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Vector Bundles

This chapter provides indispensable tools in the study of complex manifolds:
connections, curvature, and Chern classes. In contrast to previous sections, we
will not focus on the holomorphic tangent bundle of a complex manifold but
allow arbitrary holomorphic vector bundles. However, we will not be in the
position to undertake an indepth analysis of certain fundamental questions.
E.g. the question whether there exist non-trivial bundles on a given complex
manifold (or holomorphic structures on a given complex bundle) will not be
addressed. This is partially due to the limitations of the book, but also to
the state of art. The situation is fairly well understood only for curves and
projective surfaces.

In Sections 5.1 to 5.3 the reader can find a number of central results in
complex algebraic geometry. Except for the Hirzebruch–Riemann–Roch the-
orem, complete proofs, in particular of Kodaira’s vanishing and embedding
theorems, are provided. These three results are of fundamental importance in
the global theory of complex manifolds. Roughly, in conjunction they allow to
determine the size of linear systems on a manifold X and, if X is projective,
how it can be embedded into a projective space.

In the appendices we discuss the interplay between the complex geome-
try of holomorphic vector bundles and related structures: Appendix 4.A tries
to clarify the relation between Riemannian and Kähler geometry. In partic-
ular, we will show that for Kähler manifolds the Levi-Civita connection co-
incides with the Chern connection. The concept of holonomy, well-known in
classical Riemannian geometry, allows to view certain features in complex
geometry from a different angle. Appendix 4.B outlines fundamental results
about Kähler–Einstein and Hermite–Einstein metrics. Before, the hermitian
structure on a holomorphic vector bundle was used as an additional datum
in order to apply Hodge theory, etc. One might wonder, whether natural her-
mitian structures, satisfying certain compatibility conditions, can be found.
This leads to the concept of Hermite–Einstein metrics, which exist on certain
privileged holomorphic bundles. If the holomorphic bundle happens to be the
tangent bundle, this is related to Kähler–Einstein metrics.
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4.1 Hermitian Vector Bundles and Serre Duality

In Chapter 3 we studied complex manifolds together with a compatible Rie-
mannian metric, so called hermitian manifolds or, more restrictive, Kähler
manifolds. The Riemannian metric gives rise to an hermitian metric on the
(holomorphic) tangent bundle. More generally, one could and should be in-
terested in hermitian metrics on arbitrary holomorphic and complex vector
bundles. This twisted version will be discussed now. Many of the arguments
will be familiar to the reader. Repeating Hodge theory on compact hermi-
tian manifolds, this time for vector bundles, might help to get used to this
important technique.

Let E be a complex vector bundle over a real manifold M .

Definition 4.1.1 An hermitian structure h on E →M is an hermitian scalar
product hx on each fibre E(x) which depends differentiably on x. The pair
(E, h) is called an hermitian vector bundle.

The latter condition can be made more precise in terms of local triviali-
zations. Let ψ : E|U ∼= U × Cr be a trivialization over some open subset U .
Then, for any x ∈ U the form hx(ψ

−1
x ( ), ψ−1

x ( )) defines an hermitian scalar
product on Cr. In other words, hx is given by a positive-definite hermitian
matrix (hij(x)) (which depends on ψ) and we require the map (hij) : U →
Gl(r,C) to be differentiable.

Examples 4.1.2 i) Let L be a (holomorphic) line bundle and let s1, . . . , sk be
global (holomorphic) sections generating L everywhere, i.e. at every point at
least one of them is non-trivial. Then one defines an hermitian structure on
L by

h(t) =
|ψ(t)|2∑ |ψ(si)|2

,

where t is a point in the fibre L(x) and ψ is a local trivialization of L around
the point x. The definition does not depend on the chosen trivialization, as
two of them only differ by a scalar factor. Observe that h is not holomorphic,
i.e. even if a trivialization of L over an open subset is chosen holomorphic, the
induced map h : U → C∗ is usually not holomorphic. By abuse of language,
one sometimes says that h is given by (

∑ |si|2)−1.
The standard example is L = O(1) over the projective space Pn and the

standard globally generating sections z0, . . . , zn ∈ H0(Pn,O(1)).
ii) If (X, g) is an hermitian manifold then the tangent, the cotangent, and

all form bundles
∧p,qX have natural hermitian structures.

iii) If E and F are endowed with hermitian structures, then the associated
bundles E⊕F , E⊗F , Hom(E,F ), etc., inherit natural hermitian structures.

iv) If (E, h) is an hermitian vector bundle and F ⊂ E is a subbundle,
then the restriction of h to F endows F with an hermitian structure. One
can define the orthogonal complement, F⊥ ⊂ E of F with respect to h. It
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is easy to see, that the pointwise condition indeed yields a complex vector
bundle. Moreover, the bundle E can be decomposed as E = F ⊕ F⊥ and F⊥

is canonically (as a complex vector bundle) isomorphic to the quotient E/F .
In particular, h also induces an hermitian structure on the quotient E/F .

v) If (E, h) is an hermitian vector bundle over an hermitian manifold
(X, g), then the twisted form bundles

∧p,q X ⊗ E have natural hermitian
structures.

Example 4.1.3 Let us consider the projective space Pn and the Euler sequence
twisted by O(−1):

0 // O(−1) // O⊕n+1 // TPn(−1) // 0 .

The constant standard hermitian structure on O⊕n+1 induces canonical
hermitian structures h1 on O(−1) and h2 on TPn(−1) (see the previous ex-
ample).

The hermitian structure h1 on O(−1) is nothing but the dual of the
canonical hermitian structure on O(1) determined by the choice of the basis
z0, . . . , zn ∈ H0(Pn,O(−1)) as in i) of Examples 4.1.2. This is straightforward
to verify and we leave the general version of this assertion as Exercise 4.1.1.

We next wish to identify h2 as the tensor product of the Fubini–Study
metric on TPn and h1 (up to the constant factor 2π).

The verification is done on the open subset U0 = {(z0 : . . . : zn) | z0 6= 0}
with coordinates wi = zi

z0
, i = 1, . . . , n. Hence, with respect to the bases ∂

∂wi

the Fubini–Study metric on TPn |Ui is given (up to the factor 2π) by the matrix

H := (1 +
∑

|wi|2)−2 ·
(
(1 +

∑
|wi|2)δij − w̄iwj

)
ij

(see i), Examples 3.1.9). The induced hermitian structure on the dual ΩPn |U0

with respect to the dual basis dw1, . . . , dwn corresponds thus to the matrix
H̄−1 = (1 +

∑ |wi|2) · (δij + w̄iwj)ij
On the other hand, the inclusion ΩPn ⊂ O(−1)⊕n+1 given by the Euler

sequence is on U0 explicitly given by dwi 7→ ei − wi · e0 (see the proof of
Proposition 2.4.4). Since h∗1 on O(−1)|U0 is the scalar function (1 +

∑ |wi|2),
one finds that the hermitian structure on ΩPn |U0 induced by this inclusion is

(1 +
∑

|wi|2) ·
(
(ei − wi · e0, ej − wj · e0)

)
ij

= H̄−1.

Note that choosing another basis of H0(Pn,O(1)), which in general results
in a different hermitian structure on O(1), amounts to choosing a different,
though still constant, hermitian structure on the trivial bundle O⊕n+1 on the
middle term of the Euler sequence. So, more invariantly, one could work with
the Euler sequence on P(V ), where the middle term is V ⊗O, and an hermitian
structure on V .
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An hermitian structure h on a vector bundle E defines a C-antilinear
isomorphism (of real bundles) E ∼= E∗. Here, E∗ is the dual complex bundle
of E. Generalizing Exercise 3.1.1 we observe the following

Proposition 4.1.4 Every complex vector bundle admits an hermitian metric.

Proof. Choose an open covering X =
⋃
Ui trivializing a given vector bundle

E. Then one might glue the constant hermitian structures on the trivial vector
bundles Ui × Cr over Ui by means of a partition of unity.

Here, we use that any positive linear combination of positive definite her-
mitian products on Cn is again positive definite and hermitian. �

Let f : M → N be a differentiable map and let E be a vector bundle on
N endowed with an hermitian structure h. Then the pull-back vector bundle
f∗E gets a natural hermitian structure f ∗h by (f∗h)x = hf(x) on (f∗E)(x) =
E(f(x)).

Example 4.1.5 Let X be a complex manifold and let s0, . . . , sk be globally
generating holomorphic sections of a holomorphic line bundle L (see Re-
mark 2.3.27, ii)). By Proposition 2.3.26 there exists an induced morphism
ϕ : X → Pk, x 7→ (s0(x) : . . . : sk(x)) with ϕ∗O(1) = L and ϕ∗(zi) = si. The
natural hermitian structures h on O(1) and h′ on L induced by z0, . . . , zk and
s0, . . . , sk, respectively, (see Example 4.1.2, i)) are compatible under ϕ, i.e.
ϕ∗h = h′.

Let (X, g) be an hermitian manifold and let (E, h) be an hermitian vector
bundle on X . Then the induced hermitian structures on

∧p,q
X ⊗ E will be

denoted ( , ).

Definition 4.1.6 Let E be a complex vector bundle over an hermitian man-
ifold (X, g) of complex dimension n. An hermitian structure h on E is inter-
preted as a C-antilinear isomorphism h : E ∼= E∗. Then

∗̄E :
∧p,qX ⊗E // ∧n−p,n−qX ⊗E∗

is defined by ∗̄E(ϕ ⊗ s) = ∗̄(ϕ) ⊗ h(s) = ∗(ϕ) ⊗ h(s) = ∗(ϕ̄) ⊗ h(s). (Recall
that ∗ is C-linear on

∧p,q
X .)

Clearly, ∗̄E is a C-antilinear isomorphism that depends on g and h. Note
that with this definition we have

(α, β) ∗ 1 = α ∧ ∗̄E(β)

for α, β sections of
∧p,q

X ⊗E, where “∧” is the exterior product in the form
part and the evaluation map E⊗E∗ → C in the bundle part. It is not difficult
to verify that, as for the usual Hodge ∗-operator, one has ∗̄E∗ ◦ ∗̄E = (−1)p+q

on
∧p,qX ⊗E.
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The aim of this section is to generalize Poincaré duality for compact mani-
folds (or rather Serre duality (cf. Remark 3.2.7, ii) and Exercise 3.2.2) to a
duality for the cohomology groups of holomorphic vector bundles. In order
to do this we need to discuss Hodge theory in analogy to the discussion in
Section 3.2 for hermitian vector bundles. Let us begin with the definition of
the adjoint operator of ∂̄E .

Definition 4.1.7 Let (E, h) be a holomorpic vector bundle together with an
hermitian structure h on an hermitian manifold (X, g). The operator ∂̄∗E :
Ap,q(E) → Ap,q−1(E) is defined as

∂̄∗E := −∗̄E∗ ◦ ∂̄E∗ ◦ ∗̄E .

Remark 4.1.8 For E = OX with a constant hermitian structure one recovers
the adjoint operator ∂̄∗ = − ∗ ◦ ∂ ◦ ∗. Indeed, −∗̄(∂̄(∗̄ϕ)) = −∗̄(∂̄(∗ϕ)) =
−∗̄(∂ ∗ ϕ) = − ∗ (∂ ∗ ϕ).

Definition 4.1.9 Let E be a holomorphic vector bundle endowed with an
hermitian structure h on an hermitian manifold (X, g), then the Laplace opera-
tor on Ap,q(E) is defined by

∆E := ∂̄∗E ∂̄E + ∂̄E ∂̄
∗
E .

Definition 4.1.10 Let (E, h) be an hermitian holomorphic vector bundle over
an hermitian manifold (X, g). A section α of

∧p,q X ⊗ E is called harmonic
if ∆E(α) = 0. The space of all harmonic forms is denoted Hp,q(X,E), where
we omit g and h in the notation.

Observe that ∗̄E induces a C-antilinear isomorphism

∗̄E : Hp,q(X,E) ∼= Hn−p,n−q(X,E∗).

Definition 4.1.11 Let (E, h) be an hermitian vector bundle on a com-
pact hermitian manifold (X, g). Then a natural hermitian scalar product on
Ap,q(X,E) is defined by

(α, β) :=

∫

X

(α, β) ∗ 1,

where ( , ) is the hermitian product on
∧p,q

X ⊗E depending on h and g (cf.
Example 4.1.2).

Lemma 4.1.12 Let (E, h) be an hermitian holomorphic vector bundle on a
compact hermitian manifold (X, g). Then, with respect to ( , ), the operator
∂̄∗E on Ap,q(X,E) is adjoint to ∂̄E and ∆E is self-adjoint.

Proof. By definition, the second assertion follows from the first one which in
turn is proved by the following purely formal calculation:
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For α ∈ Ap,q(X,E) and β ∈ Ap,q+1(X,E) one has

(α, ∂̄∗Eβ) = −(α, ∗̄E∗ ◦ ∂̄E∗ ◦ ∗̄Eβ)

= −
∫

X

α ∧ ∗̄E ∗̄E∗ ∂̄E∗ ∗̄β

= (−1)n−p+n−q−1

∫

X

α ∧ ∂̄E∗ ∗̄Eβ

=

∫

X

∂̄E(α) ∧ ∗̄Eβ = (α, β).

Here we use the Leibniz rule ∂̄(α∧ ∗̄Eβ) = ∂̄E(α)∧ ∗̄Eβ+(−1)p+qα∧ ∂̄E∗ ∗̄Eβ
and Stokes’ theorem

∫
X ∂̄(α ∧ ∗̄Eβ) =

∫
X d(α ∧ ∗̄Eβ) = 0. �

Using the lemma the reader may check that a form α ∈ Ap,q(X,E) over
a compact manifold X is harmonic if and only if α is ∂̄E- and ∂̄∗E-closed (cf.
Lemma 3.2.5).

Theorem 4.1.13 (Hodge decomposition) Let E be a holomorphic vector
bundle together with an hermitian structure h on a compact hermitian mani-
fold (X, g). Then

Ap,q(X,E) = ∂̄EAp,q−1(X,E) ⊕Hp,q(X,E) ⊕ ∂̄∗EAp,q+1(X,E) (4.1)

and Hp,q(X,E) is finite-dimensional. 2

The case of the trivial vector bundle E ∼= OX with a constant hermitian
structure corresponds to Hodge decomposition of compact hermitian mani-
folds (cf. Theorem 3.2.8). As in this case, we obtain

Corollary 4.1.14 The natural projection Hp,q(X,E) → Hp,q(X,E) is bijec-
tive. In particular, Hp,q(X,E) ∼= Hq(X,E ⊗ΩpX ) is finite-dimensional.

Proof. Indeed, as any harmonic section of
∧p,qX ⊗ E is ∂̄E-closed, the pro-

jection is well-defined. Moreover, the space of ∂̄E-closed forms in Ap,q(X,E)
is ∂̄EAp,q−1(X,E) ⊕Hp,q(X,E), as (∂̄E ∂̄

∗
Eα, α) = ‖∂̄∗Eα‖2 6= 0 for ∂̄∗Eα 6= 0.

Thus, the projection is surjective and its kernel is the space of forms, which
are ∂̄E-exact and harmonic. But since the decomposition (4.1) in theorem
4.1.13 is direct, this space is trivial. �

Let E be a holomorphic vector bundle over a compact manifold X of
dimension n and consider the natural pairing

Hp,q(X,E) ×Hn−p,n−q(X,E∗) // C, (α, β) � //
∫
X
α ∧ β,

where as before α∧β is the exterior product in the form part and the evaluation
map in the bundle part. The pairing is well-defined, i.e. does not depend on
the ∂̄-closed representatives α ∈ Ap,q(E) and β ∈ An−p,n−q(E).
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Proposition 4.1.15 (Serre duality) Let X be a compact complex manifold.
For any holomorphic vector bundle E on X the natural pairing

Hp,q(X,E) ×Hn−p,n−q(X,E∗) // C

is non-degenerate.

Proof. Fix hermitian structures h and g on E and X , respectively. Then
consider the pairing Hp,q(X,E) × Hn−p,n−q(X,E∗) → C. In order to show
that this pairing is non-degenerate, we have to show that for any 0 6= α ∈
Hp,q(X,E) there exists an element β ∈ Hn−p,n−q(X,E∗) with

∫
X α ∧ β 6= 0.

Now choose β := ∗̄Eα, then
∫
α∧ β =

∫
α∧ ∗̄Eα =

∫
(α, α) ∗ 1 = ‖α‖2 6= 0. �

Serre duality (together with the Hirzebruch–Riemann–Roch theorem 5.1.1
and Kodaira vanishing theorem 5.2.2) is one of the most useful tools to control
the cohomology of holomorphic vector bundles.

Let us mention a few special cases and reformulations.

Corollary 4.1.16 For any holomorphic vector bundle E over a compact com-
plex manifold X there exist natural C-linear isomorphisms (Serre duality):

Hp,q(X,E) ∼= Hn−p,n−q(X,E∗)∗

Hq(X,Ωp ⊗E) ∼= Hn−q(X,Ωn−p ⊗E∗)∗

Hq(X,E) ∼= Hn−q(X,KX ⊗E∗)∗

2

For the trivial bundle this yields Hp,q(X) ∼= Hn−p,n−q(X)∗ (cf. Exercise
3.2.2). Moreover, if X is Kähler these isomorphisms are compatible with the
bidegree decomposition Hk(X,C) =

⊕
Hp,q(X) and Poincaré duality (cf.

Exercise 3.2.3).

Remark 4.1.17 The isomorphism ∗̄E : Hp,q(X,E) ∼= Hn−p,n−q(X,E∗) induces
an isomorphism Hp,q(X,E) ∼= Hn−p,n−q(X,E∗). But this isomorphism is
only C-antilinear and depends on the chosen hermitian structures g and h.
Thus, Serre dualityHp,q(X,E) ∼= Hn−p,n−q(X,E∗)∗ is better behaved in both
respects.

Exercises

4.1.1 Let L be a holomorphic line bundle which is globally generated by sections
s1, . . . , sk ∈ H0(X,L). Then L admits a canonical hermitian structure h defined in
Example 4.1.2. The dual bundle L∗ obtains a natural hermitian structure h′ via the
inclusion L∗ ⊂ O⊕k. Describe h′ and and show that h′ = h∗.
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4.1.2 Let L be a holomorphic line bundle of degree d > 2g(C)− 2 on a compact
curve C. Show that H1(C,L) = 0. Here, for our purpose we define the genus g(C)
of C by the formula deg(KX) = 2g(C) − 2.

In other words, H1(C,KC ⊗ L) = 0 for any holomorphic line bundle L with
deg(L) > 0. In this form, it will later be generalized to the Kodaira vanishing
theorem for arbitrary compact Kähler manifolds.

4.1.3 Show, e.g. by writing down an explicit basis, that

hn(Pn,O(k)) =


0 k > −n − 1`

−k−1
−n−1−k

´
k ≤ −n − 1

4.1.4 Let E be an hermitian holomorphic vector bundle on a compact Kähler
manifold X. Show that any section s ∈ H0(X,Ωp ⊗E) is harmonic.

4.1.5 Compare this section with the discussion in Sections 3.2 and 3.3. In parti-
cular, check whether the Lefschetz operator L is defined on Hp,q(X,E) and whether
it defines isomorphisms Hp,k−p(X,E) → Hn+p−k,n−p(X,E) (cf. Remark 3.2.7, iii)).

Comments: Serre duality does in fact hold, in an appropriately modified

form, for arbitrary coherent sheaves. Moreover, it is a special case of the so called

Grothendieck–Verdier duality which is a duality statement for the direct image of

coherent sheaves under proper morphisms. An algebraic proof, i.e. without using

any metrics, can be given in case the manifold is projective
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4.2 Connections

Let M be a real manifold and let π : E → M be a complex vector bundle on
M . As before, we denote by Ai(E) the sheaf of i-forms with values in E. In
particular, A0(E) is just the sheaf of sections of E. Sections of E cannot be
differentiated canonically, i.e. the exterior differential is in general not defined
(see the discussion in Section 2.6). A substitute for the exterior differential is
provided by a connection on E, which is not canonical, but always available.

This section introduces the reader to the fundamental notion of a connec-
tion and studies various compatibility conditions with additional data, like
holomorphic or hermitian structures. At the end of this section, a short dis-
cussion of a purely holomorphic and more rigid analogue is introduced.

We will focus on complex vector bundles, but for almost everything a real
version exists. We leave it to the reader to work out the precise formulation
in each case.

Definition 4.2.1 A connection on a vector bundle E is a C-linear sheaf ho-
momorphism ∇ : A0(E) → A1(E) which satisfies the Leibniz rule

∇(f · s) = d(f) ⊗ s+ f · ∇(s) (4.2)

for any local function f on M and any local section s of E.

Definition 4.2.2 A section s of a vector bundle E is called parallel (or flat
or constant) with respect to a connection ∇ on E if ∇(s) = 0.

Proposition 4.2.3 If ∇ and ∇′ are two connections on a vector bundle E,
then ∇−∇′ is A0

M -linear and can, therefore, be considered as an element in
A1(M,End(E)). If ∇ is a connection on E and a ∈ A1(M,End(E)), then
∇ + a is again a connection on E.

Proof. We have to show that (∇ − ∇′)(f · s) = f · (∇ −∇′)(s), which is an
immediate consequence of the Leibniz rule (4.2).

An element a ∈ A1(M,End(E)) acts on A0(E) by multiplication in the
form part and evaluation End(E)×E → E on the bundle component. In order
to prove the second assertion, one checks (∇+ a)(f · s) = ∇(f · s) +a(f · s) =
d(f) ⊗ s+ f · ∇(s) + fa(s) = d(f) ⊗ s+ f · (∇ + a)(s). Thus, ∇ + a satisfies
the Leibniz rule and is, therefore, a connection. �

As a consequence of this proposition and Exercise 4.2.1 one obtains

Corollary 4.2.4 The set of all connections on a vector bundle E is in a
natural way an affine space over the (infinite-dimensional) complex vector
space A1(M,End(E)). 2
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Remark 4.2.5 Often, local calculations are performed by using the following
statement: Any connection ∇ on a vector bundle E can locally be written as
d+A, where A is a matrix valued one-form.

Indeed, if E is the trivial vector bundle E = M × Cr, then Ak(E) =⊕r
i=1 Ak

M and one defines the trivial connection d : A0(E) → A1(E) on
E by applying the usual exterior differential to each component. Any other
connection ∇ is then of the form ∇ = d+A, where A ∈ A1(M,End(E)). For
the trivial vector bundle, the latter is just a matrix valued one-form.

Let E be an arbitrary vector bundle on M endowed with a connection ∇.
With respect to a trivialization ψ : E|U ∼= U × Cr we may write ∇ = d + A
or, more precisely, ∇ = ψ−1 ◦ (d + A) ◦ ψ. If the trivialization is changed by

φ : U → Gl(r,C), i.e. one considers ψ′
x = φ(x)◦ψx, then ∇ = ψ′−1◦(d+A′)◦ψ′

with A′ = φ−1d(φ) + φ−1Aφ.
For a given point x0 ∈ M one can always choose the local trivialization

such that A(x0) = 0. Indeed, a given trivialization can be changed by a local
φ : U → Gl(r,C), whose Taylor expansion is of the form

φ(x) = Id −
∑

xiAi(0) + higher order terms.

Here, x1, . . . , xn are local coordinates with x0 as the origin and the connection
matrix A is written as A =

∑
Aidxi.

Given connections induce new connections on associated vector bundles.
Here is a list of the most important examples of this principle:

Examples 4.2.6 i) Let E1 and E2 be vector bundles on M endowed with con-
nections ∇1 and ∇2, respectively. If s1, s2 are local section of E1 and E2,
respectively, we set

∇(s1 ⊕ s2) = ∇1(s1) ⊕∇2(s2).

This defines a natural connection on the direct sum E1 ⊕E2.
ii) In order to define a connection on the tensor product E1 ⊗ E2 one

defines
∇(s1 ⊗ s2) = ∇1(s1) ⊗ s2 + s1 ⊗∇2(s2).

iii) A natural connection on Hom(E1, E2) can be defined by:

∇(f)(s1) = ∇2(f(s1)) − f(∇1(s1)).

Here, f is a local homomorphism E1 → E2. Then f(s1) is a local section of E2

and ∇2 can be applied. In the second term the homomorphism f is applied
to the one-form ∇1(s1) with values in E1 according to f(α ⊗ t) = α ⊗ f(t),
for α ∈ A1 and t ∈ A0(E).

iv) If we endow the trivial bundle with the natural connection given by
the exterior differential, then the last construction yields as a special case a
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connection ∇∗ on the dual E∗ of any bundle E equipped with a connection
∇. Explicitly, one has

∇∗(f)(s) = d(f(s)) − f(∇(s)).

Clearly, changing any of the given connections by a one-form as in
Proposition 4.2.3 induces new connections on the associated bundles. E.g.
if ∇′ = ∇+ a, then ∇′∗ = ∇∗ − a∗. The other cases are left to the reader (cf.
Exercise 4.2.2).

v) Let f : M → N be a differentiable map and let ∇ be a connection on
a vector bundle E over N . Let ∇ over an open subset Ui ⊂ N be of the form
d+Ai (after trivializing E|Ui). Then the pull-back connection f∗∇ on the pull-
back vector bundle f∗E over M is locally defined by f∗∇|f−1(Ui) = d+ f∗Ai.
It is straightforward to see that the locally given connections glue to a global
one on f∗E.

Next we shall describe how conversely a connection ∇ on the direct sum
E = E1 ⊕ E2 induces connections ∇1 and ∇2 on E1 and E2, respectively.
Denote by p1 and p2 the two projections E1 ⊕ E2 → Ei. Clearly, any section
si of Ei can also be regarded as a section of E and thus ∇ can be applied.
Then we set ∇i(si) := pi(∇(si)). The verification of the Leibniz rule for ∇i is
straightforward. Thus we obtain

Lemma 4.2.7 The connection ∇ on E = E1⊕E2 induces natural connections
∇1, ∇2 on E1 and E2, respectively. 2

The difference between the direct sum ∇1⊕∇2 of the two induced connec-
tions and the connection ∇ on E we started with is measured by the second
fundamental form. Let E1 be a subbundle of a vector bundle E and assume
that a connection on the latter is given.

Definition 4.2.8 The second fundamental form of E1 ⊂ E with respect to
the connection ∇ on E is the section b ∈ A1(M,Hom(E1, E/E1)) defined for
any local section s of E1 by

b(s) = prE/E1
(∇(s)).

If we choose a splitting of E � E/E1, i.e. we write E = E1 ⊕ E2 with
E2

∼= E/E1 via the projection, then b(s) = ∇(s) −∇1(s). Using the Leibniz
rule (4.2) for ∇ and ∇1 one proves b(f · s) = f · b(s). Thus, b really defines an
element in A1(X,Hom(E1, E2)). Often we will consider situations where E is
the trivial vector bundle together with the trivial connection

If E is endowed with an additional datum, e.g. an hermitian or a holo-
morphic structure, then one can formulate compatibility conditions for con-
nections on E. Let us first discuss the hermitian case.
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Definition 4.2.9 Let (E, h) be an hermitian vector bundle. A connection ∇
on E is an hermitian connection with respect to h if for arbitrary local sections
s1, s2 one has

d(h(s1, s2)) = h(∇(s1), s2) + h(s1,∇(s2)). (4.3)

Here, the exterior differential is applied to the function h(s1, s2) and by
definition h(α ⊗ s, s′) := αh(s, s′) for a (complex) one-form α and sections
s and s′. Analogously, h(s, α ⊗ s′) = ᾱh(s, s′). If the bundle E is real and
the hermitian product is a real hermitian product, then one speaks of metric
connections. See also Exercise 4.2.8 for an alternative description of (4.3).

Let ∇ be an hermitian connection and let a ∈ A1(M,End(E)). By Propo-
sition 4.2.3 one knows that ∇′ = ∇ + a is again a connection. Then, ∇′ is
hermitian if and only if h(a(s1), s2) + h(s1, a(s2)) = 0 for all section s1, s2.
Thus, ∇′ is hermitian if and only if a can locally be written as a = α ⊗ A
with a ∈ A1

M and where A at each point is contained in the Lie algebra
u(E(x), h(x)), which, after diagonalization of h, is the Lie algebra of all skew-
hermitian matrices.

Definition 4.2.10 Let (E, h) be an hermitian vector bundle. By End(E, h)
we denote the subsheaf of sections a of End(E) satisfying

h(a(s1), s2) + h(s1, a(s2)) = 0

for all local sections s1, s2.

Note that End(E, h) has the structure of a real vector bundle. For line
bundles, i.e. rk(E) = 1, the vector bundle End(E) is the trivial complex
vector bundle C ×M and End(E, h) is the imaginary part i · R ×M of it.
Then using Corollary 4.2.4 and Exercise 4.2.1 we find

Corollary 4.2.11 The set of all hermitian connections on an hermitian vec-
tor bundle (E, h) is an affine space over the (infinite-dimensional) real vector
space A1(M,End(E, h)). 2

So far, the underlying manifold M was just a real manifold and the vector
bundle E was a differentiable complex (or real) vector bundle. In what follows,
we consider a holomorphic vector bundle E over a complex manifold X . Recall
from Section 2.6 that in this case there exists the ∂̄-operator ∂̄ : A0(E) →
A0,1(E).

Using the decomposition A1(E) = A1,0(E) ⊕ A0,1(E) we can decompose
any connection ∇ on E in its two components ∇1,0 and ∇0,1, i.e. ∇ = ∇1,0 ⊕
∇0,1 with

∇1,0 : A0(E) // A1,0(E) and ∇0,1 : A0(E) // A0,1(E).

Note that ∇0,1 satisfies ∇0,1(f · s) = ∂̄(f) ⊗ s + f · ∇0,1(s), i.e. it behaves
similarly to ∂̄. (Of course, the decomposition ∇ = ∇1,0 ⊕ ∇0,1 makes sense
also when E is not holomorphic.)
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Definition 4.2.12 A connection ∇ on a holomorphic vector bundle E is com-
patible with the holomorphic structure if ∇0,1 = ∂̄.

Similarly to Corollaries 4.2.4 and 4.2.11 one proves

Corollary 4.2.13 The space of connections ∇ on a holomorphic vector bun-
dle E compatible with the holomorphic structure forms an affine space over
the (infinite-dimensional) complex vector space A1,0(X,End(E)). 2

The existence of at least one such connection (which is needed for the
corollary) can be proved directly or it can be seen as a consequence of the
following existence result.

Proposition 4.2.14 Let (E, h) be a holomorphic vector bundle together with
an hermitian structure. Then there exists a unique hermitian connection ∇
that is compatible with the holomorphic structure. This connection is called
the Chern connection on (E, h).

Proof. Let us first show the uniqueness. This is is a purely local problem.
Thus, we may assume that E is the trivial holomorphic vector bundle, i.e.
E = X × Cr. According to Remark 4.2.5 the connection ∇ is of the form
∇ = d+A, where A = (aij) is a matrix valued one-form on X . The hermitian
structure on E is given by a function H on X that associates to any x ∈ X a
positive-definite hermitian matrix H(x) = (hij(x)).

Let ei be the constant i-th unit vector considered as a section of E. Then
the assumption that ∇ be compatible with the hermitian structure yields
dh(ei, ej) = h(

∑
akiek, ej) + h(ei,

∑
a`je`) or, equivalently,

dH = At ·H +H · Ā.

Since ∇ is compatible with ∂̄, the matrix A is of type (1, 0). A comparison
of types of both sides yields ∂̄H = H · Ā and, after complex conjugation

A = H̄−1∂(H̄).

Thus, A is uniquely determined by H .
Equivalently, by using Corollaries 4.2.11 and 4.2.13 one could argue that

A1(X,End(E, h))∩A1,0(X,End(E)) = 0. Indeed, any endomorphism a in this
intersection satisfies h(a(s1), s2) + h(s1, a(s2)) = 0, where the first summand
is a (1, 0)-form and the second is of type (0, 1). Thus, both have to be trivial
and hence a = 0.

In any case, describing the connection form A explicitly in terms of the
hermitian structure H turns out to be helpful for the existence result as well.
On argues as follows: Going the argument backwards, we find that locally one
can find connections which are compatible with both structures. Due to the
uniqueness, the locally defined connections glue. �
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Example 4.2.15 Let E be a holomorphic line bundle. Then an hermitian struc-
ture H on E is given by a positive real function and the Chern connection E
is locally given as ∇ = d+ ∂ logH .

The proposition can be applied to the geometric situation. Let (X, g) be
an hermitian manifold and let E be the holomorphic (co)tangent bundle.
Then the Proposition asserts the existence of a natural hermitian connection
∇ = ∇1,0 + ∂̄ on the (co)tangent bundle TX (respectively ΩX). Let us study
this in two easy cases.

Examples 4.2.16 i) If we endow the complex torus Cn/Γ with a constant her-
mitian structure, then the Chern connection on the trivial tangent bundle is
the exterior differential.

ii) The second example is slightly more interesting. We study the Fubini–
Study metric on Pn introduced in Examples 3.1.9, i). Recall that on the stan-
dard open subset Ui ⊂ Pn with coordinates w1, . . . , wn it is given by

H =
1

2π

(
δij

1 +
∑ |wk |2

− w̄iwj
(1 +

∑ |wk|2)2
)

i,j=1,...,n

.

Then the distinguished connection we are looking for is locally on Ui given by
∇ = d+ H̄−1(∂H̄).

Let us now study the second fundamental form for connections compatible
with a given hermitian and/or holomorphic structure.

• Let

0 // E1
// E // E2

// 0

be a short exact sequence of holomorphic vector bundles. In general, a se-
quence like this need not split. However, the sequence of the underlying dif-
ferentiable complex bundles can always be split and hence E = E1 ⊕ E2 as
complex bundles. (See Appendix A.)

If ∇0,1 = ∂̄E , then also ∇0,1
1 = ∂̄E1 for the induced connection ∇1 on E1,

because E1 is a holomorphic subbundle of E. Thus, the second fundamental
form b1 is of type (1, 0), i.e. b1 ∈ A1,0(X,Hom(E1, E2)). The analogous state-
ment holds true for ∇2 on E2 and the second fundamental form b2 if and only
if the chosen split is holomorphic.

• Let (E, h) be an hermitian vector bundle and assume that E = E1 ⊕E2

is an orthogonal decomposition, i.e. E1, E2 are both endowed with hermitian
structures h1 and h2, respectively, such that h = h1 ⊕ h2.

Let ∇ be a hermitian connection on (E, h). Then the induced connections
∇1, ∇2 are again hermitian (cf. Exercise 4.2.5) and for the fundamental forms
b1 and b2 one has

h1(s1, b2(t2)) + h2(b1(s1), t2) = 0

h1(b2(s2), t1) + h2(s2, b1(t1)) = 0
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for any local sections si and ti of E1 respectively E2. This follows easily from

dh(s1 ⊕ s2, t1 ⊕ t2)

= h((∇1(s1) + b2(s2)) ⊕ (∇2(s2) + b1(s1)), t1 ⊕ t2)

+h(s1 ⊕ s2, (∇1(t1) + b2(t2)) ⊕ (∇2(t2) + b1(t1)))

Usually, one combines both situations. A short exact sequence of holo-
morphic vector bundles can be splitted as above by choosing the orthogonal
complement E⊥ ∼= E2 of E1 ⊂ E with respect to a chosen hermitian structure
on E.

We conclude this section with a brief discussion of the notion of a holomor-
phic connection, which should not be confused with the notion of a connection
compatible with the holomorphic structure. In fact, the notion of a holomor-
phic connection is much more restrictive, but has the advantage to generalize
to the purely algebraic setting.

Definition 4.2.17 Let E be a holomorphic vector bundle on a complex mani-
fold X . A holomorphic connection on E is a C-linear map (of sheaves) D :
E → ΩX ⊗E with

D(f · s) = ∂(f) ⊗ s+ f ·D(s)

for any local holomorphic function f on X and any local holomorphic section
s of E.

Here, E denotes both, the vector bundle and the sheaf of holomorphic
sections of this bundle. Clearly, if f is a holomorphic function, then ∂(f) is

a holomorphic section of
∧1,0

X , i.e. a section of ΩX (use ∂̄∂(f) = −∂∂̄(f)).
(See Proposition 2.6.11.)

Most of what has been said about ordinary connections holds true for
holomorphic connections with suitable modifications. E.g. if D and D′ are
holomorphic connections on E, then D−D′ is a holomorphic section of ΩX ⊗
End(E). Locally, any holomorphic connection D is of the form ∂ + A where
A is a holomorphic section of ΩX ⊗ End(E).

Writing a holomorphic connection D locally as ∂ + A shows that D also
induces a C-linear map D : A0(E) → A1,0(E) which satisfies D(f · s) =
∂(f)⊗s+f ·D(s). Thus, D looks like the (1, 0)-part of an ordinary connection
and, indeed, ∇ := D + ∂̄ defines an ordinary connection on E.

However, the (1, 0)-part of an arbitrary connection need not be a holo-
morphic connection in general. It might send holomorphic sections of E to
those of A1,0(E) that are not holomorphic, i.e. not contained in ΩX ⊗ E. In
fact, holomorphic connections exist only on very special bundles (see Remark
4.2.20 and Exercise 4.4.12).

We want to introduce a natural cohomology class whose vanishing decides
whether a holomorphic connection on a given holomorphic bundle can be
found. Let E be a holomorphic vector bundle and let X =

⋃
Ui be an open

covering such that there exist holomorphic trivializations ψi : E|Ui
∼= Ui×Cr.
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Definition 4.2.18 The Atiyah class

A(E) ∈ H1(X,ΩX ⊗ End(E))

of the holomorphic vector bundle E is given by the Čech cocycle

A(E) =
{
Uij , ψ

−1
j ◦ (ψ−1

ij dψij) ◦ ψj
}
.

Due to the cocycle condition ψijψjkψki = 1, the collection {Uij , ψ−1
j ◦

(ψ−1
ij dψij) ◦ ψj} really defines a cocycle. The definition of A(E) is indeed

independent of the cocycle {ψij}. We leave the straightforward proof to the
reader (see Exercise 4.2.9).

Proposition 4.2.19 A holomorphic vector bundle E admits a holomorphic
connection if and only if its Atiyah class A(E) ∈ H1(X,ΩX ⊗ End(E)) is
trivial.

Proof. First note that dψij = ∂ψij , as the ψij are holomorphic.
Local holomorphic connections on Ui × Cr are of the form ∂ + Ai. Those

can be glued to a connection on the bundle E if and only if

ψ−1
i ◦ (∂ +Ai) ◦ ψi = ψ−1

j ◦ (∂ +Aj) ◦ ψj

on Uij or, equivalently,

ψ−1
i ◦ ∂ ◦ ψi − ψ−1

j ◦ ∂ ◦ ψj = ψ−1
j Ajψj − ψ−1

i Aiψi. (4.4)

The left hand side of (4.4) can be written as

ψ−1
j ◦ (ψ−1

ij ◦ ∂ ◦ ψi ◦ ψ−1
j ) ◦ ψj − ψ−1

j ◦ ∂ ◦ ψj
= ψ−1

j ◦ (ψ−1
ij ◦ ∂ ◦ ψij − ∂) ◦ ψj = ψ−1

j ◦ (ψ−1
ij ∂(ψij)) ◦ ψj

The right hand side of (4.4) is the boundary of {Bi ∈ Γ (Ui, Ω⊗End(E))}
with Bi = ψ−1

i Aiψi. Thus, A(E) = 0 if and only if there exist local connections
on E that can be glued to a global one. �

Remarks 4.2.20 i) Later we will see that A(E) is related to the curvature of
E. Roughly, a holomorphic connection on a vector bundle E over a compact
manifold exists, i.e. A(E) = 0, if and only if the bundle is flat. Moreover, we
will see that A(E) encodes all characteristic classes of E.

ii) Note that for vector bundles of rank one, i.e. line bundles, one has
A(L) = {∂ log(ψij)}. This gives yet another way of defining a first Chern
class of a holomorphic line bundle as A(E) ∈ H1(X,ΩX) = H1(X,ΩX ⊗
End(E)). A comparison of the various possible definitions of the first Chern
class encountered so far will be provided in Section 4.4.
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Exercises

4.2.1 i) Show that any (hermitian) vector bundle admits a(n hermitian) connec-
tion.

ii) Show that a connection ∇ is given by its action on the space of global sections
A0(X,E).

4.2.2 Let ∇i be connections on vector bundles Ei, i = 1, 2. Change both con-
nections by one-forms ai ∈ A1(X,End(Ei)) and compute the new connections on
the associated bundles E1 ⊕E2, E1 ⊗E2, and Hom(E1, E2).

4.2.3 Prove that connections on bundles Ei, i = 1, 2 which are compatible with
given hermitian or holomorphic structures induce compatible connections on the
associated bundles E1 ⊕E2, E1 ⊗E2, and Hom(E1, E2).

4.2.4 Study connections on an hermitian holomorphic vector bundle (E, h) that
admits local holomorphic trivialization which are at the same time orthogonal with
respect to the hermitian structure.

4.2.5 Let (E, h) be an hermitian vector bundle. If E = E1 ⊕E2, then E1 and E2

inherit natural hermitian structures h1 and h2. Are the induced connections ∇i on
Ei again hermitian with respect to these hermitian structures? What can you say
about the second fundamental form?

4.2.6 Let ∇ be a connection on E. Describe the induced connections on
V2 E

and det(E).

4.2.7 Show that the pull-back of an hermitian connection is hermitian with
respect to the pull-back hermitian structure. Analogously, the pull-back of a con-
nection compatible with the holomorphic structure on a holomorphic vector bundle
under a holomorphic map is again compatible with the holomorphic structure on
the pull-back bundle.

4.2.8 Show that a connection ∇ on an hermitian bundle (E,h) is hermitian if
and only if ∇(h) = 0, where by ∇ we also denote the naturally induced connection
on the bundle (E ⊗ Ē)∗.

4.2.9 Show that the definition of the Atiyah class does not depend on the chosen
trivialization. Proposition 4.3.10 will provide an alternative proof of this fact.

Comments: - To a large extent, it is a matter of taste whether one prefers to
work with connections globally or in terms of their local realizations as d+ A with
the connections matrix A. However, both approaches are useful. Often, an assertion
is first established locally or even fibrewise and afterwards, and sometimes more
elegantly, put in a global language.

- For this and the next section we recommend Kobayashi’s excellent textbook
[78].

- The Atiyah class was introduced by Atiyah in [3]. There is a way to define

the Atiyah class via the jet-sequence or, equivalently, using the first infinitesimal

neighbourhood of the diagonal. See [31].
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4.3 Curvature

In the previous paragraph we introduced the notion of a connection generali-
zing the exterior differential to sections of vector bundles. Indeed, by definition
a connection satisfies the Leibniz rule. However, in general a connection ∇
need not satisfy ∇2 = 0, i.e. ∇ is not a differential. The obstruction for a
connection to define a differential is measured by its curvature. This concept
will be explained now.

The reader familiar with the basic concepts in Riemannian geometry will
find the discussion similar to the treatment of the curvature of a Riemannian
manifold. As before, we shall also study what happens in the presence of
additional structures, e.g. hermitian and holomorphic ones.

Let E be a vector bundle on a manifold M endowed with a connection
∇ : A0(E) → A1(E). Then a natural extension

∇ : Ak(E) // Ak+1(E)

is defined as follows: If α is a local k-form on M and s is a local section of E
then

∇(α⊗ s) = d(α) ⊗ s+ (−1)kα ∧ ∇(s).

Observe that for k = 0 this is just the Leibniz formula (4.2) which also ensures
that the extension is well-defined, i.e. ∇(α⊗ (f · s)) = ∇(fα⊗ s) for any local
function f . Moreover, a generalized Leibniz rule also holds for this extension,
i.e. for any section t of A`(E) and any k-form β one has

∇(β ∧ t) = d(β) ∧ t+ (−1)kβ ∧∇(t).

Indeed, if t = α⊗ s then

∇(β ∧ t) = ∇((β ∧ α) ⊗ s) = d(β ∧ α) ⊗ s+ (−1)k+`(β ∧ α) ⊗∇(s)

= d(β) ∧ t+ (−1)k((β ∧ d(α)) ⊗ s+ (−1)`(β ∧ α) ⊗∇(s))

= d(β) ∧ t+ (−1)kβ ∧ ∇(t)

Definition 4.3.1 The curvature F∇ of a connection ∇ on a vector bundle E
is the composition

F∇ := ∇ ◦∇ : A0(E) // A1(E) // A2(E).

Usually, the curvature F∇ will be considered as a global section of
A2(End(E)), i.e. F∇ ∈ A2(M,End(E)). This is justified by the following
result.

Lemma 4.3.2 The curvature homomorphism F∇ : A0(E) → A2(E) is A0-
linear.
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Proof. For a local section s of E and a local function f on M one computes

F∇(f · s) = ∇(∇(f · s)) = ∇ (df ⊗ s+ f · ∇(s))

= d2(f)︸ ︷︷ ︸
0

⊗s−df ∧ ∇(s) + df ∧ ∇(s)︸ ︷︷ ︸
0

+f · ∇(∇(s))

= f · F∇(s)

�

Examples 4.3.3 i) Let us compute the curvature of a connection on the trivial
bundle M × Cr. If ∇ is the trivial connection, i.e. ∇ = d, then F∇ = 0.

Any other connection is of the form ∇ = d + A, where A is a matrix of
one-forms. For a section s one obtains F∇(s) = (d + A)(d + A)(s) = (d +
A)(d(s)+A · s) = d2(s)+ d(A · s)+A · d(s)+A(A(s)) = d(A)(s)+ (A∧A)(s),
i.e.

F∇ = d(A) +A ∧ A.
ii) For a line bundle this calculation yields F∇ = d(A). In this case, the

curvature is an ordinary two-form.

For a ∈ A1(M,End(E)) the two-form a ∧ a ∈ A2(M,End(E)) is given by
exterior product in the form part and composition in End(E). Using this, the
example is easily generalized to

Lemma 4.3.4 Let ∇ be a connection on a vector bundle E and let a ∈
A1(M,End(E)). Then F∇+a = F∇ + ∇(a) + a ∧ a. 2

Any connection ∇ on a vector bundle E induces a natural connection on
End(E) which will also be called ∇. In particular, this connection can be
applied to the curvature F∇ ∈ A2(M,End(E)) of the original connection on
E. Here is the next remarkable property of the curvature:

Lemma 4.3.5 (Bianchi identity) If F∇ ∈ A2(M,End(E)) is the curvature
of a connection ∇ on a vector bundle E, then

0 = ∇(F∇) ∈ A3(M,End(E)).

Proof. This follows from ∇(F∇)(s) = ∇(F∇(s)) − F∇(∇(s)) = ∇(∇2(s)) −
∇2(∇(s)) = 0. Here we use Exercise 4.3.1. �

Example 4.3.6 For the connection ∇ = d+A on the trivial bundle the Bianchi
identity becomes dF∇ = F∇ ∧ A−A ∧ F∇.

The curvature of induced connections on associated bundles can usually
be expressed in terms of the curvature of the given connections. For the most
frequent associated bundles they are given by the following proposition.
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Proposition 4.3.7 Let E1, E2 be vector bundles endowed with connections
∇1 and ∇2, respectively.

i) The curvature of the induced connection on the direct sum E1 ⊕ E2 is
given by

F = F∇1 ⊕ F∇2 .

ii) On the tensor product E1 ⊗E2 the curvature is given by

F∇1 ⊗ 1 + 1 ⊗ F∇2 .

iii) For the induced connection ∇∗ on the dual bundle E∗ one has

F∇∗ = −F t
∇.

iv) The curvature of the pull-back connection f ∗∇ of a connection ∇ under
a differentiable map f : M → N is

Ff∗∇ = f∗F∇.

Proof. Let us prove ii). This is the following straightforward calculation

F∇(s1 ⊗ s2)

= ∇(∇(s1 ⊗ s2)) = ∇(∇1(s1) ⊗ s2 + s1 ⊗∇2(s2))

= ∇2
1(s1) ⊗ s2 −∇1(s1) ⊗∇2(s2) + ∇1(s1) ⊗∇2(s2) + s1 ⊗∇2

2(s2)

= F∇1 (s1) ⊗ s2 + s1 ⊗ F∇2(s2).

The sign appears, because ∇ is applied to the one-form ∇1(s1)⊗ s2. We leave
i) and iii) to the reader (cf. Exercise 4.3.2).

iv) follows from the local situation, where ∇ is given as d + A. Then
Ff∗∇ = Fd+f∗A = d(f∗A) + f∗(A) ∧ f∗(A) = f∗(d(A) +A ∧ A) = f∗F∇. �

Next we will study the curvature of the special connections introduced in
Section 4.2.

Proposition 4.3.8 i) The curvature of an hermitian connection ∇ on an
hermitian vector bundle (E, h) satisfies h(F∇(s1), s2)+h(s1, F∇(s2)) = 0, i.e.

F∇ ∈ A2(M,End(E, h)).

ii) The curvature F∇ of a connection ∇ on a holomorphic vector bundle
E over a complex manifold X with ∇0,1 = ∂̄ has no (0, 2)-part, i.e.

F∇ ∈ (A2,0 ⊕A1,1)(X,End(E)).

iii) Let E be a holomorphic bundle endowed with an hermitian structure
h. The curvature of the Chern connection ∇ is of type (1, 1), real, and skew-
hermitian, i.e. F∇ ∈ A1,1

R (X,End(E, h)). (Recall that End(E, h) is only a real
vector bundle.)
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Proof. i) A local argument goes as follows: Choose a trivialization such that
(E, h) is isomorphic to the trivial bundle M ×Cr endowed with the constant
standard hermitian product. Then, ∇ = d+A with Āt = −A. For its curvature
F∇ = d(A) +A ∧ A one obtains

F̄ t
∇ = d(Āt) + (Ā ∧ Ā)t = d(Āt) − Āt ∧ Āt

= d(−A) − (−A) ∧ (−A) = −F∇.

For a global argument one first observes that the assumption that ∇ is
hermitian yields for form-valued sections si ∈ Aki(E) the equation

dh(s1, s2) = h(∇(s1), s2) + (−1)k1h(s1,∇(s2)).

Recall that h(α1 ⊗ t1, α2 ⊗ t2) = (α1 ∧ ᾱ2)h(t1, t2) for local forms α1, α2 and
sections t1, t2.

Hence, for s1, s2 ∈ A0(E) one has

dh(∇(s1), s2) = h(F∇(s1), s2) − h(∇(s1),∇(s2))

dh(s1,∇(s2)) = h(∇(s1),∇(s2)) + h(s1, F∇(s2))

and on the other hand

dh(∇(s1), s2)) + dh(s1,∇(s2)) = d(dh(s1, s2)) = 0.

This yields the assertion.
ii) Here, one first observes that the extension ∇ : Ak(E) → Ak+1(E) splits

into a (1, 0)-part and a (0, 1)-part, the latter of which is ∂̄. Then one computes
∇2 = (∇1,0)2 +∇1,0 ◦ ∂̄+ ∂̄ ◦∇1,0, as ∂̄2 = 0. Hence, F∇(s) ∈ (A2,0⊕A1,1)(E)
for all s ∈ A0(E).

Locally one could argue as follows: Since ∇ = d+A with A of type (1, 0),
the curvature d(A) +A ∧ A = ∂̄(A) + (∂A+A ∧ A) is a sum of a (1, 1)-form
and a (2, 0)-form.

iii) Combine i) and ii). By comparing the bidegree of F t
∇ and F∇ in local

coordinates we find that F∇ is of type (1, 1).
More globally, due to ii) one knows that h(F∇(s1), s2) and h(s1, F∇(s2))

are of bidegree (2, 0) + (1, 1) respectively (1, 1) + (0, 2). Recall the convention
h(s1, α2 ⊗ s2) = ᾱ2h(s1, s2). Using i), i.e. h(F∇(s1), s2) + h(s1, F∇(s2)) = 0,
and comparing the bidegree shows that h(F∇(s1), s2) has trivial (2, 0)-part
for all sections s1, s2. Hence, F∇ is of type (1, 1). �

Examples 4.3.9 i) Suppose E is the trivial vector bundle M×Cr with the con-
stant standard hermitian structure. If ∇ = d+A is an hermitian connection,

then i) says d(A + Āt) + (A ∧ A + (A ∧A)
t
) = 0. For r = 1 this means that

the real part of A is constant.
ii) If (L, h) is an hermitian holomorphic line bundle, then the curvature F∇

of its Chern connection is a section of A1,1
R (X,End(L, h)), which can be iden-

tified with the imaginary (1, 1)-forms on X . Indeed, End(L, h) is the purely
imaginary line bundle i · R×X (cf. page 176).
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iii) If the hermitian structure on the holomorphic vector bundle E is locally
given by the matrix H , then the Chern connection is of the form d+H̄−1∂(H̄).
Hence, the curvature is

F = ∂̄(H̄−1∂(H̄)).

Indeed, a priori F = ∂̄(H̄−1∂(H̄)) + ∂(H̄−1∂(H̄) + (H̄−1∂(H̄))∧ (H̄−1∂(H̄)),
but the sum of the last two terms must vanish, as both are of type (2, 0).

If E is a line bundle, then the hermitian matrix is just a positive real
function h. In this case one writes F = ∂̄∂ log(h). Once again, we see that F
can be considered as a purely imaginary two-form

iv) Let (X, g) be an hermitian manifold. Then the tangent bundle is na-
turally endowed with an hermitian structure. The curvature of the Chern
connection on TX is called the curvature of the hermitian manifold (X, g).
In Section 4.A we shall see that the curvature of a Kähler manifold (X, g) is
nothing but the usual curvature of the underlying Riemannian manifold.

For the Chern connection on a holomorphic hermitian bundle the Bianchi
identity yields

0 = (∇(F∇))1,2 = ∂̄(F∇),

i.e. F∇ as an element of A1,1(X,End(E)) is ∂̄-closed. Thus, in this case the
curvature yields a natural Dolbeault cohomology class [F∇] ∈ H1(X,ΩX ⊗
End(E)) for any holomorphic vector bundle E. A priori, this cohomology
class might depend on the chosen hermitian structure or, equivalently, on
the connection. That this is not the case is an immediate consequence of the
following description of it as the Atiyah class of E.

Proposition 4.3.10 For the curvature F∇ of the Chern connection on an
hermitian holomorphic vector bundle (E, h) one has

[F∇] = A(E) ∈ H1(X,ΩX ⊗ End(E)).

Proof. The comparison of Dolbeault and Čech cohomology can be done by
chasing through the following commutative diagram of sheaves:

ΩX ⊗ End(E)

��

// C0({Ui}, ΩX ⊗ End(E))

��

// C1({Ui}, ΩX ⊗ End(E))

i

��
A1,0(End(E))

��

// C0({Ui},A1,0(End(E)))
δ1 //

∂̄

��

C1({Ui},A1,0(End(E)))

A1,1(End(E))
δ0 // C0({Ui},A1,1(End(E)))

Here,X =
⋃
Ui is an open covering ofX trivializing E via ψi : E|Ui

∼= Ui×Cr.
With respect to ψi the hermitian structure h on Ui is given by an hermitian



4.3 Curvature 187

matrixHi. Then the curvature F∇ of the Chern connection on the holomorphic
bundle E on Ui is given by F∇|Ui = ψ−1(∂̄(H̄−1

i ∂H̄i))ψi. Thus,

δ0(F∇) = {Ui, ψ−1
i ◦ (∂̄(H̄−1

i ∂H̄i)) ◦ ψi}
= ∂̄{Ui, ψ−1

i ◦ (H̄−1
i ∂H̄i) ◦ ψi},

as the maps ψi are holomorphic trivializations.
Hence, it suffices to show that

i{Uij , ψ−1
j ◦ (ψ−1

ij dψij) ◦ ψj} = δ1{Ui, ψ−1
i ◦ (H̄−1

i ∂H̄i) ◦ ψi},

because the cocycle {Ui, ψ−1
i ◦ (ψ−1

ij dψij) ◦ ψj} represents by definition the
Atiyah class of E. Using the definition of δ1 one shows that the term on the
right hand side equals

{Uij , ψ−1
j ◦ (H̄−1

j ∂H̄j) ◦ ψj − ψ−1
i ◦ (H̄−1

i ∂H̄i) ◦ ψi)}.

Since

ψ−1
j ◦ (H̄−1

j ∂H̄j) ◦ ψj − ψ−1
i ◦ (H̄−1

i ∂H̄i) ◦ ψi
= ψ−1

j ◦ (H̄−1
j ∂H̄j − ψ−1

ij ◦ (H̄−1
i ∂H̄i) ◦ ψij) ◦ ψj ,

it suffices to prove

H̄−1
j ∂H̄j − ψ−1

ij ◦ (H̄−1
i ∂H̄i) ◦ ψij = ψ−1

ij ∂ψij .

The latter is a consequence of the compatibility ψt
ijHiψ̄ij = Hj or, equiva-

lently, ψ̄t
ijH̄iψij = H̄j and the chain rule

H̄−1
j ∂H̄j = ψ−1

ij H̄
−1
i (ψ̄t

ij)
−1
(
ψ̄t
ij(∂H̄i)ψij + ψ̄t

ijH̄i∂ψij
)

= ψ−1
ij (H̄−1

i ∂H̄i)ψij + ψ−1
ij ∂ψij ,

where we have used ∂ψ̄ij = 0. �

Remark 4.3.11 Here is a more direct argument to see that [F∇] does not de-
pend on the connection ∇. Indeed, any other connection is of the form ∇+ a
and F∇+a = F∇+∇(a)+a∧a. If both connections ∇ and ∇+a are Chern con-
nections with respect to certain hermitian structures, then F∇ and F∇+a are
(1, 1)-forms and a ∈ A1,0(End(E)). Thus, a ∧ a ∈ A2,0(End(E)) and, there-
fore, ∇(a)+a∧a = (∇(a)+a∧a)1,1 = ∇(a)1,1 = ∂̄(a), i.e. F∇+a = F∇ + ∂̄(a)
and hence

[F∇+a] = [F∇].

We have used here that the induced connection on the endomorphism bundle
is again compatible with the holomorphic structure.
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Example 4.3.12 Let us consider the standard homogeneous linear coordinates
z0, . . . , zn on Pn as sections of O(1). According to Example 4.1.2 one associates
with them a natural hermitian metric h(t) = |ψ(t)|2/(∑ |ψ(zi)|2) on O(1).

We claim that the curvature F of the Chern connection on the holomorphic
line bundle O(1) endowed with this hermitian metric is

i

2π
F = ωFS,

where ωFS is the Fubini–Study Kähler form (see Example 3.1.9, i)).
This can be verified locally. On a standard open subset Ui ⊂ Pn one has

ωFS = i
2π∂∂̄ log(1 +

∑ |wi|2).
The hermitian structure of O(1)|Ui with respect to the natural trivializa-

tion is given by the scalar function h = (1 +
∑ |wi|2)−1. By Example iii) in

4.3.9 we have F = ∂̄∂ log(h) = ∂∂̄ log(1 +
∑ |wi|2).

Remark 4.3.13 In the general situation, i.e. of a holomorphic line bundle L on a
complex manifoldX , the hermitian structure h{si} induced by globally genera-
ting sections s0, . . . , sn is the pull-back of the hermitian structure on O(1) of
the previous example under the induced morphism ϕ : X → Pn. Thus, for the
curvature F∇ of the Chern connection ∇ on L one has: (i/2π)F∇ = ϕ∗ωFS,
where ωFS is the Fubini–Study form on Pn.

Suppose now that L is not only holomorphic, but also endowed with an
hermitian structure h. What is the relation between h and h{si}? In general,
they are not related at all, but if the sections s0, . . . , sn are chosen such that
they form an orthonormal base of H0(X,L) then one might hope to approx-
imate h by h{si}. (Here, H0(X,L) is equipped with the hermitian product
defined in 4.1.11.) This circle of questions is intensively studied at the mo-
ment and there are many open questions.

Definition 4.3.14 A real (1, 1)-form α is called (semi-)positive if for all holo-
morphic tangent vectors 0 6= v ∈ T 1,0X one has

−iα(v, v̄) > 0 (resp. ≥).

At a point x ∈ X any semi-positive (1, 1)-form is a positive linear combina-
tion of forms of the type iβ∧β̄, where β is a (1, 0)-form. The standard example
of a positive form is provided by a Kähler form ω = i

2

∑
hijdzi ∧ dz̄j . In this

case (hij) is a positive hermitian matrix and thus vt(hij)v̄ > 0 for all non-
zero holomorphic tangent vectors. Together with Example 4.3.12 this shows
that iF∇ of the Chern connection ∇ on O(1) (with the standard hermitian
structure) is positive.

Clearly, the pull-back of a semi-positive form is again semi-positive. For
the curvature of a globally generated line bundle L this implies

F∇(v, v̄) ≥ 0.
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We next wish to generalize this observation to the higher rank case. Let
(E, h) be an hermitian vector bundle over a complex manifold X and let ∇
be an hermitian connection that satisfies F∇ ∈ A1,1(X,End(E)).

Definition 4.3.15 The curvature F∇ is (Griffiths-)positive if for any 0 6= s ∈
E one has

h(F∇(s), s)(v, v̄) > 0

for all non-trivial holomorphic tangent vectors v. Semi-positivity (negativity,
semi-negativity) is defined analogously.

Remark 4.3.16 Let L be an hermitian holomorphic line bundle and let ∇ be
the Chern connection. Its curvature F∇ is an imaginary (1, 1)-form. Then the
curvature F∇ is positive in the sense of Definition 4.3.15 if and only if the
real (1, 1)-form iF∇ is positive in the sense of Definition 4.3.14. The extra
factor i is likely to cause confusion at certain points, but these two concepts
of positivity (and others) are met frequently in the literature.

Before proving the semi-positivity of the curvature of any globally gener-
ated vector bundle, we need to relate the curvature and the second fundamen-
tal forms of a split vector bundle E = E1 ⊕E2. Let ∇ be a connection on E.
We denote the induced connections by ∇i and the second fundamental forms
by bi, i = 1, 2. Thus,

∇ =

(
∇1 b2
b1 ∇2

)

which immediately shows

Lemma 4.3.17 The curvature of the induced connection ∇1 on E1 is given
by F∇1 = pr1 ◦ F∇ − b2 ◦ b1. 2

Now let E1 be a holomorphic subbundle of the trivial holomorphic vector
bundle E = O⊕r endowed with the trivial constant hermitian structure. The
curvature of the Chern connection ∇ on E is trivial, as ∇ is just the exterior
differential. Hence, F∇1 = −b2 ◦ b1. This leads to

Proposition 4.3.18 The curvature F∇1 of the Chern connection ∇1 of a
subbundle E1 ⊂ E = O⊕r (with the induced hermitian structure) is semi-
negative.

Proof. By the previous lemma we have F∇1 = −b2 ◦ b1. Thus, if h2 is the
induced hermitian structure on the quotient E/E1 then

h1(F∇1(s), s) = −h1(b2(b1(s)), s) = −h2(b1(s), b1(s)).

Here we use properties of the second fundamental form proved in Section 4.2.
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More precisely, one has

h1(b2(β ⊗ t), s) = h1(−β ⊗ b2(t), s) = −βh1(b2(t), s)

= βh2(t, b1(s)) = h2(β ⊗ t, b1(s))

for any one-form β.
Now, it suffices to show that h(α, α) ≥ 0 for any α ∈ A1,0(E). Fix an

orthonormal basis si of E and write α =
∑
αisi. Then h(α, α) =

∑
αi ∧ ᾱi.

But αi ∧ ᾱi is semi-positive due to

(αi ∧ ᾱi)(v, v̄) = αi(v) · ᾱi(v̄) = αi(v) · αi(v) ≥ 0.

(Note that we did use that b1 is of type (1, 0).) �

A holomorphic vector bundle E is globally generated if there exist global
holomorphic sections s1, . . . , sr ∈ H0(X,E) such that for any x ∈ X the
values s1(x), . . . , sr(x) generate the fibre E(x). In other words, the sections
s1, . . . , sr induce a surjection O⊕r

� E. The standard constant hermitian
structure on O⊕r induces via this surjection an hermitian structure on E and
dualizing this surjection yields an inclusion of vector bundles E∗ ⊂ O⊕r.

Using Exercise 4.3.3 the proposition yields

Corollary 4.3.19 The curvature of a globally generated vector bundle is semi-
positive. 2

Here, the curvature is the curvature of the Chern connection with respect
to a hermitian structure on E defined by the choice of the globally generating
holomorphic sections.

Example 4.3.20 The Euler sequence on Pn twisted by O(−1) is of the form

0 // O(−1) // O⊕n+1 // TPn(−1) // 0 .

Hence, TPn(−1) admits an hermitian structure such that the curvature of the
Chern connection is semi-positive. Twisting by O(1) yields a connection on
TPn with positive curvature. In fact, this is the curvature of the Fubini–Study
metric on Pn. See Example 4.1.5.

Remark 4.3.21 As for line bundles, one could have first studied the universal
case. Recall that on the Grassmannian Grr(V ) there exists a universal short
exact sequence

0 // S // O ⊗ V // Q // 0.

By definition, the fibre of S over a point of Gr(V ) that corresponds to W ⊂ V
is naturally isomorphic to W . Fixing an hermitian structure on V induces
hermitian structures on S and Q (and therefore on the tangent bundle T of
Grr(V ), which is Hom(S,Q)).
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If E is any holomorphic vector bundle of rank r on a complex manifold
X generated by global sections spanning V ⊂ H0(X,E), then there exists
a morphism ϕ : X → Grr(V ) with ϕ∗Q = E (see Exercise 2.4.11). Again,
choosing an hermitian product on V induces an hermitian structure on E
which coincides with the pull-back of the hermitian structure on Q under ϕ.
This shows that the curvature of E and Q can be compared, namely ϕ∗FQ =
FE .

Thus, showing the positivity of FQ proves the semi-positivity for any glob-
ally generated vector bundle E. Moreover, if ϕ : X → Grr(V ) is an embedding,
then the curvature FE is positive.

Exercises

4.3.1 Show that ∇2 : Ak(E) → Ak+2(E) is given by taking the exterior prod-
uct with the form part of the curvature F∇ ∈ A2(M,End(E)) and applying its
endomorphism part to E.

4.3.2 Prove i) and iii) of Proposition 4.3.7. Compute the connection and the
curvature of the determinant bundle.

4.3.3 Let (E1, h1) and (E2, h2) be two hermitian holomorphic vector bundles
endowed with hermitian connections ∇1,∇2 such that the curvature of both is (semi-
)positive. Prove the following assertions.

i) The curvature of the induced connection ∇∗ on the dual vector bundle E∗
1 is

(semi-)negative.
ii) The curvature on E1 ⊗ E2 is (semi-)positive and it is positive if at least one

of the two connections has positive curvature.
iii) The curvature on E1 ⊕E2 is (semi-)positive.

4.3.4 Find an example of two connections ∇1 and ∇2 on a vector bundle E, such
that F∇1 is positive and F∇2 is negative.

4.3.5 Let L be a holomorphic line bundle on a complex manifold. Suppose L
admits an hermitian structure whose Chern connection has positive curvature. Show
that X is Kähler. If X is in addition compact prove

R
X
A(L)n > 0.

4.3.6 Show that the canonical bundle of Pn comes along with a natural hermitian
structure such that the curvature of the Chern connection is negative.

4.3.7 Show that the curvature of a complex torus Cn/Γ endowed with a constant
hermitian structure is trivial. Is this true for any hermitian structure on Cn/Γ ?

4.3.8 Show that the curvature of a the natural metric on the ball quotient intro-
duced in Example 3.1.9, iv) is negative. The one-dimensional case is a rather easy
calculation.
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4.3.9 Let X be a compact Kähler manifold with b1(X) = 0. Show that there
exists a unique flat connection ∇ on the trivial holomorphic line bundle O with
∇0,1 = ∂̄. Moreover, up to isomorphism O is the only line bundle with trivial Chern
class c1 ∈ H2(X,Z).

4.3.10 Let ∇ be a connection on a (complex) line bundle L on a manifold M .
Show that L locally admits trivializing parallel sections if and only if F∇ = 0.

This is the easiest case of the general fact that a connection on a vector bundle
is flat if and only if parallel frames can be found locally. (Frobenius integrability.)

Comments: - Various notions for the positivity of vector bundles can be found
in the literature. Usually they all coincide for line bundles, but the exact relations
between them is not clear for higher rank vector bundles. Positivity is usually ex-
ploited to control higher cohomology groups. This will be illustrated in Section 5.2.
We shall also see that, at least for line bundles on projective manifolds, an algebraic
description of bundles admitting an hermitian structure whose Chern connection has
positive curvature can be given. For a more in depth presentation of the material
we refer to [35, 100] and the forthcoming book [83].

- The problem alluded to in Remark 4.3.13 is subtle. See [37, 107].
- The curvature of Kähler manifold will be dealt with in subsequent sections,

in particular its comparison with the well-known Riemannian curvature shall be
explained in detail.

- In [75, Prop. 1.2.2] one finds a cohomological version of the Bianchi identity in

terms of the Atiyah class.
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4.4 Chern Classes

Connection and curvature are not only objects that are naturally associated
with any vector bundle, they also provide an effective tool to define coho-
mological and numerical invariants, called characteristic classes and numbers.
These invariants are in fact topological, but the topological aspects will not
be treated here. The goal of this sections is first to discuss the multilinear al-
gebra needed for the definition of Chern forms and classes and then to present
the precise definition of Chern classes and Chern and Todd characters. We
conclude the section by comparing the various definitions of the first Chern
class encountered throughout the text.

Let ∇ be a connection on a complex vector bundle E and let F∇ denote its
curvature. Recall that F∇ ∈ A2(M,End(E)). We would like to apply certain
multilinear operations to the linear part of F∇, i.e. to the components in
End(E), in order to obtain forms of higher degree. Let us start out with a
discussion of the linear algebra behind this approach.

Let V be a complex vector space. A k-multilinear symmetric map

P : V × . . .× V // C

corresponds to an element in Sk(V )∗. To each such P one associates its po-
larized form P̃ : V → C, which is a homogeneous polynomial of degree k
given by P̃ (B) := P (B, . . . , B). Conversely, any homogeneous polynomial is
uniquely obtained in this way. In our situation, we will consider V = gl(r,C),
the space of complex (r, r)-matrices.

Definition 4.4.1 A symmetric map

P : gl(r,C) × . . .× gl(r,C) // C

is called invariant if for all C ∈ Gl(r,C) and all B1, . . . , Bk ∈ gl(r,C) one has

P (CB1C
−1, . . . , CBkC

−1) = P (B1, . . . , Bk). (4.5)

This condition can also be expressed in terms of the associated homogeneous
polynomial as P̃ (CBC−1) = P̃ (B) for all C ∈ Gl(r,C) and all B ∈ gl(r,C).

Lemma 4.4.2 The k-multilinear symmetric map P is invariant if and only
if for all B,B1, . . . , Bk ∈ gl(r,C) one has

k∑

j=1

P (B1, . . . , Bj−1, [B,Bj ], Bj+1, . . . , Bk) = 0.

Proof. Use the invertible matrix C = etB and differentiate the invariance
equation (4.5) at t = 0. The converse is left as an exercise (cf. Exercise 4.4.8). �
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Proposition 4.4.3 Let P be an invariant k-multilinear symmetric form on
gl(r,C). Then for any vector bundle E of rank r and any partition m =
i1 + . . .+ ik there exists a naturally induced k-linear map:

P :
(∧i1M ⊗ End(E)

)
× . . .×

(∧ikM ⊗ End(E)
)

// ∧m
C M

defined by P (α1 ⊗ t1, . . . , αk ⊗ tk) = (α1 ∧ . . . ∧ αk)P (t1, . . . , tk).

Proof. Once a trivialization E(x) ∼= Cr is fixed, the above definition makes
sense. Since P is invariant, it is independent of the chosen trivialization. �

Clearly, the k-linear map defined in this way induces also a k-multilinear
map on the level of global sections

P : Ai1(M,End(E)) × . . .×Aik (M,End(E)) // Am
C (M).

Note that P applied to form-valued endomorphisms is only graded sym-
metric, but restricted to even forms it is still a k-multilinear symmetric map.
In particular, P restricted to A2(M,End(E)) × . . .×A2(M,End(E)) can be
recovered from its polarized form P̃ (α ⊗ t) = P (α ⊗ t, . . . , α ⊗ t). In the fol-
lowing, this polarized form shall be applied to the curvature form F∇ of a
connection ∇ on E. We will need the following

Lemma 4.4.4 For any forms γj ∈ Aij (M,End(E)) one has

dP (γ1, . . . , γk) =

k∑

j=1

(−1)
Pj−1

`=1 i`P (γ1, . . . ,∇(γj), . . . , γk),

where ∇ also denotes the induced connection on End(E).

Proof. This can be seen by a local calculation. We write ∇ = d + A, where
A is the local connection matrix of ∇. The induced connection on End(E) is
of the form ∇ = d + A with A acting as γ 7→ [A, γ]. Using the usual Leibniz
formula for the exterior differential one finds

dP (γ1, . . . , γk) =
k∑

j=1

(−1)
Pj−1

`=1 i`P (γ1, . . . , dγj , . . . , γk)

=

k∑

j=1

(−1)
Pj−1

`=1 i`P (γ1, . . . , (∇−A)(γj), . . . , γk).

By Lemma 4.4.2 the invariance of P proves the assertion. �

Corollary 4.4.5 Let F∇ be the curvature of an arbitrary connection ∇ on a
vector bundle E of rank r. Then for any invariant k-multilinear symmetric
polynomial P on gl(r,C) the induced 2k-form P̃ (F∇) ∈ A2k

C (M) is closed.
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Proof. This is an immediate consequence of the Bianchi identity (Lemma
4.3.5), which says ∇(F∇) = 0, and the previous lemma. �

Thus, to any invariant k-multilinear symmetric map P on gl(r,C) and any
vector bundle E of rank r one can associate a cohomology class [P̃ (F∇)] ∈
H2k(M,C). In fact, due to the following lemma, this class is independent of
the chosen connection.

Lemma 4.4.6 If ∇ and ∇′ are two connections on the same bundle E, then
[P̃ (F∇)] = [P̃ (F∇′ )].

Proof. The space of all connections is an affine space over A1(M,End(E)),
i.e. if ∇ is given, then any other connection is of the form ∇′ = ∇ + A for
some A ∈ A1(End(E)) (see Corollary 4.2.4). Thus, it suffices to show that the
induced map

A1(M,End(E)) // H2k(M,C)

is constant. We use that F∇+A = F∇ +A ∧A+ ∇(A).
The assertion can be proven by an infinitesimal calculation, i.e. in the

following calculation we only consider terms of order at most one in t:

P̃ (F∇+tA) = P̃ (F∇) + ktP (F∇, . . . , F∇,∇(A)).

Now the assertion follows from Lemma 4.4.4 and the Bianchi identity:

P (F∇, . . . , F∇,∇(A)) = dP (F∇, . . . , F∇, A) − P (∇(F∇), F∇, . . . , F∇, A) − . . .

−P (F∇, . . . , F∇,∇(F∇), A)

= dP (F∇, . . . , F∇, A).

�

Remark 4.4.7 If we denote by (Skgl(r,C))Gl(r) the invariant k-multilinear
polynomials, then the above construction induces a canonical homomorphism

(Skgl(r,C))Gl(r) // H2k(M,C)

for any vector bundle E of rank r. In fact, we actually obtain an algebra
homomorphism

(S∗gl(r,C))Gl(r) // H2∗(M,C)

which is called the Chern–Weil homomorphism.

So far, everything was explained for arbitrary invariant polynomials, but
some polynomials are more interesting than others, at least regarding their
applications to geometry. In the following we discuss the most frequent ones.
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Examples 4.4.8 i) Chern classes. Let {P̃k} be the homogeneous polynomials
with deg(P̃k) = k defined by

det(Id +B) = 1 + P̃1(B) + . . .+ P̃r(B).

Clearly, these P̃k are invariant. The Chern forms of a vector bundle of rank
r endowed with a connection are

ck(E,∇) := P̃k

(
i

2π
F∇

)
∈ A2k

C (M).

The k-th Chern class of the vector bundle E is the induced cohomology
class

ck(E) := [ck(E,∇)] ∈ H2k(M,C).

Note that c0(E) = 1 and ck(E) = 0 for k > rk(E). The total Chern class
is c(E) := c0(E) + c1(E) + . . .+ cr(E) ∈ H2∗(M,C).

ii) Chern characters. In order to define the Chern character of E one
uses the invariant homogeneous polynomials P̃k of degree k defined by

tr(eB) = P̃0(B) + P̃1(B) + . . . .

Then the k-th Chern character chk(E) ∈ H2k(M,C) of E is defined as the
cohomology class of

chk(E,∇) := P̃k

(
i

2π
F∇

)
∈ A2k

C (M).

Note that ch0(E) = rk(E). The total Chern character is ch(E) := ch0(E) +
. . .+ chr(E) + chr+1(E) + . . ..

iii) Todd classes. The homogeneous polynomials used to define the Todd
classes are given by

det(tB)

det(Id − e−tB)
=
∑

k

P̃k(B)tk .

(The additional variable t is purely formal and is supposed to indicate that the
left hand side can be developed as a power series in t with coefficients Pk which
are of degree k. This could also have been done for the other characteristic
classes introduced earlier.)

Then tdk(E,∇) := P̃k((i/2π)F∇) and

tdk(E) := [tdk(E,∇)] ∈ H2k(M,C).

The total Todd class is td(E) := td0(E) + td1(E) + . . ..
Note that the Todd classes are intimately related to the Bernoulli numbers

Bk. In fact, by definition

t

1 − e−t
= 1 +

t

2
+

∞∑

k=1

(−1)k+1 Bk
(2k)!

t2k.
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Let us study some of the natural operations for vector bundles and see
how the characteristic classes behave in these situations.

• LetE = E1⊕E2 be endowed with the direct sum ∇ of connections ∇1 and
∇2 onE1 and E2, respectively. The curvature F∇ is again the direct sum F∇1⊕
F∇2 (Proposition 4.3.7) and since det

(
(IdE1 + i

2πF∇1 ) ⊕ (IdE2 + i
2πF∇2)

)
=

det
(
IdE1 + i

2πF∇1

)
· det

(
IdE2 + i

2πF∇2

)
, we obtain the Whitney product for-

mula:
c(E,∇) = c(E1,∇1) · c(E2,∇2).

Of course, this relation then also holds true for the total Chern class. In
particular, one has c1(E1 ⊕ E2) = c1(E1) + c1(E2) and c2(E) = c2(E1) +
c2(E2) + c1(E1) · c1(E2). A similar calculation shows

ch(E1 ⊕E2) = ch(E1) + ch(E2).

• Consider two vector bundles E1 and E2 endowed with connections ∇1

and ∇2, respectively. Let ∇ be the induced connection ∇1 ⊗ 1 + 1 ⊗∇2 on
E = E1⊗E2. Then F∇ = F∇1 ⊗1+1⊗F∇2 (see Proposition 4.3.7) and hence
tr(e(i/2π)F∇) = tr(e(i/2π)F∇1 ⊗ e(i/2π)F∇2 ) = tr(e(i/2π)F∇1 ) · tr(e(i/2π)F∇2 ).
Therefore,

ch(E1 ⊗E2) = ch(E1) · ch(E2).

If E2 = L is a line bundle one finds c1(E1 ⊗ L) = c1(E1) + rk(E1) · c1(L)

and c2(E1 ⊗ L) = c2(E1) + (rk(E1) − 1) · c1(E1) · c1(L) +
(
rk(E1)

2

)
c2
1(L). See

Exercise 4.4.5 for the first few terms of the Chern character and Exercise 4.4.6
for the general formula for the Chern classes of E1 ⊗ L.

• The curvature F∇∗ of the naturally associated connection ∇∗ on the
dual bundle E∗ is F∇∗ = −F t

∇ (see Proposition 4.3.7). Thus, c(E∗,∇∗) =
det(Id + i

2πF∇∗) = det(Id − i
2πF

t
∇) = det(Id − i

2πF∇). Hence,

ck(E
∗,∇∗) = (−1)kck(E,∇).

• Let f : M → N be a differentiable map and let E be a vector bundle on
N endowed with a connection ∇. By Proposition 4.3.7 we know that Ff∗∇ =
f∗F∇. This readily yields

ck(f
∗E, f∗∇) = f∗ck(E,∇).

• The first Chern class of the line bundle O(1) on P1 satisfies the normali-
zation ∫

P1

c1(O(1)) = 1.

Indeed, in Example 4.3.12 we have shown that the Chern connection on
O(1) on Pn with respect to the natural hermitian structure has curvature
F = (2π/i)ωFS and by Example 3.1.9, i) we know

∫
P1 ωFS = 1.
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Remarks 4.4.9 i) In fact, all the characteristic classes introduced above are
real. This can be seen as follows. Pick an hermitian metric on the vector bundle
E and consider an hermitian connection ∇, which always exists. Then locally
and with respect to an hermitian trivialization of E the curvature satisfies
the equation F ∗

∇ = F̄ t
∇ = −F∇. Hence, (i/2π)F∇ = (i/2π)F t

∇ and, therefore,

c(E,∇) = det(Id + (i/2π)F∇) = det(Id + (i/2π)F t
∇) = det(Id + (i/2π)F∇) =

c(E,∇), i.e. c(E,∇) is a real form. Thus,

c(E) ∈ H∗(M,R).

The same argument works for ch(E) and td(E).
ii) If E is a holomorphic vector bundle over a complex manifold X , then

we may use an hermitian connection ∇ that is in addition compatible with the
holomorphic structure of E (cf. Proposition 4.2.14). In this case the curvature
F∇ is a (1, 1)-form, i.e. F∇ ∈ A1,1(X,End(E)). But then also the Chern forms
ck(E,∇) are of type (k, k) for all k.

If X is compact and Kähler, we have the decomposition H2k(X,C) =⊕
p+q=2k H

p,q(X) (Corollary 3.2.12) and the Chern classes of any holomorphic
bundle are contained in the (k, k)-component, i.e.

ck(E) ∈ H2k(X,R) ∩Hk,k(X).

iii) We are going to explain an ad hoc version of the splitting principle.
The geometric splitting principle works on the level of cohomology and tries
to construct for a given vector bundle E a ring extension H∗(M,R) ⊂ A∗ and
elements γi ∈ A2, i = 1, . . . , rk(E), such that c(E) =

∏
(1 + γi). Moreover,

A∗ is constructed geometrically as the cohomology ring of a manifold N such
that the inclusion H∗(M,R) ⊂ A∗ = H∗(N,R) is induced by a submersion
π : N → M (e.g. N can be taken as the full flag manifold associated to E).
The map π is constructed such that π∗E is a direct sum

⊕
Li of line bundles

Li with γi = c1(Li).
We propose to study a similar construction on the level of forms. This

approach is less geometrical but sufficient for many purposes.
Consider Cr with the standard hermitian structure and let B ∈ gl(r,C)

be a self-adjoint (or, hermitian matrix), i.e. Bt = B̄. Then, there exists
an orthonormal basis with respect to which B takes diagonal form with
eigenvalues λ1, . . . , λr. Clearly, every expression of the form P̃ (B), with P
an invariant symmetric map, can be expressed in terms of λ1, . . . , λr. E.g.
tr(B) = λ1 + . . .+ λr.

Let us now consider the curvature matrix F∇ of an hermitian connection
∇ on an hermitian vector bundle (E, h) of rank r on a manifold M . At a fixed
point x ∈ M we may trivialize (E, h) such that it becomes isomorphic to Cr

with the standard hermitian structure. Then i · F∇ in x corresponds to an
hermitian matrix B, but with coefficients not in C but in R := C[

∧2
xM ].

Diagonalizing B = i · F∇(x) can still be achieved, but in general only
over a certain ring extension R ⊂ R′. (One has to adjoint certain eigenvalues,
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to assure that a vector of length one can be completed to an orthonormal
basis, etc.) Let us suppose this has been done, i.e. in the new basis one has
B = diag(γ1, . . . , γr) with γi ∈ R′. Then for any invariant symmetric map P
one finds P̃ (iF∇) = P̃ (diag(γ1, . . . , γr)), where P is extended R′-linearly from

Cr to Cr⊗CR
′. The result P̃ (iF∇) is of course contained in C[

∧2
xM ] and can

thus be projected to
∧2∗
x M .

In general, this procedure will not work globally, but it often suffices
to have at one’s disposal the splitting principle in this form. The elements
γ1, . . . , γr (up to the scalar factor (1/2π), which we suppress) are called the
formal Chern roots of ∇ on E.

The primary use of this construction is to verify various formal identities.
As an example, let us show how the rather elementary identity ch2(E) =
(1/2)c2

1(E)− c2(E) can be proved. This can be done pointwise and so we may

assume that the ring extension R = C[
∧2
xM ] ⊂ R′ and the formal Chern

roots of E have been found. Hence,

ch2(E,∇)(x) =
1

8π2
tr (iF∇(x)) =

1

8π2
tr
(
diag(γ2

1 , . . . , γ
2
r )
)

=
1

8π2

∑

i

γ2
i

and

c2
1(E,∇)(x) − 2c2(E,∇)(x) =

1

4π2



(∑

i

γi

)2

− 2
∑

i<j

γiγj


 =

1

4π2

∑

i

γ2
i .

Another example for this type of argument can be found in Section 5.1. See
also Exercises 4.4.5 and 4.4.9.

iv) There is also an axiomatic approach to Chern classes which shows
that the Whitney product formula, the compatibility under pull-back, and
the normalization

∫
c1(O(1)) = 1 determine the Chern classes uniquely.

Definition 4.4.10 The Chern classes of a complex manifold X are

ck(X) := ck(TX) ∈ H2k(X,R),

where TX is the holomorphic tangent bundle. Similarly, one defines chk(X)
and tdk(X) by means of TX .

Note that we actually only need an almost complex structure in order
to define the Chern classes of the manifold. Also note that it might very
well happen that two different complex structures on the same differentiable
manifold yield different Chern classes, but in general counter-examples are
not easy to construct. A nice series of examples of complex structures on the
product of a K3 surface with S2 with different Chern classes can be found in
the recent paper [84].
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Example 4.4.11 Let us compute the characteristic classes of a hypersurface
Y ⊂ X . The normal bundle sequence in this case takes the form

0 // TY // TX |Y // OY (Y ) // 0.

Since any short exact sequence of holomorphic vector bundles splits as a
sequence of complex vector bundles, the Whitney product formula yields
i∗c(X) = c(Y ) · i∗c(O(Y )). Therefore,

c(Y ) = i∗
(
c(X) · (1 − c1(O(Y )) + c1(O(Y ))2 ± . . .)

)
.

In particular, c1(Y ) = i∗(c1(X) − c1(O(Y )) which reflects the adjunction
formula 2.2.17.

For a quartic hypersurface Y ⊂ P3 this yields c1(Y ) = 0 and c2(Y ) =
i∗c2(P

3). Hence,
∫
Y c2(Y ) =

∫
P3 c2(P

3)(4c1(O(1))) = 24. Here we use c2(P
3) =

6c2
1(O(1)) which follows from the Euler sequence and the Whitney formula

(cf. Exercise 4.4.4).

So far, we have encountered various different ways to define the first Chern
class of a complex or holomorphic line bundle. We will now try to summarize
and compare these.

For a holomorphic line bundle L on a complex manifold X we have used
the following three definitions:

i) Via the curvature as c1(L) = [c1(L,∇)] ∈ H2(X,R) ⊂ H2(X,C), where
∇ is a connection on L.

ii) Via the Atiyah class A(L) ∈ H1(X,ΩX). See Remarks 4.2.20 ii).
iii) Via the exponential sequence and the induced boundary operator δ :

H1(X,O∗
X) → H2(X,Z). See Definition 2.2.13.

By Proposition 4.3.10 the first two definitions are compatible in the sense
that A(L) = [F∇] if ∇ is the Chern connection on L endowed with an hermi-
tian structure. In case that X is a compact Kähler manifold we can naturally
embed H1(X,ΩX) = H1,1(X) ⊂ H2(X,C) and thus obtain

i

2π
A(L) = c1(L).

The comparison of i) and iii) will be done more generally for complex line
bundles L on a differentiable manifold M .

A complex line bundle L on a differentiable manifold M is described by
its cocycle {Uij , ψij} ∈ H1(M, C∗

C) (see Appendix B). The invertible complex
valued differentiable functions ψij ∈ C∗

C(Uij) are given as ψij = ψi ◦ ψ−1
j ,

where ψi : L|Ui
∼= Ui × C are trivializations.
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In the present context we work with the smooth exponential sequence

0 // Z // CC
// C∗

C
// 0

which induces a boundary isomorphism δ : H1(M, C∗
C) ∼= H2(M,Z), for CC is

a soft sheaf (Appendix B). In other words, complex line bundles on a manifold
M are parametrized by the (discrete) group H2(M,Z). Since H2(M,Z) maps
naturally to H2(M,R) ⊂ H2(M,C), one may compare δ(L) and c1(L). In
Proposition 4.4.12 we will see that they only differ by a sign.

Clearly, the exponential sequence on a complex manifold X and the ex-
ponential sequence on the underlying real manifold M are compatible. Thus,
we show at the same time that i) and iii) above are compatible. We therefore
obtain the following commutative diagram

H1(X,O∗
X)

	
A

wwooooooooooo

δ

��

// H1(X, C∗
C)

o

��

c1

{{

H1(X,ΩX)

compact Kähler
OOOO

''OOOO

	 H2(X,Z)

��

H2(X,Z)

H2(X,C)

Proposition 4.4.12 Let L be a complex line bundle over a differentiable
manifold M . Then the image of δ(L) ∈ H2(M,Z) under the natural map
H2(M,Z) → H2(M,C) equals −c1(L). Here, δ is the boundary map of the
exponential sequence.

The annoying sign is due to various conventions, e.g. in the definition of
the boundary operator. Often, it is dropped altogether, as it is universal and
of no importance.

Proof. In order to prove this, we have to consider the two resolutions of the
constant sheaf C on M given by the de Rham complex and the Čech complex,
respectively. They are compared as follows:

C //

��

C0({Ui},C) // C1({Ui},C) // C2({Ui},C)

i

��
A0

��

C1({Ui},A0)

d

��

δ2 // C2({Ui},A0)

A1

��

C0({Ui},A1)

d

��

δ1 // C1({Ui},A1)

A2
δ0 // C0({Ui},A2)
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Let M =
⋃
Ui be an open covering trivializing L and such that Uij =

Ui ∩Uj are simply connected. Choose trivialization ψi : L|Ui
∼= Ui×C. Then,

ψij = ψi ◦ ψ−1
j are sections of C∗

C(Uij). Furthermore, by choosing a branch

of the logarithm for any Uij we find ϕij ∈ CC(Uij) with e2πiϕij = ψij . The
boundary δ(L) = δ{ψij} is given by {Uijk , ϕjk−ϕik+ϕij} which takes values
in the locally constant sheaf Z.

Now choose an arbitrary connection ∇ on L. Locally with respect to the
trivialization ψi it can be written as ∇ = d+Ai, where the connection matrices
Ai are one-forms on Ui. The compatibility condition ensures ψ−1

ij d(ψij) +

ψ−1
ij Aiψij = Aj (see Remark 4.2.5), i.e.

Aj −Ai = ψ−1
ij d(ψij) = (2πi)d(ϕij),

since in the rank one case one has ψ−1
ij Aiψij = Ai.

The curvature F∇ of the line bundle L in terms of the connection forms Ai
is given as F∇ = d(Ai). With these information we can now easily go through
the above diagram:

δ0(
i

2πF∇) = {Ui, i
2πd(Ai)} = d{Ui, i

2πAi}

δ1{Ui, i
2πAi} = {Uij , i

2π (Aj − Ai)} = −d{Uij , ϕij}

−δ2{Uij , ϕij} = −{Uijk, ϕjk − ϕik + ϕij}.

This proves the claim. �

There is yet another way to associate a cohomology class to a line bundle in
case the line bundle is given in terms of a divisor. Let X be a compact complex
manifold and let D ⊂ X be an irreducible hypersurface. Its fundamental class
[D] ∈ H2(X,R) is in fact contained in the image of H2(X,Z) → H2(X,R)
(cf. Remark 2.3.11).

Proposition 4.4.13 Under the above assumptions one has c1(O(D)) = [D].

Proof. Let L = O(D) and let ∇ be the Chern connection on L with respect to
a chosen hermitian structure h. In order to prove that [ i2πF∇] = c1(L) equals
[D] one needs to show that for any closed real form α one has

i

2π

∫

X

F∇ ∧ α =

∫

D

α.

Let us fix an open covering X =
⋃
Ui and holomorphic trivializations

ψi : L|Ui
∼= Ui × C. On Ui the hermitian structure h shall be given by the

function hi : Ui → R>0, i.e. h(s(x)) = h(s(x), s(x)) = hi(x) · |ψi(s(x))|2 for
any local section s.
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If s is holomorphic on Ui vanishing along D one has (Examples 4.3.9, iii)):

∂̄∂ log(h ◦ s) = ∂̄∂ log(hi) = F∇|Ui on Ui \D.

Here we have used that ∂̄∂ log(ψi ◦ s) = ∂̄∂ log(ψ̄i ◦ s) = 0, since ψi is holo-
morphic.

Let now s ∈ H0(X,L) be the global holomorphic section defining D and
denote by Dε the tubular neighbourhood Dε := {x ∈ X | |h(s(x))| < ε}. Then

i

2π

∫

X

F∇ ∧ α = lim
ε→0

i

2π

∫

X\Dε

F∇ ∧ α

= lim
ε→0

i

2π

∫

X\Dε

∂̄∂ log(h ◦ s) ∧ α

= lim
ε→0

i

4π

∫

X\Dε

d(∂ − ∂̄) log(h ◦ s) ∧ α

= lim
ε→0

i

4π

∫

∂Dε

(∂ − ∂̄) log(h ◦ s) ∧ α by Stokes and using dα = 0.

On the open subset Ui we may write

(∂ − ∂̄) log(h ◦ s)
= (∂ − ∂̄) log(ψi ◦ s) + (∂ − ∂̄) log(ψ̄i ◦ s) + (∂ − ∂̄) log(hi)

= ∂ log(ψi ◦ s) − ∂ log(ψi ◦ s) + (∂ − ∂̄) log(hi)

= (2i) · Im(∂ log(ψi ◦ s)) + (∂ − ∂̄) log(hi).

The second summand does not contribute to the integral for ε → 0 as hi is
bounded from below by some δ > 0. Thus, it suffices to show

lim
ε→0

1

2π

∫

∂Dε∩Ui

Im(∂ log(ψi ◦ s)) ∧ α = −
∫

D∩Ui

α.

This is a purely local statement. In order to prove it, we may assume
that Dε is given by z1 = 0 in a polydisc B. Moreover, |h(z1)| = hi · |zi|
if h on Ui is given by hi. Hence, ∂Dε = {z | |z1| = ε/hi}. Furthermore,
∂ log(ψi ◦ s) = ∂ log(z1) = z−1

1 dz1 and α = f(dz2 ∧ . . . ∧ dzn) ∧ (dz̄2 ∧ . . . ∧
dz̄n) + dz1 ∧ α′ + dz̄1 ∧ ᾱ′. Notice that ∂ log(ψi ◦ s) ∧ (dz1 ∧ α′) = 0 and that
∂ log(ψi ◦ s) ∧ (dz̄1 ∧ ᾱ′) = (dz1 ∧ dz̄1)∧ ((1/z1)ᾱ

′) does not contribute to the
integral over ∂Dε.

Thus,
∫

z1=0

α =

∫
f(0, z2, . . . , zn)(dz2 ∧ . . . ∧ dzn) ∧ (dz̄2 ∧ . . . ∧ dz̄n)

and
∫

∂Dε

∂ log(ψi◦s)∧α = −
∫

|h(z1)|=ε

fz−1
1 dz1∧(dz2∧. . .∧dzn)∧(dz̄2∧. . .∧dz̄n).

The minus sign appears as we initially integrated over the exterior domain.
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Eventually, one applies the Cauchy integral formula (1.4):

lim
ε→0

∫

∂Dε

∂ log(ψi ◦ s) ∧ α

= − lim
ε→0

∫

|z1|=ε/hi

(∫

zi>1

f · (dz2 ∧ . . . ∧ dzn ∧ dz̄2 ∧ . . . ∧ dz̄n)
)
dz1
z1

= (−2πi) ·
∫

z1=0

f(0, z2, . . . , zn)(dz2 ∧ . . . ∧ dzn ∧ dz̄2 ∧ . . . ∧ dz̄n)

= −2πi

∫

z1=0

α

and hence

lim
ε→0

1

2π

∫

∂Dε

Im (∂ log(ψi ◦ s) ∧ α) = −Im

(∫

z1=0

i · α
)

= −
∫

z1=0

α.

�

Remark 4.4.14 Since taking the first Chern class c1 and taking the fundamen-
tal class are both linear operations, the assertion of Proposition 4.4.13 holds
true for arbitrary divisors, i.e. c1(O(

∑
niDi)) =

∑
ni[Di].

The reader may have noticed that in the proof above we have, for simpli-
city, assumed that D is smooth. The argument might easily be adjusted to
the general case.

Exercises

4.4.1 Let C be a connected compact curve. Then there is a natural isomorphism
H2(C,Z) ∼= Z. Show that with respect to this isomorphism (or, rather, its R-linear
extension) one has c1(L) = deg(L) for any line bundle L on C.

4.4.2 Show that for a base-point free line bundle L on a compact complex mani-
fold X the integral

R
X

c1(L)n is non-negative.

4.4.3 Show that td(E1 ⊕E2) = td(E1) · td(E2).

4.4.4 Compute the Chern classes of (the tangent bundle of) Pn and Pn × Pm.
Try to interpret

R
Pn cn(Pn) and

R
Pn×Pm cn(Pn × Pm).

4.4.5 Prove the following explicit formulae for the first three terms of ch(E) and
td(E) in terms of ci(E):

ch(E) = rk(E) + c1(E) +
c2
1(E) − 2c2(E)

2
+

c3
1(E) − 3c1(E)c2(E) + 3c3(E)

6
+ . . .

td(E) = 1 +
c1(E)

2
+

c2
1(E) + c2(E)

12
+

c1(E)c2(E)

24
+ . . .
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4.4.6 Let E be a vector bundle and L a line bundle. Show

ci(E ⊗ L) =

iX

j=0

 
rk(E) − j

i− j

!
cj(E)c1(L)i−j .

This generalizes the computation for the first two Chern classes of E ⊗ L on page
197.

4.4.7 Show that on Pn one has c1(O(1)) = [ωFS] ∈ H2(Pn,R). Consider first the
case of P1 and then the restriction of O(1) and the Fubini–Study metric to P1 under
a linear embedding P1 ⊂ Pn.

4.4.8 Prove that a polynomial P of degree k on the space of r × r matrices is
invariant if and only if

P
P (A1, . . . , Ai−1, [A,Ai], Ai+1, . . . , Ak) = 0 for all matrices

A1, . . . , Ak, A (cf. Lemma 4.4.2).

4.4.9 Show that c1(End(E)) = 0 on the form level and compute c2(End(E)) in
terms of ci(E), i = 1, 2. Compute (4c2 − c2

1)(L⊕ L) for a line bundle L. Show that
c2k+1(E) = 0, if E ∼= E∗.

4.4.10 Let L be a holomorphic line bundle on a compact Kähler manifold
X. Show that for any closed real (1, 1)-form α with [α] = c1(L) there exists an
hermitian structure on L such that the curvature of the Chern connection ∇ on L
satisfies (i/2π)F∇ = α. (Hint: Fix an hermitian structure on h0 on L. Then any
other is of the form ef · h0. Compute the change of the curvature. We will give the
complete argument in Remark 4.B.5.

4.4.11 Let X be a compact Kähler manifold. Show that via the natural inclusion
Hk(X,Ωk

X) ⊂ H2k(X,C) one has

chk(E) =
1

k!

„
i

2π

«k

tr
“
A(E)⊗k

”
.

Here, A(E)⊗k is obtained as the image of A(E)⊗ . . .⊗A(E) under the natural map
H1(X,ΩX ⊗End(E))× . . .×H1(X,ΩX ⊗End(E)) → Hk(X,Ωk

X ⊗End(E)) which
is induced by composition in End(E) and exterior product in Ω∗

X .

4.4.12 Let X be a compact Kähler manifold and let E be a holomorphic vector
bundle admitting a holomorphic connection D : E → ΩX ⊗E. Show that ck(E) = 0
for all k > 0.

Comments: Chern classes were first defined by Chern in [26]. A more topo-

logical approach to characteristic classes, also in the real situation, can be found in

[91]. Since Chern classes are so universal, adapted versions appear in many different

areas, e.g. algebraic geometry, Arakelov theory, etc.
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Appendix to Chapter 4

4.A Levi-Civita Connection and Holonomy on Complex

Manifolds

In this section we will compare our notion of a connection with the notion used
in Riemannian geometry. In particular, we will clarify the relation between the
Chern connection on the holomorphic tangent bundle of an hermitian manifold
and the Levi-Civita connection on the underlying Riemannian manifold. Very
roughly, we will see that these connections coincide if and only if the hermitian
manifold is Kähler.

We will end this appendix with a discussion of the holonomy group of a
Riemannian manifold and the interpretation of a Kähler structure in terms of
the holonomy group of its underlying Riemannian structure.

Let us first review some basic concepts from Riemannian geometry. For
this purpose we consider a Riemannian manifold (M, g). A connection on M
by definition is a connection on the real tangent bundle TM , i.e. an R-linear
map D : A0(TM) → A1(TM) satisfying the Leibniz rule 4.2. For any two
vector fields u and v we denote by Duv the one-form Dv with values in TM
applied to the vector field u. Note that Duv is R-linear in v and A0-linear in
u. With this notation, the Leibniz rule reads Du(f ·v) = f ·Du(v)+(df)(u) ·v.

A connection is metric if dg(u, v) = g(Du, v) + g(u,Dv). In other words,
D is metric if and only if g is parallel, i.e. D(g) = 0, where D is the induced
connection on T ∗M ⊗ T ∗M (cf. Exercise 4.2.8).

Before defining the torsion of a connection recall that the Lie bracket is an
R-linear skew-symmetric map [ , ] : A0(TM) × A0(TM) → A0(TM) which
locally for u =

∑
i ai

∂
∂xi

and v =
∑
i bi

∂
∂xi

is defined by

[u, v] =
∑

j

∑

i

(
ai
∂bj
∂xi

− bi
∂aj
∂xi

)
∂

∂xj

=
∑

j

(dbj(u) − daj(v))
∂

∂xj
.

In particular, one has [f · u, v] = f · [u, v] − df(v) · u.

Definition 4.A.1 The torsion of a connection D is given by

TD(u, v) := Duv −Dvu− [u, v]

for any two vector fields u and v.

The first thing one observes is that TD is skew-symmetric, i.e. TD :∧2
TM → TM . Moreover, TD is A0-linear and can therefore be considered



4.A Levi-Civita Connection and Holonomy on Complex Manifolds 207

as an element of A2(TM). Indeed, TD(f · u, v) = f ·Duv − (f ·Dvu+ df(v) ·
u)− (f · [u, v]− df(v) · u) = f · TD(u, v). A connection ∇ is called torsion free
if TD = 0.

Let us try to describe the torsion in local coordinates. So we may assume
that our connection is of the form D = d + A. Here, A is a one-form with
values in End(TM). In the following we will write A(u) ∈ A0(End(TM))
for the endomorphism that is obtained by applying the one-form part of A
to the vector field u. If u is constant, then A(u) = Du. On the other hand,
A · u ∈ A1(TM) is obtained by applying the endomorphism part of A to u.
Confusion may arise whenever we use the canonical isomorphism A1(TM) ∼=
A0(End(TM)).

Lemma 4.A.2 If D = d+A then TD(u, v) = A(u) · v −A(v) · u.

Proof. If u =
∑
i ai

∂
∂xi

and v =
∑

i bi
∂
∂xi

then

TD(u, v) =

(∑
dbi(u)

∂

∂xi
+A(u) · v

)
−
(∑

dai(v)
∂

∂xi
+A(v) · u

)
− [u, v]

=A(u) · v − A(v) · u
�

Classically, one expresses the connection matrix A in terms of the Christof-
fel symbols Γ kij as

A

(
∂

∂xi

)
· ∂

∂xj
=
∑

k

Γ kij
∂

∂xk
.

Then

TD

(
∂

∂xi
,
∂

∂xj

)
=
∑

k

(
Γ kij − Γ kji

) ∂

∂xk
.

In particular, D is torsion free if and only if Γ kij = Γ kji for all i, j, k. The
following result is one of the fundamental statements in Riemannian geometry
and can be found in most textbooks on the subject, see e.g. [79].

Theorem 4.A.3 Let (M, g) be a Riemannian manifold. Then there exists a
unique torsion free metric connection on M ; the Levi-Civita connection. 2

Why the notion of a torsion free connection is geometrically important
is not evident from the definition. But in any case torsion free connections
turn out to behave nicely in many ways. E.g. the exterior differential can be
expressed in terms of torsion free connections.

Proposition 4.A.4 If D is a torsion free connection on M then the induced
connection on the space of forms satisfies

(dα)(v1, . . . vk+1) =
k∑

i=0

(−1)i(Dviα)(v1, . . . , v̂i, . . . , vk+1)

for any k-form α and vector fields v1, . . . vk+1.
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Proof. We leave the complete proof to the reader (cf. Exercise 4.A.1). One has
to use the following definition of the exterior differential (see Appendix A):

dα(v1, . . . , vk+1) =
k+1∑

i=1

(−1)i+1vi(α(v1, . . . , v̂i, . . . , vk+1))

+
∑

1≤i<j≤k+1

(−1)i+jα([vi, vj ], v1, . . . , v̂i, . . . , v̂j , . . . vk+1)

�

A form α ∈ Ak(M) is parallel if D(α) = 0. Thus, Proposition 4.A.4 implies

Corollary 4.A.5 Let D be a torsion free connection on M . Any D-parallel
form is closed. 2

Let us now turn to hermitian manifolds. By definition, an hermitian struc-
ture on a complex manifold X is just a Riemannian metric g on the underlying
real manifold compatible with the complex structure I defining X (see Defini-
tion 3.1.1). Recall that the complexified tangent bundle TCX decomposes as
TCX = T 1,0X ⊕ T 0,1X and that the bundle T 1,0X is the complex bundle un-
derlying the holomorphic tangent bundle TX (Proposition 2.6.4). Moreover,
the hermitian extension gC of g to TCX restricted to T 1,0X is 1

2 (g − iω),
where the complex vector bundles T 1,0X and (TX, I) are identified via the
isomorphism

ξ : TX // T 1,0X, u
� // 1

2
(u− iI(u))

and ω is the fundamental form g(I( ), ( )) (cf. Section 1.2).
We will compare hermitian connections ∇ on (T 1,0X, gC) with the Levi-

Civita connection D on TX via the isomorphism ξ. One first observes the
following easy

Lemma 4.A.6 Under the natural isomorphism ξ any hermitian connection ∇
on T 1,0X induces a metric connection D on the Riemannian manifold (X, g).

Proof. By assumption dgC(u, v) = gC(∇u, v) + gC(u,∇v). Taking real parts of
both sides yields dg(u, v) = g(Du, v) + g(u,Dv), i.e. the induced connection
D is metric. �

In general, an hermitian connection ∇ on (T 1,0X, gC) will not necessarily
induce the Levi-Civita connection on the Riemannian manifold (X, g). In fact,
this could hardly be true, as the Levi-Civita connection is unique, but there are
many hermitian connections (T 1,0X, gC). But even for the Chern connection
on the holomorphic tangent bundle (TX , gC), which is unique, the induced
connection is not the Levi-Civita connection in general.
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In order to state the relevant result comparing these two notions, we
need to introduce the torsion T∇ ∈ A2(X) of an hermitian connection ∇.
By definition, T∇ of ∇ is the torsion of the induced connection D on TX ,
i.e. for u, v ∈ TX one has T∇(u, v) = ξ−1(∇uξ(v) − ∇vξ(u)) − [u, v] =
Duv − Dvu − [u, v] = TD(u, v). As before we call the hermitian connection
torsion free if its torsion is trivial.

Proposition 4.A.7 Let ∇ be a torsion free hermitian connection on the her-
mitian bundle (T 1,0X, gC).

i) Then ∇ is the Chern connection on the holomorphic bundle TX endowed
with the hermitian structure gC.

ii) The induced connection D on the underlying Riemannian manifold is
the Levi-Civita connection.

iii) The hermitian manifold (X, g) is Kähler.

Proof. If we write the connection ∇ with respect to a local holomorphic base
∂
∂zi

as ∇ = d+ A then we have to show that the assumption T∇ = 0 implies

A ∈ A1,0(End(T 1,0X)). By definition the latter condition is equivalent to the
vanishing of A(u + iI(u)) for any u ∈ TX or, equivalently, to A(u + iI(u)) ·
ξ(v) = 0 for all v. Using the analogue of Lemma 4.A.2 for the torsion of the
connection ∇, one computes

A(u+ iI(u)) · ξ(v)
= A(u+ iI(u)) · ξ(v) −A(v) · (ξ(u) + iI(ξ(u))), since ξ = −iIξ
= (A(u) · ξ(v) −A(v) · ξ(u)) + i (A(I(u)) · ξ(v) −A(v) · ξ(I(u)))
= ξ(T (u, v)) + iξ(T (I(u), v)) = 0,

as ξ and I are C-linear. This proves i).
ii) is a consequence of what has been said before. In order to show iii), i.e.

that the fundamental form ω is closed, one may use Corollary 4.A.5. Thus,
it suffices to show that ω is parallel. This is the following straightforward
calculation:

(Dω)(u, v) = d(ω(u, v)) − ω(Du, v) − ω(u,Dv)

= dg(Iu, v) − g(DI(u), v) − g(I(u), D(v)) = 0,

as the connection is metric. �

Note that in the proof we have tacitly assumed that D commutes with
the complex structure I , which is obvious as the hermitian connection ∇ on
the complex vector bundle (T 1,0X, gC) is in particular C-linear and T 1,0X ∼=
(TX, I) is an isomorphism of complex vector bundles. However, if we try to
associate to a connection on the underlying real manifold a connection on
the holomorphic tangent bundle, then the compatibility with the complex
structure is the crucial point. If D is a connection on the tangent bundle TX .
Then DI = ID if and only if I is a parallel section of End(TX) with respect
to the induced connection on the endomorphism bundle.
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Proposition 4.A.8 Let D be the Levi-Civita connection on the Riemannian
manifold (X, g) and assume that the complex structure I is parallel.

i) Under the isomorphism ξ : TX ∼= T 1,0X the connection D induces the
Chern connection ∇ on the holomorphic tangent bundle T 1,0X.

ii) The manifold is Kähler and, moreover, the Kähler form ω is parallel.

Proof. Since I is parallel, we do obtain a connection ∇ on the complex vec-
tor bundle T 1,0X . This connection is hermitian if and only if dgC(u, v) =
gC(∇u, v) + gC(u,∇v). Since the Levi-Civita connection is metric, the real
parts of both sides are equal. The imaginary parts are (up to a factor)
dω(u, v) = dg(I(u), v) respectively g(I(Du), v)+g(I(u), Dv). Using DI = ID
and again that ∇ is metric, one sees that they also coincide.

The Levi-Civita connection is by definition torsion free and using Propo-
sition 4.A.7 this proves i) and the first assertion of ii). That D(ω) = 0 follows
from D(I) = 0 and D(g) = 0 as in the proof of Proposition 4.A.7. �

As a partial converse of Proposition 4.A.7, one proves.

Proposition 4.A.9 Let (X, g) be a Kähler manifold. Then under the isomor-
phism ξ : TX ∼= T 1,0X the Chern connection ∇ on the holomorphic tangent
bundle TX = T 1,0X corresponds to the Levi-Civita connection D.

Proof. We have to show that under the assumption that (X, g) is Kähler the
Chern connection is torsion free. This is done in local coordinates. Locally we
write ω = 1

2

∑
hijdzi ∧ dzj and A = (hji)

−1(∂hji) for the connection form.

The fundamental form is closed if and only if
∂hij

∂zk
=

∂hkj

∂zi
. The latter can

then be used to prove the required symmetry of the torsion form. We leave
the details to the reader (cf. Exercise 4.A.2) �

From this slightly lengthy discussion the reader should only keep in mind
that the following four conditions are equivalent:

i) The complex structure is parallel with respect to the Levi-Civita con-
nection.

ii) (X, g) is Kähler.
iii) Levi-Civita connection D and Chern connection ∇ are identified by ξ.
iv) The Chern connection is torsion free.

For this reason we will in the following not distinguish anymore between
the Levi-Civita connection D and the Chern connection ∇ provided the mani-
fold is Kähler.

Let us now turn to the curvature tensor of a Riemannian manifold (M, g).
Classically it is defined as

R(u, v) := DuDv −DvDu −D[u,v],
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where D is the Levi-Civita connection. How does this definition compare with
the one given in Section 4.3? Not surprisingly they coincide. This is shown by
the following direct calculation. We assume for simplicity that Ds = α⊗ t:

R(u, v)(s) = DuDvs−DvDus−D[u,v]s

= Du(α(v)t) −Dv(α(u)t) − α([u, v])t

= u(α(v))t+ α(v)Dut− v(α(u))t − α(u)Dvt− α([u, v])t

= (dα)(u, v) · t+ α(v)Dut− α(u)Dvt = ((dα) · t+ α ·D(t)) (u, v)

= D(α⊗ t)(u, v) = F (u, v)(s),

where we have used a special case of the formula that describes the exterior
differential in terms of the Lie bracket (cf. Exercise 4.A.1).

In Riemannian geometry one also considers the Ricci tensor

r(u, v) := tr(w 7→ R(w, u)v) = tr( w
� // R(w, v, u) )

(see [79]). Combined with the complex structure one has

Definition 4.A.10 The Ricci curvature Ric(X, g) of a Kähler manifold (X, g)
is the real two-form

Ric(u, v) := r(I(u), v).

The Kähler metric is called Ricci-flat if Ric(X, g) = 0.

The Ricci curvature can be computed by means of the curvature F∇ of
the Levi-Civita (or, equivalently, the Chern) connection and the Kähler form
ω. This goes as follows.

The contraction of the curvature F∇ ∈ A1,1(End(T 1,0X)) with the Kähler
form ω yields an element ΛωF ∈ A0(X,End(T 1,0X)) or, equivalently, an en-
domorphism T 1,0X → T 1,0X . Its composition with the isomorphism T 1,0X →∧0,1X induced by the Kähler form will be denoted

ω̃(ΛωF ) : T 1,0X
ΛωF∇ // T 1,0X

ω // ∧0,1 X.

One easily verifies that ω̃(ΛωF ) ∈ A1,1(X).

Proposition 4.A.11 Let (X, g) be a Kähler manifold and ∇ the Levi-Civita
or, equivalently, the Chern connection. Then the following two identities hold
true:

i) Ric(X, g) = i · ω̃ (ΛωF∇).
ii) Ric(X, g) = i · trC(F∇), where the trace is taken in the endomorphism

part of the curvature.
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Proof. We shall use the following well-known identities from Riemannian ge-
ometry (see [12, page 42]):

g(R(u, v)x, y) = g(R(x, y)u, v) (4.6)

R(u, v)w +R(v, w)u+R(w, u)v = 0 (4.7)

g(R(u, v)w, x) + g(w,R(u, v)x) = 0 (4.8)

The third one is clearly due to the fact that the Levi-Civita connection is
metric. Equation (4.7), which is the algebraic Bianchi identity, and equation
(4.6) are more mysterious.

The proof consists of computing all three expressions explicitly in terms
of an orthonormal basis of the form x1, . . . , xn, y1 = I(x1), . . . , yn = I(xn):

Ric(u, v) = tr (w 7→ R(w, v)I(u))

=
∑

g(R(xi, v)I(u), xi) + g(R(yi, v)I(u), yi)

(4.8)
= −

∑
g(I(u), R(xi, v)xi) + g(I(u), R(yi, v)yi)

=
∑

g(u,R(xi, v)yi) − g(u,R(yi, v)xi)

(4.7)
= −

∑
g(u,R(yi, xi)v)

(4.8)
= −

∑
g(R(xi, yi)u, v),

where we use twice the compatibility of g and I and the fact that R(u, v) is
skew-symmetric.

Furthermore, using the notation and convention of Section 1.2 one calcu-
lates:

trC(F∇)(u, v) = trC (w 7→ F∇(u, v)w) with w ∈ T 1,0

= trC (w 7→ R(u, v)w) with w ∈ T

=
∑

(R(u, v)xi, xi) since x1, . . . , xn is an orthonormal basis

of the hermitian vector space (T, ( , ))

=
∑

g(R(u, v)xi, xi) − i · ω(R(u, v)xi, xi)

as ( , ) = g − i · ω
=
∑

g(R(u, v)xi, xi) + i · g(R(u, v)xi, yi)

(4.6)
=
∑

g(R(xi, xi)u, v) + i · g (R(xi, yi)u, v)

= 0 + i ·
∑

g(R(xi, yi)u, v)

Both computations together show ii).
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In order to see i), let us write ω =
∑
xi ∧ yi. Then a straightforward

computation shows Λωα =
∑
α(xi, yi) and

2i · ω̃(ΛωF )(u, v) = i · ω(ΛωF (ξ(u)), ξ(v)) = ω(Λω(F (ξ(I(u)), ξ(v))

= ω
(∑

F (xi, yi)ξ(I(u)), ξ(v)
)

= ω
(
ξ
(∑

R(xi, yi)I(u)
)
, ξ(v)

)

= 2g
(
I
(∑

R(xi, yi)I(u)
)
, v
)

= −2
∑

g(R(xi, yi)u, v).

�

In the following, we will sketch the relation between the holonomy of a
Riemannian manifold and its complex geometry.

To any Riemannian metric g on a manifold M of dimension m there is
associated, in a unique way, the Levi-Civita connection D. By means of D
one can define the parallel transport of tangent vectors along a path in M .
This goes as follows.

Let γ : [0, 1] → M be a path connecting two points x := γ(0) and y :=
γ(1). The pull-back connection γ∗D on γ∗(TM) is necessarily flat over the
one-dimensional base [0, 1] and γ∗(TM) can therefore be trivialized by flat
sections. In this way, one obtains an isomorphism, the parallel transport along
the path γ:

Pγ : TxM // TxM .

In other words, for any v ∈ TxM there exists a unique vector field v(t) with
v(t) ∈ Tγ(t)M , v(0) = v, and such that v(t) is a flat section of γ∗(TM). Then
Pγ(v) = v(1).

The first observation concerns the compatibility of Pγ with the scalar
products on TxM and TyM given by the chosen Riemannian metric g.

Lemma 4.A.12 Pγ is an isometry. 2

In particular, if γ is a closed path, i.e. γ(0) = γ(1) = x, then Pγ ∈
O(TxM, gx) ∼= O(m).

Definition 4.A.13 For any point x ∈M of a Riemannian manifold (M, g) the
holonomy group Holx(M, g) ⊂ O(TxM) is the group of all parallel transports
Pγ along closed paths γ : [0, 1] →M with γ(0) = γ(1) = x.

If two points x, y ∈ M can be connected at all, e.g. if M is connected,
then the holonomy groups Holx(M, g) and Holy(M, g) are conjugate and thus
isomorphic. More precisely, if γ : [0, 1] → M is a path connecting x with y
then Holy(M, g) = Pγ ◦ Holx(M, g) ◦ P−1

γ .
Hence, if M is connected then one can define the group Hol(M, g) as a

subgroup of O(m) up to conjugation.
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There is a further technical issue if M is not simply connected. Then
there is a difference between Hol(M, g) and the restricted holonomy group
Holo(M, g) ⊂ Hol(M, g) of all parallel transports Pγ along contractible paths
γ (i.e. 1 = [γ] ∈ π1(M)). For simplicity, we will assume throughout that M is
simply connected.

One fundamental problem in Riemannian geometry is the classification of
holonomy groups. What groups Hol(M, g) ⊂ O(m) can arise?

Firstly, the holonomy of a product (M, g) = (M1, g1) × (M2, g2) is the
product Hol(M, g) = Hol(M1, g1)×Hol(M2, g2) ⊂ O(m1)×O(m2) ⊂ O(m1 +
m2).

Thus, in order to be able to classify all possible holonomy groups we shall
assume that (M, g) is irreducible, i.e. cannot be written (locally) as a product.

This is indeed reflected by an algebraic property of the holonomy group:

Proposition 4.A.14 If (M, g) is irreducible Riemannian manifold, then the
inclusion Hol(M, g) ⊂ O(m) defines an irreducible representation on Rm. 2

This proposition is completed by the following theorem ensuring the exis-
tence of a decomposition into irreducible factors.

Theorem 4.A.15 (de Rham) If (M, g) is a simply connected complete (e.g.
compact) Riemannian manifold then there exists a decomposition (M, g) =
(M1, g1) × . . .× (Mk, gk) with irreducible factors (Mi, gi). 2

Secondly, many groups can occur as holonomy groups of symmetric spaces,
a special type of homogeneous spaces. For the precise definition and their
classification see [12]. If symmetric spaces are excluded then, surprisingly, a
finite list of remaining holonomy groups can be given.

Theorem 4.A.16 (Berger) Let (M, g) be a simply connected, irreducible
Riemannian manifold of dimension m and let us assume that (M, g) is ir-
reducible and not locally symmetric. Then the holonomy group Hol(M, g) is
isomorphic to one of the following list:

i) SO(m).
ii) U(n) with m = 2n.
iii) SU(n) with m = 2n, n ≥ 3
iv) Sp(n) with m = 4n.
v) Sp(n)Sp(1) with m = 4n, n ≥ 2.
vi) G2, with m = 7.
vii) Spin(7), with m = 8. 2

We don’t go into any detail here, in particular we don’t define G2 or explain
the representation of Spin(7). Very roughly, SO(m) is the case of a general
Riemannian metric and vi) and vii) are very special. In fact compact examples
for vi) have been found only recently.

The irreducible holonomy groups that are relevant in complex geometry
are ii), iii), iv) and, a little less, v).
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In the following we shall discuss the case Hol(M, g) = U(n) and its sub-
group Hol(M, g) = SU(n). We will see that this leads to Kähler respectively
Ricci-flat Kähler manifolds. The case Hol(M, g) = Sp(n), not discussed here,
is related to so-called hyperkähler or, equivalently, holomorphic symplectic
manifolds.

How is the holonomy Hol(M, g) of a Riemannian manifold related to the
geometry of M at all?

This is explained by the holonomy principle :
Choose a point x ∈ M and identify Hol(M, g) = Holx(M, g) ⊂ O(TxM).

This representation of Hol(M, g) induces representations on all tensors asso-
ciated with the vector space TxM , e.g. on End(TxM). Suppose αx is a tensor
invariant under Hol(M, g). We will in particular be interested in the case of
an almost complex structure αx = Ix ∈ End(TxM).

One way to obtain such an invariant tensor αx is by starting out with a
parallel tensor field α on M . (Recall that the Levi-Civita connection induces
connections on all tensor bundles, e.g. on End(TM), so that we can speak
about parallel tensor fields.) Clearly, any parallel tensor field α yields a ten-
sor αx which is invariant under the holonomy group. As an example take a
Kähler manifold (M, g, I). Then I is a parallel section of End(TM) and the
induced Ix ∈ End(TxM) is thus invariant under the holonomy group. Hence,
Hol(M, g) ⊂ O(2n) ∩ Gl(n,C) = U(n).

We are more interested in the other direction which works equally well:

Holonomy principle. If αx is an Hol(M, g)-invariant tensor on TxM then
αx can be extended to a parallel tensor field α over M .

Let us consider the case of an almost complex structure Ix ∈ End(TxM)
invariant under Hol(M, g). Then there exists a parallel section I of End(TM).
Since id ∈ End(TM) is parallel and I2

x = −id, we have I2 = −id everywhere,
i.e. I is an almost complex structure on M .

Moreover, since g and I are both parallel, also the Kähler form g(I( ), )
is parallel and, in particular, closed. There is an additional argument that
shows that I is in fact integrable. (One uses the fact that the Nijenhuis tensor,
which we have not defined but which determines whether an almost complex
structure is integrable, is a component of ∇(I) in case the connection is torsion
free. But in our case, I is parallel. See [61].) Thus, we obtain an honest Kähler
manifold (M, g, I).

This yields the following proposition. The uniqueness statement is left to
the reader.

Proposition 4.A.17 If Hol(M, g) ⊂ U(n) with m = 2n, then there exists a
complex structure I on M with respect to which g is Kähler. If Hol(M, g) =
U(n), then I is unique.

In the next proposition we relate SU(n)-holonomy to Ricci-flat Kähler
metrics, which will be explained in the next section in more detail. So the
reader might prefer to skip the following proposition at first reading.
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Proposition 4.A.18 If Hol(M, g) ⊂ SU(n) with m = 2n, then there exists
a complex structure I on M with respect to which g is a Ricci-flat Kähler
metric. If Hol(M, g) = SU(n) with n ≥ 3 then I is unique.

Proof. The existence of the Kähler metric and its uniqueness are proved as
in the previous proposition. The assumption that the holonomy group is con-
tained in SU(n) says that any chosen trivialization of

∧
xM = det(TxM

∗) is
left invariant by parallel transport. Hence, there exists a parallel section Ω of
detC(

∧
M) = det(ΩX ) = KX (where X = (M, I)). A parallel section of KX

is holomorphic and, if not trivial, without zeros, as the zero section itself is
parallel. Thus, KX is trivialized by a holomorphic volume form Ω.

Moreover, as Ω and ωn are both parallel, they differ by a constant. Using
Corollary 4.B.23 this shows that the Kähler metric g is Ricci-flat. �

Exercises

4.A.1 Complete the proof of Proposition 4.A.4, i.e. prove that for a torsion free
connection on a differentiable manifold M one has for any k-form α

(dα)(v1, . . . , vk+1) =
kX

i=0

(−1)i(Dviα)(v0, . . . , v̂i, . . . , vk+1).

4.A.2 Complete the proof of Proposition 4.A.9.

4.A.3 Let (X, g) be a compact Kähler manifold. Show that i · Ric(X, g) is the
curvature of the Chern connection on KX with respect to the induced hermitian
metric.

Comments: - For a thorough discussion of most of this section we refer to
[12]. A short introduction to holonomy with special emphasize on the relations to
algebraic geometry can be found in [9].

- We have not explained the relation between the curvature and the holonomy
group. Roughly, the curvature tensor determines the Lie algebra of Hol. See [12] for
more details.

- A detailed account of the more recent results on the holonomy of (compact)

manifolds can be found in [61] or [72]. Joyce was also the first one to construct

compact G2 manifolds.
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4.B Hermite–Einstein and Kähler–Einstein Metrics

Interesting metrics on compact manifolds are not easy to construct. This
appendix discusses two types of metrics which are of importance in Kähler
geometry.

If (X, g) is an hermitian manifold, ω := g(I( ), ( )) is its fundamental
form. By definition (X, g) is Kähler if and only if ω is closed, i.e. dω = 0.
The hermitian structure on X can be viewed as an hermitian structure on
its holomorphic tangent bundle. So we might look more generally for inter-
esting metrics on an arbitrary holomorphic vector bundle E on X . We will
discuss special hermitian metrics on E, so called Hermite–Einstein metrics,
by comparing the curvature F∇ of the Chern connection ∇ on E with the
fundamental form ω. In the special case that E is the holomorphic tangent
bundle TX and the hermitian structure h is induced by g this will lead to the
concept of Kähler–Einstein metrics on complex manifolds.

In some of our examples, e.g. the Fubini–Study metric on Pn, we have
already encountered this special type of Kähler metrics. However, on other
interesting manifolds, like K3 surfaces, concrete examples of Kähler metrics
have not been discussed. Of course, if a manifold is projective one can always
consider the restriction of the Fubini–Study metric, but this usually does not
lead to geometrically interesting structures (at least not directly).

For the time being, we let E be an arbitrary holomorphic vector bun-
dle with an arbitrary hermitian metric h. Recall that the curvature F∇ of
the Chern connection on (E, h) is of type (1, 1), i.e. F∇ ∈ A1,1(X,End(E)).
The fundamental form ω induces an element of the same type ω · idE ∈
A1,1(X,End(E)). These two are related to each other by the Hermite–Einstein
condition:

Definition 4.B.1 An hermitian structure h on a holomorphic vector bundle
E is called Hermite–Einstein if

i · ΛωF∇ = λ · idE

for some constant scalar λ ∈ R. Here, Λω is the contraction by ω.

In this case, we will also say that the connection ∇ is Hermite–Einstein
or even that the holomorphic bundle E is Hermite–Einstein. Note that the
Hermite–Einstein condition strongly depends on the hermitian structure on
the manifold X . It may happen that a vector bundle E admits an Hermite–
Einstein structure with respect to one hermitian structure g on X , but not
with respect to another g′.

Example 4.B.2 The easiest example of an Hermite–Einstein bundle is provided
by flat bundles. In this case the curvature F∇ is trivial and the Hermite–
Einstein condition is, therefore, automatically satisfied with λ = 0.
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Let us discuss a few equivalent formulations of the Hermite–Einstein con-
dition. Firstly, one can always write the curvature of the Chern connection ∇
on any bundle E as

F∇ =
tr(F∇)

rk(E)
· id + F o

∇

where F o
∇ is the trace free part of the curvature. Let us now assume that g

is a Kähler metric, i.e. that ω is closed (and thus, automatically, harmonic).
Then the connection is Hermite–Einstein if and only if tr(F∇) is an harmonic
(1, 1)-form and F o

∇ is (locally) a matrix of primitive (1, 1)-forms. Indeed, if ∇
is Hermite–Einstein, then i · tr(F∇) = (rk(E) · λ) · ω + α with α a primitive
(1, 1)-form. Since the trace is closed (Bianchi identity), the form α is closed
and hence harmonic (see Exercise 3.1.12). The other assertion and the converse
are proved analogously.

Secondly, the Hermite–Einstein condition for the curvature of a Chern
connection is equivalent to writing

i · F∇ = (λ/n) · ω · idE + F ′
∇,

where F ′
∇ is locally a matrix of ω-primitive (1, 1)-forms. Here, n = dimC X .

The factor (1/n) is explained by the commutator relation [L,Λ] = H , which
yields ΛL(1) = n (cf. Proposition 1.2.26).

Using standard results from Section 1.2 one easily finds that h is Hermite–
Einstein if and only if

i · F∇ ∧ ωn−1 = (λ/n) · ωn · idE .

In particular,

i · tr(F∇) ∧ ωn−1 =
rk(E) · λ

n
· ωn. (4.9)

If X is compact and Kähler, (4.9) can be used to show that λ depends
only on the first Chern class of E and its rank. Indeed, integrating (4.9) yields

λ ·
∫

X

[ω]n = n ·
∫
X i · tr(F∇) ∧ ωn−1

rk(E)
.

Hence, λ = (2π) · n ·
(∫
X [ω]n

)−1
µ(E), where the slope µ(E) of E is defined

as follows:

Definition 4.B.3 The slope of a vector bundle E with respect to the Kähler
form ω is defined by

µ(E) :=

∫
X c1(E) ∧ [ω]n−1

rk(E)
.

In general, Hermite–Einstein metrics are not easy to describe, but they
exist quite frequently and those holomorphic bundles that admit Hermite–
Einstein metrics can be described algebraically (see Theorem 4.B.9).
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Lemma 4.B.4 Any holomorphic line bundle L on a compact Kähler manifold
X admits an Hermite–Einstein structure.

Proof. The curvature i · F∇ of the Chern connection on the holomorphic line
bundle L endowed with an hermitian structure h is a real (1, 1)-form. Hence,
i · ΛωF∇ is a real function ϕ, which can be written as λ − ∂∗∂f for some
function f and some constant λ. Since ∂∗∂f = (1/2)d∗df , we can assume that
the function f is real.

Then define a new hermitian structure h′ on L by h′ = ef ·h. The curvature
of the induced connection ∇′ is F∇′ = F∇ + ∂̄∂f (see iii), Examples 4.3.9).
Using the Kähler identity [Λ, ∂̄] = −i∂∗ on A0(X) one computes Λω∂̄∂f =
−i∂∗∂f . Hence, i · Λω(F∇′ ) = (ϕ+ ∂∗∂f) = λ. �

Remark 4.B.5 Clearly, the first Chern class c1(L) ∈ H2(X,R) can uniquely
be represented by an harmonic form. The lemma shows that one actually
finds an hermitian structure on L such that the first Chern form c1(L,∇) of
the associated Chern connection ∇ is this harmonic representative. The same
argument can be used to solve Exercise 4.4.10.

From here one can go on and construct many more vector bundles ad-
mitting Hermite–Einstein structures. E.g. the tensor product E1 ⊗E2 of two
Hermite–Einstein bundles is again Hermite–Einstein, as well as the dual bun-
dle E∗

1 . However, the direct sum E1⊕E2 admits an Hermite–Einstein structure
if and only if µ(E1) = µ(E2) (cf. Exercise 4.B.2). Indeed, it is not hard to
see that the direct sum of the two Hermite–Einstein connections is Hermite–
Einstein under this condition. The other implication is slightly more compli-
cated.

Vector bundles admitting Hermite–Einstein metrics satisfy surprising topo-
logical restrictions.

Proposition 4.B.6 Let E be a holomorphic vector bundle of rank r on a
compact hermitian manifold (X, g). If E admits an Hermite–Einstein struc-
ture then ∫

X

(
2rc2(E) − (r − 1)c2

1(E)
)
∧ ωn−2 ≥ 0.

Proof. The bundle G := End(E) with the naturally induced connection ∇G

is Hermite–Einstein (cf. Exercise 4.B.2) and has vanishing first Chern form
c1(G,∇G) (cf. Exercise 4.4.9). In particular, ΛωF∇G = 0.

For such a bundle G we will show that ch2(G,∇G)ωn−2 ≤ 0 (pointwise!).
Since ch2(End(E),∇) = −(2rc2(E,∇)− (r− 1)c2

1(E,∇)) (cf. Exercise 4.4.9),
this then proves the assertion.
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The rest of the proof is pure linear algebra applied to the tangent space
at an arbitrary point. By definition

ch2(G,∇G) =
1

2
tr

((
i

2π
F∇G

)2
)

= tr

(
i

2π
F∇G ∧

(
i

2π
F∇G

)t)
,

where the expression on the right hand side is meant with respect to a local
orthonormal basis.

But by the Hodge–Riemann bilinear relation 1.2.36 any matrix of primitive
(1, 1)-forms A = (aij) satisfies tr(AĀt) ∧ ωn−2 =

∑
(aij āij) ∧ ωn−2 ≤ 0. �

Remarks 4.B.7 i) In this context the inequality is due to Lübke [87]. It is
often called the Bogomolov–Lübke inequality, as its algebraic version was
first observed by Bogomolov [14].

ii) Also note that the above Chern class combination is the only natur-
al one (up to scaling) among those that involve only the first two Chern
classes, as it is the only one that remains unchanged when passing from E to
a line bundle twist E⊗L, which also carries a Hermite–Einstein structure (cf.
Exercise 4.B.2).

iii) In the proof we have actually shown the pointwise inequality. Thus, in
this sense the assertion holds true also for non-compact manifolds X . More-
over, from the proof one immediately deduces that equality (global or point-
wise) implies that the endomorphism bundle has vanishing curvature.

iv) Furthermore, we only used the weak Hermite–Einstein condition where
the scalar λ is replaced by a function. Due to the Exercise 4.B.3 this does not
really generalize the statement as formulated above.

When does a holomorphic bundle that satisfies the above inequality really
admit a Hermite–Einstein metric? This is a difficult question, but a complete
answer is known due to the spectacular results of Donaldson, Uhlenbeck, and
Yau. It turns out that the question whether E admits an Hermite–Einstein
metric can be answered by studying the algebraic geometry of E. In particular,
one has to introduce the concept of stability.

Definition 4.B.8 A holomorphic vector bundle E on a compact Kähler mani-
fold X is stable if and only if

µ(F ) < µ(E)

for any proper non-trivial OX -subsheaf F ⊂ E.

A few comments are needed here. First of all, the notion depends on the
chosen Kähler structure of X or, more precisely, on the Kähler class [ω].
Secondly, the slope was defined only for vector bundles F and not for arbitrary
OX -sheaves F ⊂ E, but it is not difficult to find the correct definition in this
more general context. E.g. one could first define the determinant of F and then
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define the first Chern class of F as the first Chern class of its determinant.
Another possibility would be to use the Atiyah class to define Chern classes
of coherent sheaves in general (cf. Remark 5.1.5).

Unfortunately, already from dimension three on one really needs to check
arbitrary subsheaves of E and not just locally free subsheaves (let alone sub-
vector bundles, i.e. locally free subsheaves with locally free quotient). There is
however one condition that is slightly stronger than stability and which uses
only vector bundles. A holomorphic bundle E is stable if for any 0 < s < rk(E)
and any line bundle L ⊂ ∧sE one has µ(L) < s · µ(E).

Also note that other stability concepts for holomorphic vector bundles
exist. The one we use is usually called slope-stability or Mumford–Takemoto
stability .

One can also define polystability for holomorphic vector bundles (not to be
confused with semi-stability, which we shall not define). A holomorphic vector
bundle E is polystable if E =

⊕
Ei with Ei stable vector bundles all of the

same slope µ(E) = µ(Ei). The following beautiful result shows that algebraic
geometry of a vector bundle determines whether an Hermite–Einstein metric
exists. The proof is a pure existence result and it allows to deduce the existence
of Hermite–Einstein metrics without ever actually constructing any Hermite–
Einstein metric explicitly.

Theorem 4.B.9 (Donaldson, Uhlenbeck, Yau) A holomorphic vector
bundle E on a compact Kähler manifold X admits an Hermite–Einstein met-
ric if and only if E is polystable. 2

Remark 4.B.10 One direction of the theorem is not very hard, any holomor-
phic bundle endowed with an Hermite–Einstein metric is polystable. Donald-
son in [36] proved the converse for algebraic surfaces. This was a generaliza-
tion of an old result of Narasimhan and Seshadri [94] for vector bundles on
curves. On curves, Hermite–Einstein metrics are intimately related to unitary
representation of the fundamental group of the curve. Uhlenbeck and Yau
[112] generalized Donaldson’s result to arbitrary compact Kähler manifolds
and Buchdahl managed to adjust the proof to the case of compact hermi-
tian manifolds. This kind of result is nowadays known as Kobayashi–Hitchin
correspondence (cf. [88]).

Next, we shall study the case that E is the holomorphic tangent bundle
TX . This leads to a much more restrictive notion. Any hermitian structure g
on the complex manifold X induces an hermitian structure on the holomor-
phic tangent bundle TX . So, it would not be very natural to look for another
unrelated hermitian structure on TX . Recall that the Hermite–Einstein con-
dition intertwines the hermitian structure on X with the hermitian structure
on the vector bundle in question.

Definition 4.B.11 An hermitian manifold (X, g) is called Kähler–Einstein if
(X, g) is Kähler and the naturally induced hermitian structure on the holo-
morphic tangent bundle is Hermite–Einstein. In this case the metric g is called
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Kähler–Einstein. If a Kähler–Einstein metric g on X exists, the complex man-
ifold X is also called a Kähler–Einstein manifold.

Explicitly, this means that the curvature of the Levi-Civita connection
satisfies

i · ΛωF∇ = λ · idTX (4.10)

for some constant scalar factor λ.
One may try to avoid the condition that the manifold is Kähler, but as we

explained in Section 4.A the Chern connection on the holomorphic tangent
bundle coincides with the Levi-Civita connection if and only if the manifold
(X, g) is Kähler. If not, the Hermite–Einstein condition would not seem very
natural for the Riemannian metric g.

Note that the holomorphic tangent bundle on an hermitian (or Kähler)
manifold (X, g) might very well admit a Hermite–Einstein metric without X
being Kähler–Einstein.

Usually the Kähler–Einstein condition is introduced via the Ricci curva-
ture (cf. Definition 4.A.10). Let us begin with the Riemannian version.

Definition 4.B.12 A Riemannian metric g on a differentiable manifold M is
Einstein if its Ricci tensor r(M, g) satisfies

r(M, g) = λ · g

for some constant scalar factor λ.

If g is a Kähler metric on the complex manifold X = (M, I), then the
Ricci curvature Ric(X, g) is defined by Ric(u, v) = r(I(u), v) (see Definition
4.A.10). This is in complete analogy to the definition of the Kähler form ω
as ω(u, v) = g(I(u), v). Thus, a metric g on a complex manifold X = (M, g)
is an Einstein metric on M if and only if Ric(X, g) = λ · ω for some constant
scalar λ.

Recall that Proposition 4.A.11 shows i · ω̃(ΛωF∇) = Ric(X, g). This leads
to:

Corollary 4.B.13 Let g be a Kähler metric on the complex manifold X =
(M, I). Then g is an Einstein metric on M if and only if g is a Kähler–
Einstein metric on X.

Proof. Indeed, if g is a Kähler–Einstein metric, then for the curvature F of
the Levi-Civita connection one has i · ΛωF = λ · id and hence Ric(X, g) =
i · ω̃(ΛωF ) = λ · ω. Thus, r(M, g) = λ · g.

For the converse, go the argument backwards. �
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Applying the argument explained before for Hermite–Einstein metrics (see
page 218) and using c1(X) = (i/2π)[tr(F )], one finds that the scalar factor λ
in the Kähler–Einstein condition (4.10) can be computed as

λ =
i ·
∫

tr(F ) ∧ ωn−1

∫
ωn

=
(2π)

∫
c1(X) ∧ ωn−1

∫
ωn

.

In other words, c1(X) ∈ H2(X,R) and [ω] ∈ H2(X,R) satisfy the linear
equation (c1(X)− (λ/2π)[ω])[ω]n−1 = 0. In fact, one can prove more. Namely,
if g is a Kähler–Einstein metric on X , then for its associated Kähler form ω
one has

c1(X) =
λ

2π
· [ω]

with λ the scalar factor occurring in the Kähler–Einstein condition (4.10).
Indeed, c1(X) = c1(TX ) = [(i/2π)tr(F∇)] and by Proposition 4.A.11 and the
Kähler–Einstein condition one has (i/2π)tr(F∇) = (1/2π)Ric = (λ/2π)ω.

Also note that in the decomposition F∇ = (λ/n) ·ω · id +F ′ the primitive
part F ′ is traceless.

Corollary 4.B.14 If (X, g) is a Kähler–Einstein manifold, then one of the
three conditions holds true:

i) c1(X) = 0,
ii) c1(X) is a Kähler class,
iii) −c1(X) is a Kähler class. 2

In other words, the first Chern class of the canonical bundle KX of a
compact Kähler–Einstein manifold is either trivial, negative, or positive.

If c1(X) = 0, e.g. if the canonical bundle KX is trivial, and g is a Kähler–
Einstein metric then Ric(X, g) = 0. Indeed, in this case the scalar factor λ is
necessarily trivial and hence Ric(X, g) = λ · ω = 0, i.e. the Kähler metric g is
Ricci-flat.

Remark 4.B.15 Let us emphasize that there are two types of symmetries sat-
isfied by the curvature of the Levi-Civita connection of a Kähler manifold,
both stated in Proposition 4.A.11.

The first one allows to show that the primitive part of the curvature
is traceless and hence c1(X, g) = (i/2π)tr(F ) = (λ/2π)ω if g is a Kähler–
Einstein metric. (Recall that c1(X, g) = (1/2π)Ric(X, g) holds for any Kähler
metric g.)

The second relation, which is ii) in Proposition 4.A.11, was used to prove
the equivalence of the Einstein condition for the Kähler metric g and the
Hermite–Einstein condition for the induced hermitian structure on TX (Corol-
lary 4.B.13).

Examples 4.B.16 In the following we will give one example of a Kähler–
Einstein manifold in each of the three classes in Corollary 4.B.14.
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i) Projective space. It turns out that the Fubini–Study metric, the only
Kähler metric on Pn that has been introduced, is indeed Kähler–Einstein.
By Exercise 4.4.7 we know that c1(O(1)) = [ωFS] ∈ H2(Pn,R). Thus, if the
Fubini–Study metric gFS is indeed Kähler–Einstein then the scalar factor can
be computed by c1(P

n) = (n+ 1) · c1(O(1)) = λ · [ωFS], i.e. λ = n+ 1.
In order to see that gFS is Kähler–Einstein, recall that the induced her-

mitian structure on det(TPn) ∼= O(n + 1) is h⊗n+1, where h is the standard
hermitian structure on O(1) determined by the choice of the basis z0, . . . , zn ∈
H0(Pn,O(1)) (see Example 4.1.5). For the latter we have computed in Exam-
ple 4.3.12 that the Chern connection ∇ satisfies c1(O(1),∇) = ωFS. Hence,
c1(P

n, gFS) = (i/2π)tr(F∇FS) = (i/2π)(n+ 1)ωFS.
Clearly, any other Fubini–Study metric obtained by applying a linear co-

ordinate change is Kähler–Einstein as well.
ii) Complex tori. The holomorphic tangent bundle of a complex torus

X = Cn/Γ is trivial. The Chern connection for any constant Kähler structure
on X is flat. Thus, the Kähler–Einstein condition is satisfied with the choice
of the scalar λ = 0.

Complex tori are trivial examples of Ricci-flat manifolds. Any other ex-
ample is much harder to come by.

iii) Ball quotients. The standard Kähler structure ω = (i/2)∂∂̄(1−‖z‖2)
on the unit disc Dn ⊂ Cn is Kähler–Einstein with λ < 0. For simplicity we
consider only the one-dimensional case. Then ω = (i/2)(1−|z|2)−2dz∧dz̄ and,
hence, the hermitian metric is h = (1 + |z|2)−2. The curvature of its Chern
connection is thus given by F = −∂(h−1∂̄h) = −2

(1−|z|2)2 dz ∧ dz̄. Therefore,

i · F = −4 · ω.
This way, one obtains negative Kähler–Einstein structures on all ball quo-

tients.

As the holomorphic tangent bundle of a Kähler–Einstein manifold is
in particular Hermite–Einstein, any Kähler–Einstein manifold satisfies the
Bogomolov–Lübke inequality 4.B.6. In fact, a stronger inequality can be
proved by using the additional symmetries of the curvature of a Kähler mani-
fold. As for the Bogomolov–Lübke inequality, there are algebraic and analytic
proofs of this inequality. The first proof, using the Kähler–Einstein condition
was given by Chen and Oguie [24]. An algebraic version of it was proved by
Miyaoka. The inequality is usually called the Miyaoka–Yau inequality.

Proposition 4.B.17 Let X be a Kähler–Einstein manifold of dimension n
and let ω be a Kähler–Einstein form. Then

∫

X

(
2(n+ 1)c2(X) − nc2

1(X)
)
∧ ωn−2 ≥ 0. (4.11)

Remark 4.B.18 It might be instructive to consider the Miyaoka–Yau inequality
in the case of a compact surface. Here it says 3c2(X) ≥ c2

1(X). Since c2
1(X) ≥ 0
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for a Kähler–Einstein surface, this inequality is stronger than the Bogomolov–
Lübke inequality. It is noteworthy that for the projective plane and a complex
torus the inequality becomes an equality.

In fact, one can prove that equality in (4.11) for a Kähler–Enstein mani-
fold X implies that the universal cover of X is isomorphic to Pn, Cn, or a
ball. For a proof of this result see e.g. Tian’s lecture notes [106].

In many examples it can easily be checked whether the canonical bundle
is negative, trivial, or positive and whether the Miyaoka–Yau inequality is
satisfied. In fact, often this can be done without even constructing any Kähler
metric on X just by using an embedding of X in a projective space and
pulling-back the Fubini–Study metric on O(1). But even when this necessary
condition holds, we still don’t know whether X admits a Kähler–Einstein
structure and if how many.

The key result that is behind many others in this area is the following
fundamental theorem of Calabi and Yau. Perhaps, it is worth emphasizing
that this result works for arbitrary compact Kähler manifolds without any
condition on the canonical bundle. It will also lead to the fundamental result
that any form representing c1(X) is the Ricci curvature of a unique Kähler
metric with given Kähler class (cf. Proposition 4.B.21).

Theorem 4.B.19 (Calabi–Yau) Let (X, g0) be a compact Kähler manifold
of dimension n and let ω0 be its Kähler form. For any real differentiable
function f on X with ∫

X

ef · ωn0 =

∫

X

ωn0

there exists a unique Kähler metric g with associated Kähler form ω such that

[ω] = [ω0] and ωn = ef · ωn0 .

Proof. The proof of the existence is beyond the scope of these notes (see [61]),
but for the uniqueness an easy argument, due to Calabi, goes as follows:

Suppose ω1 and ω2 are two Kähler forms with ωn1 = ωn2 . If they are co-
homologous, there exists a real function f on M with ω2 = ω1 + i∂∂̄f (see
Exercise 3.2.16). Hence, 0 = ωn2 − ωn1 = γ ∧ (ω2 − ω1) = γ ∧ (i∂∂̄f) with
γ = ωn−1

2 + ωn−2
2 ∧ ω1 + . . .+ ω2 ∧ ωn−2

1 + ωn−1
1 .

The form γ is a positive linear combination of positive forms ωk2 ∧ωn−1−k
1

and, hence, itself positive. The equation 0 = γ ∧ ∂∂̄f together with the maxi-
mum principle imply that f is constant and hence ω1 = ω2.

For the convenience of the reader we spell out how the maximum principle
is applied here. Since M is compact, there exists a point x ∈ M where f
attains its maximum. For simplicity we will assume that the Hessian of f in
x is negative definite. (If not one has to perturb by a quadratic function as in
the proof of the maximum principle for harmonic functions.)
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Now, let us choose local coordinates (z1 = x1 + iy1, . . . , zn = xn + iyn)
around x ∈ M such that ω1 and ω2 are simultaneously diagonalized in x ∈
M . We may assume ω1(x) = (i/2)

∑
dzi ∧ dz̄i =

∑
dxi ∧ yi and ω2(x) =

(i/2)
∑
λidzi ∧ dz̄i =

∑
λidxi ∧ dyi. Since ω2 is positive, λi > 0. Thus, 0 =

γ∧∂∂̄f in x ∈M yields an equation of the form 0 =
∑
µi

(
∂2f
∂x2

i
(x) + ∂2f

∂y2
i
(x)
)
,

where the coefficients µi are positive linear combinations of terms of the form
λi1 . . . λik . But this contradicts the fact that the Hessian of f is negative
definite. �

The theorem can be rephrased as follows: If X is a compact Kähler mani-
fold with a given volume form vol which is compatible with the natural orien-
tation, then there exists a unique Kähler metric g on X with ωn = vol and
prescribed [ω] ∈ H2(X,R).

Yet another way to say this uses the Kähler cone KX ⊂ H1,1(X,R) of all

Kähler classes (see Definition 3.2.14) and the set K̃X of all Kähler forms ω
with ωn = λ · vol for some λ ∈ R>0. Then the natural map that projects a
closed form to its cohomology class induces the following diagram:

A1,1(X)cl // // H1,1(X)

K̃X
?�

OO

∼ // KX
?�

OO

Lemma 4.B.20 Let ω and ω′ be two Kähler forms on a compact Kähler
manifold. If ωn = ef · ω′n for some real function f , then Ric(X,ω) =
Ric(X,ω′) + i∂̄∂f .

Proof. The two Kähler forms correspond to Kähler metrics g and g′, respec-
tively, which are locally given by matrices (gij) and

(
g′ij
)
. The induced volume

forms are thus given by the functions det(gij) respectively det
(
g′ij
)
. Hence,

det(gij) = ef · det
(
g′ij
)
.

On the other hand, the two metrics induce hermitian structures h respec-
tively h′ on TX and thus on det(TX ). The curvature forms of the latter are
∂̄∂ log(det(h)) and ∂̄∂ log(det(h′)), respectively. Since det(h) and det(h′) differ
again by the scalar factor ef , this yields Ric(X,ω) = Ric(X,ω′)+ i∂̄∂ log(ef ),
as the Ricci curvature is the curvature of the induced connection on det(TX)
(see Proposition 4.A.11). �

This lemma together with the Calabi–Yau theorem 4.B.19 yields:

Proposition 4.B.21 Let X be a compact Kähler manifold and let α ∈ KX be
a Kähler class. Assume β is a closed real (1, 1)-form with [β] = c1(X). Then
there exists a unique Kähler structure g on X such that

i) Ric(X, g) = (2π) · β and
ii) [ω] = α for the Kähler form ω of the Kähler metric g.
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Proof. Let ω0 be an arbitrary Kähler form on X . Then Ric(X,ω0) represents
(2π) · c1(X) and hence is cohomologous to (2π) · β. Thus, since X is Kähler,
one finds a real function f with (2π) · β = Ric(X,ω0) + i∂̄∂f .

By the Calabi–Yau theorem 4.B.19 there exists a unique Kähler metric
with associated Kähler form ω such that [ω] = α and ωn = ef+c · ωn0 , where
the constant c is chosen such that

∫
X
αn = ec

∫
X
ef · ωn0 .

Using Lemma 4.B.20, we find that the Ricci curvature of g is given by

Ric(X,ω) = Ric(X,ω0) + i∂̄∂f = (2π) · β.

Using again the lemma and the uniqueness part of the Calabi–Yau theo-
rem, we find that ω is unique. �

Corollary 4.B.22 If X is a compact Kähler manifold with c1(X) = 0 then
there exists a unique Ricci-flat Kähler structure g on X with given Kähler
class [ω]. The volume form up to a scalar does not depend on the chosen
Ricci-flat metric or the Kähler class [ω].

Proof. Choosing β = 0 in Proposition 4.B.21 yields a unique Kähler structure
in each Kähler class with vanishing Ricci curvature. The uniqueness of the
volume is easily deduced from Lemma 4.B.20. �

Thus, any compact Kähler manifold X with c1(X) = 0 is Ricci-flat.
Clearly, any compact Kähler manifold with trivial canonical bundle KX

∼= OX

has c1(X) = 0. For this type of manifold, the Ricci-flatness of a Kähler form
can be determined by the following criterion

Corollary 4.B.23 Let X be a compact Kähler manifold of dimension n with
trivial canonical bundle KX . Fix a holomorphic volume form, i.e. a trivializing
section Ω ∈ H0(X,KX). Then, a Kähler form ω is Ricci-flat if and only if

ωn = λ · (Ω ∧Ω)

for some constant λ ∈ C∗.

Proof. Suppose ωn = λ · (Ω ∧ Ω). Since ω is parallel, i.e. ∇(ω) = 0 for the
Levi-Civita connection ∇ (see Proposition 4.A.8), also ∇(ωn) = 0 and hence
∇(Ω ∧Ω) = 0.

On the other hand, the Levi-Civita connection on a Kähler manifold is
compatible with the complex structure. Since ∂̄Ω = 0, this shows that ∇(Ω) =
α ⊗ Ω with α ∈ A1,0(X). Therefore, using the bidegree decomposition the
equality 0 = ∇(Ω ∧ Ω) = ∇(Ω) ∧ Ω + Ω ∧ ∇(Ω) = (α + ᾱ)(Ω ∧ Ω) implies
α = 0. Thus, Ω is a parallel section of KX and, in particular, the curvature
of the Levi-Civita connection on KX , which is the Ricci curvature, vanishes.
Thus, ω is Ricci-flat.

Conversely, if a Ricci-flat Kähler form ω is given there exists a unique
Kähler form ω′ in the same cohomology class with ω′n = λ · (Ω ∧Ω) for some
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λ ∈ C∗. By what has been said before, this yields that also ω′ is Ricci-flat and
the uniqueness of the Ricci-flat representative of a Kähler class proves ω = ω′.

Clearly, the constant λ is actually real and positive. �

The other two cases for which Kähler–Einstein metrics could a priori exist
are much harder. If c1(X) is negative, i.e. −c1(X) can be represented by a
Kähler form, the question is completely settled by the following theorem, due
to Aubin and Yau.

Theorem 4.B.24 (Aubin, Yau) Let X be a compact Kähler manifold such
that c1(X) is negative. Then X admits a unique Kähler–Einstein metric up
to scalar factors.

Proof. The uniqueness is again rather elementary. See [5, 12] for more com-
ments. �

Thus, Theorem 4.B.24 and Corollary 4.B.22 can be seen as the non-linear
analogue of the Donaldson–Uhlenbeck–Yau description of Hermite–Einstein
metrics, but clearly the situation here is more subtle. E.g. for c1(X) positive
the situation is, for the time being, not fully understood. One knows that
in this case a Kähler–Einstein metric need not exist. E.g. the Fubini–Study
metric on P2 is Kähler–Einstein, but the blow-up of P2 in two points for which
K∗
X is still ample does not admit any Kähler–Einstein metric. In order to

ensure the existence of a Kähler–Einstein metric, a certain stability condition
on X has to be added . There has been done a lot of work on this problem
recently. See the survey articles [19] or [105].

Exercises

4.B.1 Verify that the only stable vector bundles on P1 are line bundles. Find a
semi-stable vector bundle of rank two on an elliptic curve. (A semi-stable bundle
satisfies only the weaker stability condition µ(F ) ≤ µ(E) for all sub-bundles F ⊂ E.)

4.B.2 Let E1, E2 be holomorphic vector bundles endowed with Hermite–Einstein
metrics h1 and h2, respectively. Show that the naturally induced metrics on E1⊗E2,
Hom(E1, E2), and E∗

i are all Hermite–Einstein. If µ(E1) = µ(E2), then also h1 ⊕h2

is Hermite–Einstein on E1 ⊕E2.

4.B.3 Let (E, h) be an hermitian holomorphic vector bundle on a compact
Kähler manifold such that i · ΛωF∇ = λ · idE for the Chern connection ∇ and a
function λ. Show that by changing h to ef · h for some real function f , one finds an
hermitian metric on E the Chern connection of which satisfies the Hermite–Einstein
condition with constant factor λ.
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4.B.4 Let E be a holomorphic vector bundle on a compact Kähler manifold X
with a chosen Kähler structure ω. Without using Theorem 4.B.9, show that if E
admits an Hermite–Einstein metric with respect to ω then E admits an Hermite–
Einstein metric with respect to any other Kähler form ω′ with [ω] = λ[ω′] for any
λ ∈ R>0.

(This corresponds to the easy observation that stability only depends on the
Kähler class (and not on the particular Kähler form) and that scaling by a constant
does not affect the stability condition.)

4.B.5 Give an algebraic argument for the stability of the tangent bundle of Pn.

Comments: - The Hermite–Einstein condition for holomorphic vector bundles
is discussed in detail in [78].

- For the algebraic theory of stable vector bundles and their moduli see [70] and
the references therein.




