root α ∈ Φ
is a linear combination of elements of Π with coefficients in Z which are either
all positive or all negative. Thus, Φ = Φ+ ∪ Φ−, where Φ− = −Φ+, and any
element of Φ+ is a linear combination of elements of Π with coefficients in N.
In particular, Π ⊆ Φ+ and the roots all belong to the lattice2, generated by
the simple roots, called the root lattice.
2 This lattice is independent of the choice of simple roots Π since it is the smallest

lattice in h∗ that contains all the roots.
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We call Π a set of simple roots and we set Π = (α1, . . . , αl), where l :=
Rk g. For α ∈ Φ we define its height |α| by

|α| =
l∑

i=1

ai, where α =
l∑

i=1

aiαi.

It leads to a grading of g,

g =
⊕

k

gk, [gk, gl] ⊆ [gk+l], (2.19)

where gk is, for k �= 0, the span of the eigenvectors of all Eα, with |α| = k,
and g0 := h. One proves that the Killing form 〈· |· 〉 restricts to a bilinear form
on h, which is also non-degenerate, hence the isomorphism g → g∗, induced
by 〈· |· 〉, leads to an isomorphism h→ h∗. We mainly use its inverse, h∗ → h,
which maps λ ∈ h∗ to hλ ∈ h, where

〈λ , ·〉 = 〈hλ | ·〉 .
We will use, for i = 1, . . . , l, the abbreviation hi for hαi . The l-tuple
(h1, . . . , hl) forms a basis of h. For α ∈ Φ we define the following useful
normalization3 of hα:

Hα := 2
hα

〈hα |hα〉 . (2.20)

Each Hα is called a coroot and for i = 1, . . . , l the coroot which corresponds
to αi is denoted by Hi. The coroots appear in the following refinement of the
root space decomposition.

Theorem 2.11 (Chevalley). Let g be a simple Lie algebra of rank l, let h
be a Cartan subalgebra with root system Φ, and let Π = (α1, . . . , αl) denote
a system of simple roots with respect to h. Then there exists for every α ∈ Φ
a non-zero vector Eα ∈ gα (see (2.18)) such that for any H,H ′ ∈ h and
α, β ∈ Φ

[H,H ′] = 0,
[H,Eα] = 〈α,H〉Eα,

[Eα, Eβ ] =

⎧
⎪⎪⎨

⎪⎪⎩

Hα if α + β = 0,

0 if α + β /∈ Φ ∪ {0} ,
NαβEα+β if α + β ∈ Φ.

Here, Nαβ = ±(p + 1), where

p := max {n | β − nα ∈ Φ} .
The basis (H1, . . . , Hl) ∪ (Eα)α∈Φ of g is called a Chevalley basis of g, and
each Eα is called a root vector.
3 It is a normalization in the sense that if we replace 〈· |· 〉 by a non-zero multiple

of itself, then Hα do not change, while the hα get divided by that factor.
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For computational purposes it is useful to know that for given α, β ∈ Φ
the set {n | α− nβ ∈ Φ} , consists of (a finite number of) consecutive integers.
The choice of sign for Nαβ for all α, β ∈ Φ is non-trivial, since the signs that
correspond to the different values of α and β need to satisfy several non-trivial
coherence conditions, but they can be determined algorithmically (see [67]).
Notice that Chevalley’s Theorem implies that, in terms of a Chevalley basis,
all structure constants of g are integers.

The Killing form 〈· |· 〉 allows us to measure angles and lengths of roots
in Φ ⊆ h∗. To do this, let h∗R denote the real vector space which is spanned
by Φ and define 〈· | ·〉h∗ to be the bilinear form on h∗R which corresponds to
the Killing form via the isomorphism h �→ hλ. Thus, for λ, µ ∈ h∗ we have
that 〈λ |µ〉h∗ = 〈hλ |hµ〉. It turns out that 〈· | ·〉h∗ is positive definite, making
h∗R into a genuine Euclidean space. For α ∈ Φ, let sα : h∗R → h∗R be the linear
map defined by

sα(λ) = λ− 2
〈hα |hλ〉
〈hα |hα〉α = λ− 〈λ,Hα〉α, (2.21)

where λ ∈ h∗R. This linear map is the reflection in the hyperplane orthogonal
to α, since it fixes all roots which are orthogonal to α and since sα(α) = −α.

The Weyl group W is the group generated by {sα | α ∈ Φ}. One shows
the following properties of the Weyl group. Every non-trivial element of W
permutes at least two elements of Φ hence W is finite. Moreover, W is gen-
erated by the l reflections that correspond to the elements α1, . . . , αl of Π .
The root system Φ consists either of one W-orbit, in which case all roots
have the same length, or it consists of two W-orbits, where roots from one
W-orbit have a length which is different from the length of the vectors in
the other W-orbit. The two W-orbits are then distinguished by calling its
elements short roots or long roots, according to their lengths. Among the long
roots there is precisely one that has maximal height. It is called the highest
long root (with respect to h and Π). Similarly, there is among the short roots
precisely one that has maximal height, the highest short root. When all roots
have the same length then the highest long root and the highest short root
of course coincide.

For α, β ∈ Π the fact that

sα(β) = β − 2
〈hα |hβ〉
〈hα |hα〉α

is a root, implies for α �= β that sα(β) ∈ Φ+, hence that

aij := 2
〈hi |hj〉
〈hj |hj〉 = 〈hi |Hj〉 = 〈αi, Hj〉 (2.22)

is a non-positive integer for i �= j, and equals 2 for i = j.
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The numbers aij are called the Cartan integers and the matrix A =
(aij) is called the Cartan matrix of g (with respect to h and Π). It is a
fundamental result that there is a bijection between the triples (g, h, Π),
modulo conjugation in g and their Cartan matrices, modulo conjugation by
a permutation matrix. In fact, g can be reconstructed from its Cartan matrix
by a set of generators and relations (see [156, Chapter VI]).

If we denote by θij the angle between αi and αj then

cos θij =
〈αi |αj〉h∗√

〈αi |αi〉h∗

√
〈αj |αj〉h∗

=
〈hi |hj〉√〈hi |hi〉
√〈hj |hj〉

so that (2.22) implies that 4 cos2 θij = aijaji. Letting nij := aijaji we have
that if i �= j then 0, 1, 2, 3 are the only possible values for nij , since aij is
a non-positive integer when i �= j. The Dynkin diagram of g is the graph
with l nodes labeled by 1, . . . , l such that the nodes i and j are joined with
nij bonds. Notice that the integers nij do not contain enough information
to determine the aij , i.e., to reconstruct the Cartan matrix: when nij = 0
then aij = aji = 0 and when nij = 1 then aij = aji = −1, but when
nij ∈ {2, 3} then there are two possibilities to assign the values −1 and −nij
to aij and aji. To resolve this ambiguity one adds an arrow to the double
and the triple bonds in the Dynkin diagram which points to the shorter root
((2.22) shows that the two roots cannot have the same length). This way
the Cartan matrix, and hence the whole structure of the simple Lie algebra,
can be encoded in its Dynkin diagram. Analyzing the properties that root
systems which come from a simple Lie algebra have and constructing all
possible Dynkin diagrams that bear the corresponding properties one arrives
at the well-known list of Dynkin diagrams, given in Table 2.1 (the labeling
of the roots in the Dynkin diagram is the one that is used in most classical
books on Lie algebras, in particular [37], [79] and [87]).

The coroots Hα, which were defined in (2.20), satisfy the axioms of a
root system as well as the roots α, the dual root system, for which a system
of simple roots can be chosen as (H1, . . . , Hl). It leads to a natural duality
on the set of simple Lie algebras, which at the level of the Cartan matrix
amounts to A ↔ A�. As it turns out, this duality is trivial except that it
permutes the Lie algebras bl and cl.

If λ ∈ h∗R has the property that 〈λ,Hα〉 ∈ Z for all α ∈ Φ then λ is called
a weight and the set of all weight vectors is a lattice in h∗R which is denoted
by Λ and which is called the weight lattice. Clearly Φ ⊆ Λ. A basis for the
lattice Λ can be constructed as follows: for i = 1, . . . , l let λi ∈ h∗ be such
that 〈λi, Hj〉 = δij , where j = 1, . . . , l. Each of the basis vectors λi is called
a fundamental dominant weight, or a weight for short. Since Φ ⊆ Λ, (2.22)
implies that

αi =
l∑

k=1

aikλk, i = 1, . . . , l. (2.23)
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Table 2.1. Some data on simple Lie algebras. For each simple Lie algebra we list
its rank, the order of its Weyl group W, the determinant of its Cartan matrix A,
the coefficients of highest long/short root in terms of the simple roots (only one
is given if they are the same) and its Dynkin diagram. A label i in the Dynkin
diagram refers to the root αi. The Cartan matrix A is immediately written down
from the Dynkin diagram.

g Rank #W |A| Highest long/short root Dynkin diagram

al l � 1 (l + 1)! l + 1 (1, 1, . . . , 1) 1 2 l−1 l

bl l � 2 2ll! 2 (1, 2, . . . , 2)/(1, 1, . . . , 1) 1 2 l−1 l

cl l � 3 2ll! 2 (2, . . . , 2, 1)/(1, 2, . . . , 2, 1) 1 2 l−1 l

dl l � 4 2l−1l! 4 (1, 2, . . . , 2, 1, 1)
1 2 l−3

l−2

l−1

l

e6 6 27345 3 (1, 2, 2, 3, 2, 1)
1 3 4

2

5 6

e7 7 210345 7 2 (2, 2, 3, 4, 3, 2, 1)
1 3 4

2

5 6 7

e8 8 21435527 1 (2, 3, 4, 6, 5, 4, 3, 2)
8 7 6 5 4

2

3 1

f4 4 2732 1 (2, 3, 4, 2)/(1, 2, 3, 2) 1 2 3 4

g2 2 223 1 (3, 2)/(2, 1)
2 1

It follows from this relation that the Cartan matrix describes the change of
basis from the simple roots to the fundamental dominant weights, a property
that will play a fundamental rôle in our study of the periodic Toda lattice (see
Chapter 9).
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In the four examples that follow we give a concrete representation of
the classical Lie algebras, whose root systems are al, bl, cl and dl, together
with a choice of root vectors which, supplemented with a basis of h, form
a Chevalley basis. We only give a choice for root vectors corresponding to
the roots Eαi , E−αi , where i = 1, . . . , l, and to plus and minus the highest
long/short root, because the other root vectors will not be needed. The choices
that we make are the most appropriate for our approach to the periodic
Toda lattices (Chapter 9), and are taken from [36], where one also finds
explicit expressions for the other root vectors. We denote by Eij the square
matrix (of the appropriate size) which has a 1 at position (i, j) and zeros
elsewhere and ∆ is the l × l matrix with 1’s on the anti-diagonal and zeros
elsewhere, ∆ :=

∑l
i=1 Ei,l−i+1. Notice that the condition A∆ = ∆A� (resp.

A∆ + ∆A� = 0) means that A is symmetric (resp. skew-symmetric) with
respect to its anti-diagonal.

Example 2.12. al is the root system of the semi-simple Lie algebra sl(l + 1)
of all traceless matrices of size l + 1. For Eαi one chooses Ei,i+1 and for the
root vector corresponding to the highest (long = short) root α0 one takes
Eα0 := E1,l+1. Then E−αi := E�

αi
for i = 0, . . . , l.

Example 2.13. bl is the root system of the semi-simple Lie algebra of all block
matrices of size 2l + 1 of the form

⎛

⎜⎜⎝

A 2∆w B

v� 0 w�

C 2∆v D

⎞

⎟⎟⎠ , where
A∆ + ∆D� = 0,

B∆ + ∆B� = 0,

C∆ + ∆C� = 0,

and where A, . . . ,D are square matrices of size l, while v and w are column
vectors on length l. For the root vectors of height ±1 we choose

Eαi := Ei,i+1 − E2l−i+1,2l−i+2, i = 1, . . . , l − 1,

E−αi := Ei+1,i − E2l−i+2,2l−i+1, i = 1, . . . , l − 1,

Eαl
:= 2El,l+1 + El+1,l+2,

E−αl
:= El+1,l + 2El+2,l+1,

while for the root vectors corresponding to the highest long/short roots we
choose

Eα := E1,2l − E2,2l+1, α highest long root,

E−α := E2l,1 − E2l+1,2, α highest long root,

Eα := 2E1,l+1 + El+1,2l+1, α highest short root,

E−α := El+1,1 + 2E2l+1,l+1, α highest short root.
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Example 2.14. cl is the root system of the semi-simple Lie algebra of all block
matrices of size 2l of the form

(
A B

C D

)
, where

A∆ + ∆D� = 0,

B∆ = ∆B�,

C∆ = ∆C�,

and where A, . . . ,D are square matrices of size l. For the root vectors of
height ±1 we choose

Eαi := Ei,i+1 − E2l−i,2l−i+1, i = 1, . . . , l − 1,

E−αi := Ei+1,i − E2l−i+1,2l−i, i = 1, . . . , l − 1,

Eαl
:= El,l+1,

E−αl
:= El+1,l,

while for the root vectors corresponding to the highest long/short roots we
choose

Eα := E1,2l, α highest long root,

E−α := E2l,1, α highest long root,

Eα := E1,2l−1 + E2,2l, α highest short root,

E−α := E2l−1,1 + E2l,2, α highest short root.

Example 2.15. dl is the root system of the semi-simple Lie algebra of all block
matrices of size 2l of the form

(
A B

C D

)
, where

A∆ + ∆D� = 0,

B∆ + ∆B� = 0,

C∆ + ∆C� = 0,

and where A, . . . ,D are square matrices of size l. For the root vectors of
height ±1 we choose

Eαi := Ei,i+1 − E2l−i,2l−i+1, i = 1, . . . , l − 1,

E−αi := Ei+1,i − E2l−i+1,2l−i, i = 1, . . . , l − 1,

Eαl
:= El−1,l+1 − El,l+2,

E−αl
:= El+1,l−1 − El+2,l,

while for the root vectors corresponding to the highest (long = short) root α
we choose

Eα := E1,2l−1 − E2,2l,
E−α := E2l−1,1 − E2l,2.
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2.3.2 Invariant Functions and Exponents

We have defined in Section 2.2 the algebra of Ad-invariant functions on g
and the algebra of Ad∗-invariant functions on g∗. If g is simple then these are
isomorphic algebras since they correspond to each other under the isomor-
phism g→ g∗, defined by the Killing form. Moreover, they are isomorphic to
a polynomial algebra which is generated by l homogeneous elements, since
one proves that

F(g∗)G ∼= F(g)G ∼= C[I1, . . . , Il].

We define the exponents of g to be the l integers (m1, . . . ,ml), where mi :=
(deg Ii) − 1. One has that mi + ml−i+1 is independent of i, and is equal to
the so-called Coxeter number of g. It is a fundamental fact that the order of
the Weyl group is given by

#W =
l∏

i=1

(mi + 1).

For future use, we also give an alternative formula for the latter, namely let
h by a Cartan subalgebra of g and let Π be a system of simple roots with
respect to h, with Cartan matrix A. Then

#W = l!
l∏

i=1

ηi detA, (2.24)

where η1, . . . , ηl are the coefficients of the highest long root with respect to Π .
For a proof of this (non-trivial) fact, see [37, Chapter VI no 2.4].

Below we give the list of exponents for all simple Lie algebras. Notice that
a Lie algebra and its dual have the same exponents (i.e., for bl and cl they
are the same; the other Lie algebras coincide with their duals, hence for those
the statement is trivial).

The following proposition will play an important role in the study of Toda
lattices (see Section 9.2).

Proposition 2.16. Let N := diag(n1, . . . , nl), where the integers ni are de-
fined by

∑
α∈Φ+

Hα =
∑l
i=1 niHi and consider the linear operator

Ψ : h → h

X �→
l∑

i=1

niHi 〈hi |X〉 ,

whose matrix is NA, in the basis (H1, . . . , Hl). The spectrum of Ψ , and hence
of NA, is expressible in terms of the exponents of g as follows:

Spec(Ψ) = {m1(m1 + 1), . . . ,ml(ml + 1)} .



30 2 Lie Algebras

Table 2.2. More data on simple Lie algebras: for each type we give the l exponents
and the Coxeter number, which is the sum of the i-th and (l+ 1− i)-th exponents.
The dual Weyl integers ni are defined in Proposition 2.16.

g Exponents Coxeter ni or (n1, . . . , nl)

al 1, 2, . . . , l l + 1 i(l − i+ 1)

bl 1, 3, 5, . . . , 2l − 1 2l i(2l − i+ 1) − δil

(
l+1
2

)

cl 1, 3, 5, . . . , 2l − 1 2l i(2l − i)

dl 1, 3, . . . , 2l − 3, l − 1 2l − 2 i(2l − i− 1) − (δil + δi,l−1)
(

l
2

)

e6 1, 4, 5, 7, 8, 11 12 (16, 22, 30, 42, 30, 16)

e7 1, 5, 7, 9, 11, 13, 17 18 (34, 49, 66, 96, 75, 52, 27)

e8 1, 7, 11, 13, 17, 19, 23, 29 30 2(46, 68, 91, 135, 110, 84, 57, 29)

f4 1, 5, 7, 11 12 (16, 30, 42, 22)

g2 1, 5 6 (10, 6)

Proof. The proposition can be checked case by case by going through the list
of simple Lie algebras (see Example 2.17 below). We give a representation
theory proof, which was provided to us by Eric Sommers. Let (e, f, h) be an
S-triplet for g, i.e., they are non-zero elements of g which satisfy the standard
sl(2) commutation relations

[h, e] = 2e, [h, f ] = −2f, [e, f ] = h.

Let us denote the corresponding adjoint representation of sl(2) on g by χ.
We will suppose that the S-triplet is a principal S-triplet which means that
ge, the centralizer of e (the subspace of all elements that commute with e),
satisfies

dim ge = min {gx | x ∈ g} . (2.25)

Then the representation χ decomposes in precisely l = Rk g irreducible sub-
representations, χi : sl(2)→ End(Si) (i = 1, . . . , l), where dimSi = 2mi + 1.
Decomposing Si further into eigenspaces of [h , ·] we can write for a fixed
1 � i � l

Si = Cvi,−mi ⊕Cvi,1−mi ⊕ · · · ⊕Cvi,mi
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where the action of e, f and h is described by

[e, vi,j ] = (mi + j + 1)vi,j+1,

[h, vi,j ] = 2jvi,j , j = −mi, . . . ,mi,

[f, vi,j ] = (mi − j + 1)vi,j−1,

where vi,−mi−1 = vi,mi+1 = 0. Notice that

h =
l⊕

i=1

Cvi,0

so that adf ◦ ade restricts to an endomorphism ψ of h, which is given
by ψ(vi,0) = mi(mi + 1)vi,0 for i = 1, . . . , l. Thus, ψ has as eigenvalues
the integers mi(mi + 1), for i = 1, . . . , l.

We wish to relate ψ to Ψ . To do this we pick a particular principal S-triplet
(all principal S-triplets are conjugate to each other). Choose a Chevalley basis
(H1, . . . , Hl) ∪ (Eα)α∈Φ for g and let

h :=
∑

α∈Φ+

Hα =
l∑

i=1

niHi (2.26)

where the latter equality is a definition of the positive integers n1, . . . , nl.
The element h, defined by (2.26), is called the dual Weyl element and the
integers n1, . . . , nl are called the dual Weyl integers. We define for α ∈ Φ a
reflection on h in analogy with the reflection sα on h∗, which was defined in
(2.21). For X ∈ h let

σα(X) := X − 〈α,X〉Hα (2.27)

It is the reflection with respect to the hyperplane orthogonal to the coroot Hα.
Indeed, if X is orthogonal to Hα then 〈α,X〉 = 〈hα |X〉 = 0, hence σα fixes X ,
while σα(Hα) = −Hα because 〈α,Hα〉 = 2. For 1 � i � l the reflection σαi

permutes all coroots Hα, with α ∈ Φ+ \ {αi}, so that

σαi

(
∑

α∈Φ+

Hα

)
=
∑

α∈Φ+

Hα − 2Hi. (2.28)

Combining (2.27) and (2.28) we find that

〈αi, h〉 =

〈
αi,

∑

α∈Φ+

Hα

〉
= 2, for i = 1, . . . , l, (2.29)

which characterizes the dual Weyl element. Furthermore, let e and f be
defined by

e :=
l∑

i=1

Eαi , f :=
l∑

i=1

niE−αi .
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e satisfies (2.25) and e, f, h satisfy the sl(2) commutation relations, as follows
from Chevalley’s Theorem (Theorem 2.11) and (2.29). Thus, (e, f, h) is a
principal S-triplet. For k = 1, . . . , l we have that

ψ(Hk) = adf ◦ adeHk

=

⎡

⎣
l∑

i=1

niE−αi ,

⎡

⎣
l∑

j=1

Eαj , Hk

⎤

⎦

⎤

⎦

= −
l∑

i,j=1

[
niE−αi , 〈αj , Hk〉Eαj

]

=
l∑

i=1

niHi 〈αi, Hk〉

=
l∑

i=1

niHi 〈hi |Hk〉

= Ψ(Hk),

showing that ψ = Ψ . Since we have shown that the eigenvalues of ψ are the
integers mi(mi+1), where i = 1, . . . , l, this yields the announced eigenvalues
for Ψ , and hence for the matrix NA. ��
Example 2.17. Let us verify Proposition 2.16 by direct computation for one of
the simple Lie algebras, say for f4. We find from the last columns of Tables 2.1
and 2.2 that

A =

⎛

⎜⎜⎜⎜⎝

2 −1 0 0

−1 2 −2 0

0 −1 2 −1

0 0 −1 2

⎞

⎟⎟⎟⎟⎠
N =

⎛

⎜⎜⎜⎜⎝

16 0 0 0

0 30 0 0

0 0 42 0

0 0 0 22

⎞

⎟⎟⎟⎟⎠
.

The exponents of f4 are (1, 5, 7, 11), as can be read of from the second column
of Table 2.2, while the eigenvalues of

NA =

⎛

⎜⎜⎜⎜⎝

32 −16 0 0

−30 60 −60 0

0 −42 84 −42

0 0 −22 44

⎞

⎟⎟⎟⎟⎠

are given by 2 = 1.2, 30 = 5.6, 56 = 7.8, 132 = 11.12, as follows from a
direct computation. Clearly, this corresponds to the eigenvalues, predicted
by Proposition 2.16.
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2.4 Twisted Affine Lie Algebras

For any Lie algebra g and for any element g ∈ G, the linear map Adg :
g → g is an automorphism of g, which is called an inner automorphism.
The group of outer automorphisms Γ (g) is by definition the group of all
automorphisms, modulo the inner automorphisms. If g is simple then any
element of Γ (g) is represented by a (unique) automorphism of g which is
induced by an automorphism of the Dynkin diagram of g. Therefore, Γ (g)
can be identified naturally with the group of automorphisms of the Dynkin
diagram of g. By inspecting Table 2.1 one finds that only a few Dynkin
diagrams admit a non-trivial automorphisms; those are given in Table 2.2.

Table 2.3. We list the simple Lie algebras g which admit a non-trivial group Γ (g)
of outer automorphisms. We give the possible values for the order of its elements.

g Rank Γ (g) order(ν)

al l > 1 Z/2Z 2

d4 l = 4 S3 2, 3

dl l > 4 Z/2Z 2

e6 6 Z/2Z 2

Let ν be an automorphism of g which is induced by a diagram automor-
phism, and let us denote its order by m. Since νm = Idg each eigenvalue of ν
has the form εi, where ε is a primitive mth root of unity and 0 � i � m− 1.
The eigenspace of ν which corresponds to this eigenvalue εi is denoted by gi.
Then the algebra g admits the following finite grading:

g =
⊕

i∈Zm

gi and [gi, gj] ⊆ gi+j .

We now define the (infinite-dimensional) twisted affine Lie algebra of (g, ν).

L(g, ν) :=

⎧
⎨

⎩

N∑

j=M

�
j
Xj |M, N ∈ Z and Xj ∈ gjmodm for M � j � N

⎫
⎬

⎭ .

Notice that if we extend ν in the obvious way to elements of the form
X(�) =

∑N
j=M �

j
Xj , then elements of L(g, ν) are characterized by the prop-

erty X(εp�) = νpX(�), for p = 1, . . . ,m− 1. When ν = Idg then
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L(g) := L (g, Idg) = g⊗C
[
�, �

−1
]

the affine Lie algebra of g. The term loop algebra is also used. A natural Lie
bracket on L(g, ν) is given by

⎡

⎣
∑

i�N
�
i
Xi,

∑

j�M
�
j
Yj

⎤

⎦ =
∑

k�M+N

�
k

⎛

⎝
∑

i+j=k

[Xi, Yj ]

⎞

⎠

and the Killing form 〈· |· 〉 on g leads for every k ∈ Z to a non-degenerate
symmetric form on L(g, ν), denoted by 〈· |· 〉k which is defined by

〈
∑

i�N
�
i
Xi |

∑

j�M
�
j
Yj

〉

k

:=
∑

i+j+k=0

〈Xi |Yj〉 . (2.30)

It is easy to see that each of the bilinear forms 〈· |· 〉k on L(g, ν) is Ad-
invariant. We will refer to 〈· |· 〉0 as the Killing form of L(g, ν).

Example 2.18. Consider the direct sum decomposition

L(g) = L(g)+ ⊕ L(g)−,

where L(g)+ consists of those elements of L(g) which are polynomial in �,
while L(g)− consists of all elements of L(g) that are polynomial in �

−1, but
without constant term. In terms of the orthogonality that is induced by the
Killing form 〈· |· 〉0 we have that L(g)⊥+ consists of those elements of L(g)
which are polynomial in �, but without constant term, while L(g)⊥− consists
of all elements of L(g) that are polynomial in �

−1.

It is possible to develop a theory of roots for twisted affine Lie algebras, which
is analogous to the one for simple Lie algebras. We will first start with the
easier case of (untwisted) affine Lie algebras. Let g be a simple Lie algebra,
let h be a Cartan subalgebra with root system Φ and let Π = {α1, . . . , αl} be
a system of simple roots. By definition, a root of L(g) is a pair (α, i) �= (0, 0),
where α ∈ Φ ∪ {0} and i ∈ Z; such pairs are added in the obvious way:
(α, i)+ (β, j) = (α+β, i+ j). We denote the set of all roots of L(g) by Φ̄ and
we call Φ̄ the root system of L(g). Let α0 denote minus the highest long root
of g, and notice that α0 is the unique root of L(g) which has the property
that no decomposition of the form (α0, 1) = (α, 1) + (β, 0), with α ∈ Φ and
β ∈ Π is possible. One calls ᾱ0 := (α0, 1) the lowest root of L(g). Define

Π̄ = {ᾱ0 = (α0, 1), ᾱ1 = (α1, 0), . . . , ᾱl = (αl, 0)} .

Using the fact that −α0 is the highest long root of g, it is easy to show that
every root of L(g) can be written uniquely as a linear combination of the
elements of Φ̄, where all coefficients belong to Z+ or they all belong to Z−.
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Thus, Π̄ is the natural analogue of Π , so we will call it a system of simple
roots for L(g).

To a root (α, j) ∈ Φ̄ we associate the vector E(α,j) := Eα�
j , where Eα

is the root vector that corresponds to α (see Theorem 2.11). We will call
E(α,j) the root vector which corresponds to (α, j). It follows easily from
Theorem 2.11 that these root vectors satisfy the following relations: for any
ᾱ = (α, j) ∈ Φ̄,

[H,Eᾱ] = 〈α,H〉Eᾱ, H ∈ h,

[Eᾱ, E−ᾱ] = Hα.
(2.31)

The Cartan matrix A of L(g) is constructed from the system of simple roots
as before, namely

aij := 〈αi, Hj〉 ,
except that the indices i, j can now also take the value 0, besides the values
1, . . . , l (the numbering of the rows and columns of these bigger Cartan ma-
trices starts from 0). The Cartan matrix of L(g) and its Dynkin diagram are
easily computed from the one of g and the coefficients ξ1, . . . , ξl of the highest
long root (these coefficients are listed in Table 2.1). Indeed, one only needs
to compute the first row and the first column of A, since the remaining block
is precisely the Cartan matrix of g. In order to compute the first row of A,
whose first element a00 is 2, it suffices to express that ξ = (ξ0 = 1, ξ1, . . . , ξl)�

is a (normalized) null-vector of A, which follows from the fact that

α0 =
l∑

i=1

ξiαi,

upon taking inner products with Hj , 0 � j � l. Note that once again
we have a duality between the system of roots

{
ᾱ | α ∈ Π̄

}
and coroots{

Hᾱ | α ∈ Π̄
}
, which amounts to A ↔ A�, inducing a duality between the

L(g, ν).
By a direct computation for each of the simple Lie algebras we find that

there is in each case one non-zero entry in the first row, besides the leading 2.
Therefore the same is true for the first column of A. That non-zero entry
is then computed by expressing that the first element of ξ�A is zero. The
resulting matrices are given for each of the affine Lie algebras in Table 2.4; in
this table the case a

(1)
1 and b

(1)
2 should be interpreted properly: the Cartan

matrix of a
(1)
1 is

(
2 −2

−2 2

)
, as follows from the fact that ξ� = (1, 1).

We now turn to the case of twisted affine Lie algebras. Suppose that g is
a simple Lie algebra and that ν is an automorphism which corresponds to a
non-trivial diagram automorphism of the Dynkin diagram of g. This means
that g is al or dl or e6 and the order of the automorphism ν is two, except in
case d4, for which we can also consider an automorphism of order 3.
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Table 2.4. For each of the affine Lie algebras we give its Dynkin diagram, its
Cartan matrix A, the normalized null-vectors ξ and ξ̂ of A� resp. of A (only one
is given when they are the same) and the vector η that contains the coefficients of
the highest weight vector.

g Dynkin diagram Cartan matrix ξ, ξ̂ η

a
(1)
l

(l�1)

0

1 2 l−1 l

⎛

⎜⎜⎝

2 −1 −1
−1 2

. . . −1
−1 −1 2

⎞

⎟⎟⎠

⎛

⎜⎜⎝

1
1
.
.
.
1

⎞

⎟⎟⎠

⎛

⎜⎜⎝

1
1
.
.
.
1

⎞

⎟⎟⎠

b
(1)
l

(l>2)

1

2

0
3 l−1 l

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 0 −1 0
0 2 −1 0

−1 −1 2 −1
0 0 −1 2

. . .
2 −1 0

−1 2 −2
0 −1 2

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎝

1
1
2
.
.
.
2

⎞

⎟⎟⎟⎠
,

⎛

⎜⎜⎜⎜⎜⎝

1
1
2
.
.
.
2
1

⎞

⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎝

1
2
.
.
.
2

⎞

⎟⎟⎠

c
(1)
l

(l>1) 0 1 l−1 l

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 −2 0 0
−1 2 −1 0

0 −1 2 −1
0 0 −1 2

. . .
2 −1 0

−1 2 −1
0 −2 2

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎝

1
2
.
.
.
2
1

⎞

⎟⎟⎟⎠ ,

⎛

⎜⎜⎝

1
1
.
.
.
1

⎞

⎟⎟⎠

⎛

⎜⎜⎝

2
.
.
.
2
1

⎞

⎟⎟⎠

d
(1)
l

(l>3)
2

1

0
3 l−3

l−2

l−1

l

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 0 −1 0
0 2 −1 0

−1 −1 2 −1
0 0 −1 2

. . .
2 −1 −1

−1 2 0
−1 0 2

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎜⎝

1
1
2
.
.
.
2
1
1

⎞

⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎝

1
2
.
.
.
2
1
1

⎞

⎟⎟⎟⎟⎟⎠

e
(1)
6

1 3 4

2

0

5 6

⎛

⎜⎜⎜⎜⎝

2 0 −1 0 0 0 0
0 2 0 −1 0 0 0

−1 0 2 0 −1 0 0
0 −1 0 2 −1 0 0
0 0 −1 −1 2 −1 0
0 0 0 0 −1 2 −1
0 0 0 0 0 −1 2

⎞

⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎝

1
1
2
2
3
2
1

⎞

⎟⎟⎟⎟⎠

⎛

⎜⎜⎝

1
2
2
3
2
1

⎞

⎟⎟⎠

e
(1)
7

0 1 3 4

2

5 6 7

⎛

⎜⎜⎜⎜⎜⎝

2 −1
−1 2 0 −1

0 2 0 −1
−1 0 2 −1

−1 −1 2 −1
−1 2 −1

−1 2 −1
−1 2

⎞

⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎝

1
2
2
3
4
3
2
1

⎞

⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎝

2
2
3
4
3
2
1

⎞

⎟⎟⎟⎟⎠

e
(1)
8

0 8 7 6 5 4

2

3 1

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

2 0 −1
0 2 0 −1

0 2 0 −1
−1 0 2 −1

−1 −1 2 −1
−1 2 −1

−1 2 −1
−1 2 −1

−1 −1 2

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

1
2
3
4
6
5
4
3
2

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎝

2
3
4
6
5
4
3
2

⎞

⎟⎟⎟⎟⎟⎠

f
(1)
4 0 1 2 3 4

⎛

⎜⎝

2 −1 0 0 0
−1 2 −1 0 0

0 −1 2 −2 0
0 0 −1 2 −1
0 0 0 −1 2

⎞

⎟⎠

⎛

⎜⎝

1
2
3
4
2

⎞

⎟⎠ ,

⎛

⎜⎝

1
2
3
2
1

⎞

⎟⎠

⎛

⎝
2
3
4
2

⎞

⎠

g
(1)
2 0 2 1

( 2 0 −1
0 2 −1

−1 −3 2

) ( 1
3
2

)
,

( 1
1
2

) (
3
2

)
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By definition a root of L(g, ν) is a pair (α, j) �= (0, 0), with α ∈ h∗ and
j ∈ Z, such that the joint eigenspace

{X ∈ gj | [H,X ] = 〈α,H〉X for any H ∈ h}
is non-trivial (in the untwisted case this definition is equivalent to the one
that we have given). We denote the set of all roots of L(g, ν) by Φ̄ and call
it the root system of L(g, ν). There are two main differences with the case of
(untwisted) affine Lie algebras. First, the Lie algebra g0 is different from g,
but it is still one of the simple Lie algebras; for each (g, ν) with ν �= Idg the
corresponding simple Lie algebra g0 is given in Table 2.5. Second, the root
α0 which is used to define the lowest root ᾱ0 = (α0, 1) of L(g), takes now the
following form

α0 = −2(highest short root of g0) if g = a2l,

α0 = −(highest short root of g0) otherwise.
(2.32)

The computation of the Cartan matrices is the same as in the case of the
(untwisted) affine Lie algebras. The results are displayed in Table 2.5; in
this table the case a

(2)
2 should be interpreted properly: its Cartan matrix is(

2 −4
−1 2

)
, as follows from the fact that ξ� = (1, 2). A system of simple

roots Φ̄ can be constructed also in the twisted case, where each element now
belongs to g0 (see [79, pp. 505–507] for explicit formulas). It leads, as before
to the same formulas (2.31) for the simple roots ᾱ.

The Cartan matrices that we see in Tables 2.4 and 2.5 are characterized
by a few of their properties, just as in the case of the Cartan matrix of a
simple Lie algebra, yielding a different approach to affine Lie algebras. Start
with a collection Π of n+1 non-zero vectors α0, . . . , αn in Rn and let 〈· |· 〉 be
an inner product on Rn. We will say that Π is an indecomposable system of
vectors if Π cannot be split in two sets Π1 and Π2 such that 〈Π1 |Π2〉 = 0.
The Cartan matrix of Π is by definition the (n+1)×(n+1) matrix A, which
is defined by

aij := 2
〈αi |αj〉
〈αj |αj〉 .

Then one has the following proposition.

Proposition 2.19. Let Π be a collection of n+1 non-zero vectors α0, . . . , αn
in (Rn, 〈· |· 〉) and denote its Cartan matrix by A. Suppose that Π and A
satisfy the following three properties:

(1) Π is an indecomposable system of vectors;
(2) Π spans Rn;
(3) aij ∈ Z− for 0 � i < j � n.

Then A is the Cartan matrix of a (twisted) affine Lie algebra.



38 2 Lie Algebras

Table 2.5. For each of the twisted affine Lie algebras we give the type of g0, its
Dynkin diagram, its Cartan matrix A, the normalized null-vectors ξ and ξ̂ of A�

resp. of A and the vector η that contains the coefficients of the highest weight vector
of g0.

g g0 Dynkin diagram Cartan matrix ξ, ξ̂ η

a
(2)
2l

(l�1)
bl 0 1 2 l−1 l

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 −2 0 0
−1 2 −1 0

0 −1 2 −1
0 0 −1 2

. . .

2 −1 0
−1 2 −2

0 −1 2

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎝

1
2

.

.

.
2

⎞

⎟⎟⎟⎠
,

⎛

⎜⎜⎜⎝

1

.

.

.
1

1/2

⎞

⎟⎟⎟⎠

⎛

⎜⎜⎜⎝

1
2

.

.

.
2

⎞

⎟⎟⎟⎠

a
(2)
2l−1

(l>2)
cl

0

2

1
3 l−1 l

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 0 −1 0
0 2 −1 0

−1 −1 2 −1
0 0 −1 2

. . .

2 −1 0
−1 2 −1

0 −2 2

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

1
1
2

.

.

.
2
1

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

,

⎛

⎜⎜⎜⎜⎜⎝

1
1
2

.

.

.
2

⎞

⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

2

.

.

.
2
1

⎞
⎟⎟⎟⎠

d
(2)
l+1

(l>1)
bl 0 1 l−1 l

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 −1 0 0
−2 2 −1 0

0 −1 2 −1
0 0 −1 2

. . .

2 −1 0
−1 2 −2

0 −1 2

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎝

1
1

.

.

.
1

⎞

⎟⎟⎟⎠
,

⎛
⎜⎜⎜⎜⎜⎝

1
2

.

.

.
2
1

⎞
⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎝

1
2

.

.

.
2

⎞

⎟⎟⎟⎠

e
(2)
6 f4 1 2 3 4 0

⎛
⎜⎜⎜⎝

2 0 0 0 −1
0 2 −1 0 0
0 −1 2 −2 0
0 0 −1 2 −1

−1 0 0 −1 2

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

1
1
2
3
2

⎞
⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎝

1
2
4
3
2

⎞
⎟⎟⎟⎠

⎛

⎜⎝

2
3
4
2

⎞

⎟⎠

d
(3)
4 g2 2 1 0

⎛

⎝
2 −1 0

−1 2 −1
0 −3 2

⎞

⎠

⎛

⎝
1
2
1

⎞

⎠ ,

⎛

⎝
1
2
3

⎞

⎠
(

3
2

)

The reader can verify easily by merely looking at the tables that, con-
versely, each of the Cartan matrices of the (twisted) affine Lie algebras sat-
isfies the above three properties.
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We end this section with some definitions, valid for a twisted or untwisted
affine Lie algebras L(g, ν). Let Π̄ = {ᾱ0, ᾱ1, . . . , ᾱl} denote a system of simple
roots of L(g, ν). The height |ᾱ| of a root ᾱ ∈ Φ̄ is defined by

|ᾱ| =
l∑

i=0

mi, where ᾱ =
l∑

i=0

miᾱi.

This induces a grading of L(g, ν), similar to the grading (2.19) of g, namely,

L(g, ν) =
⊕

k∈Z

Lk, [Lk, Ll] ⊆ Lk+l,

where Lk is the span of all Eᾱ, with |ᾱ| = k. The grading also leads to a
natural operation of transpose:

⎛

⎝H +
∑

ā∈Φ̄
aᾱEᾱ

⎞

⎠
�

= H +
∑

ā∈Φ̄
aᾱE−ᾱ, H ∈ g0.


