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Model Structuring: The Enigma Cipher

9.1 Introduction

The elements of object-oriented modelling in VDM++ have now been introduced and
the focus can move from theory to practice. Many questions about the use of this
technology will already have occurred to the reader. What do “real” models look like?
How does modelling relate to testing? How does one use the formal models of data
and function (in VDM++) alongside class diagrams in UML? And what are the effects
of applying this on projects?

The next three chapters aim to address these questions by means of three case
studies. The key theme is that of structuring as a way of dealing with complexity and
scale. The study of the Enigma cipher machine in this chapter shows how the object-
oriented structure of a model reflects that of the problem it is used to analyse and that
this pays off in the ability to take a structured approach to testing. Chapter 10 discusses
in greater depth the way UML class diagram models work with VDM++ descriptions
of data and functionality. Chapter 11 brings these themes together by telling the story
of a commercial application in which UML models derived from an enterprise ar-
chitecture combine with detailed VDM++ models of data and functionality, and with
systematic testing, to yield benefits in terms of product quality and development cost.

This chapter shows the development of a VDM++ model of the famous Enigma
cipher machine used by the Germans in the Second World War to encrypt and decrypt
messages that were exchanged between military units. The purpose of the model is to
get a basic understanding of the cipher mechanism as implemented in Enigma. It is
often difficult to apply a new technique for the first time, so the model will be presented
in some detail, with a careful explanation of each modelling step and the rationale of
many of the design decisions taken during its construction. First (Section 9.4) a UML
model will be suggested, revised and restructured before the data and function models
in VDM++ are presented in greater detail. After building the model, its validity will
be analysed using structured testing techniques in Section 9.5.

Simon Singh’s popular scientific work The Code Book ([Singh99]), Robert Har-
ris’s novel Enigma ([Harris95]) and the related major motion picture have certainly
raised interest in Enigma recently. In spite of Enigma’s fame, there are relatively few
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attempts at modelling the machine in the literature, making it an intriguing example
for this chapter.

9.2 The Historic Significance of Enigma

The Enigma cipher machine, Enigma for short, played a significant role in modern
history. The outcome of the Second World War was certainly influenced by the ca-
pabilities of the Allies to crack Enigma (and later Lorentz) ciphers at Bletchley Park,
where special machines were designed to automate the code-breaking process. The
first generation of those machines were christened Bombe and they were built using
electromagnetic relays. Anecdotal evidence says that the name was inspired by the
ticking noise the relays made during its operation. The first Bombe (called Victory)
was installed in March 1940 at Bletchley Park, and it was used to crack Enigma-
encoded messages. A few months later, some 50 machines were working in parallel to
process all intercepted messages.

With the advent of the much more complex Lorentz ciphers later in the war, the
capabilities of the Bombe were deemed insufficient and the mathematicians and en-
gineers at Bletchley Park designed a new system based on electronic valves, which
was cutting-edge technology at the time. The project was headed by Max Newman,
and the chief consultant was mathematician Alan Turing, who also played a major
role in designing the Bombe. No fewer than 1500 vacuum tubes were needed to build
it, giving rise to its name: Colossus. The Colossus was installed at Bletchley Park in
December 1943, and it could crack on average 300 messages per month. The number
of intercepted Lorentz messages nevertheless increased substantially and the perfor-
mance of Colossus needed to be improved. A new project was set up to deliver the
Colossus Mark-II on June 1, 1944 – only five days before D-Day. The Colossus Mark-
II was five times faster than its predecessor. It consisted of 2500 valves and could be
programmed; it was one of the first programmable and electronic computers.

After the war, the British government in particular did not wish to disclose its code-
breaking capabilities. This is the main reason why ENIAC is generally considered to
be the world’s first electronic computer, but in fact Colossus was operational about a
year earlier. Alan Turing developed most of his theoretical insights in computing at
Cambridge in the years before the war. His work on undecidability and the universal
Turing machine are now famous. At Bletchley Park he succeeded in applying these
theoretical results to break the Enigma code. When security restrictions were lifted in
the early 1970s and the significance of the results from Bletchley Park was realised,
credit was finally given to those who had earned it. Turing is now widely acclaimed
as the founding father of computing science, but he never personally enjoyed that
status. Historians believe that he committed suicide in 1954 because he was tried,
convicted and openly humiliated for being homosexual. Andrew Hodges’s biography
Alan Turing: The Enigma ([Hodges92]; see also http://www.turing.org.uk)
provides more insight into the life and work of this brilliant scientist.
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9.3 The Enigma Cipher Algorithm

The Enigma cipher machine was designed and developed by Arthur Scherbius and
Richard Ritter in 1918. These German inventors created an electronic equivalent of
the cipher disk invented by Leon Alberti around 1400. The cipher disk is a simple
device that substitutes letters. The earliest substitution cipher is known as the Caesar
shift cipher (or Caesar cipher), where each letter is simply replaced by a letter that is a
certain distance further along in the alphabet. For example (with an encoding distance
of 4) A will be represented by E, B by F, C by G and so on.

The cipher disk of Alberti can be used for the encoding and decoding of messages.
The cipher disk actually contains two disks, an inner and an outer disk, both contain-
ing 26 positions, each representing a letter in the alphabet. By rotating the inner disk
against the outer disk the encoding distance can be set. If A on the inner ring is set
adjacent to E on the outer ring, then all other letters will be automatically aligned
properly. The encoding (and decoding) of a message is now a simple task that can be
performed, for example, directly on the battlefield.

Exercise 9.1 Consider a monoalphabetic cipher such as the Caesar cipher. What
is the easiest way to prevent the opponent from guessing the encoding distance? What
is the principle weakness of monoalphabetic ciphers? �

The encryption is obviously very weak; you simply have to guess the encoding dis-
tance, and there are only 25 possibilities. This is typical for so-called monoalphabetic
ciphers. However, Alberti used the same device to make code breaking much more
difficult. He used a code word to implement the encoding distance. Take, for example,
his own first name, “LEON.” Instead of taking a fixed distance, the encoding distance
is now determined by the order of the letters in the code word. To encode the first
letter, the inner disk is set such that the letter L on the inner ring faces A on the outer
ring. Encoding the letter N will now yield C. To encode the second letter, the inner
disk is reset such that E (the second letter of the code word) faces A. Encoding the let-
ter H will now yield D. This process is repeated for each letter; the fifth letter is again
encoded with the first letter of the code word and so on. This so-called polyalphabetic
cipher is much harder to break because for every letter another encoding distance is
selected. This technique is also known as the Vigenère cipher. An elegant and abstract
specification of a polyalphabetic cypher in VDM–SL can be found in [Jones90] (pages
179–81).

These basic techniques were actually used to design the Enigma. Scherbius and
Ritter combined several strategies to improve the strength of the cipher, creating a
device that was robust, reliable and very easy to use. The cryptographic power of the
Enigma is in sharp contrast with the simple means needed to build such an ingenious
device. Scherbius was awarded a patent on Enigma in 1918, but still it took him several
years to sell it to the German military. Eventually some 30,000 devices were ordered
by the German armed forces. Most notable was the use of Enigma in the German navy
where Admiral Dönitz, commander of the U-boat fleet, ordered a special version with
even greater cipher strength than the standard Wehrmacht Enigma.
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The Enigma cipher machine is basically a typewriter composed of three parts: the
keyboard to enter the plain text, the encryption device and a display to show the cipher
text. Both the keyboard and the display consist of 26 elements, one for each letter in
the alphabet. White space in the plain text was simply ignored, which incidentally
makes code breaking even more difficult because word boundaries are removed. The
operator, typically a signals person, such as a Marconist aboard a ship, configured
the Enigma system once per day and encoded the message by typing each letter and
writing down the letter highlighted on the display. The encoded message was then sent
using normal Morse code by radio. Of course, the enemy could also receive the Morse
signal, but they could not understand its contents without cracking the Enigma code.
The intended receiver could simply decode the message by repeating the encoding
process on the cipher text. Enigma was configured in the same way as the sender had
and the message was decoded by typing in each encoded letter and reading the decoded
letter from the display. Having the same procedure for encoding and decoding made
the machine very easy to use; errors were seldom made.

The encryption device in the Enigma consists again of three parts: a plugboard,
a set of rotors and the reflector. The plugboard is used to create a fixed mapping in
which each letter can be replaced by any other letter. The board is configured by man-
ually inserting patch cables. The most important part of the Enigma is the so-called
rotor, also called the scrambler disk or scrambler. The standard Enigma had three rotor
slots (places where rotors could be inserted in the system) and five scrambler disks;
the naval version had four rotor slots and eight scrambler disks. The scrambler disks
were universal and could be inserted in any Enigma rotor slot, creating a vast number
of possible Enigma configurations. A scrambler disk actually consists of two disks
with 26 electrical contacts each. Every contact point on disk 1 is electrically wired
to a specific contact point on disk 2, creating a fixed mapping. The rotor slots were
organised such that the contact points on disk 2 touched the contact points of disk 1 on
the next scrambler disk. In this way, electrical current could flow from the plugboard,
through all rotor disks toward the reflector. The cryptographic strength of Enigma was
increased further by turning the scrambler disks, so that each time a different mapping
is used when a letter is encoded (or decoded).

The ingenuity in the design is particularly evident in the way the rotors operate.
The right-most rotor, which is closest to the plugboard, is turned whenever a key is
pressed on the keyboard. Each rotor has a latch at one of the 26 positions, for each
rotor a different position. If the latch is adjacent to the latch of the disk on the left, that
rotor will also proceed to the next position (just like the old analog odometer in a car).
Whether a rotor moves to the next position at each keystroke is dependent on which
rotor is in which slot, the position of the latch on each rotor and the start positions of
the rotors.

The final piece of the encryption device is the reflector. It is actually responsible
for the symmetric (reciprocal) nature of Enigma; encoding and decoding are identical
processes. The reflector is placed at the end of the rotor chain. The principal differ-
ence between the rotor and the reflector is that the reflector consists of only one disk
with 26 electrical contacts, which are all interconnected in pairs. This means that the
electric current coming from the last scrambler disk is fed back to that same disk but
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on a different position. So the electronic current flows twice through the set of scram-
bler disks before it reaches the display (seven substitutions for standard Enigma, nine
for the naval version). The standard Enigma has a fixed-position reflector, the naval
version has an adjustable reflector; it can be set in 26 positions, again to increase the
cipher strength.

Enigma was deemed impenetrable. The code was eventually broken due to a com-
bination of luck, weaknesses in the Enigma design (in particular the reflector), wrong
use of the code words by the Germans and the endurance and brilliant analysis of
the mathematicians and linguists at Bletchley Park. The historic relevance of the
Enigma and the people trying to break it can be investigated further, for example, at
http://www.bletchleypark.co.uk, which also has an on line Enigma sim-
ulator. Other Enigma resources are http://www.bletchleypark.net and the
Web sites of the Deutsches Museum at Bonn (Germany) and the National Cryptologic
Museum near Washington, D.C. (USA). Last, but not least, the Web site of Tony Sale:
http://www.codesandciphers.org.uk. He is the curator of the Bletchley
Park Museum and his Web site provides an excellent overview of the Enigma and the
machines that were developed to break its code.

9.4 Building the Enigma Model

The information provided in the previous section is sufficient to start modeling Enigma
using VDM++. The approach proposed in Chapter 2 will be used by applying the
guidelines to the problem. The first guideline is to determine the purpose of the model.
It is important to gain a conceptual understanding of the Enigma device and in particu-
lar to investigate the encryption algorithm used. The model should reflect the structure
of the Enigma device, so that it is possible to investigate the behaviour of each compo-
nent in isolation as well as the behaviour of a (sub)system that is composed of several
components. VDM++ is well suited for describing these kind of architectures.

Interaction with the model is essential to reach these goals. Syntax and type check-
ing can be used to increase confidence in the internal consistency of the model, while
prototyping and testing are techniques to validate that the model actually reflects real-
ity. Therefore, as a secondary aim, structured testing techniques are presented to show
how confidence in the model can be increased. Bearing in mind the purpose of the
model, it is not appropriate to present a minutely detailed replica of Enigma; the aim
is really to better understand how the Enigma cipher works and to see how this can be
modelled effectively in VDM++.

The second step is to create a dictionary of candidate classes, data types and opera-
tions that can be extracted from the information provided in the previous section. This
step actually covers guidelines 2, 3 and 4 presented in Chapter 2. Such a dictionary
could appear as follows:



196 Validated Designs for Object-oriented Systems

Potential Classes and Types (Nouns)

• Reflector: configuration (which input on the disk is connected to which output
on the same disk), current position (which input is at absolute position 1 when a
character is substituted)

• Rotor: configuration (which input on disk 1 is connected to which output on disk
2), current position (which input is at absolute position 1 when a character is
substituted), latch position (at what input is the latch located on the rotor, in order
to propagate the rotation to the adjacent rotor when the latches are at the same
absolute position), next rotor (the next rotor in the chain), reflector (the reflector
connected to the last rotor in the chain)

• Plugboard: configuration (which character is replaced by which other character
and vice versa; substitutions are always in pairs), first rotor (which rotor is con-
nected to the plugboard)

• Enigma: plugboard (top-level component of the system containing a link to the
plugboard)

Potential Operations (Actions)

• Keystroke: characters are encoded (or decoded) one by one
• Substitute: transposition of a character to another character in the alphabet
• Encode & Decode: the transposition of a character is dependent on the direction

of the information flow (to or from the reflector, respectively)
• Rotate: the rotor turns one position, e.g., after each keystroke or when the latch on

the rotor is adjacent to the previous rotor in the chain

An initial model based on the dictionary is constructed following steps 5 and 6 of
the guidelines. The result is the UML class diagram shown in Figure 9.1. The corre-
sponding VDM++ specification is not provided here (it can be found on the book’s
Web site) but the internal consistency of the VDM++ model has been checked us-
ing VDMTools. Note that in this initial design, the Keystroke operation accepts
and returns characters whereas all Encode, Decode and Substitute operations
use natural numbers in their signatures. These numbers represent the position of the
character in the alphabet according to some arbitrary ordering scheme (for example
“A”..“Z”). The transposition relation can be expressed as a mathematical operation on
these indices, which is easier than dealing with the individual characters themselves.

All the elements identified in the dictionary seem to be covered in the initial de-
sign, but there is some overlap in functionality and data within the proposed classes.
This initial design is far from optimal; it needs modification such that a better balance
between structure (organisation of the model, also called architecture) and function-
ality is achieved. This is probably the most difficult part of any design process; some-
times it can take several attempts to “get it right.” Design patterns (see [Gamma&95])
are often used to structure the model, but deciding which pattern to use remains an
experience-based task. It is nevertheless a very important step because wrongly or-
ganized models can cause tremendous maintenance problems later in the system life
cycle. Also, testability is greatly influenced by the proper organisation of the model.
Analysis of the initial model shows that:
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Fig. 9.1: The UML class diagram of the Enigma device – initial design

1. A typical pipe-and-filter architecture (see [Shaw&96]) occurs in the design. Sev-
eral components are linked in a chain, where the output of a component is used
as the input of the next component in the chain. Instead of giving each compo-
nent a specific relation to the next component in the chain (in the initial design
these are first rotor, next rotor and reflector), a new class, called
Component, is provided that captures this notion of chaining through a single
instance variable next.

2. The Plugboard, Rotor and Reflector classes all contain the operations
Encode, Decode and Substitute. Some of these functions are identical for
each component, while some have slightly adapted behaviour. The instance vari-
able config is also needed in all three classes. It is used to store the way the map-
ping of indices should occur in each component, but again this is done slightly dif-
ferently in each case. The instance variable config and the operations Encode,
Decode and Substitute are ideal candidates for abstraction by inheritance.
Therefore, a new class called Configuration is introduced that captures this
abstraction. This functionality is kept separate from Component for two reasons:
(1) The top-level class Enigma is potentially a subclass of Component (to point
to the plugboard) but it does not need the configuration information and associ-
ated functionality contained in the class Configuration and (2) in general,
it is wise to keep the structure and functionality separate from each other, for
example, to allow reuse of functionality in a different model structure.
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The initial design has been modified to achieve a better balance between function-
ality and structure. Functionality has been grouped so that it is easier to maintain the
model because changes do not propagate outside the class boundaries. An overview
of the improved model is shown in Figure 9.2. The revised design will be presented
one class at a time using the VDM++ notation.

Fig. 9.2: The revised Enigma UML model

9.4.1 Alphabet

The auxiliary class Alphabet gathers all the properties and functionality to describe
and manipulate the Enigma alphabet. This is important because otherwise this knowl-
edge would be spread around in the rest of the specification, with bits and pieces ev-
erywhere. The chances are high that, for example, functionality would be duplicated
and the model would be very difficult to maintain.

The alphabet consists of a sequence of characters. The invariant (as required by
step 7 from the guidelines) states that the alphabet must have even length and all
characters in the sequence must be unique. The even length property is needed by the
Reflector. Each input on the disk should be connected to exactly one output and



Chapter 9. Model Structuring: The Enigma Cipher 199

vice versa. This requirement can be met only if an even number of contact points, and
thus an even length alphabet, is used.

�
class Alphabet

instance variables
alph : seq of char := [];

inv AlphabetInv(alph)

functions
AlphabetInv: seq of char -> bool
AlphabetInv (palph) ==
len palph mod 2 = 0 and
card elems palph = len palph

�� �

The Alphabet class provides a constructor for creating a new Alphabet in-
stance and operations GetChar to retrieve the nth character from the alphabet,
GetIndex to retrieve the index of the character in the sequence, GetIndices to
return the set of all possible indices, and GetSize to return the size of the alphabet.
These are shown here.

�
operations
public Alphabet: seq of char ==> Alphabet
Alphabet (pa) == alph := pa
pre AlphabetInv(pa);

public GetChar: nat ==> char
GetChar (pidx) == return alph(pidx)
pre pidx in set inds alph;

public GetIndex: char ==> nat
GetIndex (pch) ==
let pidx in set {i | i in set inds alph

& alph(i) = pch} in
return pidx

pre pch in set elems alph;

public GetIndices: () ==> set of nat
GetIndices () == return inds alph;

public GetSize: () ==> nat
GetSize () == return len alph;

�� �
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Note that the set comprehension in GetIndex is always a singleton set (a set
containing just one element) due to the uniqueness property stated in the invariant.
Therefore, pidx will always be bound to the proper value by the in set operator
in the let statement.

The substitution algorithm mentioned earlier is the core of Enigma encryption
and decryption. It relies on the ability to transpose characters in the alphabet. These
transpositions are expressed by the overloaded Shift operations, which calculate
a new index based on the current index and a transposition distance or offset. The
second Shift operator is defined for convenience, to transpose a character by just one
position. It is used to implement the movement of the Rotor, which will be presented
later:

�
public Shift: nat * nat ==> nat
Shift (pidx, poffset) ==
if pidx + poffset > len alph
then return pidx + poffset - len alph
else return pidx + poffset

pre pidx in set inds alph and
poffset <= len alph;

public Shift: nat ==> nat
Shift (pidx) == Shift(pidx, 1)

end Alphabet
�� �

The strength of the Alphabet class is that it is possible to express an alphabet of
arbitrary length and arbitrary ordering, which provides a lot of freedom to experiment
with the Enigma model using different alphabets.

9.4.2 Component

The class Component allows construction of a linked list using an instance variable
next to point to the next component in the list. An operation SetNext is used to
instantiate the link. The instance variable next should not be assigned more than
once. Furthermore, loops in the linked list have to be prevented. This can be done
in a precondition on the SetNext operation (again step 7 from the guidelines), as
shown here. Typically for models of such data structures, recursion is used to gather
components already linked into the structure:

�
class Component

instance variables
protected next : [Component] := nil;
protected alph : Alphabet
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operations
public Successors: () ==> set of Component
Successors () ==
if next = nil
then return {self}
else return {self} union next.Successors();

public SetNext: Component ==> ()
SetNext (pcom) == next := pcom
pre next = nil and

self not in set pcom.Successors();
�� �

Exercise 9.2 Write an alternative specification for Successors that does not
use recursion. �

The precondition on SetNext prevents loops by testing the self object ref-
erence against the set of object references retrieved by Successors, which uses
recursion to compute the set of object references of all components that are already in
the linked list. Note that the instance variable next is declared protected, which
means that derived classes can access it without an extra operation. This modelling
style is used here because the model is only instantiated once (at startup) and is not
modified during the remainder of its lifetime. Furthermore, each Component has a
reference to the Alphabet. The instance variable alph needs to be initialized by
the derived classes of Component.

Exercise 9.3 The operation SetNext is defined such that it is not possible to
create circular structures, but is the proposed solution here really sufficient? How can
it be broken, and what is needed to fix it? �

Each Component should be able to perform two basic tasks: Substitute
and Rotate. The Substitute operation takes an index, performs the substitution
and finally returns the new index. The implementation of this operation is explicitly
delegated to the derived classes of Component by means of the is subclass
responsibility construct. The class Component is a so-called abstract base
class because it is not possible to create an instance of Component directly, due to
the delegated operation Substitute.

In contrast, the Rotate operations are executable; their default behaviour is to
do nothing. Operation overloading will be used to redefine the behaviour for rotating
components (in our case the Rotor) in the derived classes. The first Rotate oper-
ation performs immediate rotation, while the second operation takes into account the
current position of the latch, which is passed as a parameter. The latter operation is
used to implement the latching mechanism of the Rotor, which is presented later.

The reason for using is subclass responsibility in the case of the op-
eration Substitute and skip in the case of the operation Rotate is that knowl-
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edge is lacking at this level in the model to say anything useful about the substitution.
In contrast, it is possible to be explicit about the components that do not need to ro-
tate. Nevertheless, having both operations defined here allows us to use the statements
next.Substitute() and next.Rotate() anywhere in the model without the
need to know the actual subtype of the object reference stored in the instance variable
next:

�
public Substitute: nat ==> nat
Substitute (-) == is subclass responsibility;

public Rotate: () ==> ()
Rotate () == skip;

public Rotate: nat ==> ()
Rotate (-) == skip

end Component
�� �

9.4.3 Configuration

The class Configuration is generic. It contains an instance variable config,
an injective mapping between natural numbers, used to represent the transposition
relation in Enigma components. In the rotor, this instance variable will describe which
input on disk 1 (a number in the domain of the mapping) is connected to which output
on disk 2 (a number in the range of the mapping). In the plugboard, the numbers
in the domain and range represent the indices of the characters that are swapped.
In the reflector, the numbers describe which input (domain) is connected to which
output (range) on the same disk. The differences in the way the mapping is used make
it very hard to write a useful invariant at the generic class level. In cases like these, it
is better to postpone the definition of an invariant to the derived classes where specific
invariants can be given. For that reason, the variable is declared protected so that
derived classes can refer to it directly:

�
class Configuration
is subclass of Component

instance variables
protected config: inmap nat to nat;

�� �

Now that the transposition relation is defined, it is possible to give a generic
definition for the Substitute operation. Two auxiliary operations, Encode and
Decode, are defined for this purpose. The operation Encode implements the encod-
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Plugboard Rotor Reflector
{2 |-> 3, {1 |-> 2, 2 |-> 1, {1 |-> 2,
3 |-> 2} 3 |-> 4, 4 |-> 3} 3 |-> 4}

Fig. 9.3: Example configurations for a four-character Enigma

ing of the index when the data flows from the plugboard toward the reflector, Decode
represents the encoding of an index when the data returns from the reflector toward
the plugboard. Hence Encode looks at the values in the mapping and Decode uses
values from the inverse of the mapping to determine the new index. The operation
Substitute first encodes the index, calls Substitute on the next component in
the linked list and finally decodes the result of that call and returns the answer to the
caller. This nested calling of Substitute goes on until the end of the linked list is
reached or a component is encountered that has different behaviour defined for this
operation:

�
operations
protected Encode: nat ==> nat
Encode (penc) ==
if penc in set dom config
then return config(penc)
else return penc;

protected Decode: nat ==> nat
Decode (pdec) ==
let invcfg = inverse config in
if pdec in set dom invcfg
then return invcfg(pdec)
else return pdec;

public Substitute: nat ==> nat
Substitute(pidx) ==
return Decode(next.Substitute(Encode(pidx)))

pre next <> nil

end Configuration
�� �
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With the configurations shown in Figure 9.3, Encode and Decode behaviour is
defined in Table 9.1.

Table 9.1: Example Encode and Decode behaviour
Configuration Encode Decode
Plugboard Encode(1) = 1 Decode(1) = 1

Encode(2) = 3 Decode(2) = 3
Encode(3) = 2 Decode(3) = 2
Encode(4) = 4 Decode(4) = 4

Rotor Encode(1) = 2 Decode(1) = 2
Encode(2) = 1 Decode(2) = 1
Encode(3) = 4 Decode(3) = 4
Encode(4) = 3 Decode(4) = 3

Reflector Encode(1) = 2 Decode(1) = 2
Encode(2) = 1 Decode(2) = 1
Encode(3) = 4 Decode(3) = 4
Encode(4) = 3 Decode(4) = 3

Exercise 9.4 Consider the following configurations:

• Plugboard = {1 |-> 3, 3 |-> 1}
• Rotor = {1 |-> 3, 2 |-> 1, 3 |-> 2, 4 |-> 4}
• Reflector = {1 |-> 3, 2 |-> 4}
Calculate the results for Encode(x) and Decode(x) where
x in set {1,...,4}. �

9.4.4 Reflector

The class Configuration is sufficient for constructing the models for all Enigma
components. The Reflector is an interesting case because it is at the end of the
linked list, so the next member variable should be nil. Writing the invariant for
the config member variable is more challenging. Because inputs and outputs of the
reflector are on the same physical disk, each position must be an element of either
the domain or the range of the mapping (the intersection of domain and range must
be empty). Furthermore, the union of the domain and range must be identical to the
indices of the alphabet, to ensure that all positions are accounted for. The injective
property of the mapping in combination with the previous invariants now guarantees
that all positions are connected in pairs. Note that no member variables have been
added – only the invariant on the instance variables has been defined:
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�
class Reflector
is subclass of Configuration

instance variables
inv ReflectorInv(next, config, alph)

functions
ReflectorInv:
[Component] * inmap nat to nat * Alphabet -> bool

ReflectorInv (pnext, pconfig, palph) ==
pnext = nil and
dom pconfig inter rng pconfig = {} and
dom pconfig union rng pconfig = palph.GetIndices()

�� �

The Reflector class contains three state components: the instance variables
next (from Component), config and alph (from Configuration). Note that
the last line of the invariant refers to two member variables in a single boolean expres-
sion. Care will have to be taken when updating these variables to ensure that the invari-
ant is not invalidated. The effect of this can be seen in the Reflector constructor.
Suppose the member variable config is initialised first and alph second. Evaluat-
ing the invariant after the first assignment will cause a run-time error because alph
is not yet initialised. Reversing the assignment order will not solve this problem. In
this sort of situation, the atomic statement that was introduced in Section 7.3 is used
around a block statement. All statements inside the block statement are evaluated as if
they are a single (atomic) statement and the invariants are evaluated only at the end of
the block.

The starting position of the reflector is set only once (when Enigma is initialised)
so there is no need to store that value. Instead, the mapping pcfg is changed such that
it reflects the starting position when config is initialised. A map comprehension is
used to modify the mapping. The variable i iterates over all values in the domain of
the original mapping pcfg. This value is used to construct a new mapping where
both the domain value (i) and the range value (pcfg(i)) are updated using the
Shift operator of alphabet pa. Consider the Reflector configuration {1 |->
2, 3 |-> 4} from Figure 9.3. This configuration is changed depending on the start
position; the result is shown in Table 9.2.

�
operations
public Reflector:
nat * Alphabet * inmap nat to nat ==> Reflector

Reflector (psp, pa, pcfg) ==
atomic (alph := pa;

config := {pa.Shift(i, psp-1) |->
pa.Shift(pcfg(i), psp-1) |
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i in set dom pcfg})
pre psp in set pa.GetIndices() and

ReflectorInv(next, pcfg, pa);
�� �

Table 9.2: The start position determines the configuration
Start Transposition Configuration

position distance
1 0 {1 |-> 2, 3 |-> 4}
2 1 {2 |-> 3, 4 |-> 1}
3 2 {3 |-> 4, 1 |-> 2}
4 3 {4 |-> 1, 2 |-> 3}

Exercise 9.5 Consider the following Reflector configuration for a six-character
alphabet: {1 |-> 4, 2 |-> 6, 3 |-> 3, 4 |-> 2, 5 |-> 5, 6 |->
1}. Calculate the new configuration for the transposition distance 2. �

Finally, the operation Substitute needs to be redefined because the reflector
is at the end of the linked list. The default behaviour (defined in Component) would
cause a run-time error because next.Substitute() does not exist:

�
public Substitute: nat ==> nat
Substitute (pidx) ==
if pidx in set dom config
then Encode(pidx)
else Decode(pidx)

end Reflector
�� �

9.4.5 Rotor

The cryptographic strength of Enigma is mainly due to the rotor. This device ensures
that each character is encoded (information flows from plugboard to reflector) using
a different transposition relation. This is achieved by turning the rotor one step be-
fore the character is substituted. Note that the rotor is not turned when the character
is decoded (information flows from the reflector to the plugboard), the identical con-
figuration is used for that. Whether the rotor turns is dependent on the position of the
rotor in the linked list and the position of the latch on the rotor. The rotor nearest to the
plugboard is turned for each character, independent of its latch position. The second
rotor only turns if its latch is at the same position as that of the first rotor. If this is the
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case, the second rotor turns to its next position and then waits until the first disk has
made a full rotation before turning again one step. This algorithm applies to each pair
of adjacent rotors. It resembles the way that old analog odometers in cars work. Each
disk has ten positions, numbered 0 to 9. If the rightmost disk moves from 9 to 0, it will
also move the adjacent disk on the left to the next position and so on.

The VDM++ class Rotor models this behavior. Two new instance variables,
latch pos and latch lock, are introduced to model the latch. The instance vari-
able latch pos is used to store the position of the latch on the disk. Both disks
are turned one step when the latch positions of two adjacent rotors match. Note that
the latches are then again in the identical position. The status is stored in the boolean
variable latch lock to prevent the rotor from turning instead of waiting for the ad-
jacent disk to have made a full rotation. The rotor is idle if latch lock is true and
the latches are adjacent, otherwise it turns:

�
class Rotor
is subclass of Configuration

instance variables
latch_pos : nat;
latch_lock : bool := false;

inv RotorInv(latch_pos, config, alph)

functions
RotorInv: nat * inmap nat to nat * Alphabet -> bool
RotorInv (platch_pos, pconfig, palph) ==
let ainds = palph.GetIndices() in
platch_pos in set ainds and
dom pconfig = ainds and
rng pconfig = ainds and
exists x in set dom pconfig & x <> pconfig(x)

�� �

The invariant states that all the possible positions (represented by the indices of
all characters in the alphabet) occur in both the domain and the range of config.
Also note that “straight through” connections (e.g., input 1 is connected to output 1)
are allowed, but the existential quantification is added to disallow rotors that have no
effect (when all connections are “straight through” connections). At least one connec-
tion must have different input and output indices.

The constructor again must ensure that the instance variables are instantiated in a
manner consistent with the invariant. It is defined as follows:



208 Validated Designs for Object-oriented Systems

�
operations
public Rotor:
nat * nat * Alphabet * inmap nat to nat ==> Rotor

Rotor (psp, plp, pa, pcfg) ==
atomic (latch_pos := pa.Shift(plp,psp-1);
alph := pa;
config := {pa.Shift(i,psp-1) |->

pa.Shift(pcfg(i),psp-1) |
i in set dom pcfg})

pre psp in set pa.GetIndices() and
RotorInv(plp, pcfg, pa);

�� �

As with the Reflector, the initial position of the Rotor is only required
now; there is no need to store its value. Both the latch position latch pos and
the transposition relation config are updated with the start position. Note that the
latch lock member variable is already initialised (to false) in the instance vari-
able block.

The two overloaded Rotate operations that were defined in the base class called
Component can now be refined. Note that the member variable next must be of the
proper type – rotors only refer to other rotors or to the reflector. This is tested using
the isofclass operator. Note that this operator checks the type of a variable rather
than its value. The operator isofclass takes two arguments. The first argument is
a class name, the second argument is an object reference expression:

�
isofclass( name, expression )

�� �

The operator yields the boolean value true if and only if the object reference
expression refers to an instance of the same type as class name or any of the subclasses
of name, and false otherwise. So, the examples

�
let a = new Alphabet("AB") in
isofclass(Alphabet, a)

let a = new Alphabet("AB") in
let r = new Reflector(1, a, {1 |-> 2}) in
isofclass(Component, r)

�� �

will yield true, whereas the examples
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�
let a = new Alphabet("AB") in
isofclass(Component, a)

isofclass(Rotor, nil)
�� �

will yield false.

�
public Rotate: () ==> ()
Rotate () ==
(-- propagate the rotation to the next component
-- and tell it where our latch position is
next.Rotate(latch_pos);
-- update our own latch position and take the
-- alphabet size into account
if latch_pos = alph.GetSize()
then latch_pos := 1
else latch_pos := latch_pos+1;
-- update the transpositioning relation by
-- shifting all indices one position
config := {alph.Shift(i) |->

alph.Shift(config(i)) |
i in set dom config};

-- remember the rotation
latch_lock := true)

pre isofclass(Rotor,next) or
isofclass(Reflector,next);

public Rotate: nat ==> ()
Rotate (ppos) ==
-- compare the latch position and the lock
if ppos = latch_pos and not latch_lock
-- perform the actual rotation
then Rotate()
-- otherwise reset the lock
else latch_lock := false

pre ppos in set alph.GetIndices();

end Rotor
�� �

Notice that the substitution functionality that was modelled in Configuration
has not changed at all. The substitution and rotation algorithms are kept separate,
sharing only the config member variable. It makes model maintenance a lot easier
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because the functionality is clearly separated. Table 9.3 presents a three-rotor system.
Rotor 1 is connected to the plugboard and rotor 3 is connected to the reflector. The
member variable latch pos of rotor 1 is changed every time a character is encoded.
Rotors 2 and 3 are turned only when they have identical latch positions and the mem-
ber variable latch lock is false. These situations are illustrated by the “⇒” symbol
in Table 9.3.

Table 9.3: A three-rotor system
Rotor 1 Rotor 2 Rotor 3

pos lock
2 -

⇒ 3 -
4 -
1 -
2 -
3 -

⇒ 4 -
1 -
2 -
3 -
4 -

⇒ 1 -
2 -
3 -

pos lock
3 false

⇒ 3 false
4 true
4 false
4 false
4 false

⇒ 4 false
1 true
1 false
1 false
1 false

⇒ 1 false
2 true
2 false

pos lock
3 false

⇒ 3 false
4 true
4 true
4 true
4 true
4 true
4 false
4 false
4 false
4 false
4 false
4 false
4 false

9.4.6 Plugboard

The plugboard is used to replace pairs of characters. As with the other components, the
injective mapping of indices, config, is used to represent this. The plugboard is
initialised with another injective mapping that contains solely disjoint sets of domain
and range elements (note the precondition of the constructor). Each maplet represents
a replacement. For example, the mapping {1 |-> 2} implies that the character with
index 1 is replaced by the character with index 2. To express the notion of replacement
in pairs, the mapping is merged with its own inverse. In the example, config is {1
|-> 2, 2 |-> 1}. It is sufficient to claim that the domain of config shall be a
subset of the set of indices of the alphabet, because the domain and range are identical
due to the mapping union that was just performed. What happens with indices of the
alphabet that do not occur in dom config? Recall that the Encode and Decode
operations, which are defined in class Configuration, simply return the index if
that value does not occur in either the domain or range of the mapping config. This
behaviour reflects the fact that the character was not swapped by the plugboard:
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�
class Plugboard
is subclass of Configuration

instance variables
inv PlugboardInv(config, alph)

functions
PlugboardInv: inmap nat to nat * Alphabet -> bool
PlugboardInv (pconfig, palph) ==
dom pconfig subset palph.GetIndices()

operations
public Plugboard:
Alphabet * inmap nat to nat ==> Plugboard

Plugboard (pa, pcfg) ==
atomic (alph := pa;
config := pcfg munion inverse pcfg)

pre dom pcfg inter rng pcfg = {} and
PlugboardInv(pcfg, pa);

�� �

The Substitute operation of the plugboard is modified because the first rotor
in the linked list needs to be rotated before the transposition actually takes place.
Also note that the member variable next needs to be of the correct type (Rotor or
Reflector):

�
public Substitute: nat ==> nat
Substitute (pidx) ==
(next.Rotate();
Configuration‘Substitute(pidx))

pre pidx in set alph.GetIndices() and
(isofclass(Rotor,next) or
isofclass(Reflector,next))

end Plugboard
�� �

The operation Substitute is redefined for the third time! First it was defined in
the abstract base class Component, then it was redefined in the Configuration
class and now again in the class Plugboard. Although this is allowed in VDM++
it is not always easy to grasp the consequences of the redefinition. For example, not
only the behaviour specifications but also pre- and postconditions are implicitly re-
defined. In Figure 9.4, the inheritance relations for the Substitute operation are
shown. Note that the operation in class Reflector relaxes the precondition that
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was specified in the base class. In contrast, the operation in class Plugboard makes
the precondition much stronger because it also enforces properties on the parameter
pidx. The original precondition is again implicitly enforced because the operation
Configuration‘Substitute is called inside the body of the operation. Note
that the class Rotor, which is not shown in the figure, has equivalent behaviour to
the class Configuration.

Fig. 9.4: Redefinition of the Substitute operation

9.4.7 Enigma

All the basic Enigma components have been modeled in the previous subsections and a
simple model of the Enigma device is presented here that works on an alphabet of four
characters configured as illustrated in Figure 9.3. First some values are defined that are
used to initialise these components. The value refcfg is used for the configuration
of the reflector, rotcfg is the configuration of the rotors and finally pbcfg is the
configuration of the plugboard:
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�
class SimpleEnigma
is subclass of Component

values
refcfg : inmap nat to nat =
{1 |-> 3, 2 |-> 4};

rotcfg : inmap nat to nat =
{1 |-> 2, 2 |-> 4, 3 |-> 3, 4 |-> 1};

pbcfg : inmap nat to nat =
{2 |-> 3}

�� �

The linked list of components is constructed in reverse order, last element first. The
Reflector is created with the new operator and the initial position; the alphabet and
configuration are passed as parameters to the constructor. Note that three rotors are
constructed that have identical configurations but the initial position and the position
of the latch are different for each rotor:

�
operations
public SimpleEnigma: () ==> SimpleEnigma
SimpleEnigma () ==
(dcl cp : Component ;
alph := new Alphabet("ABCD");
next := new Reflector(4,alph,refcfg);
cp := new Rotor(3,3,alph,rotcfg);
cp.SetNext(next);
next := cp;
cp := new Rotor(2,2,alph,rotcfg);
cp.SetNext(next);
next := cp;
cp := new Rotor(1,1,alph,rotcfg);
cp.SetNext(next);
next := cp;
cp := new Plugboard(alph,pbcfg);
cp.SetNext(next);
next := cp);

�� �

The operation Keystroke is the only visible functionality of the SimpleEnigma
device. A character is inserted and the encrypted character is returned:
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�
public Keystroke : char ==> char
Keystroke (pch) ==
let pidx = alph.GetIndex(pch) in
return alph.GetChar(next.Substitute(pidx))

pre isofclass(Plugboard,next)

end SimpleEnigma
�� �

The interpreter of VDMTools can now be used to observe the behaviour of the
completed model. A typical interactive session could look like this:

Initializing specification ... done
>> create a := new SimpleEnigma()
>> print a.Keystroke(’A’)
’D’
>> print a.Keystroke(’C’)
’A’
>> print a.Keystroke(’C’)
’A’
>> print a.Keystroke(’C’)
’D’

The next step is to analyse the model and determine its validity. Some confidence
in internal consistency has been gained using the VDMToolssyntax checker and type
checker. It is now time to test the model systematically.

9.5 The VDMUnit Framework

The VDMTools interpreter, accessible through the graphical user interface, is well-
suited for prototyping. For example, it can be used to explore alternative modeling
strategies and to try out new ideas interactively while the model is being constructed.
The syntax and type checkers provide feedback on the internal consistency of the
model, while the interpreter is used to validate parts of the model, as was shown in
the small example session at the end of the previous section. This way of working is
very powerful because it gives the modeller immediate feedback on design decisions
and forces the modeller to consider the “big picture” – the interactions between func-
tions and operations across the model as a whole. Weaknesses are often spotted when
executing the model; they can be corrected at this stage of the development process at
relatively low cost.

The purpose of model interaction is to answer the informal question: Does the
model work? Unfortunately, it is not possible to answer “yes” to this question in gen-
eral. First, it is impossible to prove that the set of requirements that describe the proper
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operation of the system is complete. There is always a risk of underspecification. A
famous example is a military radar system developed in the 1970s to detect incoming
ballistic missiles. When the system was first turned on after an elaborate test pro-
cess, alarms went off that indicated that an enemy missile was fired when nothing
had happened. Missile-tracking radars had become so powerful that the moon actually
reflected the radar waves. The system alarm was triggered by the moon rising above
the horizon. The requirement to filter out the radar reflection from the moon had been
completely overlooked by the designers. Second, even if a complete set of require-
ments could exist, it is impossible to prove (due to Turing’s undecidability theory and
the so-called halting problem) in general that a computer program will terminate for
any sequence of input events. In summary, providing a proof to the consistency and
completeness of a model is a provable unsolvable problem! Beizer [Beizer90] sum-
marizes this as follows:

• We can never be sure that the specifications are correct.
• No verification system can verify every correct program.
• We can never be certain that a verification system is correct.

The last case proposed by Beizer hints in particular at mechanical verification (a
computer program that implements a certain verification algorithm). It is impossible
to prove that the tool is bug-free, even though the verification algorithm used is proven
to be sound and complete. How much trust do we have in these tools? How accurate
are the results they provide?

Because it is not possible to break the theoretical limit, attention moves from ab-
solute proof to a weaker, but suitably convincing, demonstration. The overall aim is to
raise confidence in the model by applying several available analysis techniques, trying
to approach the theoretical limit as closely as possible. Model checking and formal
proof are two such techniques but they are outside the scope of this book. Extended
static analysis and external validation combining a VDM++ model with a GUI will
be presented in Chapter 13. In the remainder of this section, structured testing will be
examined.

Beizer states that the purpose of testing is to show that a program has bugs. In
contrast, the purpose of debugging is to find the error or misconception in the model
that led to the failure and to design and implement changes that correct the model. It
is important to distinguish these terms because they are often confused. The example
at the end of Section 9.4.7 used the interpreter for debugging rather than testing. Test-
ing is a predefined procedure applied under known conditions that has a predictable
outcome; debugging starts from a possibly unknown initial condition and often has an
unpredictable outcome. The purpose of structured testing is to assess the quality of the
model at different levels of abstraction. Beizer defines four significant levels:

Unit Testing: A unit is the smallest testable piece of software that can be put under
the control of a so-called test harness or driver. This test harness implements the
predefined testing procedure which controls the initial conditions, executes the
test and verifies the outcome. Each VDM++ class can be considered such a unit.
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Component Testing: A component is an aggregate of two or more units or compo-
nents. Component testing aims at analysing functional and structural consistency
of the aggregation of those classes and components.

Integration Testing: Several components are aggregated to create even larger com-
ponents. The difference with component testing is that now consistency among
components is analyzed, for example call and return sequences, data validation
criteria and proper handling of data objects passed between components.

System Testing: Several components are aggregated to form the system. System test-
ing concerns issues that can only be exposed by testing the entire system or a
major part of it, such as startup and error recovery.

The general approach is to test software bottom-up, starting with unit testing, and
to continue upward on the abstraction ladder until the system-level tests are reached
and successfully completed. Testing at a higher level should be started if and only
if all tests on the lower levels have been performed. The model should be modified
if a test fails and then all tests should be repeated, starting again at the bottom, to
guarantee that the change did not lead to inconsistencies elsewhere in the model. This
process is called regression testing. This shows that testing is a process that should be
easy to perform and repeat. The interpreter included in the graphical user interface of
VDMTools is not well suited for this activity. Although it is possibile to build simple
test scripts (basically a list of interpreter commands that will be executed sequentially),
it is much easier to use the command-line version of VDMTools (see Section 3.4.10)
in a batch-oriented style. Consider the process flow shown in Figure 9.5.

Fig. 9.5: Testing a model using the command-line version of VDMTools

The argument file contains the test case to be executed; for example, consider the
file test.arg, which could read:
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�
let str = "ACCC" in
let en = new SimpleEnigma() in
[en.Keystroke(str(i)) | i in set inds str]

�� �

The model files and the argument file are passed to the VDMTools command-
line interpreter. Note that the interpreter is invoked with dynamic type checking (-D),
invariant (-I), pre- (-P) and postcondition (-Q) checking turned on:

vppde -iDIPQ -O test.res test.arg Alphabet.vpp
Component.vpp Configuration.vpp Plugboard.vpp
Reflector.vpp Rotor.vpp SimpleEnigma.vpp

The file test.res will now yield the following result:

�
"DAAD"

�� �

The resulting output file can now be compared against a file that contains the
expected outcome of the test case, for example, using the standard Unix tool “diff.”
The expected outcome file is normally written by hand by the tester, often together
with the test case. This approach can be easily extended using other standard Unix
tools such as “make” and “perl” to construct a database of test cases. For example,
to maintain overview, a simple directory structure can be used to group test cases for
a specific purpose or a specific abstraction level. “make” is used to iterate over all
test cases contained in these directories and “perl” is used to create a single test
report composed from all individual test results. The pragmatic approach to structured
testing presented here seems very favourable, but there are some drawbacks to take
into account:

1. VDMTools is restarted for each test case to ensure a clean initial state at the begin-
ning of each test. This may lead to long waiting times when a complete regression
test is performed over a large test database.

2. The comparison between the output file and the expected outcome file is only
performed on the basis of textual (or binary) equality while the comparison may
require some looseness. For example, the set {1,2,3} is equivalent to {3,2,1}
because the order in the set is not relevant but it will be rejected by “diff.”

3. Maintenance of the database is error prone and laborious because a test case is
spread over at least two files, and it needs to be included in the management code
of the database (e.g., a makefile).

4. There is no guidance for the structure of test case itself; basically it can be any
arbitrary VDM++ expression. Ideally a simple and generic structure should be
used for all test cases to ensure maintainability and ease of use.
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The extreme programming community has recently put a lot of emphasis back on
structured testing. One of the main research themes has been to improve the efficiency
of the testing activity in the software life cycle. In their opinion, testing should be-
come as easy as writing code. The problems listed here are typical examples that they
want to address and solve. In this section, a solution to these problems is proposed,
which is called VDMUnit. It is inspired on the JUnit framework, which was origi-
nally designed by Kent Beck and Erich Gamma. JUnit is an open-source framework
for testing Java programs (see http://www.junit.org). The concepts proposed
by the framework are generic and are easily transferred into other modeling and pro-
gramming languages, such as VDM++. An overview of the VDMUnit framework is
provided in Figure 9.6.

Fig. 9.6: An overview of the VDMUnit framework

9.5.1 Test

The abstract base class Test provides a single operation called Run, which is used
to execute the test. The parameter of type TestResult is used to store the outcome
of the test. TestResult will be presented later in this section:

�
class Test

operations
public Run: TestResult ==> ()
Run (-) == is subclass responsibility

end Test
�� �
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Test is a superclass to both TestCase and TestSuite. These classes are
needed to build a hierarchy of test cases, which will replace the directory structure in
the pragmatic approach shown earlier. A test suite is a collection of either test cases or
other test suites. Test suites can be arbitrarily nested and can consist of any number of
test cases. This provides maximum flexibility as to how the test database is organised.
An example hierarchy is shown in Figure 9.7.

Fig. 9.7: An example hierarchy of test cases

9.5.2 TestSuite

In the TestSuite class the instance variable tests is used to store object refer-
ences to all test suites and test cases contained in this test suite:

�
class TestSuite
is subclass of Test

instance variables
tests : seq of Test := [];

�� �

The first Run operation is provided for convenience; it is used only by the top-
level test suite in the hierarchy. A TestResult instance is created and passed as a
parameter to the second Run operation. On return, the results of the test are reported
by means of a call to the operation ntr.Show:
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�
operations
public Run: () ==> ()
Run () ==
(dcl ntr : TestResult := new TestResult();
Run(ntr);
ntr.Show());

�� �

The second overloaded Run operation redefines the operation from the abstract
base class Test. The operation iterates over all elements in the sequence tests
and calls the Run operation of each element, while passing result as a parameter.
The parameter result is used to “collect” the outcome of each individual test. The
operation AddTest is used to add a test (which can be a test case or a test suite) to
the test suite:

�
public Run: TestResult ==> ()
Run (result) ==
for test in tests do

test.Run(result);

public AddTest: Test ==> ()
AddTest(test) ==
tests := tests ˆ [test];

end TestSuite
�� �

Exercise 9.6 Redesign the VDMUnit framework so that a strict hierarchy of test
suites and test cases is enforced. Currently, it is possible to create loops by adding a
test suite to itself, for example. �

9.5.3 TestCase

Each test case is given a symbolic name, which makes it possible to generate a human-
readable and descriptive error message if a failure is detected during testing:

�
class TestCase
is subclass of Test

instance variables
name : seq of char

operations
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public TestCase: seq of char ==> TestCase
TestCase(nm) == name := nm;

public GetName: () ==> seq of char
GetName () == return name;

�� �

Two operations, AssertTrue and AssertFalse, are provided to assert test
conditions. Consider the factorial function fac from Chapter 5, which is defined as:

�
fac: nat1 -> nat1
fac (n) ==

if n > 1
then n * fac(n-1)
else 1

�� �

It is now possible to write the following assertions:

�
AssertTrue(fac(3) = 6)
AssertFalse(fac(3) = fac(4))
for all i in set {1,...,10} do
AssertTrue(fac(i+1) = (i+1)*fac(i))

�� �

Note that the operation assertEqual from the JUnit framework is not sup-
ported because it is unnecessary. The equality operator “=” is defined for all types in
VDM++, so it is sufficient to write AssertTrue( expr1 = expr2 ), where expr can
be an arbitrary complex expression:

�
protected AssertTrue: bool ==> ()
AssertTrue (pb) == if not pb then exit <FAILURE>;

protected AssertFalse: bool ==> ()
AssertFalse (pb) == if pb then exit <FAILURE>;

�� �

The assertion operations raise an exception if the assert condition is not met. This
is done using the exit statement, which has the following syntax:

�
exit

�� �

or



222 Validated Designs for Object-oriented Systems

�
exit expression

�� �

In the latter case, the expression is used to indicate what kind of exception is raised.
Here, the expression <FAILURE> is used. The consequence of the exit statement is
that the normal thread of control of the operation is aborted and execution is resumed
in the innermost exception handler. The innermost exception handler is defined as
the last exception handler block that was passed before the exception occurred. Note
that the exception handler does not need to be located inside the same class; it can
be defined practically anywhere! If the exception handler takes care of the exception,
execution is resumed from the exception handler block (note: not the location where
the exception occurred); otherwise the exception is propagated one level up and so on.
A run-time error will occur if an exception is not handled at all. An exception handler
block can be defined using the trap statement, which has the following syntax:

�
trap pattern with statement-1 in statement-2

�� �

First, statement-2 is evaluated. If an exception was raised, the value of statement-2
is matched against the pattern. If there is no matching, the exception is returned as
the result of the complete trap statement, otherwise statement-1 is evaluated and the
result of this evaluation is also the result of the complete trap statement. Note that
ptr.AddFailure is called only if an exception with the quote value <FAILURE>
occurs in SetUp, RunTest or TearDown. This call will add the current test case to
a list of failed test cases as will be shown later:

�
public Run: TestResult ==> ()
Run (ptr) ==
trap <FAILURE>

with
ptr.AddFailure(self)

in
(SetUp();
RunTest();
TearDown());

�� �

The operation Run, which is redefined from the base class Test, proposes a stan-
dard approach that each test case should implement. First, the operation SetUp is
called to create a suitable initial condition for the test case. Second, the operation
RunTestwill actually perform the test, using the AssertTrue and AssertFalse
conditions. Finally, the operation TearDown will be called to clean up in such a way
that the system under test can be reinitialized to perform another test case:
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�
protected SetUp: () ==> ()
SetUp () == is subclass responsibility;

protected RunTest: () ==> ()
RunTest () == is subclass responsibility;

protected TearDown: () ==> ()
TearDown () == is subclass responsibility

end TestCase
�� �

Specific test cases can be constructed by inheritance from the class TestCase by
redefining the operations SetUp, RunTest and TearDown. This approach solves
several problems at the same time. The test case and the comparison to the expected
outcome are kept together, which makes maintenance a lot easier and transparent.
Furthermore, arbitrarily complex assertion statements can be written using the expres-
siveness of VDM++ which resolves the restrictive textual comparison of the result
and expected outcome in the pragmatic test approach. Finally, a “boilerplate” solu-
tion, which is very easy to use, is provided for each test case.

9.5.4 TestResult

The class TestResult maintains a collection of references to test cases that have
failed. The exception handler defined in the operation Run of class TestCase calls
the operation AddResult, which will append the object reference of the test case to
the tail of the sequence failures. The operation Show is used to print a list of test
cases that have failed or provide a message to indicate that no failures were found.
Note that the standard I/O library, which is supplied with VDMTools, is used here.
IO.echo prints a string on the standard output, just like System.out.println
in Java. The def statement is used to suppress the boolean value returned by IO.echo:

�
class TestResult

instance variables
failures : seq of TestCase := []

operations
public AddFailure: TestCase ==> ()
AddFailure (ptst) == failures := failures ˆ [ptst];

public Print: seq of char ==> ()
Print (pstr) ==
def - = new IO().echo(pstr ˆ "\n") in skip;
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public Show: () ==> ()
Show () ==
if failures = [] then
Print ("No failures detected")

else
for failure in failures do
Print (failure.GetName() ˆ " failed")

end TestResult
�� �

9.6 Testing the Enigma Model

With the VDMUnit framework defined in the previous section it is possible to apply
structured testing on the Enigma model. All the test cases that were specified can
be found on the book’s Web site. Only the test cases for the Plugboard and the
SimpleEnigma will be shown here, as well as the top-level test suite for the model,
which is called EnigmaTest.

9.6.1 PlugboardTest

Class PlugboardTest contains the test cases related to class Plugboard. A plug-
board cannot be tested without either a reflector or a rotor and a reflector; therefore two
operations are defined: SimpleTest and ComplexTest, respectively. The values
refcfg, rotcfg and pbcfg are used to define the configurations of the reflector,
rotor and plugboard:

�
class PlugboardTest
is subclass of TestCase

values
refcfg : inmap nat to nat =
{1 |-> 2, 3 |-> 4};

rotcfg : inmap nat to nat =
{1 |-> 2, 2 |-> 1, 3 |-> 4, 4 |-> 3};

pbcfg : inmap nat to nat =
{1 |-> 3}

�� �
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An alphabet is required to instantiate the reflector, the rotor and the plugboard.
The instance variable alph is defined for that purpose, which is initialised by the
operation SetUp. Note that this operation redefines the operation SetUp from the
base class TestCase of the VDMUnit framework:

�
instance variables
alph : Alphabet

operations
protected SetUp: () ==> ()
SetUp () == alph := new Alphabet("ABCD");

�� �

The operation SimpleTest constructs the smallest possible device that con-
tains a plugboard – a plugboard directly connected to a reflector. Observe how the
SetNext operation is used to connect the two components. The assert conditions
were manually calculated and inserted here by the maintainer of the test case:

�
protected SimpleTest: () ==> ()
SimpleTest () ==
(dcl tc : Plugboard := new Plugboard(alph,pbcfg);
tc.SetNext(new Reflector(1,alph,refcfg));
AssertTrue(tc.Substitute(1) = 4);
AssertTrue(tc.Substitute(2) = 3);
AssertTrue(tc.Substitute(3) = 2);
AssertTrue(tc.Substitute(4) = 1));

�� �

The operation ComplexTest performs a similar task, but now with an extra com-
ponent between the plugboard and the reflector, a rotor. Again, the expected outcome
is calculated by hand:

�
protected ComplexTest: () ==> ()
ComplexTest () ==
(dcl tc : Plugboard := new Plugboard(alph,pbcfg),

rot : Rotor := new Rotor(1,1,alph,rotcfg);
rot.SetNext(new Reflector(1,alph,refcfg));
tc.SetNext(rot);
AssertTrue(tc.Substitute(1) = 4);
AssertTrue(tc.Substitute(2) = 3);
AssertTrue(tc.Substitute(3) = 2);
AssertTrue(tc.Substitute(4) = 1));

�� �
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The operations RunTest and TearDown redefine the operations from the base
class TestCase. RunTest calls the operations SimpleTest and ComplexTest
and TearDown is the null operation skip because SimpleTest and ComplexTest
only modify their own local state, due to the dcl declarations, which are automati-
cally cleaned up after the operation call is completed. Note that the test case could
have been split into two separate test cases; it is advisable to do this, especially if the
size of the test case is larger than that shown here:

�
protected RunTest: () ==> ()
RunTest () == (SimpleTest(); ComplexTest());

protected TearDown: () ==> ()
TearDown () == skip;

end PlugboardTest
�� �

9.6.2 SimpleEnigmaTest

SimpleEnigmaTest defines a simple yet very effective test for the Enigma model.
Recall that encoding and decoding messages are reversible processes if and only if
identical settings are used. Two instances of the class SimpleEnigma are created,
and for an message of arbitrary length it is now claimed that, for all characters in the
message, the decoding of a character is identical to the character itself:

�
class SimpleEnigmaTest is subclass of TestCase

operations
protected SetUp: () ==> ()
SetUp () == skip;

protected RunTest: () ==> ()
RunTest () ==
(dcl se1 : SimpleEnigma := new SimpleEnigma(),

se2 : SimpleEnigma := new SimpleEnigma();
for ch in "ABCDDCBAABCDDCBAAABBCCDD" do
AssertTrue(
se1.Keystroke(se2.Keystroke(ch)) = ch));

protected TearDown: () ==> ()
TearDown () == skip

end SimpleEnigmaTest
�� �
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9.6.3 EnigmaTest

Class EnigmaTest is the top-level entry point of the test database. It consists of a
single operation Execute, which constructs a test suite. The test suite is filled with
all available test cases, and the tests are performed by calling ts.Run(). The result
of the test run is eventually shown on the standard output:

�
class EnigmaTest
operations
public Execute: () ==> ()
Execute () ==
(dcl ts : TestSuite := new TestSuite();
ts.AddTest(new AlphabetTest("Alphabet"));
ts.AddTest(new ConfigurationTest("Configuration"));
ts.AddTest(new ReflectorTest("Reflector"));
ts.AddTest(new RotorTest("Rotor"));
ts.AddTest(new PlugboardTest("Plugboard"));
ts.AddTest(new SimpleEnigmaTest("SimpleEnigma"));
ts.Run())

end EnigmaTest
�� �

The test cases for the Enigma model have now been defined and the test can be
performed. First, a file called all.arg is created, which contains the command to
start the test run. An instance of EnigmaTest is created and the operation Execute
is called:

�
new EnigmaTest().Execute()

�� �

The test coverage information file enigma.tc is reset before the command-
line interpreter is invoked by passing all applicable specification files to the parser
of VDMTools:

vppde -p -R enigma.tc Alphabet.vpp AlphabetTest.vpp
Component.vpp Configuration.vpp ConfigurationTest.vpp
EnigmaTest.vpp Plugboard.vpp PlugboardTest.vpp
Reflector.vpp ReflectorTest.vpp Rotor.vpp IO.vpp
RotorTest.vpp SimpleEnigma.vpp SimpleEnigmaTest.vpp
Test.vpp TestCase.vpp TestResult.vpp TestSuite.vpp
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Now the command-line interpreter is invoked to start the test run. Note that the
interpreter is started only once to execute all test cases. This is a major performance
improvement over the pragmatic approach presented earlier:

vppde -iDIPQ -R enigma.tc -O all.res all.arg
Alphabet.vpp AlphabetTest.vpp Component.vpp
Configuration.vpp ConfigurationTest.vpp
EnigmaTest.vpp Plugboard.vpp PlugboardTest.vpp
Reflector.vpp ReflectorTest.vpp Rotor.vpp IO.vpp
RotorTest.vpp SimpleEnigma.vpp SimpleEnigmaTest.vpp
Test.vpp TestCase.vpp TestResult.vpp TestSuite.vpp

As expected, the following result is obtained:

No failures detected
(no return value)

Despite the fact that no failures were detected and the test suite was composed
very carefully, the basic question remains: To what extent is the model really tested?
A partial answer is provided by the test coverage information generated during the
test run by the interpreter. Test coverage can be analysed in two ways, by generation
of test coverage tables and by colouring the source text of the model. In the latter
case, statements that have not been exercised by the test suite are highlighted. This
makes it relatively easy to design a new test case, which is added to the test suite, that
will ensure that the untouched statement is tested in the next test run. By performing a
regression test and analysing the test coverage information again it is possible to verify
whether the model is fully exposed to test cases. Note that it does not guarantee that the
model will always work, it is just a guarantee that each statement of the model is tested
by at least one or more test cases. This quality measure is an important criterion in the
quest to raise confidence in the model. As an example, the test coverage information
of the Alphabet class is provided in Table 9.4.

Table 9.4: Test coverage overview for the Alphabet class

Name #Calls Coverage
Alphabet‘AlphabetInv 18

√
Alphabet‘Alphabet 6

√
Alphabet‘GetChar 52

√
Alphabet‘GetIndex 52

√
Alphabet‘GetIndices 520

√
Alphabet‘GetSize 77

√
Alphabet‘Shift 1366

√
Total Coverage 100%
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9.7 Summary

This chapter has provided a detailed illustration of the construction of a model for
a relatively intricate system and has introduced a systematic approach to testing as
a means of gaining confidence in the model. Apart from the technical details of the
Enigma device and its model, several more general points have been made, with a
bearing on the use of formal object-oriented modelling techniques in practice:

• Opportunities for generalisation and reuse were exploited in making model de-
sign decisions. Patterns were identified and applied. It is worth investing time in
the careful separation of generic aspects from the domain-specific aspects of the
model.

• When constructing a model, it is important to bear its future maintenance in mind
and let this influence structuring and abstraction decisions.

• There is a clear distinction to be made between testing and debugging. For the
purposes of systematic testing, it is worth defining a test framework supporting
unit tests to system-level tests and regression testing.

• Investing time in gaining maximum confidence in a model is worthwhile because
of the potential gain in debugging and rework costs if major defects get through to
implementation.




