
Preface

This book aims to be a course in Lie groups that can be covered in one
year with a group of good graduate students. I have attempted to address
a problem that anyone teaching this subject must have, which is that the
amount of essential material is too much to cover.

One approach to this problem is to emphasize the beautiful representation
theory of compact groups, and indeed this book can be used for a course of
this type if after Chapter 25 one skips ahead to Part III. But I did not want
to omit important topics such as the Bruhat decomposition and the theory of
symmetric spaces. For these subjects, compact groups are not sufficient.

Part I covers standard general properties of representations of compact
groups (including Lie groups and other compact groups, such as finite or p-
adic ones). These include Schur orthogonality, properties of matrix coefficients
and the Peter-Weyl Theorem.

Part II covers the fundamentals of Lie groups, by which I mean those sub-
jects that I think are most urgent for the student to learn. These include the
following topics for compact groups: the fundamental group, the conjugacy
of maximal tori (two proofs), and the Weyl character formula. For noncom-
pact groups, we start with complex analytic groups that are obtained by
complexification of compact Lie groups, obtaining the Iwasawa and Bruhat
decompositions. These are the reductive complex groups. They are of course a
special case, but a good place to start in the noncompact world. More general
noncompact Lie groups with a Cartan decomposition are studied in the last
few chapters of Part II. Chapter 31, on symmetric spaces, alternates examples
with theory, discussing the embedding of a noncompact symmetric space in
its compact dual, the boundary components and Bergman-Shilov boundary
of a symmetric tube domain, and Cartan’s classification. Chapter 32 con-
structs the relative root system, explains Satake diagrams and gives examples
illustrating the various phenomena that can occur, and reproves the Iwasawa
decomposition, formerly obtained for complex analytic groups, in this more
general context. Finally, Chapter 33 surveys the different ways Lie groups can
be embedded in one another.
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Part III returns to representation theory. The major unifying theme of
Part III is Frobenius-Schur duality. This is the correspondence, originating in
Schur’s 1901 dissertation and emphasized by Weyl, between the irreducible
representations of the symmetric group and the general linear groups. The
correspondence comes from decomposing tensor spaces over both groups si-
multaneously. It gives a dictionary by which problems can be transferred from
one group to the other. For example, Diaconis and Shahshahani studied the
distribution of traces of random unitary matrices by transferring the problem
of their distribution to the symmetric group. The plan of Part III is to first
use the correspondence to simultaneously construct the irreducible represen-
tations of both groups and then give a series of applications to illustrate the
power of this technique. These applications include random matrix theory,
minors of Toeplitz matrices, branching formulae for the symmetric and uni-
tary groups, the Cauchy identity, and decompositions of some symmetric and
exterior algebras. Other thematically related topics topics discussed in Part
III are the cohomology of Grassmannians, and the representation theory of
the finite general linear groups.

This plan of giving thematic unity to the “topics” portion of the book with
Frobenius-Schur the unifying theme has the effect of somewhat overemphasiz-
ing the unitary groups at the expense of other Lie groups, but for this book
the advantages outweigh this disadvantage, in my opinion. The importance of
Frobenius-Schur duality cannot be overstated.

In Chapters 48 and 49, we turn to the analogies between the representation
theories of symmetric groups and the finite general linear groups, and between
the representation theory of the finite general linear groups and the theory of
automorphic forms. The representation theory of GL(n,Fq) is developed to
the extent that we can construct the cuspidal characters and explain Harish-
Chandra’s “Philosophy of Cusp Forms” as an analogy between this theory
and the theory of automorphic forms. It is a habit of workers in automorphic
forms (which many of us learned from Piatetski-Shapiro) to use analogies with
the finite field case systematically.

The three parts have been written to be somewhat independent. One may
thus start with Part II or Part III and it will be quite a while before earlier
material is needed. In particular, either Part II or Part III could be used as
the basis of a shorter course. Regarding the independence of Part III, the
Weyl character formula for the unitary groups is obtained independently of
the derivation in Part II. Eventually, we need the Bruhat decomposition but
not before Chapter 47. At this point, the reader may want to go back to Part
II to fill this gap.

Prerequisites include the Inverse Function Theorem, the standard theorem
on the existence of solutions to first order systems of differential equations
and a belief in the existence of Haar measures, whose properties are reviewed
in Chapter 1. Chapters 17 and 50 assume some algebraic topology, but these
chapters can be skipped. Occasionally algebraic varieties and algebraic groups
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are mentioned, but algebraic geometry is not a prerequisite. For affine alge-
braic varieties, only the definition is really needed.

The notation is mostly standard. In GL(n), I or In denotes the n × n
identity matrix and if g is any matrix, tg denotes its transpose. Omitted entries
in a matrix are zero. The identity element of a group is usually denoted 1 but
also as I, if the group is GL(n) (or a subgroup), and occasionally as e when
it seemed the other notations could be confusing. The notations ⊂ and ⊆ are
synonymous, but we mostly use X ⊂ Y if X and Y are known to be unequal,
although we make no guarantee that we are completely consistent in this. If
X is a finite set, |X| denotes its cardinality.

One point where we differ with some of the literature is that the root
system lives in R⊗X∗(T ) rather than in the dual space of the Lie algebra of
the maximal torus T as in much of the literature. This is of course the right
convention if one takes the point of view of algebraic groups, and it is also
arguably the right point of view in general since the real significance of the
roots has to do with the fact that they are characters of the torus, not that
they can be interpreted as linear functionals on its Lie algebra.

To keep the book to a reasonable length, many standard topics have been
omitted, and the reader may want to study some other books at the same
time. Cited works are usually recommended ones.
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